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ABSTRACT
𝑘-defective clique is a relaxation of the well-studied clique structure,

by allowing up-to 𝑘 edges missing from a clique. The problem of

finding a 𝑘-defective clique with the largest number of vertices,

although being NP-hard, has been receiving increasing interests

recently, with advancements in both the theoretical time complex-

ity and practical efficiency. The state-of-the-art time complexity is

O∗ (𝛾𝑛
𝑘
), where O∗ ignores polynomial factors, 𝑛 is the number of

vertices in the input graph 𝐺 , and 𝛾𝑘 < 2 is a constant that only

depends on 𝑘 . In this paper, we first prove, through a more refined

and non-trivial analysis, that the time complexity of an existing

algorithm can actually be bounded by O∗ (𝛾𝑛
𝑘−1), where 𝛾𝑘−1 < 𝛾𝑘 .

Then, by utilizing the diameter-two property of large 𝑘-defective

cliques, we show that for graphs with maximum 𝑘-defective clique

sizes 𝜔𝑘 (𝐺) ≥ 𝑘 + 2, a maximum 𝑘-defective clique can be found

in O∗ ((𝛼Δ)𝑘+2𝛾𝛼
𝑘−1) time when using the degeneracy parameteri-

zation 𝛼 and in O∗ ((𝛼Δ)𝑘+2 (𝑘 + 1)𝛼+𝑘+1−𝜔𝑘 (𝐺 ) ) time when using

the degeneracy-gap parameterization 𝛼 +𝑘 +1−𝜔𝑘 (𝐺); here, 𝛼 and

Δ are the degeneracy and maximum degree of𝐺 , respectively. Note

that, most real graphs satisfy 𝜔𝑘 (𝐺) ≥ 𝑘 + 2 and 𝛼 ≪ 𝑛. Lastly,

to improve the practical performance, we design a new degree-

sequence-based reduction rule that can be efficiently applied, and

theoretically demonstrate its effectiveness compared with the exist-

ing reduction rules. Extensive empirical studies on three benchmark

graph collections, containing 290 graphs in total, show that our

algorithm is also practically efficient, by outperforming all existing

algorithms by several orders of magnitude. We remark that our

proving techniques for reducing the base from 𝛾𝑘 to 𝛾𝑘−1 and our

general principle of designing a new reduction rule may also be

beneficial to other problems.
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1 INTRODUCTION
Graphs have been widely used to capture the relationship between

entities in applications such as social media, communication net-

work, e-commerce, and cybersecurity. Identifying dense subgraphs

from those real-world graphs, which are usually globally sparse

(e.g., have a small average degree), is a fundamental problem and

has received a lot of attention [10, 25]. Dense subgraphs may corre-

spond to communities in social networks [4], protein complexes in

biological networks [41], and anomalies in financial networks [2].

The clique model, requiring every pair of vertices to be directly

connected by an edge, represents the densest structure that a sub-

graph can be. As a result, clique related problems have been exten-

sively studied, e.g., theoretical aspect of maximum clique computa-

tion [23, 34, 35, 42], practical aspect of maximum clique computa-

tion [6, 7, 26, 27, 31, 32, 36, 38, 43, 44, 47], maximal clique enumera-

tion [11, 13, 15], and 𝑘-clique counting and enumeration [9, 21, 28].

𝑣1

𝑣2 𝑣3 𝑣6

𝑣5𝑣4

𝑣7

Figure 1: Defective clique

Requiring every pair of vertices to be explicitly connected by

an edge however is often too restrictive in practice, by noticing

that data may be noisy or incomplete and/or the data collection

process may introduce errors [33]. In view of this, various clique

relaxation models have been formulated and studied in the liter-

ature, such as quasi-clique [1], plex [3], club [5], and defective

clique [49]. A subgraph with 𝑐 vertices is a 𝑘-defective clique if it

has at least

(𝑐
2

)
− 𝑘 edges, i.e., it misses at most 𝑘 edges from being

a clique. A 𝑘-defective clique is usually referred to by its vertices,

since maximal 𝑘-defective cliques are vertex-induced subgraphs.

Consider the graph in Figure 1, {𝑣1, . . . , 𝑣4} is a maximum clique,

{𝑣1, . . . , 𝑣4, 𝑣7} is a maximal 2-defective clique, and {𝑣1, . . . , 𝑣6} is a
maximum 2-defective clique that maximizes the number of vertices.

Finding large defective cliques has applications in biological net-

works [49], cluster detection [14, 40], transportation science [39],

and social network analysis [19, 22]. For example, missing links in

a large defective clique are good candidates for predicting implicit

interactions between proteins in biological networks in [49]. Also,

defective clique has been used for predicting potential collabora-

tions between authors based on the DBLP data and for finding

closely related financial instruments on stock markets [14].

In this paper, we study the problem of finding a 𝑘-defective

clique with the largest number of vertices, which is NP-hard [48].
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Figure 2: Search tree T of a backtracking algorithm

The state-of-the-art time complexity, beating the trivial O∗ (2𝑛), is
achieved by the kDC algorithm [8], running in O∗ (𝛾𝑛

𝑘
) time where

𝛾𝑘 < 2 is the largest real root of the equation 𝑥𝑘+3 − 2𝑥𝑘+2 + 1 = 0

and 𝑛 is the number of vertices in the input graph 𝐺 . kDC is a

branch-and-bound (aka. backtracking) algorithm. Let T be the

backtracking search tree (see Figure 2) where each node represents

a backtracking instance (𝑔, 𝑆) with 𝑔 being a subgraph of 𝐺 and

𝑆 ⊆ 𝑉 (𝑔) a 𝑘-defective clique (i.e., 𝑆 is a partial solution). The left

child of (𝑔, 𝑆) adds the branching vertex 𝑣 to 𝑆 (i.e., +𝑣), while the
right child removes 𝑣 from𝑔 (i.e.,−𝑣). It suffices to bound the number

of leaf nodes of T , as the O∗ notation ignores polynomial factors.

kDC achieves its time complexity by 1 deterministically processing

vertices that have up-to one non-neighbor (by reduction rule RR2
of [8]), and 2 greedily ordering vertices (by branching rule BR
of [8]) such that a length-(𝑘 + 2) prefix of the ordering induces more
than 𝑘 missing edges. 2 ensures the time complexity since we only

need to consider up-to 𝑘 +2 prefixes when enumerating the prefixes

that can be added to the solution, while 1 makes 2 possible.

We first aim to reduce the base (i.e., 𝛾𝑘 ) of the exponential time

complexity. This is challenging, see Section 4.1 for details. Neverthe-

less, we manage to prove that the time complexity of kDC [8] can

be bounded by O∗ (𝛾𝑛
𝑘−1), by using different analysis techniques

for different backtracking instances. Our general idea is that if at

least one branching vertex (i.e., previously selected by BR) has
been added to 𝑆 (e.g., (𝑔1, 𝑆1) in Figure 2), then BR computes an

ordering of 𝑉 (𝑔) \ 𝑆 such that the union of 𝑆 and a length-(𝑘 + 1)
prefix of the ordering induces more than 𝑘 missing edges (Lemma 4.1);

thus, the number of leaf nodes of T rooted at (𝑔, 𝑆) can be shown

by induction to be at most 𝛾
|𝑉 (𝑔)\𝑆 |
𝑘−1 (Lemma 4.2). Otherwise (e.g.,

(𝑔2, 𝑆2)), we prove non-inductively that the number of leaf nodes is

at most 2 · 𝛾 |𝑉 (𝑔)\𝑆 |
𝑘−1 by introducing the coefficient 2 (Lemma 4.3).

Secondly, we show that the exponent of the time complexity can

be reduced for graphs whose maximum 𝑘-defective cliques 𝜔𝑘 (𝐺)
are large. It is known that any 𝑘-defective clique of size ≥ 𝑘+2 has a
diameter at most two. Thus, for a backtracking instance (𝑔, 𝑆), once
a vertex 𝑢 is added to 𝑆 , we can remove from 𝑔 all vertices whose

shortest distances (computed in 𝑔) to 𝑢 are larger than two. Let

(𝑣1, 𝑣2, . . . , 𝑣𝑛) be a degeneracy ordering of 𝑉 (𝐺). We process each

vertex 𝑣𝑖 by assuming that it is the first vertex of the degeneracy

ordering that is in a maximum 𝑘-defective clique; note that, at

least one of these 𝑛 assumptions will be true, and thus we can

find a maximum 𝑘-defective clique. By using the same proving

techniques developed above, it can be shown that the search tree

of processing 𝑣𝑖 has at most 2 · 𝛾𝛼Δ
𝑘−1 leaf nodes since we only need

to consider 𝑣𝑖 ’s neighbors and two-hop neighbors that come later

than 𝑣𝑖 in the degeneracy ordering; here 𝛼 and Δ are the degeneracy

and maximum degree of 𝐺 , respectively. Through a more refined

analysis, we show that the number of leaf nodes is also bounded by

O((𝛼Δ)𝑘𝛾𝛼
𝑘−1). Consequently, a maximum 𝑘-defective clique of 𝐺

can be found in O(𝑛 × (𝛼Δ)𝑘+2 × 𝛾𝛼
𝑘−1) time when 𝜔𝑘 (𝐺) ≥ 𝑘 + 2.

Note that, most real graphs satisfy 𝜔𝑘 (𝐺) ≥ 𝑘 + 2 and 𝛼 ≪ 𝑛.

Furthermore, we show that a maximum 𝑘-defective clique can also

be found in O∗ ((𝛼Δ)𝑘+2 × (𝑘 + 1)𝛼+𝑘+1−𝜔𝑘 (𝐺 ) ) time when using

the degeneracy-gap parameterization 𝛼 + 𝑘 + 1 − 𝜔𝑘 (𝐺) which is

at most 𝛼 − 1 since 𝜔𝑘 (𝐺) ≥ 𝑘 + 2.
Thirdly, to improve the practical performance, we design a new

reduction rule RR3 based on the degree-sequence-based upper

bound UB proposed in [18]. However, instead of using UB to prune

instances after generating them as done in the existing works [8,

18], we remove vertex 𝑢 ∈ 𝑉 (𝑔) \ 𝑆 from 𝑔 if an upper bound of

(𝑔, 𝑆 ∪ 𝑢) is no larger than the current best solution size 𝑙𝑏. Note

that, rather than computing the exact upper bound for (𝑔, 𝑆 ∪ 𝑢),
we test whether the upper bound is larger than 𝑙𝑏 or not. The

latter can be conducted more efficiently and without generating

(𝑔, 𝑆∪𝑢); moreover, computation can be shared between the testing

for different vertices of 𝑉 (𝑔) \ 𝑆 . We show that with linear time

preprocessing, the upper bound testing for all vertices 𝑢 ∈ 𝑉 (𝑔) \ 𝑆
can be conducted in totally linear time. In addition, we theoretically

demonstrate that RR3 is more effective than the existing reduction

rules, e.g., the degree-sequence-based reduction rule and second-

order reduction rule proposed in [8].

Contributions. Our main contributions are as follows.

• We improve the time complexity of the state-of-the-art

algorithm kDC [8] from O∗ (𝛾𝑛
𝑘
) to O∗ (𝛾𝑛

𝑘−1), through a

more refined and non-trivial analysis. (Section 4).

• We show that for graphs with𝜔𝑘 (𝐺) ≥ 𝑘 +2, a maximum 𝑘-

defective clique can be found in O∗ ((𝛼Δ)𝑘+2 × 𝛾𝛼
𝑘−1) time

and also in O∗ ((𝛼Δ)𝑘+2 × (𝑘 + 1)𝛼+𝑘+1−𝜔𝑘 (𝐺 ) ) time by

using different parameterizations. (Section 5)

• We design a new degree-sequence-based reduction rule

RR3 that can be conducted in linear time, and theoretically

demonstrate its effectiveness compared with the existing

reduction rules. (Section 6)

We conduct extensive empirical studies on three benchmark col-

lections with 290 graphs in total to evaluate our techniques (Sec-

tion 7). The results show that (1) our algorithm solves 34 and 36

more graph instances than the most recent algorithms kDC [8] and

KD-Club [24], respectively, for a time limit of 3 hours and 𝑘 = 15;

(2) on the 33 real-world graphs that have more than 100, 000 ver-

tices, our algorithm is on average (with geometric mean) one order

of magnitude faster than kDC and two orders of magnitude faster

than KD-Club, for 𝑘 = 15.

