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ABSTRACT
The Sparse Vector Technique (SVT) is one of the most fundamental
tools in dierential privacy (DP). It works as a backbone for adap-
tive data analysis by answering a sequence of queries on a given
dataset, and gleaning useful information in a privacy-preserving
manner. Unlike the typical private query releases that directly pub-
licize the noisy query results, SVT is less informative—it keeps the
noisy query results to itself and only reveals a binary bit for each
query, indicating whether the query result surpasses a predened
threshold. To provide a rigorous DP guarantee for SVT, prior works
in the literature adopt a conservative privacy analysis by assuming
the direct disclosure of noisy query results as in typical private
query releases. This approach, however, hinders SVT from achiev-
ing higher query accuracy due to an overestimation of the privacy
risks, which further leads to an excessive noise injection using the
Laplacian or Gaussian noise for perturbation. Motivated by this,
we provide a new privacy analysis for SVT by considering its less
informative nature. Our analysis results not only broaden the range
of applicable noise types for perturbation in SVT, but also identify
the exponential noise as optimal among all evaluated noises (which,
however, is usually deemed non-applicable in prior works). The
main challenge in applying exponential noise to SVT is mitigating
the sub-optimal performance due to the bias introduced by noise
distributions. To address this, we develop a utility-oriented optimal
threshold correction method and an appending strategy, which
enhances the performance of SVT by increasing the precision and
recall, respectively. The eectiveness of our proposed methods is
substantiated both theoretically and empirically, demonstrating
signicant improvements up to 50% across evaluated metrics.
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Figure 1: Classic sparse vector technique (SVT) and typical
private query release on publicizing movies with the top-c
highest scores. Classic SVT: after perturbing the movie score
@8 (⇡) and the predened threshold)8 with either Laplacian or
Gaussian noise, SVT compares the noisy score @̃8 (⇡) and the
noisy threshold )̃ 8 . If @̃8 (⇡)  )̃ 8 , > is output. Otherwise, ? is
output. Typical private query releases: all @̃8 (⇡) are released
and sorted to obtain the noisy top-c movies.

1 INTRODUCTION
In recent days, dierential privacy (DP) [13] has emerged as the
predominant privacy framework adopted by numerous service
providers, including Google [17, 18], Apple [8, 43], Microsoft [9,
34], etc., to safeguard individuals’ privacy. The sparse vector tech-
nique (SVT) [14, 15] is one of the most fundamental algorithmic
tools in DP, serving as a backbone for adaptive data analysis in
many applications, such as feature selection [2], stream data anal-
ysis [22], and top-2 selection [31]. At a high level, SVT answers a
sequence of queries on a given dataset and extracts useful informa-
tion in a privacy-preserving manner. Unlike typical private query
releases that directly reveal the noisy query results, SVT discloses
less information—it outputs only a binary bit for each query, indicat-
ing whether the query result surpasses a predened threshold (Cf.
Figure 1). The major advantage of SVT over the typical private
query releases is that only the positive queries (those whose results
are above the predened threshold) consume privacy, thus poten-
tially allowing an innite number of queries on a single dataset.

Despite the widespread usage of SVT, it still suers from a low
query accuracy [49] due to a conservative privacy analysis, result-
ing in a sub-optimal noise selection. Specically, prior works in
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the literature naïvely approximate the privacy budget consumption
of positive queries in SVT with that of dierentially private query
result releases (Cf. Section 2.2.2). However, since SVT discloses
less information in each query (i.e., only a binary bit instead of a
noisy real-valued query result), this conservative privacy analy-
sis approach overestimates its privacy risk. Consequently, SVT is
constrained to use noise with large variance as in typical query re-
leases for threshold and query perturbation, such as Laplacian [31]
or Gaussian [49] noise. Such noise types then lead to an excessive
noise injection and a sub-optimal query accuracy.

Motivated by this, our rst contribution is providing a new pri-
vacy analysis (Cf. Theorem 2), which captures the less informative
nature of SVT by precisely computing the privacy loss of the pri-
vate comparison between thresholds and query results. Informally
speaking, our analysis demonstrates that any noise whose cumu-
lative distribution function satises the Lipschitz condition can
be applied to SVT, allowing the use of noise types with smaller
variance under the same privacy level. Based on our analysis, we
identify the exponential noise, previously deemed non-applicable
to SVT, as the optimal choice among all considered noise types.
Exponential noise satises Theorem 2 tightly and benets from a
smaller variance compared to the others (Cf. Figure 4).

However, applying the exponential noise to SVT is challeng-
ing due to the bias introduced to the query results. The naïve bias
correction method, which subtracts the expected value of random
noise from the noisy query results, yields a sub-optimal perfor-
mance. This is primarily because SVT requires correcting each noisy
query result individually, whereas the naïve correction method is
designed for correcting the aggregation of noisy query results [17].
When random noises are aggregated (as in the aggregation of noisy
query results), their summed value approximates the expected value.
In contrast, individual noisy query results are less concentrated
around their expectations, resulting in less accurate corrections (Cf.
Section 4.3.1).

To address this challenge, our second contribution involves devel-
oping an optimal threshold correction method1 and an appending
strategy, which eectively mitigate introduced bias and signi-
cantly enhance query accuracy. Instead of correcting the bias of
each query result individually, our method focuses on optimizing
the precision of the output binary bit vector. Specically, we search
for an optimal correction term that maximizes the probability of
SVT distinguishing every true positive query from the true nega-
tive ones (Cf. Equation 8). Additionally, we introduce an appending
strategy to complement the threshold correction method and boost
the recall of SVT. Concretely, each query with a noisy negative
output is appended to the end of the query queue for another round
of querying. The intuition behind this is that, true positive queries
are more likely to be identied as positive queries by SVT compared
to the true negative ones after multiple rounds of querying, thus
increasing the recall.

In conclusion, our main contributions are summarized as follows:

(1) We provide a new privacy analysis that precisely captures the
privacy loss of SVT. This analysis not only broadens the noise

1As we further discussed in Section 4.1, correcting the threshold is equivalent to
correcting the noisy query results in SVT.

choices for query perturbation but also identies exponential
noise as the optimal choice among all considered ones.

(2) Building on our privacy analysis, we propose a new SVT vari-
ant with exponential noise, where an optimal threshold cor-
rection method and an appending strategy are developed to
mitigate the introduced bias and boost the query accuracy.

(3) Comprehensive experiments conducted on both synthetic
datasets and real-world datasets demonstrate that our pro-
posed methods signicantly increase the query accuracy of
SVT by 2% ⇠ 50% across evaluated metrics.

2 PRELIMINARIES
In this section, we rst recall the denition (Cf. Denition 1), mecha-
nisms (Cf. Equation 1), and properties of the dierential privacy (i.e.,
post-processing (Cf. Proposition 1) and composition (Cf. Theo-
rem 1)). Then, we proceed to describe the sparse vector technique
algorithm (Cf. Algorithm 1) and some of its predominant variants.

