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ABSTRACT from the expected patterns of normal behavior through log analy-

System logs, recording critical information about system opera-
tions, serve as indispensable tools for system anomaly detection.
Graph-based methods have demonstrated superior performance
compared to other methods in capturing the interdependencies
of log events. However, existing methods often neglect the com-
plex substructure patterns of nodes within log graphs, making it
challenging to capture the subtle alteration in event type, struc-
ture, and the location of exceptions that indicate node anomalies.
To address this limitation, this paper proposes a novel framework
called Substructure-aware Log Anomaly Detection at Code File
Level (SLAD). It first introduces a Monte Carlo Tree Search strategy
tailored specifically for log anomaly detection to discover repre-
sentative substructures. Then, SLAD incorporates a substructure
distillation way to enhance the efficiency of anomaly inference
based on the representative substructures. After that, we introduce
a soft pruning to obtain key substructure for nodes. Experimental
results show SLAD outperforms all baselines. Particularly, SLAD
demonstrates at least 15 times faster than substructure-based graph
learning methods in anomaly inference.
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1 INTRODUCTION

System logs are a valuable resource in system monitoring and trou-
bleshooting, as they encompass the interdependencies among vari-
ous components and operational processes within the system [43].
Log anomaly detection aims to identify anomalies that deviate
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sis [11]. Particularly, anomalies in system code files can lead to sys-
tem crashes or other unpredictable behaviors, and these anomalies
are typically documented in the logs. Detecting these anomalies
through logs can provide crucial insights into faster debugging
during the system development and maintenance phases. This ca-
pability is essential for maintaining system stability and security.
Therefore, efficiently identifying anomalous code files from system
logs is a research direction worthy of exploration.

Early research in log anomaly detection relies on either rules
or performance metrics predefined by domain experts [17, 21, 35].
However, these manually designed metrics fail to capture the com-
plex relationships within logs [10, 13, 14, 16, 32]. Sequence-based
models have been proposed to capture the temporal dependencies
of log events by formulating log events as sequences [6, 8, 9, 19, 34].
Despite exhibiting some effectiveness, these methods often struggle
to capture the structural relationships inherent within log events.
Recent advancements [29, 30, 39] have demonstrated that graph-
based methods offer a promising solution to capture the interre-
lations among log events, where log events serve as nodes, and
the temporal dependencies between events are regarded as edges.
These methods employ graph representation learning techniques to
automatically learn vector representations of log events that encode
the log event features and their correlations. The understanding
of the interactions between log events has enabled graph-based
methods to achieve better anomaly detection accuracy.

However, on log anomaly detection, the majority of work focuses
on detecting whether a log segment is anomalous, with relatively
little attention paid to the code file anomaly detection from system
logs. To fill this research gap, our work focuses on the detection
of anomalous code files from system logs. Existing studies solely
capture the relationships between log events instead of code files.
As shown in Fig. 1, there are two segments of log messages, where
Logs (A) is an anomalous log segment and Logs (B) is a normal
log segment. Based on existing methods, these two log segments
would form identical sequences of log events (Fig. 1a) or log event
graphs (Fig. 1b). During system execution, an anomaly occurs in
code file Cy, leading to an unsuccessful invocation of C3 by Ca. As
a result, C; invokes C3 instead, thereby forming the anomalous
log segments in Logs (A). In this case, such subtle variations in
invocation relationships of code files cannot be distinguished by
mining relationships between log events, leading to ineffective
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Logs(A)

L1: Ty, Cq, Eq, C; <@, 2ms
L2: Ty, Co, E4, C; <-Cq, 1ms
L3: T3, Cy4, E5, C4 <-C3, Ims
L4: Ty, C3, E;, C5 <-C, 1ms
L5: Ts, C4, E3, C4 <-Cq, 3ms
L6: Tg, Cs, E4, C5 <-Cy4, Ims

Logs(B)

L1: Ty, Cy, E4, C; <@, 2ms
L2: T,, Cy, E4, C, <-Cy, Ims
L3: Tz, Cy4, Eg, C4 <-C;, 1Ims
L4: Ty, C3, E;, C5 <-C;, 1ms
L5: Ts, Cy4, E3, C4 <-Cy, 3ms
L6: T, Cs, E4, C5 <-Cy, Ims

&)
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E{, 2ms E{, 2ms
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E4, 1ms E;, 3ms 4, LIMS i E3, 3ms
| E., 1ms | -
Es, 1ms E4 1ms Es, Lms E;, 1ms 4 1M

(c)

Figure 1: Different log representation ways for two log seg-
ments, anomalous Logs (A) and normal Logs (B). The two log
segments only differ from one invocation as colored by red.
T;, Ci, E; refer to time, code files, and event types, respectively.

detection of such anomalies. So, existing methods cannot perform
code file-level log anomaly detection.