2 PROBLEM DEFINITION
We consider a large unweighted, undirected and simple graph 𝐺 =

(𝑉 , 𝐸) and refer to it simply as a graph; here, 𝑉 is the vertex set

and 𝐸 is the edge set. The numbers of vertices and edges of 𝐺 are

denoted by 𝑛 = |𝑉 | and𝑚 = |𝐸 |, respectively. An undirected edge

between𝑢 and 𝑣 is denoted by (𝑢, 𝑣) and (𝑣,𝑢). The set of edges that
are missing from𝐺 is called the set of non-edges (or missing edges)
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Figure 3: An example graph

of 𝐺 and denoted by 𝐸, i.e., (𝑢, 𝑣) ∈ 𝐸 if 𝑢 ≠ 𝑣 and (𝑢, 𝑣) ∉ 𝐸. The

set of 𝑢’s neighbors in 𝐺 is denoted 𝑁𝐺 (𝑢) = {𝑣 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸},
and the degree of 𝑢 in 𝐺 is 𝑑𝐺 (𝑢) = |𝑁𝐺 (𝑢) |; similarly, the set of

𝑢’s non-neighbors in 𝐺 is denoted 𝑁𝐺 (𝑢) = {𝑣 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}.
Note that a vertex is neither a neighbor nor a non-neighbor of
itself. Given a vertex subset 𝑆 ⊆ 𝑉 , the set of edges induced by 𝑆 is

𝐸𝐺 (𝑆) = {(𝑢, 𝑣) ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑆}, the set of non-edges induced by 𝑆 is

𝐸𝐺 (𝑆) = {(𝑢, 𝑣) ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑆}, and the subgraph of 𝐺 induced by

𝑆 is𝐺 [𝑆] = (𝑆, 𝐸𝐺 (𝑆)). We denote the union of a set 𝑆 and a vertex

𝑢 by 𝑆 ∪𝑢, and the subtraction of𝑢 from 𝑆 by 𝑆 \𝑢. For presentation
simplicity, we omit the subscript 𝐺 from the notations when the

context is clear, and abbreviate 𝑁𝐺 [𝑆∪𝑢 ] (𝑢) = 𝑁 (𝑢) ∩ 𝑆 as 𝑁𝑆 (𝑢)
and 𝑁𝐺 [𝑆∪𝑢 ] (𝑢) = 𝑁 (𝑢) ∩ 𝑆 as 𝑁𝑆 (𝑢). For an arbitrary graph 𝑔,

we denote its sets of vertices, edges and non-edges by 𝑉 (𝑔), 𝐸 (𝑔)
and 𝐸 (𝑔), respectively.

Definition 2.1 (𝑘-Defective Clique). A graph 𝑔 is a 𝑘-defective

clique if it misses at most 𝑘 edges from being a clique, i.e., |𝐸 (𝑔) | ≥
|𝑉 (𝑔) | ( |𝑉 (𝑔) |−1)

2
− 𝑘 or equivalently, |𝐸 (𝑔) | ≤ 𝑘 .

Obviously, if a subgraph 𝑔 of 𝐺 is a 𝑘-defective clique, then the

subgraph of 𝐺 induced by vertices 𝑉 (𝑔) is also a 𝑘-defective clique.

Thus, we refer to a 𝑘-defective clique simply by its set of vertices, and
measure the size of a 𝑘-defective clique 𝑆 ⊆ 𝑉 by its number of

vertices, i.e., |𝑆 |. The property of 𝑘-defective clique is hereditary, i.e.,
any subset of a 𝑘-defective clique is also a 𝑘-defective clique. A 𝑘-

defective clique 𝑆 of𝐺 is amaximal 𝑘-defective clique if every proper
superset of 𝑆 in 𝐺 is not a 𝑘-defective clique, and is a maximum 𝑘-
defective clique if its size is the largest among all 𝑘-defective cliques

of 𝐺 ; denote the size of the maximum 𝑘-defective clique of 𝐺 by

𝜔𝑘 (𝐺). Consider the graph in Figure 3, both {𝑣1, 𝑣7, . . . , 𝑣8} and
{𝑣2, 𝑣11, . . . , 𝑣14} are maximum 2-defective cliques with 𝜔2 (𝐺) = 5;

that is, the maximum 𝑘-defective clique is not unique.

Problem Statement. Given a graph 𝐺 = (𝑉 , 𝐸) and an integer

𝑘 ≥ 1, we study the problem of maximum 𝑘-defective clique com-

putation, which aims to find a largest 𝑘-defective clique in 𝐺 .

Note that, although we only aim to find one largest 𝑘-defective

clique in this paper, our algorithm can be easily extended to find

multiple large 𝑘-defective cliques. For example, we can iteratively

find a largest 𝑘-defective clique and remove it from the graph; it

can be shown that the first ℎ reported results form an approximate

solution to the diversified top-ℎ defective clique problem with an

approximation ratio of (1 − 1

𝑒 ) [8].
Frequently used notations are summarized in Table 1.

3 STATE OF THE ART
The problem of maximum 𝑘-defective clique computation is NP-

hard [48]. The existing exact algorithms compute a maximum 𝑘-

defective clique via branch-and-bound search (aka. backtracking).

Table 1: Frequently used notations

Notation Meaning

𝐺 = (𝑉 , 𝐸 ) a graph with vertex set𝑉 and edge set 𝐸

𝜔𝑘 (𝐺 ) the size of the maximum 𝑘-defective clique of𝐺

𝑔 = (𝑉 (𝑔), 𝐸 (𝑔) ) a subgraph of𝐺

𝑆 ⊆ 𝑉 a 𝑘-defective clique

(𝑔, 𝑆 ) a backtracking instance with 𝑆 ⊆ 𝑉 (𝑔)
𝑁𝑆 (𝑢 ) the set of 𝑢’s neighbors that are in 𝑆

𝑁𝑆 (𝑢 ) the set of 𝑢’s non-neighbors that are in 𝑆

𝑑𝑆 (𝑢 ) the number of 𝑢’s neighbors that are in 𝑆

𝐸 (𝑆 ) the set of edges induced by 𝑆

𝐸 (𝑆 ) the set of non-edges induced by 𝑆

T, T′ search tree of backtracking algorithms

𝐼 , 𝐼 ′, 𝐼0, 𝐼1, . . . nodes of the search tree T or T′
|𝐼 | the size of 𝐼 , i.e., |𝑉 (𝐼 .𝑔) \ 𝐼 .𝑆 |

ℓT (𝐼 ) number of leaf nodes in the subtree of T rooted at 𝐼

Algorithm 1: Branch&Bound(𝑔, 𝑆)
1 (𝑔′, 𝑆 ′ ) ← apply reduction rules RR1 and RR2 to (𝑔, 𝑆 ) ;
2 if 𝑔′ is a 𝑘-defective clique then update𝐶∗ by𝑉 (𝑔′ ) and return;
3 𝑏 ← choose a branching vertex from𝑉 (𝑔′ ) \ 𝑆 ′ based on BR;
4 Branch&Bound(𝑔′, 𝑆 ′ ∪ 𝑏 ) ; /* Left branch includes 𝑏 */;

5 Branch&Bound(𝑔′ \ 𝑏, 𝑆 ′ ) ; /* Right branch excludes 𝑏 */;

Let (𝑔, 𝑆) denote a backtracking instance, where 𝑔 is a (sub-)graph

(of the input graph𝐺) and 𝑆 ⊆ 𝑉 (𝑔) is a 𝑘-defective clique in 𝑔. The
goal of solving the instance (𝑔, 𝑆) is to find a largest 𝑘-defective

clique in the instance (i.e., in 𝑔 and containing 𝑆); thus, solving the

instance (𝐺, ∅) finds amaximum𝑘-defective clique in𝐺 . To solve an

instance (𝑔, 𝑆), a backtracking algorithm selects a branching vertex

𝑏 ∈ 𝑉 (𝑔) \ 𝑆 , and then recursively solves two newly generated

instances: one includes 𝑏 into 𝑆 , and the other removes 𝑏 from 𝑔.

For the base case that 𝑆 = 𝑉 (𝑔), 𝑆 is the maximum 𝑘-defective

clique in the instance. For example, Figure 2 shows a snippet of

the backtracking search tree T , where each node corresponds to a

backtracking instance (𝑔, 𝑆). The two newly generated instances

are represented as the two children of the node, and the branching

vertex is illustrated on the edge; for the sake of simplicity, Figure 2

only shows the branching vertices for the first two levels.

The state-of-the-art time complexity is achieved by kDC [8]

which proposes a new branching rule and two reduction rules to

achieve the time complexity. Specifically, kDC proposes the non-

fully-adjacent-first branching rule BR preferring branching on

a vertex that is not fully adjacent to 𝑆 , and the excess-removal

reduction rule RR1 and the high-degree reduction rule RR2.
BR [8]. Given an instance (𝑔, 𝑆), the branching vertex is se-

lected as the vertex of 𝑉 (𝑔) \ 𝑆 that has at least one non-

neighbor in 𝑆 ; if no such vertices exist, an arbitrary vertex

of 𝑉 (𝑔) \ 𝑆 is chosen as the branching vertex.

RR1 [8]. Given an instance (𝑔, 𝑆), if a vertex 𝑢 ∈ 𝑉 (𝑔) \ 𝑆
satisfies |𝐸 (𝑆 ∪ 𝑢) | > 𝑘 , we can remove 𝑢 from 𝑔.

RR2 [8]. Given an instance (𝑔, 𝑆), if a vertex 𝑢 ∈ 𝑉 (𝑔) \ 𝑆
satisfies |𝐸 (𝑆 ∪ 𝑢) | ≤ 𝑘 and 𝑑𝑔 (𝑢) ≥ |𝑉 (𝑔) | − 2, we can

greedily add 𝑢 to 𝑆 .

The pseudocode of Branch&Bound is shown in Algorithm 1.

Given an input (𝑔, 𝑆), it first applies reduction rules RR1 and RR2
to reduce the instance (𝑔, 𝑆) to a potentially smaller instance (𝑔′, 𝑆′)
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such that 𝑉 (𝑔′) \ 𝑆 ′ ⊆ 𝑉 (𝑔) \ 𝑆 (Line 1). If 𝑔′ itself is a 𝑘-defective
clique, then it updates 𝐶∗ by 𝑉 (𝑔′) and backtrack (Line 2). Other-

wise, it picks a branching vertex 𝑏 based on the branching rule BR
(Line 3), and generates two new Branch&Bound instances and go

into recursion (Lines 4–5). kDC invokes Branch&Bound(𝐺, ∅) to
find the maximum 𝑘-defective clique in 𝐺 .

Time Complexity Analysis of kDC. The general idea of time

complexity analysis is as follows. As polynomial factors are usu-

ally ignored in the time complexity analysis of exponential time

algorithms, it is sufficient to bound the number of leaf nodes of the

search tree (in Figure 2) inductively in a bottom-up fashion [17].

One way of bounding the number of leaf nodes of the subtree rooted

at the node corresponding to instance (𝑔, 𝑆) is to order 𝑉 (𝑔) \ 𝑆 in

such a way that the longest prefix of the ordering that can be added

to 𝑆 without violating the 𝑘-defective clique definition is short

and bounded. Specifically, let (𝑣1, . . . , 𝑣𝑙 , 𝑣𝑙+1, . . .) be an ordering of

𝑉 (𝑔) \ 𝑆 such that the longest prefix that can be added to 𝑆 with-

out violating the 𝑘-defective clique definition is (𝑣1, . . . , 𝑣𝑙 ); that is,
{𝑣1, . . . , 𝑣𝑙 , 𝑣𝑙+1} ∪𝑆 induces more than 𝑘 non-edges. Then, we only

need to generate 𝑙 + 1 new instances/branches, corresponding to

the first 𝑙 + 1 prefixes, as shown in Figure 4: for the 𝑖-th (starting

from 0) branch, we include (𝑣1, . . . , 𝑣𝑖 ) to 𝑆 and remove 𝑣𝑖+1 from 𝑔.

Denote the 𝑖-th branch by (𝑔𝑖 , 𝑆𝑖 ). It holds that
• |𝑉 (𝑔𝑖 ) \ 𝑆𝑖 | ≤ |𝑉 (𝑔) \ 𝑆 | − (𝑖 + 1),∀0 ≤ 𝑖 ≤ 𝑙 .