2.1 Dierential Privacy
The dierential privacy (DP) was rst introduced by Dwork et
al. [13] and recently became a de facto standard for privacy pro-
tection. Roughly speaking, DP ensures that the likelihood of any
specic output from a random algorithm varies little with sensitive
neighboring inputs. The formal denition is as follows:

D 1 (D P [13]). A randomized algo-
rithmM : D ! R satises (Y, X)-dierential privacy if for any two
neighboring datasets ⇡ and ⇡0, and any output > ✓ O

Pr[M(⇡) 2 >]  4Y · Pr[M(⇡0
) 2 >] + X.

When X = 0, we say that M satises pure DP (denoted by Y-DP).
Otherwise, it guarantees an approximate DP.

One of the typical methods of achieving DP is through the
additive-noise mechanism, which corrupts and releases query re-
sults with additive noise randomly drawn from certain distribu-
tions [20]. That is, given a dataset⇡ , to guarantee DP, a randomized
algorithm M releases:

M(⇡) = @(⇡) + -, (1)

wherein @(⇡) is the result of a query carried on ⇡ and - is the
additive noise drawn from a probability distribution N . The noise
scale is calibrated to the sensitivity of @(⇡) dened in the following:

D 2 (;? ). For a real-valued query @ : D !

R, the ;? -sensitivity of @ is dened as:

? = max
⇡,⇡ 0 2D

k@(⇡)  @(⇡0
)k? ,

where k · k? denotes the ;? norm and ⇡,⇡0 is a pair of neighboring
datasets that dier by one element.

The Laplace mechanism is one of the most classic additive-noise
mechanisms that achieves Y-DP by letting - follow a Laplace dis-
tribution centered at 0 with a noise scale 1 = 1

Y , denoted as
- ⇠ !0?

⇣
1
Y

⌘
, where 1 is the sensitivity of the query. Meanwhile,

the Gaussian mechanism mechanism typically guarantees (Y, X)-DP
by drawing the noise - from a normal distribution # (0, f2), where
f is proportional to 2

Y .
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DP provides a rigorous privacy guarantee mathematically and
is straightforward to achieve. Additionally, there are other two
properties that contribute to the wide-ranging applications of DP.
Firstly, it is immune to post-processing, which is formally described
as follows:

P 1 (P[15]). Let M : D ! R be
a randomized algorithm that is (Y, X) dierentially private. Let 5 :
R ! R be an arbitrary randomized mapping. Then 5 M is (Y, X)-
dierentially private.

Secondly, dierent dierentially private building blocks can be
elegantly combined for designing more sophisticated algorithms,
as described by the following theorem:

T 1 (S C[13]). LetM8 : N |j |
!

R8 be an (Y8 , X8 )-dierential privacy algorithm for 8 2 [:]. If M: :

N
|j |

!

:Œ
8=1

R8 is dened to be M[: ] (G) = (M1 (G), . . . ,M: (G)),

then M[: ] is (
:Õ
8=1

Y8 ,
:Õ
8=1

X8 )-dierentially private.

Other composition theorems. In addition to sequential com-
position, more advanced composition theorems with tighter com-
position results are also utilized in the literature [16, 21, 23, 33, 49].
Among these, composition under Rényi dierential privacy [35], de-
noted as RDP, is one of the widely adopted methods in the literature,
owing to its concise and tight analysis result. RDP employs Rényi
divergence as a tool for privacy measurement, and combining the
RDP notion with Theorem 1 yields a tighter privacy bound. Zhu et
al. [49] later demonstrate that SVT can be combined with RDP for
improved privacy guarantees. Although it is straightforward to
extend the existing composition theorems applied to SVT to our
proposed SVT variants [15, 49], for ease of analysis, we derive our
privacy analysis in this work based on Theorem 1. While we do not
dive deep into the theoretical analysis of other composition theo-
rems in this work, an empirical study on the performance of our
proposed method under RDP composition is provided in Appendix I
in the full version of this work [27] to oer further insights.

2.2 Sparse Vector Technique
2.2.1 Algorithm Construction. We begin with Algorithm 1, which
outlines the basic algorithm of the sparse vector technique (SVT) [14,
15, 31, 49]. In principle, SVT works as follows. Given a sequence
of queries @8 (⇡) on a dataset ⇡ and their corresponding prede-
ned thresholds )8 , SVT rst perturbs them with random noise
drawn from noise distribution N2 and N1 (Line 4, Line 5, Line 1,
and Line 6), respectively. Then, it compares each noisy query result
@̃8 (⇡) with the noisy threshold )̃ 8 (Line 7). If @̃8 (⇡) is no smaller
than @̃8 (⇡), > is output as a positive indicator (Line 9). Otherwise,
? is output as a negative indicator (Line 14). The algorithm halts
either when the number of positive outcomes reaches its maximum
value 2 , or when the total number of queries exceeds its maximum
value :<0G (Line 12).

The indicator RESAMPLE determines whether to resample the
noise for threshold perturbation after a positive query is identi-
ed (Line 11). Dierent variants in the literature set this indicator
to dierent values. For instance, Dwork et al. [14] set RESAMPLE to
True, whereas Lyu et al. [31] argue that the overall privacy cost is

Algorithm 1: SVT. Privately indicates if query results are
above thresholds.
Input: & = {@1, @2, . . .},,Y1,Y2,2 ,:<0G ,) = {)1,)2, . . .},

option RESAMPLE

1 d ⇠ N1 (Y1,); =2 = 0;=0=0;
2 for 8 = 1, 2, 3, . . . , :<0G do
3 =0 = =0 + 1;
4 E8 ⇠ N2 (Y2,);
5 @̃8 (⇡) = @8 (⇡) + E8 ; // Query perturbation

6 )̃ 8 = )8 + d ; // Threshold perturbation

7 if @̃8 (⇡)  )̃ 8 // Private comparison

8 then
9 Output 08 = >;

10 =2 = =2 + 1;
11 if RESAMPLE, d ⇠ N1 (Y1,);
12 Abort if =2  2 or =0  :<0G ;
13 else
14 Output 08 = ?

15 end
16 end

signicantly reduced by setting it to False, therefore signicantly
boosting the performance of SVT. Furthermore, Zhu et al. [49] al-
ternate True and False periodically for certain applications. In this
work, we provide a privacy analysis of our proposed method under
both True and False settings (Cf. Theorem 3). As the empirical
evaluation results for both settings demonstrate similar trends and
RESAMPLE=True yields better performance in general [31], we only
present the results of RESAMPLE set to True in Section 5.

2.2.2 Private Comparison. As mentioned above, to provide a rig-
orous DP guarantee, certain types of noise are required to ensure
that for any noisy threshold )̃ 8 ,

Pr[@̃8 (⇡)  )̃ 8 ]

Pr[@̃8 (⇡0)  )̃ 8 ]
 4Y (2)

holds with high probability.
Previous works [14, 31, 49] bound the probability ratio on the left

of Inequality 2 by naïvely assuming that Inequality 2 is equivalent
to the following:

Pr[@̃8 (⇡) 2 >]

Pr[@̃8 (⇡0) 2 >]
 4Y , (3)

where > is any possible output in the output space.
To ensure Inequality 3 hold, Laplacian (!0?