To address the problem of detecting anomalous code files from
system logs, we propose a log graph, inspired by the fact that system
logs contain essential information about the code files and their
invocation relationships. Unlike the log event graph constructed
in the existing work, each node in our log graph denotes a log
message, which is associated with a code file. Each edge denotes
the invocation (call) relationship between code files. To this end,
we formulate the problem as node classification on a log graph.
Following the example in Fig. 1, two log graphs Fig. 1c and Fig. 1d
are constructed from Logs (A) and (B), respectively. In our log
graphs, each node corresponds to a code file, associated with an
event type, duration time, and exception information as the node’s
attributes. Edges are the invocation relationships between code files.
For instance, the node with a label “3” in Fig. 1c refers to code file C3,
whose attributes include event type “Ey” and duration time “Ims” in
the log message L4 of Logs (A). The edge between node 1 and node 3
indicates the invocation C3 « Cj. Our log graph encloses essential
runtime information and the invocation relations between code
files, thus facilitating the discovery of complex system behaviors
for anomalous code file detection.

The main challenge of anomaly detection within the log graph
lies in understanding the complex invocation relationships between
code files and discerning how they correlate with normal or anoma-
lous behaviors. Therefore, we investigated various log graphs and
summarized three observations that are essential for the detection
of code file anomalies from system logs: 1) event type alteration, 2)
exception information location, and 3) structure alteration. Fig. 2
illustrates the three observations where the target nodes are normal
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(blue) and anomalous (red), respectively. The differences between
the normal/abnormal graphs are highlighted with dashed lines.

e O1: Event type alteration. Fig. 2a shows the event type alter-
ations on other nodes caused by the anomaly of the target node
9. Determining whether node 9 is anomalous only depends on
the event types from nodes 2 and 6, which are in the different
invocation paths with the target node. For example, in a forum
system, node 9 is a code file responsible for accessing the data-
base. Due to a bug with an SQL query in node 9, the system,
which intended to query the user’s liked posts records, instead
retrieves the user’s commented posts records. As a result, node
9 returns an abnormal return value, which is then received by
node 2 and node 6. Node 2 is supposed to handle records of the
user’s liked posts (generating the event type E1), but it ends up
processing records of the user’s commented posts instead (gen-
erating the event type E6), thereby changing the log event type.
Consequently, node 6, responsible for displaying the collected in-
formation, receives the incorrect data, causing its log event type
also to change, from the event type E5 to E7. This situation stems
from the unique characteristics of software systems. When a
code file encounters an anomaly, it generates an abnormal return
value, which may propagate backward along the invocation path
to some code files, resulting in executing different code blocks
to display different log event types. Therefore, the detection of
node anomalies may rely on nodes with event type alteration.

e 02: Exception information location (Fig. 2b). Exception is
often a signal of underlying issues occurring within the system.
The location of the exception may indicate the root causes of
anomalies. Fig. 2b demonstrates that in the same invocation en-
vironment, if only node 2 reports exception information, then
no nodes in this graph are anomalous. However, when nodes 2
and 12 all report exception information, node 12 is the root cause
node. For example, in the forum system, node 2 is responsible for
accessing user information. When it reports an exception mes-
sage like "zero value happens", it does not necessarily indicate an
anomaly with the corresponding code file, such as the absence of
queried user information. On the other hand, node 12 is respon-
sible for calculating the average view count of user posts. If node
12 has a bug that prevents it from correctly handling cases where
the user’s post count is zero, it might encounter an error and
report an exception message "divided by zero". This observation
indicates that the location of the exception information is crucial
for detecting anomalous nodes.