It can be shown by the techniques of [17] that the number of leaf

nodes of the search tree is at most 𝛾𝑛 where 𝛾 < 2 is the largest

real root of the equation 𝑥𝑙max+2 − 2𝑥𝑙max+1 + 1 = 0 and 𝑙max is the

largest 𝑙 among all non-leaf nodes. Thus, the smaller the value of

𝑙max, the better the time complexity.

(gl, Sl)

(g, S)

+(v1, . . . , vi),−vi+1

· · · · · ·
+(v1, . . . , vl),−vl+1−v1

(g0, S0) (gi, Si)

Figure 4: General idea of time complexity analysis

For kDC, 𝑙max = 𝑘 + 1 and thus its time complexity is O∗ (𝛾𝑛
𝑘
)

where 𝛾𝑘 < 2 is the largest real root of the equation 𝑥𝑘+3 − 2𝑥𝑘+2 +
1 = 0 [8]; here, the O∗ notation hides polynomial factors. Specif-

ically, kDC orders 𝑉 (𝑔) \ 𝑆 by iteratively applying BR. That is,
each time it appends to the ordering a vertex that has at least one

non-neighbor in either 𝑆 or the vertices already in the ordering; if

no such vertices exist, an arbitrary vertex of 𝑉 (𝑔) \ 𝑆 is appended.

It is proved in [8] that after exhaustively applying reduction rules

RR1 and RR2, the resulting instance (𝑔, 𝑆) satisfies the condition:

• |𝐸 (𝑆 ∪ 𝑢) | ≤ 𝑘 and 𝑑𝑔 (𝑢) < |𝑉 (𝑔) | − 2, ∀𝑢 ∈ 𝑉 (𝑔) \ 𝑆 .
i.e., every vertex of 𝑉 (𝑔) \ 𝑆 has at least two non-neighbors
in 𝑔. Then, the worst-case scenario (for time complexity) is that

the non-edges of 𝑔[𝑉 (𝑔) \ 𝑆] form a set of vertex-disjoint cycles; a

length-(𝑘 + 1) prefix of the ordering induces exactly 𝑘 non-edges,

and a length-(𝑘 + 2) prefix induces more than 𝑘 non-edges.

One may notice that Figure 2 illustrates a binary search tree

while Figure 4 shows a multi-way search tree. Nevertheless, the

above techniques can be used to analyze Figure 2 since a binary

search tree can be (virtually) converted into an equivalent multi-

way search tree, which is the way the time complexity of kDC was

analyzed in [8]. That is, we could collapse a length-𝑙 path in Figure 2

to make it have 𝑙 + 1 children. This will be more clear when we

conduct our time complexity analysis in Lemma 4.2.

4 AN IMPROVED TIME COMPLEXITY
In this section, we improve the time complexity of maximum 𝑘-

defective clique computation from O∗ (𝛾𝑛
𝑘
) to O∗ (𝛾𝑛

𝑘−1). Before that,
we first discuss the challenges of improving the time complexity.

4.1 Challenges
As discussed in Section 3, the smaller the value of 𝑙max, the better

the time complexity. kDC [8] proves that 𝑙max ≤ 𝑘 + 1 by making

all vertices of 𝑉 (𝑔) \ 𝑆 have at least two non-neighbors in 𝑔, which

is achieved by RR2. In contrast, if all vertices of 𝑉 (𝑔) \ 𝑆 have

exactly one non-neighbor in 𝑔, then 𝑙max becomes 2𝑘 + 1 and the

time complexity is O∗ (𝛾𝑛
2𝑘
), which is the case of MADEC+ [12]. It

is natural to wonder whether the value of 𝑙max can be reduced if we

have techniques to make each vertex of 𝑉 (𝑔) \ 𝑆 have more (than

two) non-neighbors in 𝑔. Specifically, let’s consider the complement

graph 𝑔 of 𝑔: each edge of 𝑔 corresponds to a non-edge of 𝑔. The

question is whether theBR of kDC can guarantee 𝑙max < 𝑘+1when
𝑔[𝑉 (𝑔) \ 𝑆] has a minimum degree larger than two. Unfortunately,

the answer is negative. It is shown in [37] that for any 𝑟 ≥ 2 and

𝑠 ≥ 3, there exists a graph in which each vertex has exactly 𝑟

neighbors and the shortest cycle has length exactly 𝑠 ; these graphs

are called (𝑟, 𝑠)-graphs. Thus, when 𝑔[𝑉 (𝑔) \ 𝑆] is an (𝑟, 𝑠)-graph
for 𝑠 ≥ 𝑘 + 2, iteratively applying the branching rule BR may first

identify vertices of the shortest cycle and it then needs a prefix of

length 𝑘 + 2 to cover 𝑘 + 1 edges of 𝑔[𝑉 (𝑔) \ 𝑆] (corresponding to
𝑘 + 1 non-edges of 𝑔).

Alternatively, one may tempt to design a different branching rule

than BR for finding a subset of 𝑘 + 1 or fewer vertices𝐶 ⊆ 𝑉 (𝑔) \ 𝑆
such that 𝑔[𝐶] has at least 𝑘 + 1 edges. This however most likely

cannot be conducted efficiently, by noting that it is NP-hard to find

a densest 𝑘-subgraph (i.e., a subgraph with exactly 𝑘 vertices and

the most number of edges) when 𝑘 is a part of the input [16].

4.2 Improving the Time Complexity
Despite the challenges and negative resultsmentioned in Section 4.1,

we in this subsection show that the time complexity of maximum

𝑘-defective clique computation can be improved by conducting

a more refined analysis of the existing algorithm kDC, without
proposing any new algorithmic techniques.

We use the same terminologies and notations as [8] and con-

sider the search tree T of (recursively) invoking Branch&Bound,
as shown in Figure 2. To avoid confusion, nodes of the search tree

are referred to by nodes, and vertices of a graph by vertices. Nodes
of T are denoted by 𝐼 , 𝐼 ′, 𝐼0, 𝐼1, . . ., and the graph 𝑔 and the partial

solution 𝑆 of the Branch&Bound instance to which 𝐼 corresponds

are, respectively, denoted by 𝐼 .𝑔 and 𝐼 .𝑆 . Note that 𝐼 .𝑔 and 𝐼 .𝑆 denote
the ones obtained after applying the reduction rules at Lines 1–2 of
Algorithm 1, where Line 2 is regarded as applying the reduction

rule that if 𝑔′ is a 𝑘-defective clique, then all vertices of 𝑉 (𝑔′) \ 𝑆 ′
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Figure 5: A left-deep walk in the search tree T starting from
𝐼0; 𝐼𝑞 is the first node such that 𝑞 ≥ 1 and |𝑉 (𝑔𝑞) | < |𝑉 (𝑔𝑞−1) |

are added to 𝑆 ′. The size of 𝐼 is measured by the number of vertices

of 𝐼 .𝑔 that are not in 𝐼 .𝑆 , i.e., |𝐼 | = |𝑉 (𝐼 .𝑔) | − |𝐼 .𝑆 | = |𝑉 (𝐼 .𝑔) \ 𝐼 .𝑆 |. It
is worth mentioning that

• |𝐼 ′ | ≤ |𝐼 | − 1 whenever 𝐼 ′ is a child of 𝐼 , e.g., the branching

vertex 𝑏 of 𝐼 is in 𝑉 (𝐼 .𝑔) \ 𝐼 .𝑆 but not in 𝑉 (𝐼 ′ .𝑔) \ 𝐼 ′ .𝑆 .
• |𝐼 | = 0 whenever 𝐼 is a leaf node

For a non-leaf node 𝐼0, we consider the path (𝐼0, 𝐼1, . . . , 𝐼𝑞) that
starts from 𝐼0, always visits the left child in T , and stops at 𝐼𝑞
once 𝑞 ≥ 1 and |𝑉 (𝑔𝑞) | < |𝑉 (𝑔𝑞−1) |; see Figure 5 for an example.

Note that, the path is well defined since 𝐼0 is a non-leaf node and

thus 𝐼0 .𝑔 is not a 𝑘-defective clique. For presentation simplicity, we

abbreviate 𝐼𝑖 .𝑔 and 𝐼𝑖 .𝑆 as 𝑔𝑖 and 𝑆𝑖 , respectively, and denote the

branching vertex selected for 𝐼𝑖 by 𝑏𝑖 . Let 𝑢 be an arbitrary vertex

of 𝑉 (𝑔𝑞−1) \ 𝑉 (𝑔𝑞). Then, (𝑏0, . . . , 𝑏𝑞−1, 𝑢, . . .) is an ordering of

𝑉 (𝑔0) \ 𝑆0 such that adding (𝑏0, . . . , 𝑏𝑞−1, 𝑢) to 𝑆0 violates the 𝑘-

defective clique definition. In the lemma below, we prove that 𝑞 ≤ 𝑘

if 𝐼0 has at least one branching vertex being added.

Lemma 4.1. If the non-leaf node 𝐼0 has at least one branching
vertex being added, then 𝑞 ≤ 𝑘 .

Proof. Let 𝐼𝑥 be the last node, on the path (𝐼0, 𝐼1, . . . , 𝐼𝑥 , . . . , 𝐼𝑞−1),
satisfying the condition that all vertices of 𝑉 (𝑔𝑥 ) \ 𝑆𝑥 are adjacent

to all vertices of 𝑆𝑥 , i.e., the branching vertex 𝑏𝑥 selected for 𝐼𝑥 has

no non-neighbors in 𝑆𝑥 . If such an 𝐼𝑥 does not exist, then we have

|𝐸 (𝑆𝑖+1) | ≥ |𝐸 (𝑆𝑖 ) | + 1 for all 0 ≤ 𝑖 < 𝑞 (because the branching

vertex added to 𝑆𝑖+1 must bring at least one non-edge to 𝐸 (𝑆𝑖+1)),
and consequently𝑞 ≤ |𝐸 (𝑆𝑞) | ≤ 𝑘 . In the following, we assume that

such an 𝐼𝑥 exists, and prove that |𝐸 (𝑆𝑥 ) | > 𝑥 by considering two

cases. Note that, each of the branching vertices 𝑏𝑖 ∈ {𝑏0, . . . , 𝑏𝑥−1}
that are added to 𝑆𝑥 must have at least two non-neighbors in 𝑔𝑖
(because of RR2) and all these non-neighbors are in 𝑆𝑥 (according

to the definitions of 𝐼𝑥 and 𝐼𝑞 ).

• Case-I: |𝐸 (𝑆0) | ≠ 0. Then, the number of unique non-edges

associated with {𝑏0, . . . , 𝑏𝑥−1} is at least 𝑥 , and |𝐸 (𝑆𝑥 ) | ≥
|𝐸 (𝑆0) | + 𝑥 > 𝑥 .

• Case-II: |𝐸 (𝑆0) | = 0. Let 𝑏−1 be the branching vertex added
to 𝑆0 from its parent (which exists according to the lemma

statement). Then, 𝑏−1 has at least two non-neighbors in 𝑔0;
note that these non-neighbors will not be removed from 𝑔0

by RR1 since |𝐸 (𝑆0) | = 0 and all vertices of 𝑉 (𝑔0) \ 𝑆0 are
fully adjacent to vertices of 𝑆0 \ 𝑏−1. Thus, the number of

non-edges between {𝑏−1, 𝑏0, . . . , 𝑏𝑥−1} is at least 𝑥 + 1, and
hence |𝐸 (𝑆𝑥 ) | > 𝑥 .

Then, according to the definition of 𝐼𝑥 and our branching rule, for

each 𝑖 with 𝑥 + 1 ≤ 𝑖 < 𝑞, the branching vertex 𝑏𝑖 selected for 𝐼𝑖

has at least one non-neighbor in 𝑆𝑖 , and consequently,

|𝐸 (𝑆𝑞) | ≥ |𝐸 (𝑆𝑥 ) | + (𝑞 − 𝑥 − 1) > 𝑞 − 1

Thus, the lemma follows from the fact that |𝐸 (𝑆𝑞) | ≤ 𝑘 . □

Let ℓT (𝐼 ) denote the number of leaf nodes in the subtree of T
rooted at 𝐼 . We prove in the lemma below that ℓT (𝐼 ) ≤ 𝛽

|𝐼 |
𝑘

when at

least one branching vertex has been added to 𝐼 . Note that 𝛽𝑘 = 𝛾𝑘−1.

Lemma 4.2. For any node 𝐼 of T that has at least one branching
vertex being added, it holds that ℓT (𝐼 ) ≤ 𝛽

|𝐼 |
𝑘

where 1 < 𝛽𝑘 < 2 is
the largest real root of the equation 𝑥𝑘+2 − 2𝑥𝑘+1 + 1 = 0.