⇣
5

YY1/Y2

⌘
) [14, 31] and

Gaussian noise (#
⇣
0, f1/2

⌘
, where f1 for 1 2 {1, 2} is a function of

Y1 ) [49] are then adopted for both the query result and predened
threshold perturbation.

However, this privacy analysis overestimates the privacy
risk in SVT, leading to an overly conservative choice of noise.
Note that Inequality 2 is easier to achieve compared to Inequality 3:
while Inequality 3 requires a rigorous bound on the probability ratio
over every possible subset (>) in the output space, Inequality 3 splits
the output space into two (i.e.,  )̃ 8 and < )̃ 8 ) and only requires
a bound on the accumulative probability over the two parts. Thus,
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the high probability ratios (i.e., the left side term in Inequality 3)
incurred by some extreme subsets > in Inequality 3 are averaged
down in Inequality 2 by those with relatively low probability ratios.
In other words, let O8 be the output space of @̃8 (⇡), which is split
into two parts: R := {I 2 O8 |I  )8 } and L := O8\R. Then, by
further splitting R into = subsets that R = >1[, . . . ,[>= , we have
the following inequality holds:

Pr[@̃8 (⇡)  )̃ 8 ]

Pr[@̃8 (⇡0)  )̃ 8 ]
=

Õ=
9=1 Pr

⇥
@̃8 (⇡) 2 > 9

⇤
Õ=

9=1 Pr
⇥
@̃8 (⇡

0) 2 > 9
⇤  max

92[=]

Pr
⇥
@̃8 (⇡) 2 > 9

⇤
Pr

⇥
@̃8 (⇡

0) 2 > 9
⇤

Intuitively, there may be some noise distributions that, although
they do not satisfy Inequality 3, can still ensure that Inequality 2
holds with high probability while introducing less distortion.

2.2.3 Advantage of SVT Over Typical Private Releases. One of the
most unique properties of SVT, as well as its variants, is that only
the positive outcomes incur privacy costs. Specically, the over-
all privacy budget Y is independent of the value of :<0G depends
instead on the noise scale (i.e., the variance of the noise) of each
noisy query and the number of positive outcomes =2 .

Example. Consider a scenario where a data analyst wants to
identify the top-2 most popular movies (Cf. Figure 1). Each movie
is rated by a group of individuals who have watched it. Directly
releasing the score of each movie (i.e., @8 (⇡) in Figure 1) may reveal
sensitive information about whether an individual has watched
a particular movie, thus necessitating the use of DP to protect
individual privacy. Typical private query releases perturb and release
the score of all candidate movies, which incurs a privacy budget
proportional to the number of all candidates =. In contrast, using
SVT to approximate the top-2 movies by only outputting the indices
of rst 2 lms whose scores exceed a predened threshold) results
in an overall privacy cost proportional to 2 rather than =. When
2 ⌧ =, this approach signicantly reduces the privacy cost.

Note that Figure 1 uses MEAN(⇡) as an example of query@8 (⇡). In
practice, @8 (⇡) can represent any queries with real-valued answers,
such as SUM(⇡), COUNT(⇡), MAX(⇡). Furthermore, while we use top-
2 selection to demonstrate the eectiveness of our proposedmethod,
SVT can be applied to many other scenarios where queries need
to be evaluated against specic criteria (predened threshold) in a
privacy-preserving manner, such as feature selection [2], steaming
data analysis [22].

2.2.4 Utility Metric. The utility of SVT is measured by a specialized
utility metric, namely (U, V)-accuracy [15].

D 3 ((U, V)). An algorithm which outputs
a stream of answers 01, . . . , 2 {>,?}⇤ in response to a stream of :
queries @1, . . . , @: is (U, V)-accurate with respect to a threshold ) if
except with probability at most V , the algorithm does not halt before
@: , and for all 08 = >:

@8 (⇡)  )  U

and for all 08 = ?:
@8 (⇡)  ) + U.

Denition 3 species that given an error tolerance parameter U ,
SVT achieves a success probability of at least 1  V . Particularly,
queries with results falling within the interval [)  U,) + U] are
allowed to be misclassied. For instance, if a query @(⇡) falls within

(),) +U], the SVT algorithm is still considered successful even if it
incorrectly classies @(⇡) as negative by outputting ?. Specically,
it is demonstrated by prior works that the SVT algorithm, when
using Laplacian noise (i.e., N1 and N2 are Laplace distributions), is

(
8(ln:+ln 2

V )

Y , V)-accurate [15].

3 PRIVACY ANALYSIS REVISIT
As discussed in Section 2.2.2, it has been observed that previous
privacy proofs tend to overestimate the privacy risk in SVT by
bounding the privacy over all possible subsets in the output space
of query results. The underlying assumption is that disclosing a
binary bit is as risky as directly revealing the query result itself.
However, this may not hold true: intuitively, a binary bit leaks less
information than the complete query result and, therefore, should
pose a lower risk.

Motivated by this, we revisit the privacy analysis of SVT, taking
into account its less informative nature. We provide a new analysis
result in Theorem 2. Informally speaking, our results indicate that
for query perturbation, SVT poses a less stringent constraint on eli-
gible noise distributions compared to typical private query releases,
thereby accommodating a broader range of noise distributions.

T 2 (P  SVT). Algorithm 1 satises dierential
privacy if for any real numbers 11, 12, there are two positive real
numbers :1 and :2 such that the following inequalities hold:

| ln(51 (G))  ln(51 (G + 11)) |  :1 |11 |, (4)

| ln(1  2 (G))  ln(1  2 (G + 12)) |  :2 |12 |, (5)
where 51 (·) and 2 (·) are the probability density function of N1 and
the cumulative function of the N2, respectively.

We defer the proof of Theorem 2 to Appendix A in our full
version [27] and provide only the key takeaways here.

Takeaways from Theorem 2. First, Theorem 2 broadens the
range of noise distributions for query perturbation. Specically, as
indicated by Equation 11, distributions such as the exponential and
Gumbel distribution are now eligible for query perturbation (i.e.,
N2 in Algorithm 1), whereas these types of noise were previously
considered unsuitable for SVT. Second, although Theorem 2 relaxes
the constrains on noise distributions for query result perturbation,
the eligible noise distributions for threshold perturbation (i.e., N1
in Algorithm 1) remain unchanged compared to the previous work.
This is because, despite the query results not being directly released,
the predened threshold is public information. To prevent negative
queries from consuming privacy, the true threshold value, which
is compared with the noisy query result, must also be obscured.
Hence, the same noise distributions, such as Laplacian or Gaussian,
are used in traditional private query releases.

To clarify, we summarize some of the most commonly used
noise distributions for both threshold perturbation and query result
perturbation in Table 1.