e 03:Structure alteration (Fig. 2c). A node anomaly could lead to
the propagation of anomalous information along the invocation
path, altering the invocation in other nodes. As illustrated in
Fig. 2c, when node 15 experiences an anomaly, it results in an
alteration to the event and local invocation in node 1 (nodes 8
and 9 disappear). For example, in the forum system, when a user
posts a message, node 15 is responsible for validating the user’s
identity and permissions. If a bug occurs in node 15 that checks
the user’s permissions, it will propagate the user authentication
failure message to node 1. As a result, node 1 will be unable to
proceed with posting the message, and nodes 8 and 9 will not
be invoked. These structural alterations in certain nodes may
provide valuable clues for detecting anomalies.
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(a) Event type alteration

(b) Exception information location

(c) Structure alteration

Figure 2: Observations on log graphs. Each node in the log graph corresponds to a log message associated with the code file that
generates the message. Edges represent invocation relationships between code files of the log messages. Ei denotes the i-th log
event type. Red nodes are the anomalous nodes while blue ones refer to the normal nodes.

From the above observations, node anomalies may not neces-
sarily manifest through changes within the node itself but rather
through changes occurring in other nodes within the graph. Con-
sequently, anomalies of nodes in a log graph typically manifest
within specific substructures (subgraphs) of the log graphs, includ-
ing changes in the event types of certain nodes, the location of
exception information, and structure. Further, the essential sub-
structures of anomalous and normal nodes often exhibit different
sizes and structural forms. For example, in Fig. 2a, determining
whether target node 9 is anomalous depends on the substructures
formed by nodes 0, 2, 6, 7, and 9. However, in Fig. 2b and Fig. 2c,
the key substructures consist of nodes 0, 2, 5, 12, 20 and nodes 1, 7,
15, respectively. Thus, a natural question arises: how to effectively
capture these important changes in substructures that the size and
form of substructures may vary.

Recently, graph neural networks (GNNs) have been exploited
to discover the local structural information of nodes. However, ex-
isting GNNs only capture fixed-hop neighborhood information of
nodes, which is not capable of capturing changes in substructures
of varying sizes and structural forms. Even though some random
walk-based methods have been proposed to identify substructures
of various sizes and structural forms [25, 38, 42], these methods
1) require online walks during the anomaly inference phase, lead-
ing to significant time consumption; 2) cannot identify specific
substructures within software systems as illustrated in Fig. 2.

To this end, we introduce a novel framework to detect anoma-
lous code files from system logs, namely Substructure-aware Log
Anomaly Detection at Code File Level (SLAD). The core concept
of SLAD is to automatically discover representative substruc-
tures for both anomalous and normal nodes. During the training
phase, SLAD acquires the representative substructure candidates
through a Monte Carlo Tree Search (MCTS) strategy designed ac-
cording to domain knowledge in software systems and obtains
their embeddings using graph neural networks. To avoid substruc-
ture exploration during anomaly inference, we design a knowledge
distillation method to obtain a fixed set of distilled substructure
representations from the representative substructure embeddings.
Subsequently, based on distilled substructure representations, SLAD
conducts soft pruning to discover key substructures from an input
log graph, enabling accurate anomaly detection. Our framework
has three salient features: 1) it can discover representative substruc-
tures of various sizes and structural forms that existing graph-based
methods cannot capture; 2) it eliminates the necessity of exploring
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substructures during the inference process via effective knowledge
distillation, thereby reducing inference overhead; 3) it enhances
anomaly detection accuracy through soft pruning with the distilled
substructure representations. Our contributions are as follows.

e We propose a framework SLAD to detect code file anomalies
from system logs. It introduces a novel Monte Carlo Tree Search
strategy to discover representative substructures with domain
knowledge for anomaly detection.

e To avoid substructure exploration and reduce overhead during
inference, SLAD introduces a knowledge distillation method to
obtain compact substructure representations.

o SLAD further devises a soft pruning method that integrates dis-
tilled substructure representations to obtain key substructures
of an input log graph, thereby enhancing log anomaly detection.

o Extensive experiments on our datasets show that SLAD outper-
forms the state-of-the-art methods, improving the F1 score by at
least 4% while achieving a reasonable inference running time.

2 PRELIMINARIES

System logs are records generated by computer systems that doc-
ument various events and activities occurring within the system.
Each log message is generated by a code file.