Proof. We prove the lemma by induction. For the base case that

𝐼 is a leaf node, it is trivial that ℓT (𝐼 ) = 1 ≤ 𝛽
|𝐼 |
𝑘

since 𝛽𝑘 > 1 and

|𝐼 | = 0. For a non-leaf node 𝐼0, let’s consider the path (𝐼0, 𝐼1, . . . , 𝐼𝑞′ )
that starts from 𝐼0, always visits the left child in the search tree

T , and stops at 𝐼𝑞′ once 𝑞
′ ≥ 1 and |𝐼𝑞′ | ≤ |𝐼𝑞′−1 | − 2. Note that

(𝐼0, . . . , 𝐼𝑞′ ) is a prefix of (𝐼0, . . . , 𝐼𝑞) since 𝐼𝑞 satisfies the condition

that 𝑞 ≥ 1 and |𝐼𝑞 | ≤ |𝐼𝑞−1 | − 2. It is trivial that

ℓT (𝐼0) = ℓT (𝐼𝑞′ ) + ℓT (𝐼𝑞′+1) + ℓT (𝐼𝑞′+2) + · · · + ℓT (𝐼2𝑞′ )

where 𝐼𝑞′+1, 𝐼𝑞′+2, . . . , 𝐼2𝑞′ are the right child of 𝐼0, 𝐼1, . . . , 𝐼𝑞′−1, re-
spectively, as illustrated in Figure 5 (by replacing 𝑞 with 𝑞′); this is
equivalent to converting a binary search tree to a multi-way search
tree by collapsing the path (𝐼0, . . . , 𝐼𝑞′−1) into a super-node that has
𝐼𝑞′ , 𝐼𝑞′+1, . . . , 𝐼2𝑞′ as its children. To bound ℓT (𝐼0), we need to bound
𝑞′ and |𝐼𝑖 | for 𝑞′ ≤ 𝑖 ≤ 2𝑞′. Following from Lemma 4.1, we have

Fact 1. 𝑞′ ≤ 𝑞 ≤ 𝑘 .

Also, according to the definition of the path, it holds that

∀𝑖 ∈ [1, 𝑞′ − 1], 𝑆𝑖 = 𝑆𝑖−1 ∪ 𝑏𝑖−1, 𝑉 (𝑔𝑖 ) = 𝑉 (𝑔𝑖−1) (1)

That is, the reduction rules at Line 1 of Algorithm 1 have no effect

on 𝐼𝑖 for 1 ≤ 𝑖 < 𝑞′. Then, the following two facts hold.

Fact 2. ∀𝑖 ∈ [𝑞′ + 1, 2𝑞′], |𝐼𝑖 | ≤ |𝐼𝑖−𝑞′−1 | − 1 ≤ |𝐼0 | + 𝑞′ − 𝑖 .
Fact 3. |𝐼𝑞′ | ≤ |𝐼𝑞′−1 | − 2 ≤ |𝐼0 | − 𝑞′ − 1.

Based on Facts 1, 2 and 3, we have

ℓT (𝐼0) = ℓT (𝐼𝑞′+1) + ℓT (𝐼𝑞′+2) + · · · + ℓT (𝐼2𝑞′ ) + ℓT (𝐼𝑞′ )

≤ 𝛽
|𝐼𝑞′+1 |
𝑘

+ 𝛽 |𝐼𝑞′+2 |
𝑘

+ · · · + 𝛽 |𝐼2𝑞′ |
𝑘

+ 𝛽 |𝐼𝑞′ |
𝑘

≤ 𝛽
|𝐼0 |−1
𝑘

+ 𝛽 |𝐼0 |−2
𝑘

+ · · · + 𝛽 |𝐼0 |−𝑞
′

𝑘
+ 𝛽 |𝐼0 |−𝑞

′−1
𝑘

≤ 𝛽
|𝐼0 |−1
𝑘

+ 𝛽 |𝐼0 |−2
𝑘

+ · · · + 𝛽 |𝐼0 |−𝑘
𝑘

+ 𝛽 |𝐼0 |−𝑘−1
𝑘

where 𝛽
|𝐼0 |−1
𝑘

+ 𝛽 |𝐼0 |−2
𝑘

+ · · · + 𝛽 |𝐼0 |−𝑘
𝑘

+ 𝛽 |𝐼0 |−𝑘−1
𝑘

≤ 𝛽
|𝐼0 |
𝑘

if 𝛽𝑘 is no

smaller than the largest real root of the equation 𝑥𝑘+1−𝑥𝑘−· · ·−𝑥−
1 = 0 which is equivalent to the equation 𝑥𝑘+2 − 2𝑥𝑘+1 + 1 = 0 [17].

The first few solutions to the equation are 𝛽1 = 1.619, 𝛽2 = 1.840,

𝛽3 = 1.928, 𝛽4 = 1.966, and 𝛽5 = 1.984. □

In Lemma 4.2, we cannot bound ℓT (𝐼 ) by 𝛽
|𝐼 |
𝑘

if no branching

vertices have been added to 𝐼 . Nevertheless, we prove in the lemma

below that ℓT (𝐼 ) < 2 · 𝛽 |𝐼 |
𝑘

holds for every node 𝐼 of T , by using a

non-inductive proving technique.

Lemma 4.3. For any node 𝐼 of T , it holds that ℓT (𝐼 ) < 2 · 𝛽 |𝐼 |
𝑘

.
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Figure 6: A right-deep walk in the search tree T starting from
𝐼0 and stopping at a leaf node 𝐼ℎ

Proof. If 𝐼 is a leaf node, the lemma is trivial. For a non-leaf

node 𝐼0, let’s consider the path (𝐼0, 𝐼1, . . . , 𝐼ℎ) that starts from 𝐼0,

always visits the right child in the search tree T , and stops at a leaf
node 𝐼ℎ ; see Figure 6 for an example. Then, it holds that

∀𝑖 ∈ [ℎ + 1, 2ℎ], |𝐼𝑖 | ≤ |𝐼𝑖−ℎ−1 | − 1 ≤ |𝐼0 | + ℎ − 𝑖

and |𝐼ℎ | = 0. Moreover, for each 𝑖 ∈ [ℎ + 1, 2ℎ], 𝐼𝑖 has at least one
branching vertex (e.g., 𝑏𝑖−ℎ−1) being added, and thus according to

Lemma 4.2, it satisfies ℓT (𝐼𝑖 ) ≤ 𝛽
|𝐼𝑖 |
𝑘

. Consequently,

ℓT (𝐼0) = ℓT (𝐼ℎ+1) + ℓT (𝐼ℎ+2) + · · · + ℓT (𝐼2ℎ) + ℓT (𝐼ℎ)

≤ 𝛽
|𝐼ℎ+1 |
𝑘

+ 𝛽 |𝐼ℎ+2 |
𝑘

+ · · · + 𝛽 |𝐼2ℎ |
𝑘
+ 𝛽 |𝐼ℎ |

𝑘

≤ 𝛽
|𝐼0 |−1
𝑘

+ 𝛽 |𝐼0 |−2
𝑘

+ · · · + 𝛽 |𝐼0 |−ℎ
𝑘

+ 1

≤ 𝛽
|𝐼
0
|

𝑘
−1

𝛽𝑘−1 + 1 < 2 · 𝛽 |𝐼0 |
𝑘

The last inequality follows from the fact that 𝛽𝑘 > 1.5,∀𝑘 ≥ 1. □

The time complexity of kDC then follows from Lemma 4.3, by

noting that each node of the search tree (i.e., Lines 1–3 of Algo-

rithm 1) takes O(𝑚) time.

Theorem 4.4. Given a graph 𝐺 and an integer 𝑘 , kDC finds a
maximum 𝑘-defective clique in O(𝑚 × 𝛽𝑛

𝑘
) time.

Compared with the Analysis in [8]. We improve the base of the

exponential time complexity of kDC [8] from 𝛾𝑘 to 𝛽𝑘 = 𝛾𝑘−1. This
is achieved by using different analysis techniques for the nodes

that already have branching vertices being added (i.e., Lemma 4.2)

and for those that do not (i.e., Lemma 4.3); this idea may also be
beneficial to improving other problems. Without this separation, we

can only bound the length 𝑞 of the path (𝐼0, . . . , 𝐼𝑞) by 𝑘 + 1 instead
of 𝑘 that is proved in Lemma 4.1. Also note that, Lemma 4.3 is non-

inductive and has a coefficient 2 in the bound; if we use induction

in the proof of Lemma 4.3, then the coefficient will become bigger

and bigger and become exponential when going up the tree.

5 FURTHER IMPROVED TIME COMPLEXITIES
WHEN 𝜔𝑘 (𝐺) IS LARGE

The time complexity proved in Theorem 4.4, which has 𝑛 in the

exponent, holds for any graph. In this section, we show that the

time complexity can be further improved for the graphs whose max-

imum 𝑘-defective cliques are large, by utilizing the diameter-two

property of large 𝑘-defective cliques. We first bound the time com-

plexity by using the degeneracy parameterization in the exponent

in Section 5.1, and then bound the time complexity by using the

degeneracy-gap parameterization in the exponent in Section 5.2.

5.1 Parameterize by the Degeneracy
Lemma 5.1 (Diameter-two Property of Large 𝑘-Defective

Cliqe [12]). For any 𝑘-defective clique, if it contains at least 𝑘 + 2
vertices, its diameter is at most two (i.e., any two non-adjacent vertices
must have common neighbors in the defective clique).

Following Lemma 5.1, if we know that 𝜔𝑘 (𝐺) ≥ 𝑘 + 2, then for

a backtracking instance (𝑔, 𝑆) with 𝑆 ≠ ∅, we can remove from 𝑔

the vertices whose shortest distance (computed in 𝑔) to any vertex

of 𝑆 is greater than two. This could significantly reduce the search

space, as real graphs usually have a small average degree. However,

it is difficult to utilize the diameter-two property reliably, since we

do not know before-hand whether 𝜔𝑘 (𝐺) ≥ 𝑘 + 2 or not and a

𝑘-defective clique of size smaller than 𝑘 + 2 may have a diameter

larger than two. To resolve this, we propose to compute a maximum

𝑘-defective clique in two stages, where Stage-I utilizes the diameter-

two property for pruning by assuming 𝜔𝑘 (𝐺) ≥ 𝑘 + 2. If Stage-I
fails (to find a 𝑘-defective clique of size at least 𝑘 + 2), then we go to

Stage-II searching the graph again without utilizing the diameter-

two property. This guarantees that a maximum 𝑘-defective clique

is found regardless of its size.