4 CONSTRUCTION
Based on the two crucial takeaways discussed in Section 3, we pro-
pose an enhanced SVT algorithm with improved query accuracy,
referred to as SVT-Exp. This algorithm is summarized in Algo-
rithm 2, with key changes in the algorithm design highlighted by
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Figure 2: The overall design of Algorithm 2, with our newly proposed methods in this work emphasized with red color. The
RESAMPLE is set to False. In step 3, the optimal threshold correction term A>? is computed based on the Laplace and exponential
distribution and added to the current threshold. The threshold (step 4) and the query (step 5) are then perturbed with random
noise sampled in step 1 and 2, respectively. After comparing the noisy threshold with the noisy query in step 6, the algorithm
outputs > and compares the number of accumulated positive outcomes (2=C) with a positive threshold 2 if @̃8  )̄ 8 . Otherwise,
? is output. If APPEND is set to True, the negative query is appended to the end of the query queue for an additional round of
querying. If the algorithm does not halt in step 7, it takes in another threshold-query pair and repeats the procedure (step 8).

Table 1: Feasible noise distributions for SVT

Laplace Gaussian Exponential Gumbel

Query Result ÿ ÿ ÿ ÿ

Threshold ÿ ÿ ⇥ ⇥

underlines. Additionally, the main steps of Algorithm 2 are illus-
trated in Figure 2 for better understanding.

4.1 Overview
In summary, our proposed enhanced SVT algorithm introduces
three key improvements:

1 The algorithm uses exponential noise for query per-
turbation (Line 6). This choice is based on the fact that the cu-
mulative probability function of exponential noise tightly satises
Equation 11 in Theorem 2. Meanwhile, it exhibits a much smaller
variance compared to other noise distributions considered, resulting
in less data distortion and enhanced query accuracy.

2: An optimal threshold correction term is computed by
maximizing the (U, V)-accuracy of the SVT with exponential
noise (Line 3), and added to the noisy thresholds )̃ 8 (Line 9). Cor-
recting the threshold is crucial when using exponential noise (or
other noise distributions centered at non-zero values) as it intro-
duces bias into the query results2. Intuitively, the correction term
that maximizes the (U, V)-accuracy ensures the highest success
probability (i.e., 1  V) for SVT, thereby improving query accuracy.

3: An appending strategy has been developed, where noisy
negative queries (i.e., @8 (⇡) for @̃8 (⇡) < )̃ 8 (⇡)) are appended to the
query queue for an additional round of querying (Line 18 to Line 19).
Generally speaking, while our optimal threshold correction method
eectively increases the precision of SVT, the appending strategy
further increases its recall. The rationale behind this strategy is

2Note that correcting the threshold is equivalent to correcting the query results. In
essence, as SVT compares @̃8  )̃ 8 with 0. Therefore, adding the correction term to
the predened threshold )̃ 8 is the same as subtracting it from the query result @̃8 (⇡ ) .

Algorithm 2: SVT with exponential noise, optimal thresh-
old correction, and appending strategy (SVT-Exp).
Input: & = {@1, @2, . . .},,Y1,Y2,_,2 ,:<0G ,) = {)1,)2, . . .},U ,

Y,<,4 ,: option RESAMPLE, option APPEND.
1 Y = Y1 + Y2; =2 = 0; =0 = 0;
2 1 = 

Y1
;d ⇠ !0? (1);

3 A>? = CorrectionTerm(1, _, U,<, 4, :); // Correction

4 for 8 = 1, 2, 3, . . . do
5 =0 = =0 + 1;
6 _ = Y2

22 ; E8 ⇠ ⇢G? ( 1_ ); // Query perturbation

7 @̃8 (⇡) = @8 (⇡) + E8 ;
8 )̃ 8 = )8 + d ; // Threshold perturbation

9 if @̃8 (⇡)  )̃ 8 + A>? // Private comparison

10 then
11 Output 08 = >;
12 =2 = =2 + 1;
13 (> = (> [ 8;
14 if RESAMPLE, d ⇠ !0? (1);
15 Abort if =2  2 or =0  :<0G ;
16 else
17 Output 08 = ?;
18 if APPEND then
19 & = & [ {@8 };) = ) [ {)8 }; // Appending

20 end
21 end
22 end

that for a positive query where @8 (⇡)  )8 , comparing the noisy
threshold )̃ 8 with @̃8 (⇡) multiple times increases the likelihood of
@8 (⇡) identied as a positive query.

The concrete details of our developed methods and strategy are
presented in Section 4.2, Section 4.3, and Section 4.4. Additionally,
the privacy guarantee and the utility guarantee of Algorithm 2 are
provided in Theorem 3 and Theorem 4, respectively. The proof of
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Figure 3: The (U, V)-accuracy of SVT algorithms with four
dierent types of noise: the SVT with the exponential noise
and the optimal threshold correction; SVTwith the Laplacian
noise; SVT with the Gumbel noise and the mean threshold
correction; and SVT with Gaussian noise. Parameter : in
Theorem 4 is set to 50 and the overall privacy budget Y = 1.

these theorems is deferred to Appendix B and Appendix C in our
full version [27].

T 3 (P ). Let 2 denote the number of
positive outcomes output by Algorithm 2. Algorithm 2 satises (Y1 +
Y2)-dierential privacy when RESAMPLE is set to False, and (2Y1, Y2)-
dierential privacy when RESAMPLE is set to True, where Y1 and Y2 are
the privacy budgets for threshold and query perturbation, respectively.

For the utility guarantee, following the convention [15, 31],
(U, V)-accuracy is adopted as the utility metric. The parameters
in Algorithm 2 are set as  = 1, Y1 = Y2 = Y

2 and 2 = 1 for ease of
computation and comparison. As demonstrated in Theorem 4, com-
pared to SVT algorithms where the Laplacian noise is adopted for
query perturbation, Algorithm 2 demonstrates a clear advantage.

T 4 (U ). Given any : records such that
|{8 < : : 38  C  U}| = 0 (i.e., the record above and closest to the

threshold is the last one), Algorithm 2 is at least (
4(ln:+ln 2

V )

Y , V)-
accurate.

Additionally, note that the assumptions made on parameter set-
tings in Theorem 4 may not fully align with real-world scenarios.
Therefore, we further provide a numerical utility analysis under a
more practical setting in Figure 3, which shows that the value of V
of Algorithm 2 is consistently below that of other baselines for a
xed U , further demonstrating the eectiveness of our method.

4.2 Query Perturbation with Exponential Noise
In this section, we justify the use of exponential noise in Algorithm 2
for the following two reasons:

First, exponential noise guarantees DP for SVT, as its cumulative
function,

 (G ; _) =

(
1  exp (_G) G  0
0 G < 0

,

Figure 4: The variance of SVT with four dierent types of
noise (i.e., exponential noise, Laplacian noise, Gumbel noise,
and Gaussian noise). The privacy budget Y varies from 0.01 to
2. 2 is set to 50. The y-axis is log-based. Note that the threshold
correction does not aect the query variance.

tightly satises Equation 11 with :2 = _ for any _ > 0. However,
note that the exponential distribution does not satisfy Equation 10,
and therefore cannot be used for threshold perturbation. Since the
Laplace distribution is one of the most commonly and frequently
adopted noise distributions in SVT, we use it to perturb the prede-
ned threshold, following convention.