Definition 2.1 (Raw Log Message). A log message is a 6-tuple:
(file, tracelD, event, involnfo, cost, exception),

where file € ¥ denotes the code file that generates this log mes-
sage; tracelD is the unique identifier for a request; event € E7 is
a log event type that describes system behaviors; involnfo € ¥
represents the upstream code file that invokes the current code file;
cost is the duration time; exception € E7 is the exception type.

For instance, a raw log message L2 in Fig. 3 can be represented by
a 6-tuple (file=“forum.UserManager”, tracel D="“f119a251bfc149”,
event="get user id:* information”, invoInfo="“forum.UserService”,
cost=4 milliseconds, exception="invalid token”),

It is noteworthy that in software systems, the set of event types
is fixed due to the system’s functionalities and operations. For ex-
ample, in a forum system, basic operations like article comments
and user logins may be recorded, constituting a finite set of event
types. Despite varying event descriptions from different user inter-
actions, these events belong to the same event type. For instance,
the event “get user id:17965 information” in log message L2 of Fig. 3



Raw Log Messages

Log Event Types

L1: 2022-04-20 16:13:07.537, forum.DbService, f119a251bfc149, get database Ey: get DatabaseCache data
cache data, forum.UserManager, 1ms Log Fvent E,: get user id:* information
L2: 2022-04-20 16:13:07.540, forum.UserManager, f119a251bfc149, get user Parsing E3: intercept request
id:17965 information, forum.UserService, 4ms, invalid token — Eqy: get Database _datf_ )
L3: 2022-04-20 16:13:07.541, forum.UserService, f119a251bfc149, get user Es: validate user !d: {nformat{on
id:17965 information, forum.Globallnterceptor, 4ms, Java class doesn’t match E¢: manage user id: * information| Request Graph
L4: 2022-04-20 16:13:07.541, forum.Globallnterceptor, f119a251bfc149, intercept Request Graph Construction
request, root, 5ms E- Sms E. 5ms
L5: 2022-04-20 16:13:07.542, forum.CorsInterceptor, f119a251bfc149, intercept Node 1: forum.DbService 3 o
request, root, 1ms Node 2: forum.UserManager
L6: 2022-04-20 16:13:07.543, forum.DbService, f119a251bfc149, get Database data, Node 3: forum.UserService E;, 4ms, Es, 2ms,
forum.UserService, 1Ims Node 4: forum.Globallnterceptor Java class doesn’t match Ey, 1ms User not login
L7: 2022-04-20 16:13:07.546, forum.UserManager, f119a251bfc149, validate user Node 5: forum.CorsInterceptor
id: 17965 information, forum.UserService, 2ms, User not login Node 6: forum.DbService E, 4ms,
L8: 2022-04-20 16:13:07.547, forum.UserService, f119a251bfc149, manage user id: | Node 7- forum.UserManager invalid token
17965 information, root, 5ms Node 8: forum.UserService E,, 1ms

Figure 3: Request graph construction. It parses raw log messages to log event types and then constructs the request graph. In
the request graph, each node corresponds to a log message associated with the code file that generates the message. Edges
represent invocation relationships between code files of the log messages.

can be parsed as “get user id:* information” by discarding the spe-
cific ID information. In this way, all events related to retrieving
user information can be categorized as the same type.

The interconnections between code files naturally create asso-
ciations between the logs. Invocation information can effectively
link discrete log events. As mentioned earlier, some anomalies can
be manifested through the invocation relationships between code
files. For example, anomalies may propagate between code files or
appear in specific patterns, aiding issue identification. Therefore,
we construct a request graph for each request’s logs.

Definition 2.2 (Request Graph). A request graph is an attributed
undirected graph G = (V, E), where V and E are defined as follows:
e V corresponds to a set of log messages. Each v € V is a 4-

tuple (file, event, cost, exception) where file € F represents

the source code file that creates the current log message; event €

&ET is alog event type produced by file; cost € R denotes dura-

tion time of this log message and exception € £7 is the type of

exception produced by file;
e E denotes a set of invocation relationships between the file
within the log messages ;

Fig. 3 illustrates the process of how a request graph is constructed
from raw log messages. Request Graph G is a tree-like graph, that
displays the process of program invocation. There exists only one
root node vyp0; € V in G, and vy¢¢¢ is the starting point for the
program execution. Let Deg(v) be the degree of node v. If a node v
has Deg(v) = 1, we refer to it as a leaf node vy, .