Algorithm 2: kDC-two(𝐺,𝑘)
Input: A graph𝐺 and an integer 𝑘

Output: A maximum 𝑘-defective clique in𝐺

1 𝐶∗ ← ∅;
2 Let (𝑣1, . . . , 𝑣𝑛 ) be a degeneracy ordering of the vertices of𝐺 ;

3 for each 𝑣𝑖 ∈ 𝑉 (𝐺 ) do
4 𝐴← 𝑁 (𝑣𝑖 ) ∩ {𝑣𝑖 , . . . , 𝑣𝑛 };
5 Let 𝑔𝑣𝑖 be the subgraph of𝐺 induced by 𝑁 [𝐴] ∩ {𝑣𝑖 , . . . , 𝑣𝑛 };
6 Branch&Bound(𝑔𝑣𝑖 , {𝑣𝑖 }) ; /* Invoke Algorithm 1 */;

7 if |𝐶∗ | < 𝑘 + 1 then Branch&Bound(𝐺, ∅) ;
8 return𝐶∗;

The pseudocode of our algorithm, denoted kDC-two, is shown
in Algorithm 2; here, two refers to both “two”-stage and diameter-

“two”. We first compute a degeneracy ordering of the vertices of

𝐺 (Line 2). Without loss of generality, let (𝑣1, . . . , 𝑣𝑛) be the de-

generacy ordering, i.e., for each 1 ≤ 𝑖 ≤ 𝑛, 𝑣𝑖 is the vertex with

the smallest degree in the subgraph of 𝐺 induced by {𝑣𝑖 , . . . , 𝑣𝑛};
the degeneracy ordering can be computed in O(𝑚) time by the

peeling algorithm [29]. Then, for each vertex 𝑣𝑖 ∈ 𝑉 (𝐺), we com-

pute a largest diameter-two 𝑘-defective clique in which the first

vertex, according to the degeneracy ordering, is 𝑣𝑖 , by invoking the

procedure Branch&Bound with input (𝑔𝑣𝑖 , {𝑣𝑖 }) (Lines 4–6); that
is, the diameter-two 𝑘-defective clique contains 𝑣𝑖 and is a subset

of (𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑛). Here, 𝑔𝑣𝑖 is the subgraph of 𝐺 induced by 𝑣𝑖
and its neighbors and two-hop neighbors that come later than 𝑣𝑖
according to the degeneracy ordering. After that, we check whether

the currently found largest 𝑘-defective clique 𝐶∗ is of size at least
𝑘 + 1: if |𝐶∗ | ≥ 𝑘 + 1, then 𝐶∗ is guaranteed to be a maximum

𝑘-defective clique of 𝐺 ; otherwise, 𝜔𝑘 (𝐺) ≤ 𝑘 + 1 and a maximum

𝑘-defective clique of𝐺 may have a diameter larger than two. For the

latter, we invoke Branch&Bound again with input (𝐺, ∅) (Line 7).
Note that, we do not make use of the diameter-two property for

pruning within the procedure Branch&Bound, and thus ensure the
correctness of our algorithm.
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Figure 7: Running example

Example 5.2. Consider the graph 𝐺 in Figure 3 and 𝑘 = 3. A

degeneracy ordering of 𝐺 is (𝑣1, 𝑣2, . . . , 𝑣14). When processing 𝑣1,

we only need to consider 𝑣1, its neighbors {𝑣7, 𝑣8} and two-hop

neighbors {𝑣3, 𝑣9, 𝑣10}; that is, we process the subgraph 𝑔𝑣1 of 𝐺

induced by {𝑣1, 𝑣3, 𝑣7, . . . , 𝑣10}. The backtracking search tree for

Branch&Bound(𝑔𝑣1 , {𝑣1}), invoked at Line 6 of Algorithm 2 is

shown in Figure 7, where vertices of 𝑆 for each instance (𝑔, 𝑆)
are in the shaded area. For the root node 𝐼0, applying reduction

rule RR2 adds 𝑣7 and 𝑣8 into 𝑆 since each of them has at most one

non-neighbor in the subgraph 𝑔𝑣1 ; this results into the instance 𝐼 ′
0
.

Suppose the branching rule BR selects 𝑣9 for 𝐼
′
0
as 𝑣9 is not adjacent

to 𝑣1. Then, two new instances 𝐼1 and 𝐼2 are generated as the two

children of 𝐼 ′
0
. For 𝐼1, applying the reduction rule RR1 removes 𝑣3

from the graph and then applying RR2 adds 𝑣10 into 𝑆 ; we reach a

leaf node. Similarly, 𝑣10 is selected as the branching vertex for 𝐼2,

which then generates two leaf nodes 𝐼 ′
3
and 𝐼 ′

4
.

Complexity Analysis of kDC-two. Following Theorem 4.4, Line 7

of Algorithm 2 runs in O(𝑚 × 𝛽𝑛
𝑘
) time. What remains is to bound

|𝐼 | for Line 6 of Algorithm 2. Let 𝑓 denote the vertex obtained at

Line 3 of Algorithm 2,𝑔 be the subgraph extracted at Line 5, and 𝑡 be

the number of 𝑓 ’s non-neighbors in 𝑔. It holds that 𝑑𝑔 (𝑓 ) = |𝐴| ≤ 𝛼

since a degeneracy ordering is used for extracting 𝑔, 𝑡 ≤ 𝛼 (Δ − 1),
and |𝑉 (𝑔) | ≤ 𝑑𝑔 (𝑓 ) + 𝑡 + 1 ≤ 𝛼Δ + 1; here, 𝛼 is the degeneracy

of 𝐺 and Δ is the maximum degree of 𝐺 . Thus, kDC-two runs

in O(𝑛 × |𝐸 (𝑔) | × 𝛽
|𝑉 (𝑔) |−1
𝑘

) = O(𝑛 × (𝛼Δ)2 × 𝛽𝛼Δ
𝑘
) time when

𝜔𝑘 (𝐺) ≥ 𝑘 + 2, and in O(𝑚 × 𝛽𝑛
𝑘
) time otherwise.

We show in the following that for the case of 𝜔𝑘 (𝐺) ≥ 𝑘 + 2, the
exponent of the time complexity can be further reduced through a

more refined analysis. Let 𝐼0 = (𝑔0, 𝑆0) be the root of T for Line 6 of

Algorithm 2; recall that, 𝑓 ∈ 𝑆0, 𝑑𝑔0 (𝑓 ) ≤ 𝑑𝑔 (𝑓 ) ≤ 𝛼 and |𝐼0 | ≤ 𝛼 +𝑡 .
Let’s consider the subtree of T formed by starting a depth-first-

search from 𝐼0 and backtracking once the path from 𝐼0 to it has

either 𝑡 total edges or 𝑘 positive edges (i.e., labeled as “+”); see the

shaded subtree in Figure 2 for an illustration of 𝑡 = 4 and 𝑘 = 2. Let

L be the set of leaf nodes of this subtree. Then, the number of leaf

nodes of T satisfies

ℓT (𝐼0) ≤
∑
𝐼 ∈L ℓT (𝐼 )

We bound |L| and ℓT (𝐼 ) for 𝐼 ∈ L in the following two lemmas.

Lemma 5.3. |L| = O(𝑡𝑘 ) where 𝑡 is the number of 𝑓 ’s non-
neighbors in 𝑔.

Proof. To bound |L|, we observe that the search tree T is a

full binary tree with each node having a positive edge to its left

child and a negative edge to its right child. Thus, we can label every

edge by its level in the tree (see Figure 2), and for each node 𝐼 ∈ L,
we associate with it a set of numbers corresponding to the levels

of the positive edges from 𝐼0 to 𝐼 . Then, it is easy to see that each

node of L is associated with a distinct subset, of size at most 𝑘 , of

{1, 2, . . . , 𝑡}. Consequently, |L| ≤ ∑𝑘
𝑖=0

(𝑡
𝑖

)
= O(𝑡𝑘 ) [30]. □

Lemma 5.4. For all 𝐼 ∈ L, it holds that |𝐼 | ≤ 𝛼 and |𝑉 (𝐼 .𝑔) | ≤
𝛼 + 𝑘 + 1.

Proof. Let’s consider the path (𝐼0, 𝐼1, . . . , 𝐼𝑝−1, 𝐼𝑝 = 𝐼 ) from 𝐼0
to 𝐼 . If there are 𝑘 positive edges on the path, then all vertices of

𝑉 (𝑔𝑝 ) \ 𝑆𝑝 must be adjacent to 𝑓 , and thus |𝐼𝑝 | ≤ 𝛼 and |𝑉 (𝑔𝑝 ) | ≤
𝛼 + 𝑘 + 1. The latter holds since all of 𝑓 ’s non-neighbors in 𝑔 are

in 𝑆 and thus of quantity at most 𝑘 . The former can be shown by

contradiction. Suppose 𝑉 (𝑔𝑝 ) \ 𝑆𝑝 contains a non-neighbor of 𝑓 ,

then adding each of the 𝑘 branching vertices (on the positive edges

of the path) must bring at least one non-edge to 𝑆𝑝 , due to the

branching rule BR; then RR1 will remove all non-neighbors of 𝑓

from 𝑉 (𝑔𝑝 ) \ 𝑆𝑝 , contradiction.
Otherwise, there are at most 𝑘 − 1 positive edges on the path

and 𝑝 = 𝑡 . Then, |𝐼𝑝 | ≤ |𝐼0 | − 𝑡 ≤ 𝛼 . Also, there are at least 𝑡 − 𝑘 + 1
negative edges on the path and thus |𝑉 (𝑔𝑝 ) | ≤ |𝑉 (𝑔0) |−(𝑡−𝑘+1) ≤
𝑡 + 𝛼 + 1 − (𝑡 − 𝑘 + 1) = 𝛼 + 𝑘 . □

Consequently, the number of leaf nodes of T is O((𝛼Δ)𝑘𝛽𝛼
𝑘
)

and the time complexity of kDC-two follows.

Theorem 5.5. Given a graph 𝐺 and an integer 𝑘 , kDC-two runs
in O(𝑛× (𝛼Δ)𝑘+2×𝛽𝛼

𝑘
) time when𝜔𝑘 (𝐺) ≥ 𝑘 +2, and in O(𝑚×𝛽𝑛

𝑘
)

time otherwise.

We represent the graph in CSR (Compressed Sparse Row) format

in mainmemory [10], and dynamically rearrange the vertex’s neigh-

bors for the subgraph 𝑔 during the recursion of Branch&Bound (Al-

gorithm 1) in a similar way as [15]. As a result, the space complexity

of kDC-two is O(𝑛 +𝑚).
Remark. Although the idea of using the diameter-two property

to reduce the search space is not new, it has not been incorporated

into the existing practical algorithms for maximum 𝑘-defective

clique computation, such as MADEC+ [12], KDBB [18], kDC [8]

and KD-Club [24]. We show how to exploit the diameter-two-based

pruning for maximum 𝑘-defective clique computation while ensur-

ing the algorithm’s correctness, i.e., successfully find a maximum

𝑘-defective clique even if it is smaller than 𝑘 + 2; recall that, we
do not know whether 𝜔𝑘 (𝐺) ≥ 𝑘 + 2 or not before running the

algorithm. We also analyzed the time complexity of the algorithm

and will show its effectiveness in practice in Section 7.

Althoughwe focus on sequential algorithms in this paper, kDC-two
can be easily parallelized as follows. Firstly, we can parallelize the

for loop at Line 3 of Algorithm 2. For each vertex 𝑣𝑖 , we extract

the subgraph 𝑔𝑣𝑖 and then process 𝑔𝑣𝑖 ; the tasks generated for dif-

ferent vertices are independent from each other and thus can be

run in parallel. Similarly, we can parallelize Line 7 by unrolling

the first level of the recursion tree, e.g., processing the “children”

𝐼ℎ+1, . . . , 𝐼2ℎ in parallel for node 𝐼0 in Figure 6.
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5.2 Parameterize by the Degeneracy Gap
In this subsection, we prove that when 𝜔𝑘 (𝐺) ≥ 𝑘 + 2, a max-

imum 𝑘-defective clique can also be found in O∗ ((𝛼Δ)𝑘+2 (𝑘 +
1)𝛼+𝑘+1−𝜔𝑘 (𝐺 ) ) time, by using the degeneracy-gap parameteriza-

tion 𝛼 + 𝑘 + 1 − 𝜔𝑘 (𝐺) which is at most 𝛼 − 1. This is better than
O∗ ((𝛼Δ)𝑘+2𝛽𝛼

𝑘
) when 𝜔𝑘 (𝐺) is close to 𝛼 + 𝑘 + 1, the degeneracy-

based upper bound of 𝜔𝑘 (𝐺), i.e., 𝜔𝑘 (𝐺) ≤ 𝛼 + 𝑘 + 1 always holds.
Let’s consider the problem of testing whether𝐺 has a 𝑘-defective

clique of size 𝜏 . To do so, we truncate the search tree T by cutting

the entire subtree rooted at node 𝐼 if |𝑉 (𝐼 .𝑔) | ≤ 𝜏 ; that is, we termi-

nate Branch&Bound once |𝑉 (𝑔′) | ≤ 𝜏 after Line 2 of Algorithm 1.

Let T ′ be the truncated version of T . We first bound the number of

leaf nodes of T ′ in the following two lemmas, in a similar fashion

as Lemmas 4.2 and 4.3; proofs are omitted due to limit of space.

Lemma 5.6. For any node 𝐼 of T ′ that has at least one branching
vertex being added, it holds that ℓT′ (𝐼 ) ≤ (𝑘 + 1) |𝑉 (𝐼 .𝑔) |−𝜏 .

Lemma 5.7. For any node 𝐼 of T ′, it holds that ℓT′ (𝐼 ) < 2 · (𝑘 +
1) |𝑉 (𝐼 .𝑔) |−𝜏 .

Then, the following time complexity can be proved in a similar

way to Theorem 5.5 but using Lemma 5.7 and Lemma 5.4.

Lemma 5.8. Testing whether 𝐺 has a 𝑘-defective clique of size 𝜏
for 𝜏 ≥ 𝑘 + 2 takes O(𝑛 × (𝛼Δ)𝑘+2 × (𝑘 + 1)𝛼+𝑘+1−𝜔𝑘 (𝐺 ) ) time.