Second, exponential noise yields the smallest variance on the pri-
vate comparison result (i.e., @̃8 (⇡)  )̃ 8 +A>? ) in Algorithm 2 among
all evaluated noises, yielding the least data distortion among all
compared methods. Specically, as also stated in [31], the variance
of the private comparison result + is written as follows:

+ = Var

✓
Lap

✓


Y1

◆◆
+ Var

✓
Exp

✓
22
Y2

◆◆
. (6)

A smaller + indicates a smaller data distortion, thus a potentially
higher query accuracy. Given an overall privacy budget Y, by vary-
ing F such that Y2 = FY1 and Y = Y1 + Y2, + can be minimized for
any xed pair of noise distributions [31] (Cf. Appendix G in our
full version [27]). As shown in Figure 4 where the minimal + for
dierent N2 in Algorithm 2 are depicted, exponential distribution
yields the smallest private comparison variance.

4.3 Optimal Threshold Correction
In this section, we elaborate on our optimal threshold correction
by: (1) providing the motivations necessitating our design (Cf. Sec-
tion 4.3.1); (2) detailing our correction methodology, which incorpo-
rates derivation of the success probability of SVT and computation
of the optimal correction term (Cf. Section 4.3.2); and (3) presenting
a numerical computation framework that generalizes our correction
method to broader applications (Cf. Section 4.3.3).

4.3.1 Motivations. Though the exponential noise demonstrates
properties that can theoretically boost query accuracy, applying
it to SVT is challenging due to the introduced bias. Specically,
the expectation of the dierence between a noisy query and its
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corresponding noisy threshold is written as follows:

⇢
⇣
@̃8 (⇡)  )̃ 8

⌘
= @8 (⇡) )8 +

22
Y2

.

Due to the introduction of a positive bias 22
Y2

, the algorithm is likely
to mistakenly classify queries @8 (⇡) as positives if they fall within
the range )8  @8 (⇡)  )8 

22
Y2

. As a result, the query accuracy is
compromised for two reasons. First, as mentioned above, the false
positive rate increases. Second, as described in Algorithm 2, to limit
the overall privacy budget consumption, no more than 2 records are
allowed to be identied as positive queries. Since the false positive
queries occupy these 2 spots, the subsequent true positive queries
are unable to be output, thereby decreasing the precision.

A naïve solution is to directly subtract the bias from each @8 (⇡)
or add the bias to each )8 [29, 30, 44, 46]. However, this method
yields a sub-optimal performance when applied to SVT. The pri-
mary reason is that this approach is designed for correcting the
aggregation of = noisy query results, whereas our focus is on cor-
recting each noisy query result individually. According to the law
of large numbers, the mean of the aggregation with larger = tends
to converge to its expectation. That is to say, as = increases, the
mean of the aggregated results approaches the noise expectation
more closely. Consequently, correcting the aggregate of noisy query
results by subtracting the expectation often achieves satisfactory
accuracy. However, since our approach targets individual noisy
results (i.e., = = 1), this method does not provide the same level of
performance in SVT as it does with aggregated noisy queries.

4.3.2 Methodology. Motivated by this, we have developed a new
correction method that focuses on improving the precision of
the output binary vector rather than correcting each individual
query result. At a high level, inspired by the denition of (U, V)-
accuracy (Cf. Denition 3), we compute the success probability of
the SVT algorithm by multiplying the probability of each query
being corrected classied. We then derive an optimal threshold
correction term by maximizing this success probability. In essence,
our optimal correction method increases the threshold value to
enhance the precision of SVT, which is further elucidated in the
analysis presented in Figure 5.

Success probability of SVT. We begin by considering a simple
case where 2 = 1. Assume there are : true negative queries before
the true positive query. Given a xed error tolerance parameter U ,
the success probability of Algorithm 2 with a threshold correction
term A is dened as follows:

? (A ) =
:÷
8=1

Pr
⇥
@̃8 (⇡)  U < )̃ 8 + A

⇤
· Pr

h
@̃ 9 (⇡) + U  )̃ 9 + A

i
,

(7)
where @̃8/9 (⇡) = @8/9 (⇡) + Exp(

1
_ ), and )̃ 8/9 = )8/9 + Lap(1). Note

that here we abuse the notion Exp (·) and Lap (·) to denote the
random variables drawn from exponential distribution and Laplace
distribution, respectively.

Takeaways from Equation 7. First, Equation 7 is directly re-
lated to the (U, V)-accuracy. Specically, for a xed U , the value of V
with a threshold correction term A is given by 1  ? (A ). Second, by
maximizing ? (A ), we maximize the query accuracy of SVT, which
in turn improves empirical performance. Third, Equation 7 can be
easily extended to scenarios where 2 > 1 by: 1 dividing all queries

(a) The probability distribution of the ran-
dom variable / = -  . with - ⇠

Lap( 1
Y1

) and . ⇠ Exp( 1
Y2

) . The param-
eters U and : are set to 0 and 10, respec-
tively.

(b) ? (A ) with varying : . The parameter U
is set to 0 and the overall privacy budget Y
is set to 0.1.

(c) ? (A ) with varying U . The overall pri-
vacy budget Y is set to 0.1 and the param-
eter : is set to 10.

(d) ? (A ) with varying overall privacy bud-
get Y . The parameters U and : are set to 0
and 10, respectively.

Figure 5: The numerical analysis of Equation 8. Dashed lines
are the mean of the exponential noise distribution. Each
privacy Y has a corresponding mean.

into subroutines, each containing exactly one positive query; and
2 multiplying the success probability of each subroutine.
However, Equation 7 cannot be directly adopted as it is data-

dependent, which could lead to privacy leakage. To address this
issue, we adopt a worst-case assumption by setting @8/9 (⇡) = )8/9 .
Thus, the success probability ? (A ) can be expressed as:

? (A ) = ( (A + U)): · (1   (A  U)) , (8)

where  (·) is the cumulative distribution function (CDF) of the
random variable / = -  . . Here - and . are random variables
drawn from distribution Exp

⇣
1
_

⌘
and Lap (1), respectively. The

shape of the probability density function (PDF) of / is illustrated
in Figure 5(a), and the explicit expression of ? (A ) is detailed in
Appendix D in our full version [27].

Optimal correction term. After demonstrating that the maxi-
mum value of ? (A ) exists (Cf. Appendix E in our full version [27]),
the optimal threshold correction is obtained by:

A>? = argmax? (A ). (9)

To oer a better understanding, we perform a detailed analysis of
Equation 8 and Equation 9 (Cf. Figure 5), and the key ndings are
summarized as follows:

First, as shown in Figure 5(b), an increasing number of negative
queries (k) leads to a larger threshold correction term (A>? ). As :
grows, SVT is more likely to halt before the last true positive query,
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which is referred to as ‘early halting’. Consequently, a larger correc-
tion term is necessary to mitigate early halting, thereby enhancing
the precision of the SVT algorithm.

Second, as shown in Figure 5(c), an increase in the error tol-
erance parameter U results in a higher success probability and a
smaller threshold correction term A>? . The rationale is that a larger
U allows more false negative or false positive queries during the
query process. Consequently, a smaller threshold correction term
is sucient to achieve a high success probability. Note that U is a
hyperparameter chosen by the data analysts. For generality, this
work defaults to U = 0, irrespective of specic data distributions.

Third, as shown in Figure 5(d), an increase in the privacy budget
results in a smaller threshold correction term. This is because a
larger privacy budget leads to lower noise variances, which reduces
data distortion and results in noisy query results that are more
tightly concentrated around their expectations. Consequently, a
smaller threshold correction term is adequate to prevent the early-
halting issue and achieve an optimal success probability.

4.3.3 Numerical Computation Framework. To improve the scalabil-
ity of the optimal threshold correction method, we further propose
a numerical computation framework, which is summarized in Algo-
rithm 3 and Algorithm 4. Instead of deriving the analytical formula
for (·) in Equation 8, we rst discretize the noise distributions N1
and N2 used in Algorithm 2. We then convolve these discretized
distributions using the Fast Fourier Transform (FFT) to obtain the
numerical representation of . The optimal threshold correction
term, Ā>? , is determined by maximizing ?̄ (A ), which is calculated
based on this numerical (·). Hereinafter, we use the combination

Algorithm 3: CorrectionTerm: Numerical threshold cor-
rection.
Input: 1, _, U ,<, 4 , :

1 ⌫ = 1⇢G? (1  4);// Boundary

2 !̄ = Discretizer(!0? (1),<, ⌫);; // Discretize Laplace

distribution

3 ⇢̄ = Discretizer(⇢G? ( 1_ ),<, ⌫);; // Discretize

exponential distribution

4 ̄ = CONVOLVE(!̄, ⇢̄);; // Convolution with FFT

5 Compute Ā>? that maximize

̄(Ā + U)

:
· (1  ̄(Ā  U));

6 return Ā>? ;

Algorithm 4: Discretizer
Input: CDF,<, ⌫

1 D = ⌫
<1 ;

2 for i=-m+1 to m-2 do
3 ⌘8 = CDF((8 + 1) · D)  CDF(8 · D);
4 end
5 ⌘1 = CDF((1 <) · D);
6 ⌘+1 = 1  CDF(<  1 · D);
7 ⇡̄ = {⌘1, ⌘8 for 8 in (<,<) \ Z, ⌘+1};
8 return ⇡̄ ;

of Laplace and exponential distributions as an example to illustrate
the concrete steps of our framework. First, to convert the contin-
uous noise distributions into discretized sequences, we dene a
boundary ⌫ within which most of the probability mass (e.g., 14 as
indicated in Line 1 of Algorithm 3) is concentrated. Next, in Algo-
rithm 4, we discretize the event space within ⌫ into D chunks, with
each chunk having a mesh size< (Line 1). The events in each chunk
are aggregated into a new event with a probability mass ⌘8 (Line 3).
Additionally, the probability mass of events exceeding ⌫ is assigned
to the positive innity bracket, while events below ⌫ are placed
in the negative innity bracket (Lines 5 and Line 6 in Algorithm 4).
Subsequently, we use Fast Fourier Transform (FFT) [36] to compute
the discretized distribution ̄ by convolving the discretized Laplace
distribution !̄ and the discretized exponential distribution ⇢̄, where
we dene that 1 + G = 1 for any G 2 R. Finally, the correction
term Ā is determined using ̄ based on Equation 9.

The primary advantage of this numerical computation frame-
work is its strong scalability to various types of noise distribu-
tions. While we can derive the explicit formula for (·) when using
Laplace and exponential distributions for query and threshold per-
turbation, respectively (Cf. Appendix D in the our version [27]),
deriving such formulas becomes complex when combining other
distributions, such as Gaussian and exponential. This numerical
framework allows privacy practitioners to apply the optimal thresh-
old correction method to any noise distributions. It is important
to note that our numerical framework may introduce additional
computation costs due to the discretization and convolution steps.
To provide further insights, we analyze the trade-o between the
running time of our algorithm and the estimation accuracy of ?̄ (A )
and Ā>? in Appendix K in the full version [27]. In summary, our
analysis demonstrates that the proposed method can achieve highly
accurate estimations with minimal additional computation cost.

4.4 Appending Strategy
As discussed earlier, our threshold correction method enhances the
performance of SVT by increasing the value of the threshold, which
in turn improves the precision of the algorithm. However, a higher
threshold can also result in a reduced recall. This occurs because
true positive queries with relatively small results are less likely to
exceed the adjusted threshold.

To further enhance recall, we propose an appending strategy. As
shown in Figure 2 Step 7 and Algorithm 2 from Line 18 to Line 19,
each query identied as negative by the algorithm is appended
to the end of the query queue for another round of querying. In
settings where there is an innite number of queries (e.g., streaming
data analysis, where new data and queries continuously arrive),
these queries may be randomly inserted back into the queue.

The rationale behind this strategy is twofold. First, as stated in
Theorem 3, re-querying the outputs identied as negative incurs
no additional privacy cost. Second, conducting multiple rounds
of querying increases the likelihood of correctly identifying true
positive queries that were misclassied initially. Simultaneously, it
also enlarges the probability gap between positive queries correctly
identied as positive and negative queries mistakenly classied
as positive. Concretely, for each query @8 (⇡), the probability of it
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identied as positive in each round is

?8 = Pr[@8 (⇡) + Exp(
1
_
)  )8 + A + Lap(b)] .

After C rounds of querying, this probability increases to C?8 . Also
note that the larger the dierence @8 (⇡)  )8 , the higher the ?8 .
Therefore, after multiple rounds, the probability of @8 (⇡) being
identied as positive is C


?8  ? 9


higher than for @ 9 (⇡), where

@8 (⇡) )8  @ 9 (⇡) )9 .

5 EVALUATION
Before presenting our main results in Section 5.5, we detail the used
datasets in Section 5.1, the adopted utility metrics in Section 5.2,
the compared baselines in Section 5.3, and the selected parameters
for our experiments in Section 5.4.

5.1 Datasets and Implementations
This work uses six dierent datasets: three real-world and three
synthetic. Detailed information is provided in Table 2.

Table 2: Dataset details. # · denotes the number of ·, and the
‘Threshold’ is the predened threshold we use in SVT for
each dataset.

# of records # of items Threshold Type
Binary - 10,000 500

syntheticZipf - 10,000 200
T40I10D100K [39] 100,000 942 11,850
BMS-POS [48] 515,597 1,657 13,600

real-worldKosarak [1] 990,002 41,270 10,500
Adult [3] 48,843 123 200

For the real-world datasets and the T40I10D100K dataset, each
item’s score is based on its frequency across records. Specically,

for each item 8 in the dataset, the score B8 =
=Õ
9=1

( 89 = 1), where

 89 is an indicator of whether the record ' 9 contains item 8 , and = is
the total number of records. For the remaining synthetic datasets,
scores are assigned directly. In the Binary dataset, each positive
query is assigned a score of 1,000, while negative queries receive
a score of 0. In the Zipf dataset, each item’s score is proportional
to 1

8 , with the score calculated as B8 = 1
8 ⇥ 10, 000. We use < to

denote the total number of items. Additionally, Figure 6 plots the
item scores for each dataset for further insights.