Finally, we can find a maximum 𝑘-defective clique by iteratively

testing whether 𝐺 has a 𝑘-defective clique of size 𝜏 for 𝜏 = {𝛼 +
𝑘 + 1, 𝛼 + 𝑘, . . .}. This will find the maximum 𝑘-defective clique

and terminate after testing 𝜏 = 𝜔𝑘 (𝐺). Consequently, the following
time complexity follows.

Theorem 5.9. A maximum 𝑘-defective clique in 𝐺 can be found
in O((𝛼 +𝑘 + 2−𝜔𝑘 (𝐺)) ×𝑛× (𝛼Δ)𝑘+2 × (𝑘 + 1)𝛼+𝑘+1−𝜔𝑘 (𝐺 ) ) time
when 𝜔𝑘 (𝐺) ≥ 𝑘 + 2.

Remark. We note that a similar time complexity has been proven

in [46]. Specifically, it shows that a maximum 𝑘-defective clique in a

graph𝐺 with𝜔𝑘 (𝐺) ≥ 𝑘+2 can be found inO∗ ((2𝑘+2)𝛼2+1−𝜔𝑘 (𝐺 ) )
time, where 𝛼2 ≥ 𝛼 is a quantity similar to 𝛼Δ that bounds (and

minimizes) the maximum vertex number among the subgraphs ex-

tracted at Line 5 of Algorithm 2. By using our techniques above, we

can improve the time complexity of [46] to O∗ ((𝑘 + 1)𝛼2+1−𝜔𝑘 (𝐺 ) ),
reducing the base from 2𝑘 + 2 to 𝑘 + 1. Note however that 𝛼2 could
be much larger than 𝛼 + 𝑘 . We omit the details.

6 A NEW REDUCTION RULE
In this section, we propose a new reduction rule based on the degree-

sequence-based upper boundUB that is proposed in [18], to further

improve the practical performance of our algorithm.

UB [18]. Given an instance (𝑔, 𝑆), let 𝑣1, 𝑣2, . . . be an order-

ing of 𝑉 (𝑔) \ 𝑆 in non-decreasing order regarding their

numbers of non-neighbors in 𝑆 , i.e., |𝑁𝑆 (·) |. The maximum

𝑘-defective clique in the instance (𝑔, 𝑆) is of size at most |𝑆 |
plus the largest 𝑖 such that

∑𝑖
𝑗=1 |𝑁𝑆 (𝑣 𝑗 ) | ≤ 𝑘 − |𝐸 (𝑆) |.

Note that, different tie-breaking techniques for ordering the ver-

tices lead to the same upper bound. Thus, an arbitrary tie-breaking

technique can be used in UB.

Let 𝑙𝑏 be the size of the currently found best solution. If an

upper bound computed by UB for an instance (𝑔, 𝑆) is no larger

than 𝑙𝑏, then we can prune the instance. However, this way of first

generating an instance and then try to prune it based on a computed

upper bound is inefficient. To improve efficiency, we propose to

remove𝑢 ∈ 𝑉 (𝑔)\𝑆 from𝑔 if an upper bound of (𝑔, 𝑆∪𝑢) is no larger
than 𝑙𝑏. Note that, rather than computing the exact upper bound for

(𝑔, 𝑆 ∪ 𝑢), we only need to test whether the upper bound is larger

than 𝑙𝑏 or not. The latter can be conducted more efficiently and

without generating (𝑔, 𝑆 ∪𝑢); moreover, computation can be shared

between the testing for different vertices of 𝑉 (𝑔) \ 𝑆 . We remark
that this general idea of turning an upper bound into a reduction rule
may also be beneficial to other problems.

Let 𝑣1, 𝑣2, . . . be an ordering of 𝑉 (𝑔) \ (𝑆 ∪ 𝑢) in non-decreasing

order regarding |𝑁𝑆 (·) |, and 𝐶 be the set of vertices that have the

same number of non-neighbors in 𝑆 as 𝑣𝑙𝑏−|𝑆 | , i.e., 𝐶 = {𝑣𝑖 ∈
𝑉 (𝑔) \ (𝑆 ∪ 𝑢) | |𝑁𝑆 (𝑣𝑖 ) | = |𝑁𝑆 (𝑣𝑙𝑏−|𝑆 | ) |}. Let 𝐶1 and 𝐶2 be a

partitioning of 𝐶 according to their positions in the ordering, i.e.,

𝐶1 = 𝐶 ∩ {𝑣1, . . . , 𝑣𝑙𝑏−|𝑆 | } and 𝐶2 = 𝐶 \𝐶1. Note that, both 𝐶1 and

𝐶2 contain consecutive vertices in the ordering, and 𝐶2 could be

empty. A visualization of the ordering and vertex sets is shown

below, where 𝑆 ∪ 𝑢 and 𝑙𝑏 − |𝑆 | are denoted by 𝑅 and 𝑟 for brevity.

𝑆,𝑢︸︷︷︸
𝑅

, 𝑣1, . . . , 𝑣𝑟−|𝐶1 |︸           ︷︷           ︸
𝐷

,

𝐶 = {𝑣𝑖 ∈ 𝑉 (𝑔) \ 𝑅 | |𝑁𝑆 (𝑣𝑖 ) | = |𝑁 𝑆 (𝑣𝑟 ) | }︷                                    ︸︸                                    ︷
𝑣𝑟−|𝐶1 |+1, . . . , 𝑣𝑟︸              ︷︷              ︸

𝐶1

, 𝑣𝑟+1, . . . 𝑣𝑟+|𝐶2 |︸             ︷︷             ︸
𝐶2

, . . .

We prove in the lemma below that the upper bound computed by

UB for the instance (𝑔, 𝑆 ∪ 𝑢) is at most 𝑙𝑏 if and only if

|𝐸 (𝑆) |+
𝑟∑︁
𝑗=1

|𝑁𝑆 (𝑣 𝑗 ) |+|𝑁𝑆∪𝐷 (𝑢) |+max{|𝑁𝐶1
(𝑢) |−|𝑁𝐶2

(𝑢) |, 0} > 𝑘

(2)

Lemma 6.1. The upper bound computed by UB for the instance
(𝑔, 𝑆 ∪ 𝑢) is at most 𝑙𝑏 if and only if Equation (2) is satisfied.

Based on the above discussions, we propose the following degree-

sequence-based reduction rule RR3.

RR3 (degree-sequence-based reduction rule). Given an in-

stance (𝑔, 𝑆) with |𝑆 | < 𝑙𝑏 < |𝑉 (𝑔) | and a vertex 𝑢 ∈
𝑉 (𝑔) \ 𝑆 , we remove 𝑢 from 𝑔 if Equation (2) is satisfied.

Algorithm 3: ApplyRR3(𝑔, 𝑆, 𝑙𝑏)
1 Obtain |𝐸 (𝑆 ) | and |𝑁𝑆 (𝑣) | for each 𝑣 ∈ 𝑉 (𝑔) \ 𝑆 ;
2 Let 𝑢1,𝑢2, . . . be an ordering of𝑉 (𝑔) \ 𝑆 in non-decreasing order

regarding |𝑁𝑆 ( ·) |;
3 𝑋 ← ∅;
4 for 𝑖 ← 1 to |𝑉 (𝑔) \ 𝑆 | do
5 if |𝑋 | + |𝑉 (𝑔) \ 𝑆 | − 𝑖 < 𝑙𝑏 − |𝑆 | then return (𝑔[𝑆 ], 𝑆 ) ;
6 Let 𝑣1, 𝑣2, . . . be the vertices of 𝑋 ∪ {𝑢𝑖+1,𝑢𝑖+2, . . .} in

non-decreasing order regarding |𝑁𝑆 ( ·) |;
7 Obtain |𝑁𝐷 (𝑢𝑖 ) | , |𝑁𝐶1

(𝑢𝑖 ) | and |𝑁𝐶2
(𝑢𝑖 ) |;

8 if Equation (2) is not satisfied then Append 𝑢𝑖 to the end of 𝑋 ;

9 return (𝑔[𝑆 ∪𝑋 ], 𝑆 ) ;
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Given an instance (𝑔, 𝑆), our pseudocode of efficiently applying

RR3 for all vertices of 𝑉 (𝑔) \ 𝑆 is shown in Algorithm 3, which

returns a reduced instance at either Line 5 or Line 9. We first ob-

tain |𝐸 (𝑆) | and |𝑁𝑆 (𝑣) | for each 𝑣 ∈ 𝑉 (𝑔) \ 𝑆 (Line 1), and then

order vertices of𝑉 (𝑔) \𝑆 in non-decreasing order regarding |𝑁𝑆 (·) |
(Line 2). Let 𝑢1, 𝑢2, . . . be the ordered vertices. We then process the

vertices of𝑉 (𝑔)\𝑆 one-by-one according to the sorted order (Line 4).
When processing 𝑢𝑖 , the vertices that we need to consider are the

vertices that have not been processed yet (i.e., {𝑢𝑖+1, 𝑢𝑖+2, . . .}) and
the subset of {𝑢1, 𝑢2, . . . , 𝑢𝑖−1} that passed (i.e., not pruned by)

the reduction rule; denote the latter subset by 𝑋 . This means that

{𝑢1, . . . , 𝑢𝑖−1} \ 𝑋 have already been removed from 𝑔 by the reduc-

tion rule. If the number of remaining vertices (i.e., |𝑋 | + |𝑉 (𝑔) \𝑆 |−𝑖)
is less than 𝑟 = 𝑙𝑏 − |𝑆 |, then we remove all vertices of𝑉 (𝑔) \𝑆 from

𝑔 by returning (𝑔[𝑆], 𝑆) (Line 5). Otherwise, let 𝑣1, 𝑣2, . . . , 𝑣𝑟 , . . . be
the vertices of 𝑋 ∪ {𝑢𝑖+1, 𝑢𝑖+2, . . .} in non-decreasing order regard-

ing |𝑁𝑆 (·) | (Line 6). We obtain |𝑁𝐷 (𝑢𝑖 ) |, |𝑁𝐶1
(𝑢𝑖 ) | and |𝑁𝐶2

(𝑢𝑖 ) |
(Line 7), and remove 𝑢𝑖 from 𝑔 if Equation (2) is satisfied; otherwise,

𝑢𝑖 is not pruned and is appended to the end of 𝑋 (Line 8). Finally,

Line 9 returns the reduced instance (𝑔[𝑆 ∪ 𝑋 ], 𝑆). From the pseu-

docode, it is easy to see that our new reduction rule RR3 can be

used in any branch-and-bound algorithm for maximum 𝑘-defective

clique computation, since it simply removes non-promising vertices

from 𝑉 (𝑔) \ 𝑆 based on a given lower bound 𝑙𝑏.

Lemma 6.2. Algorithm 3 runs in O(|𝐸 (𝑔) | + 𝑘) time.

Proof. Firstly, Lines 1–2 run in O(|𝐸 (𝑔) | + 𝑘) time, where the

sorting is conducted by counting sort. Secondly, Line 6 does not do

anything; it is just a syntax sugar for relabeling the vertices. Thirdly,

Line 7 can be conducted in O(|𝑁𝑔 (𝑢𝑖 ) |) time since |𝑁𝐷 (𝑢𝑖 ) | =
|𝐷 | − |𝑁𝐷 (𝑢𝑖 ) | and |𝑁𝐶1

(𝑢𝑖 ) | = |𝐶1 | − |𝑁𝐶1
(𝑢𝑖 ) |; note that, as each

of 𝐷,𝐶1,𝐶2 spans at most two arrays (i.e., 𝑋 and {𝑢𝑖+1, . . .}), we
can easily get its size and boundary. Lastly, Line 8 can be checked

in constant time by noting that

∑𝑟
𝑗=1 |𝑁𝑆 (𝑣 𝑗 ) | can be obtained in

constant time after storing the suffix sums of |𝑁𝑆 (𝑢1) |, |𝑁𝑆 (𝑢2) |, . . .,
|𝑁𝑆 (𝑢𝑖+1) |, |𝑁𝑆 (𝑢𝑖+2) |, . . .. □

𝑠1

𝑠2

𝑠3

𝑢1
𝑢2

𝑢3

𝑢4

𝑢5

Figure 8: Example instance for applying reduction rule RR3

Example 6.3. Consider the instance (𝑔, 𝑆) in Figure 8 for 𝑘 = 3

and 𝑙𝑏 = 5, where𝑔 is the entire graph and 𝑆 = {𝑠1, 𝑠2, 𝑠3}; thus 𝑟 = 2.