All experiments are conducted on a laptop (6-core Intel Core i7
CPU at 2.2 GHz with 16-GB RAM).

5.2 Queries and Utility Metric
5.2.1 eries. The eectiveness of our proposed method is gen-
eral but is validated here within the top-2 selection problem, a
common application for SVT [31, 49]. In this scenario, we use SVT
to approximately query items with the top-2 highest scores in each
dataset.

Specically, we rst shue the items randomly, then query each
item’s score (i.e., @8 (⇡) = B8 ) and compare it to the threshold ) . If
@8 (⇡)  ) , the corresponding query index 8 is output. The algo-
rithm halts either when 2 indices is output or the number of queries

Figure 6: The scores of items of 6 datasets. All the items are in
descending order based on their scores, which are plotted in a
log-based manner for clarity. Dashed lines in Corresponding
colors are the predened thresholds we adopt in this work.

reaches a maximum limit :<0G . The choice of) is crucial for query
accuracy, but determining an appropriate threshold is beyond this
work’s scope. Various methods for threshold determination are
discussed in the literature [6, 26].

5.2.2 Utility Metrics. We evaluate SVT’s performance on the top-2
selection problem using two primary metrics: F1-score [19] and
normalized cumulative rank (NCR). The F1-score is computed as:
1 = 2·precision·recall

precision+recall = 2)%
2)%+%+# , where)% is the number of true

positive queries, % is the number of false positive queries,and # is
the number of false negative queries. However, the F1-score is more
suited for unordered settings, where missing a top result incurs the
same penalty as missing a lower-ranked result [31]. To address this,
we also use the Normalized Cumulative Rank (NCR) [31]. In NCR,
each query @8 is assigned a rank score dened as follows: the top
query (i.e., top-1) receives a score of 2 , the next receives 2  1, and
so on [31]. Queries below the threshold receive a score of 0. The
total score for positive outcomes is then normalized to the range
[0, 1] by dividing by 2 (2+1)

2 , the maximum possible score. Since the
results for the F1-score demonstrate similar trends as NCR, detailed
F1-score results are provided in Appendix H in the full version [27]

5.3 Baselines
Table 3 lists all the methods compared in this work. We evaluate
our method, which uses exponential noise for query perturbation,
against SVT-Lap [31], SVT-Gau [49], and SVT-Gum. While SVT-
Lap and SVT-Gau are two of the most frequently used SVT variants
in the literature, SVT-Gum is a new variant proposed in this work.
SVT-Gum meets the constraints in Theorem 2 but has a slightly
larger variance compared to SVT-Exp. More details about SVT-Gum
are provided in Appendix F in the full version [27]. Additionally, to
provide more insights, we also compare our method with the ‘upper
bound’ of query accuracy, which is obtained by directly ranking
the noisy query results perturbed with random noise drawn from
Exp

⇣

Y2

⌘
. Regarding threshold correction, we compare SVT-Exp

with optimal threshold correction to SVT-Exp with no threshold
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correction and to SVT-Exp with mean correction (i.e., the naïve
solution in Section 4.3.1).

Table 3: Baseline methods. Lap, Exp, Gau, and Gum refer to
Laplace, exponential, Gaussian, and Gumbel distribution,
respectively. ’Optimal’ represents our optimal threshold cor-
rection method, while ’Mean’ represents the naïve correction
method by subtracting the mean of the noise.

Noise
for query

Noise
for threshold

Threshold
correction

SVT-Exp upper bound - Exp -
SVT-Exp (optimal) (Alg. 2) Lap Exp Optimal

SVT-Exp (mean) Lap Exp Mean
SVT-Exp (no) Lap Exp No
SVT-Gumbel Lap Gum Mean
SVT-Lap Lap Lap No
SVT-Gau Gau Gau No

5.4 Parameter Selection
This work involves several privacy parameters: the failure rate X ,
the overall privacy budget Y, the privacy budget for threshold pertur-
bation (i.e., Y1), and the privacy budget for query perturbation (i.e.,
Y2). For SVT-Gau, X is set to 1

= , following convention [15, 28, 29],
while in other settings, X is set to 0. As also mentioned in Section 4.2,
Y is divided into Y1 and Y2 such that Y2 = FY1 and Y = Y1 + Y2. The
parameterF is computed by minimizing Equation 6 [31]. Table 4
listsF for dierent baselines, with its proof provided in Appendix G
in the full version [27].

Table 4: Optimal Privacy Allocation. While Y is the overall
privacy budget consumption, Y1 and Y2 are the privacy budget
for threshold perturbation and query perturbation, respec-
tively.F is an indicator of privacy budget allocation.

SVT-Exp SVT-Gum SVT-Lap SVT-Gau

Y Y = Y1 + Y2, Y2 = FY1

F
⇣p

22
⌘2/3

(
c2
p
3
)
2/3

(22)2/3 (22)2/3

5.5 Evaluation Results
Hereinafter, we demonstrate the eectiveness of our proposedmeth-
ods through experiments on six datasets, with an in-depth analysis
of the evaluation results. Our main results, presented in Figure 7,
show a signicant advantage of Algorithm 2 over other baselines.
The correctness and eectiveness of our optimal threshold cor-
rection method are shown in Table 5 and Figure 7. Finally, the
eectiveness of our appending strategy and the trade-o it yields
between eciency and query accuracy is illustrated in Figure 8.

5.5.1 Eectiveness of Algorithm 2. First, as illustrated in Figure 7,
our proposed method (i.e., SVT-Exp (optimal correction), shown
with red-circle line) signicantly outperforms others baselines by
up to 50% on NCR across all tested privacy regions and datasets.

Moreover, compared to other baselines, the performance of our pro-
posed method closely matches the empirical SVT-Exp upper bound,
further demonstrating its eectiveness. Second, our method shows
a particular larger advantage when the gaps between predened
threshold and query results are relatively large (Cf. Figure 7(b) and
Figure 6). This is because our threshold correction better lters out
true positive queries far above the threshold, while our appending
strategy eectively distinguishes smaller true positives from true
negatives far below the threshold. Third, all compared variants,
including ours, demonstrate higher NCR on datasets where the
gaps between the threshold and query results are large even under
smaller privacy budget (e.g., Y = 0.05 on Kosarak), as these datasets
are generally more robust to noise. Fourth, the NCR of other base-
lines decreases from SVT-Lap, SVT-Gumbel, to SVT-Gau, which
aligns with our theoretical analysis in Figure 3 and Figure 4.

Table 5: Comparison of the threshold correction term be-
tween the optimal threshold correctionmethod and themean
correction method, where 2 = 50 and U = 0.