The values of |𝑁𝑆 (·) | for the vertices of𝑉 (𝑔) \ 𝑆 = {𝑢1, . . . , 𝑢5} are
{𝑢1 : 0, 𝑢2 : 0, 𝑢3 : 1, 𝑢4 : 1, 𝑢5 : 1}. As |𝐸 (𝑆) | = 2, the upper bound

of (𝑔, 𝑆) computed by UB is 6; thus, the instance is not pruned.

Let’s applyRR3 for𝑢1. As𝑋 = ∅, we have 𝑣𝑖 = 𝑢𝑖+1 for 1 ≤ 𝑖 ≤ 4.

Then 𝐷 = {𝑢2},𝐶1 = {𝑢3},𝐶2 = {𝑢4, 𝑢5},
∑𝑟

𝑗=1 |𝑁𝑆 (𝑣 𝑗 ) | = 1,

|𝑁𝑆∪𝐷 (𝑢1) | = 0, |𝑁𝐶1
(𝑢1) | = 1 and |𝑁𝐶2

(𝑢1) | = 1. Thus, Equa-

tion (2) is not satisfied; 𝑢1 is not pruned and is appended to 𝑋 .

Now let’s apply RR3 for 𝑢2. As 𝑋 = {𝑢1}, we have 𝑣1 = 𝑢1 and

𝑣𝑖 = 𝑢𝑖+1 for 2 ≤ 𝑖 ≤ 4. Then 𝐷 = {𝑢1},𝐶1 = {𝑢3},𝐶2 = {𝑢4, 𝑢5},∑𝑟
𝑗=1 |𝑁𝑆 (𝑣 𝑗 ) | = 1, |𝑁𝑆∪𝐷 (𝑢2) | = 0, |𝑁𝐶1

(𝑢2) | = 1 and |𝑁𝐶2
(𝑢2) | =

0. Consequently, Equation (2) is satisfied and 𝑢2 is removed from 𝑔.

It can be verified that 𝑢3, 𝑢4, 𝑢5 will all subsequently be removed.

Effectiveness of RR3. kDC [8] also proposed a reduction rule

based on UB; let’s denote it as RR3’. We remark that our RR3
is more effective (i.e., prunes more vertices) than RR3’ since the
latter ignores the non-edges between 𝑢 and 𝑉 (𝑔) \ (𝑆 ∪ 𝑢) that are
considered by RR3; specifically, RR3’ removes 𝑢 from 𝑔 if |𝐸 (𝑆) | +∑𝑟

𝑗=1 |𝑁𝑆 (𝑣 𝑗 ) | + |𝑁𝑆 (𝑢) | > 𝑘 . More generally, the effectiveness of

our RR3 is characterized by the lemma below.

Lemma 6.4. RR3 is more effective than any other reduction rule
that is designed based on an upper bound of (𝑔, 𝑆 ∪ 𝑢) that ignores
all the non-edges between vertices of 𝑉 (𝑔) \ (𝑆 ∪ 𝑢).

Proof. Firstly, we have proved in Lemma 6.1 that applyingRR3
is equivalent to computing UB for (𝑔, 𝑆 ∪ 𝑢). Secondly, it can be

shown that UB computes the tightest upper bound for (𝑔, 𝑆 ∪ 𝑢)
among all upper bounds that ignore all the non-edges between

vertices of 𝑉 (𝑔) \ (𝑆 ∪ 𝑢). Thus, the lemma holds. □

In particular, the second-order reduction rule proposed in [8]

is designed based on an upper bound of (𝑔, 𝑆 ∪ 𝑢) that does not
consider the non-edges between vertices of 𝑉 (𝑔) \ (𝑆 ∪ 𝑢). Thus,
RR3 is more effective than the second-order reduction rule of [8].

7 EXPERIMENTS
In this section, we evaluate the efficiency of our techniques, by

comparing the following algorithms.
1

• kDC-two: our algorithm as shown in Algorithm 2.

• kDC2+RR3: the variant of kDC-two that also incorporates

our new reduction rule RR3 presented in Section 6.

• kDC 2
: the existing algorithm proposed in [8].

• KD-Club 3
: the existing algorithm proposed in [24].

All algorithms are implemented in C++ and compiled with the -O3

flag. All experiments are conducted in single-thread modes on a

machine with an Intel Core i7-8700 CPU and 64GB main memory.

We run the algorithms on the following three graph collections,

which are the same ones tested in [8, 18].

• The real-world graphs collection 4
contains 139 real-

world graphs from the Network Data Repository with up

to 5.87 × 107 vertices and 1.06 × 108 edges.
• The Facebook graphs collection 5

contains 114 Facebook

social networks from the Network Data Repository with

up to 5.92 × 107 vertices and 9.25 × 107 edges.
• The DIMACS10&SNAP graphs collection contains 37

graphs with up to 1.04 × 106 vertices and 6.89 × 106 edges.
27 graphs are from DIMACS10

6
and 10 from SNAP

7
.

1
Note that, the effectiveness of the defective clique model in serving applications has

been demonstrated in [14, 49]. Thus, we do not repeat the effectiveness testing here.

2
https://lijunchang.github.io/Maximum-kDC/

3
https://github.com/JHL-HUST/KD-Club

4
http://lcs.ios.ac.cn/~caisw/Resource/realworld%20graphs.tar.gz

5
https://networkrepository.com/socfb.php

6
https://www.cc.gatech.edu/dimacs10/downloads.shtml

7
http://snap.stanford.edu/data/
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(f) 𝑘 = 20

Figure 9: Number of solved instances by varying time limit
for real-world graphs collection (best viewed in color)
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Figure 10: Number of solved instances by varying time limit
for Facebook graphs collection (best viewed in color)

Table 2: Number of instances solved by kDC2+RR3 (abbre-
viated as kDC2+R), kDC and KD-Club with a time limit of 3
hours (best performers are highlighted in bold)

Real-world collection Facebook collection DIMACS10&SNAP

kDC2+R kDC KD-Club kDC2+R kDC KD-Club kDC2+R kDC KD-Club
𝑘 = 1 137 133 134 114 114 112 37 37 37
𝑘 = 3 136 130 126 114 114 112 37 37 36

𝑘 = 5 136 127 123 114 114 112 37 37 36

𝑘 = 10 128 119 110 112 111 110 36 36 32

𝑘 = 15 126 110 99 112 101 109 36 29 30

𝑘 = 20 113 104 91 111 88 108 34 27 26

Same as [8, 18], we choose𝑘 from {1, 3, 5, 10, 15, 20}. We set a time

limit of 3 hours for each individual testing (i.e., running a particular

algorithm on a specific graph instance with a chosen 𝑘 value); thus,

the experimental results are not affected by the processing order of

the graph instances.

7.1 Against the Existing Algorithms
In this subsection, we evaluate the practical efficiency of our al-

gorithm kDC2+RR3 against the two most recent algorithms kDC
and KD-Club. We do not include other existing algorithms such as

MADEC+ and KDBB since they have shown to be outperformed by

kDC and KD-Club in [8] and [24], respectively; however, there is

no direct comparison between kDC and KD-Club in the literature.

We also do not include the algorithm of [46], since it is of theoretical

interest only and no implementation is available.

We first report in Table 2 the total number of graph instances that

are solved by each algorithm with a time limit of 3 hours for each

graph instance. We can see that for all three algorithms, the number

of solved instances decreases when 𝑘 increases; this indicates that

when 𝑘 increases, the problem becomes more difficult and takes more
time to solve. Nevertheless, our algorithm kDC2+RR3 consistently
outperforms the two existing algorithms by solving more instances

within the time limit. The improvement is more profound when 𝑘

becomes larger. For example, for 𝑘 = 15, kDC2+RR3 solves 16, 11
and 7 (resp. 27, 3 and 6) more instances than kDC (resp. KD-Club)
on the three graph collections, respectively.

Secondly, we compare the number of instances solved by the

algorithms when varying the time limit from 1 second to 3 hours for

each graph instance. The results on the real-world collection and

Facebook collection for different 𝑘 values are shown in Figures 9

and 10, respectively; note that, to make the difference between

kDC2+RR3 and kDC-two more visible, we truncated the results

of KD-Club for small time limits. We can see that our algorithm

kDC2+RR3 consistently outperforms kDC and KD-Club across all

the time limits. In particular, our algorithm kDC2+RR3 solves all
114 Facebook graphs with a time limit of 30 seconds for 𝑘 = 1, 3

and 5, while the time limits needed by kDC are 125, 393 and 1353

seconds, respectively; on the other hand, KD-Club is not able to

solve all instances with a time limit of 3 hours. However, there is no

clear winner between kDC and KD-Club. kDC generally performs

better, while KD-Club outperforms kDC on Facebook graphs for

𝑘 ≥ 10 andwith large time limits. This is becauseKD-Club conducts
more aggressive and time-consuming pruning which is effective in

these cases, but does not pay off in other cases.
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Table 3: Running time and memory usage of kDC2+RR3 (abbreviated as kDC2+R), kDC-two, kDC+R, kDC, and kDC-Club on the
33 graphs with more than 100, 000 vertices from the real-world graphs collection. Best performers are highlighted in bold:
specifically, if the running time is slower than the fastest time by only less than 10%, it is considered as the best.

Running time (in seconds) Memory usage (in MB)

𝑘 = 10 𝑘 = 15 𝑘 = 10

𝑚 kDC2+R kDC-two kDC+R kDC KD-Club kDC2+R kDC-two kDC+R kDC KD-Club kDC2+R kDC-two kDC+R kDC KD-Club
ca-citeseer 814K 0.02 0.02 0.02 0.02 0.05 0.02 0.02 0.02 0.03 0.05 16 16 16 16 42

ca-coauthors-dblp 15M 0.20 0.21 0.25 0.25 14 0.22 0.22 0.34 0.37 40 137 137 137 137 604

ca-dblp-2010 716K 0.02 0.02 0.02 0.02 0.06 0.02 0.02 0.02 0.03 0.10 15 15 15 15 38

ca-dblp-2012 1M 0.04 0.03 0.03 0.05 0.17 0.04 0.03 0.04 0.05 0.32 21 21 21 21 54

ca-hollywood-2009 56M 0.79 0.74 0.74 0.83 130 0.78 0.75 0.75 1.0 132 466 466 466 466 2209

ca-MathSciNet 820K 0.03 0.03 0.04 0.06 0.74 0.04 0.04 0.13 0.13 12 20 20 20 20 47

rt-retweet-crawl 2M 0.22 0.22 0.22 0.26 - 251 218 5884 - - 67 67 67 67 -

sc-ldoor 20M 1779 2195 - - - 3890 5082 - - - 560 560 - - -

sc-msdoor 9M 937 1165 - - - 2098 2845 - - - 254 254 - - -

sc-pwtk 5M 19 21 - - - 1409 3843 - - - 154 154 - - -

sc-shipsec1 1M 0.15 0.19 17 17 3099 0.62 0.89 114 117 - 33 32 32 35 466

sc-shipsec5 2M 0.24 0.26 29 29 8003 5.9 11 448 471 - 43 43 43 46 1130

soc-delicious 1M 0.09 0.11 0.53 1.1 78 0.33 0.49 4.5 13 3878 34 34 34 34 74

soc-digg 5M 152 266 3092 - 167 7499 - - - 1220 161 166 161 - 258

soc-douban 327K 0.03 0.03 0.03 0.03 - 48 70 - - - 16 15 16 15 -

soc-flixster 7M 32 68 843 1713 289 980 2714 - - 10478 158 158 158 158 403

soc-gowalla 950K 1.00 3.3 7.3 23 5.2 54 659 226 2549 291 20 20 20 20 47

soc-lastfm 4M 2440 - 1014 - - - - - - - 103 - 103 - -

soc-livejournal 27M 2.1 2.1 2.2 2.3 37 2.1 2.1 2.1 2.7 37 343 343 343 343 1207

soc-LiveMocha 2M 2461 - 3472 - - - - - - - 68 - 68 - -

soc-orkut 106M 505 1140 - - 6091 7151 - - - - 2129 2131 - - 4506

soc-pokec 22M 5.8 5.8 5.9 7.1 1580 9.9 12 19 33 - 401 401 401 401 936

soc-youtube 1M 26 414 72 1143 - 623 - 939 - - 47 47 47 47 -

soc-youtube-snap 2M 46 920 162 3245 - 1111 - 1830 - - 75 75 75 75 -

socfb-A-anon 23M 31 66 22 78 - 240 627 159 1167 - 432 432 432 433 -

socfb-B-anon 20M 50 79 21 49 - 1449 2778 572 2277 - 492 492 492 493 -

tech-as-skitter 11M 0.67 0.76 0.67 0.77 34 1.6 2.9 3.4 17 71 145 145 145 145 485

tech-RL-caida 607K 0.12 0.17 0.59 0.90 378 1.3 2.4 10.0 22 - 22 21 22 21 40

web-arabic-2005 1M 0.02 0.02 0.02 0.02 0.12 0.02 0.02 0.02 0.02 0.20 21 21 21 21 75

web-it-2004 7M 0.17 0.17 0.38 0.37 201 0.18 0.20 0.58 0.55 205 76 76 76 76 309

web-sk-2005 334K 0.01 0.01 0.01 0.01 0.48 0.01 0.01 0.02 0.02 0.51 9 9 9 9 20

web-uk-2005 11M 0.23 0.24 0.61 0.59 353 0.25 0.26 0.87 0.83 358 100 100 100 100 475

web-wikipedia2009 4M 1.00 0.99 1.00 1.0 11 1.0 0.99 1.1 1.3 20 166 159 166 159 239