Y 0.01 0.05 0.1 1 2

Optimal 35450.45 7147.15 2803.30 280.78 138.89
Mean 5332.08 1046.42 523.21 52.32 26.16

5.5.2 Eectiveness of the Optimal Threshold Correction. We com-
pare our SVT-Exp (optimal correction) with SVT-Exp (mean cor-
rection) and SVT-Exp (no correction) in Figure 7, while Table 5
presents the values of optimal correction term A>? with dier-
ent values of Y. First, as shown in Table 5, the optimal term is
usually larger than the mean of the injected noise, aligning with
our analysis in Section 4.3.2. Second, SVT-Exp without correction
demonstrates relatively low NCR even compared to, e.g., SVT-Lap,
highlighting the need for a threshold correction method when using
exponential noise in SVT. Third, SVT-Exp with our optimal correc-
tion terms drastically outperforms SVT-Exp with mean correction,
which slightly outperforms the other baselines. This demonstrates
the eectiveness of both exponential noise and optimal threshold
correction methods.

5.5.3 Eectiveness of the Appending Strategy. To demonstrate the
eectiveness of our appending strategy, we compare the perfor-
mance of all our baselines at the same overall privacy budget con-
sumption with varying numbers of traverse (i.e., the number of
times a query with the noisy negative outcome compared with
the threshold)3. As shown in Figure 8, our proposed method per-
forms better across most datasets under all tested traverse numbers.
Notably, our method shows slight inferiority on the T40I10D100K
dataset under a very small number of traverses. One possible reason
is the relatively small gap between positive query results and the
predened threshold on T40I10D100K (Cf. Figure 6): due to our
relatively high optimal threshold correction term, more queries
are needed to lter out the true positive queries, as explained in

3For fairness, under each number of traverses, we ensure that each baseline consumes
the same amount of the privacy budget before comparing their performance. Hence,
the overall privacy budget consumption varies with a dierent number of traverses.
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(a) Binary dataset (b) Zipf dataset (c) BMS-POS dataset

(d) Kosarak dataset (e) Adult dataset (f) T40I10D100K dataset

Figure 7: NCR on six datasets with 2 = 5 for Adult dataset and 2 = 50 for the remaining datasets, U = 0, : = b
<
2 c, RESAMPLE=False,

and APPEND=True. Sequential composition theorem is adopted for computing Y.

Section 4.3.2. Even though, it is worth noting that our method out-
performs the others on the T40I10D100K dataset with only a few
more traverses (e.g., less than 5). That is also to say, our proposed
method yields better performance compared to other baselines with
only a marginal additional computation cost.

6 RELATEDWORK
Our work focuses on enhancing one of the most fundamental DP
algorithms initially introduced by Dwork et al. [14, 15, 38], namely
the sparse vector technique (SVT). Beneting from its key feature
where only positive outcomes consume privacy, SVT and its vari-
ants [25] have become crucial components in numerous algorithms
across various domains and scenarios [4, 7, 22, 24, 26, 41, 42, 47].
The applications of SVT span shared-parameter selection in deep
learning models [41], time-stamp selection for streaming data [22],
online query answering [4], among others. By improving the ac-
curacy of SVT in a broad context, our work has the potential to
enhance the performance of the aforementioned algorithms.

To gain deeper insights into the sparse vector technique, Lyu et
al. summarize all prevalent SVT variants in [31]. Apart from the
thorough privacy analysis under the classic notion of DP, they also

propose an enhanced SVT with the optimal privacy budget alloca-
tion scheme. Shortly after, Zhu et al. [49] revisit the privacy analysis
of the SVT algorithm under a relaxed privacy notion, namely Rényi
dierential privacy (RDP) [35]. Their research explores the util-
ity of Gaussian noise for both threshold and query perturbation
within the SVT framework. They argue that Gaussian noise may
outperform Laplace noise in specic scenarios, such as when query
results predominantly fall below predened thresholds or when
the number of queries is limited and not excessively large. In align-
ment with Lyu et al. [31], our work conducts the privacy analysis
through the lens of DP, aiming for a generic result. Moreover, our
work focuses more on noise selection rather privacy allocation,
which distinguishes us from Lyu et al.. Also, we demonstrate the
advantage of leveraging the exponential noise in comparison to
other alternatives, which further distinguishes us from Zhu [49].

Another line of research improves the SVT by exploiting informa-
tion revealed in the algorithm for free. Concretely, Ding et al. [11]
pinpoint that releasing the gap between the noisy thresholds and
the noisy query results incurs no extra privacy costs. Hence, they
use the free gap as guidance to design a better privacy budget alloca-
tion scheme. Kaplan et al.. [25] improve SVT by iteratively deleting
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(a) Binary dataset (b) Zipf dataset (c) BMS-POS dataset

(d) Kosarak dataset (e) Adult dataset (f) T40I10D100K dataset

Figure 8: NCR on six datasets with varying number of traverses. Parameter 2 = 5 for Adult and 2 = 50 for the remaining datasets,
U = 0, : = b

<
2 c. RESAMPLE=False, and APPEND=True. Sequential composition theorem is adopted for computing Y.

elements that contribute to current positive outcomes, which en-
ables a more rened privacy accountant. Since both methods can
be applied on top of our proposed method, we leave them out for
comparison in this work.

Notice that we are not the pioneer eort in utilizing the expo-
nential noise for achieving dierential privacy in the literature.
Previous studies from Durfee et al. [12] and Shekelyan et al. [40]
demonstrate the use of exponential in achieving the exponential
mechanism (EM), another dierentially private algorithm primarily
employed for privacy-preserving top-k selection tasks. Concretely,
they [12, 40] leverage the exponential noise to Oneshot [37] mech-
anism where items with the top-k highest score are selected by
injecting noise into each score ranking all noisy scores in descend-
ing order [10, 32, 45]. While the exponential mechanism (EM) oers
superior accuracy guarantees compared to SVT for the top-k selec-
tion problem, its application is limited: EM struggles with queries
on streaming data, where the total number of queries might be
innite. Therefore, our focus remains on SVT in this work, given its
broader applicability as a more generic algorithm. Ding et al. [11]
briey look into applying the exponential noise to SVT. However,
their approach, which involves injecting exponential noise into the
threshold, has been demonstrated to compromise privacy by our

ndings. To the best of our knowledge, we are the rst attempt
that applies the exponential noise in SVT, accompanied by rigorous
privacy and utility guarantee.

7 CONCLUSION
This work aims to enhance the query accuracy of the SVT algorithm
by utilizing exponential noise. We revisit the privacy analysis of
SVT algorithms and expanding the range of noise options for query
perturbation by considering its less informative nature. Our analysis
identies exponential noise as the most eective one, both theoret-
ically and empirically, among the considered noise distributions.
Additionally, we develop a generic optimal threshold correction
method and an appending strategy to ensure both a high query
precision and recall for SVT with marginal computation cost. The
eectiveness of these methods is thoroughly validated through com-
prehensive experiments on both real-world and synthetic datasets.
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