Table 4: Average speed-ups of kDC2+RR3 (abbreviated as
kDC2+R) against kDC-two, kDC, and KD-Club for different
graph types in the real-world graphs collection

𝑘 = 10 𝑘 = 15

kDC-two
kDC2+R

kDC
kDC2+R

KD-Club
kDC2+R

kDC-two
kDC2+R

kDC
kDC2+R

KD-Club
kDC2+R

Biological Networks 1.77× 3.91× 84.64× 3.14× 3.35× 11.57×
Collaboration Networks 1.14× 1.66× 48.94× 1.00× 1.93× 50.75×
Interaction Networks 2.74× 8.57× 49.81× 2.63× 4.48× 20.83×

Infrastructure Networks 1.22× 1.24× 59.39× 2.46× 2.64× 22.66×
Retweet Networks 1.21× 1.25× 369.61× 1.09× 4.15× 178.41×

Scientific Computing 1.15× 70.04× 925.05× 1.71× 41.64× 187.66×
Temporal Reachability 1.08× 1.48× 9.04× 1.17× 2.21× 8.59×

Social Networks 2.77× 8.95× 25.40× 2.78× 9.08× 17.81×
Facebook Networks 1.65× 7.00× 20.44× 2.14× 19.88× 15.20×

Technological Networks 1.68× 6.39× 44.28× 1.78× 10.18× 908.14×
Web Graphs 1.05× 2.03× 23.78× 1.25× 3.23× 29.19×

Thirdly, to evaluate the performance of our algorithm on differ-

ent graph types, we group the graphs in the real-world graphs collec-

tion into 11 types according to https://networkrepository.com, and

compute the average (i.e., geometric mean) speed-ups of kDC2+RR3
over kDC andKD-Club for each graph type. The results are reported
in Table 4. We can see that kDC2+RR3 outperforms the existing

algorithms across all different graph types, though speed-ups vary.

Fourthly, we report the running time of kDC2+RR3, kDC and

KD-Club on graphs with more than 100, 000 vertices from the real-

world graphs collection for 𝑘 = 10 and 15 in Table 3, where ‘−’ indi-
cates that the running time is longer than the 3-hour limit. There are

totally 33 such graphs; note that, we ignored the graphs that none

of the algorithms can finish within 3 hours. The number of edges

for each graph is given in the second column. From Table 3, we can

observe that our algorithm kDC2+RR3 consistently outperforms

kDC, which in turn runs significantly faster than KD-Club. The
only exception is on “soc-digg” and for 𝑘 = 15, where KD-Club
runs the fastest; this is because the aggressive pruning of KD-Club
in the preprocessing stage reduces the input graph to a subgraph

of 749 vertices in 294 seconds, while that of kDC2+RR3 reduces

the graph to a subgraph of 4177 vertices in 2 seconds. On average

(geometric mean), kDC2+RR3 is 13× and 9× (resp. 179× and 69×)
faster than kDC (resp. KD-Club) for 𝑘 = 10 and 𝑘 = 15, respec-

tively; in this calculation, we ignored graphs that are easy to solve

(i.e., solved by both algorithms within 1 second), and treat ‘-’ as 3

hours. Memory usages of the algorithms for 𝑘 = 10 are also shown

in Table 3; the results for 𝑘 = 15 are similar and are omitted. We

can see that our algorithm kDC2+RR3 consumes similar memory

as kDC, and much less than KD-Club; we remark that the latter

is mainly due to implementation differences, and our algorithm

kDC2+RR3 is implemented based on the code base of kDC.
In summary, our algorithm kDC2+RR3 consistently solves more

graph instances than the most recent algorithms kDC and KD-Club
when varying the time limit from 1 second to 3 hours, and also

consistently runs faster than them across the different graphs with

an average speed up up-to two orders of magnitude.
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7.2 Ablation Studies
In this subsection, we first evaluate the effectiveness of our new

reduction ruleRR3 by comparing kDC2+RR3with kDC-two; recall
that the only difference between kDC2+RR3 and kDC-two is that
kDC2+RR3 incorporates the reduction rule RR3. The results of

kDC-two are also shown in Figures 9 and 10 and Table 3. We can

observe from Figures 9 and 10 that the reduction rule RR3 enables

kDC2+RR3 to solve more graph instances across the different time

limits than kDC-two. In particular, kDC2+RR3 solves 3, 5 and 3

more instances than kDC-two for 𝑘 = 10, 15 and 20, respectively, on

the real-world graphs collection with the time limit of 3 hours. From

Table 3, we can see that kDC2+RR3 consistently runs faster than

kDC-two across the different graphs with an average (geometric

mean) speed up of 2.5× and 2.2× for 𝑘 = 10 and 𝑘 = 15, respectively.

We also run the variant kDC+R, which is kDC equipped with the

reduction rule RR3, and report its running time in Table 3. kDC+R
consistently runs faster than kDC. This demonstrates the practical

effectiveness of our new reduction rule RR3.
Table 5: Number of graphs with small maximum 𝑘-defective
clique (i.e., 𝜔𝑘 (𝐺) ≤ 𝑘 + 1) and number of graphs with large
maximum 𝑘-defective clique (i.e., 𝜔𝑘 (𝐺) ≥ 𝑘 + 2)

Real-world collection Facebook collection DIMACS10&SNAP

#small #large #small #large #small #large

𝑘 = 1 2 137 0 114 0 37

𝑘 = 3 13 126 0 114 0 37

𝑘 = 5 22 117 1 113 1 36

𝑘 = 10 40 98 1 111 8 29

𝑘 = 15 47 91 1 111 12 25

𝑘 = 20 53 83 1 111 16 21

Secondly, we compare kDC-two with kDC. Note that, the only
difference between them is that kDC-two conducts the computation

in two stages and exploits the diameter-two property for pruning in

Stage-I. From Figures 9 and 10 and Table 3, we can see that kDC-two
consistently outperforms kDC. Specifically, kDC-two solves 6, 11
and 6 more instances than kDC for 𝑘 = 10, 15 and 20, respectively,

on the real-world graphs collection with the time limit of 3 hours.

In Table 3, kDC-two is on average (geometric mean) 7.9× and 6.3×
faster than kDC for 𝑘 = 10 and 𝑘 = 15, respectively. From Table 3,

we can also see that kDC2+RR3 generally runs faster than kDC+R;
the latter runs faster on “socfb-B-anon” mainly due to the different

branching rule that is implicitly used at Line 3 of Algorithm 2. This

demonstrates the practical effectiveness of diameter-two-based

pruning. To gain more insights, we report in Table 5 the number

of graphs with small maximum 𝑘-defective clique (i.e., 𝜔𝑘 (𝐺) ≤
𝑘 + 1) and the number of graphs with large maximum 𝑘-defective

clique (i.e., 𝜔𝑘 (𝐺) ≥ 𝑘 + 2) for each graph collection and 𝑘 value.

We can see that when 𝑘 increases, the proportion of graphs with

𝜔𝑘 (𝐺) ≥ 𝑘 + 2 decreases. Nevertheless, even for 𝑘 = 20, there are

still a lot of graphs with 𝜔𝑘 (𝐺) ≥ 𝑘 + 2 such that kDC-two runs in

O∗ ((𝛼Δ)𝑘+2𝛾𝛼
𝑘−1) time; this is especially true for Facebook graphs.

Thirdly, we report in Table 6 the number of graphs where the

time complexity proved in Section 5.2 is better than Section 5.1, i.e.,

(𝛼 + 𝑘 + 2−𝜔𝑘 (𝐺)) × (𝑘 + 1)𝛼+𝑘+1−𝜔𝑘 (𝐺 ) ≤ 𝛾𝛼
𝑘−1. We can see that

for 𝑘 ≥ 10, there are very few graphs where the time complexity

of Section 5.2 is better. This is because the gap between the upper

Table 6: #graphs s.t. (𝛼+𝑘+2−𝜔𝑘 (𝐺))×(𝑘+1)𝛼+𝑘+1−𝜔𝑘 (𝐺 ) ≤ 𝛾𝛼
𝑘−1

𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20

Real-world graphs collection 116 69 45 24 19 15

Facebook graphs collection 100 55 32 4 0 0

DIMACS10&SNAP 33 22 17 7 4 3

bound 𝛼 + 𝑘 + 1 and 𝜔𝑘 (𝐺) is large in these cases. This suggests

that the degeneracy gap in practice is typically large for large 𝑘 and

thus the algorithm of Section 5.2 is only of theoretical interest.

Finally, we remark that when 𝑘 increases from 1 to 20, the maxi-

mum 𝑘-defective clique size increases by 32% on average for the

real-world graphs. As discussed earlier, the running time increases

as well. Thus, choosing an appropriate 𝑘 is application dependent.

8 RELATEDWORK
The concept of defective clique was formulated in [49]. Early al-

gorithms for maximum 𝑘-defective clique computation, such as

those proposed in [19, 20, 45], are inefficient and can only deal with

small graphs. The MADEC+ algorithm [12] is the first algorithm

that can handle large graphs. The KDBB algorithm [18] improves

the practical performance by proposing preprocessing as well as

multiple pruning techniques. kDC [8] and KD-Club [24] are the

two most recent algorithms and are included in our empirical study.

From the theoretical perspective, among the existing algorithms,

only MADEC+ [12] and kDC [8] beats the trivial time complex-

ity of O∗ (2𝑛). Specifically, MADEC+ runs in O∗ (𝛾𝑛
2𝑘
) time while

kDC improves the time complexity to O∗ (𝛾𝑛
𝑘
). In this paper, we pro-

posed techniques to improve both the time complexity and practical

performance for maximum 𝑘-defective clique computation.

The problem of enumerating all maximal 𝑘-defective cliques

was also studied recently where the Pivot+ algorithm proposed

in [14] runs in O∗ (𝛾𝑛
𝑘
) time, the same as the time complexity of

kDC. However, we remark that (1) Pivot+ is inefficient for finding

the maximum 𝑘-defective clique in practice due to lack of pruning

techniques; (2) Pivot+ achieves the time complexity via using a

different branching technique from kDC and it is unclear how

to improve the base of its time complexity without changing the

branching rule. The problem of approximately counting 𝑘-defective

cliques of a particular size, for the special case of 𝑘 = 1 and 2, was

studied in [22]; however, the techniques of [22] cannot be used for

finding the maximum 𝑘-defective clique and for a general 𝑘 .

9 CONCLUSION
In this paper, we proved an improved time complexity for the exist-

ing algorithm kDC [8]. We showed that for graphs with 𝜔𝑘 (𝐺) ≥
𝑘 + 2, a maximum 𝑘-defective clique can be found in O∗ ((𝛼Δ)𝑘+2 ×
𝛾𝛼
𝑘−1) time and also in O∗ ((𝛼Δ)𝑘+2 × (𝑘 + 1)𝛼+𝑘+1−𝜔𝑘 (𝐺 ) ) time. In

addition, we designed a new degree-sequence-based reduction rule

that can be conducted in linear time, and theoretically demonstrated

its effectiveness compared with other reduction rules. The practical

efficiency of our algorithm and techniques are demonstrated on

three benchmark collections with 290 graphs in total.
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