Definition 2.3 (Invocation Path). An invocation path is the short-
est path from root node vyo0; to a leaf node vje, f, denoted as

Oroot — .. U] — ... > Uleaf'

For ease of presentation, we use invo(v) to denote the set of invo-
cation paths to which v belongs. For instance, in Fig. 3, the request
graph contains 4 invocation paths: 1. root—4—3—2—1; 2.root—5;
3.root—8—6; 4.root—8—7. Node 8 belongs to 2 invocation paths.

Given the definition of request graph, we formulate the problem
of anomalous code file detection from system logs as the binary
classification of nodes in a request graph.
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Definition 2.4 (Anomalous Code File Detection from System Logs).
Given a request graph G, each node corresponds to a code file. The
task of code file-level log anomaly detection is to predict the binary
class labels y, € {0, 1} for all nodes V in G, where y, = 0 denotes a
node is normal, otherwise anomalous.

3 METHODOLOGY

In this section, we introduce a novel substructure-aware log anom-
aly framework, SLAD. To the best of our knowledge, SLAD is the
first to detect anomalous code files via mining representative sub-
structures in log graphs.

3.1 Overall Framework

Fig. 4 depicts the overall framework of SLAD. The key design ob-
jective of SLAD is to capture representative substructures in the
request graph for normal and anomalous nodes. Specifically, SLAD
employs three novel components to achieve the design objective:
(1) Substructure search via Monte Carlo Tree Search (MCTS), (2)
Substructure distillation and (3) Soft pruning.

o Analysis of log request graphs indicates that normal and anoma-
lous nodes may be associated with specific substructure patterns,
including sets of nodes with event type alteration, exception
information location, and structure alteration. However, identi-
fying these substructures proves challenging due to their varied
patterns and sizes. To address this, we design a Monte Carlo Tree
Search strategy to discover representative substructures. This
method involves pruning subgraphs to remove irrelevant nodes
and preserve crucial substructure patterns to distinguish normal
and anomalous nodes.

e To enhance anomaly detection and avoid the time consumption
of substructure exploration during inference, we further pro-
pose a substructure distillation component. Considering different
nodes may share certain similar substructures, this component
aims to summarise the representative patterns of both normal
and anomalous nodes. Specifically, it utilizes the representative
substructure embeddings S to assist in the distillation process
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Figure 4: The framework of SLAD. The framework encompasses three novel components: substructure search via MCTS,

substructure distillation, and substructure soft-pruning. “||”

for distilled substructure representations P, enabling them to

acquire knowledge about representative substructures.

e To capture the key substructure of nodes, we introduce a soft
pruning component. Based on the approximate substructure
information of nodes, this component uses an attention mecha-
nism to search important neighboring node information, thus
achieving the goal of soft pruning.

In the training phase, with a training set of graphs {Gi}f\i‘f,
each node vj € G; is associated with a class label y,; € {0,1}.
SLAD first learns a graph encoder f, an initialization of the distilled
substructure representations P and soft pruning layers f, through
cross-entropy loss Lcysgn: in the warm-up process. This step aims
to learn a graph encoder f for obtaining substructure representation.
The graph encoder f can adopt any GNN models as a backbone,
e.g. graph transformer neural network (GTNN)[23]. Next, for each
class ¢ € {0, 1}, it selects a specified number n of representative
substructures via Monte Carlo Tree Search (Sec. 3.2) and uses GNN
encoder f to obtain their embeddings S. After that, we design a
distillation loss Lp;sz; to leverage S to further refine the distilled
substructure representations P (Sec. 3.3). This allows P to obtain
representative substructure information, which can be used directly
during the inference phase to avoid substructure exploration on
the fly, thus reducing the inference time.

During the inference phase, for a given node, SLAD obtains
its embedding through the GNN encoder, then gets approximate
substructure information with P through an attention mechanism.
Following this, soft pruning layers (Sec. 3.4) are introduced to get
key substructure information of the node. Finally, a multi-layer
perception(MLP) with softmax is used to output the predicted label.
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refers to concatenation operation.

3.2 Substructure Search via MCTS

Due to inherent business rules and workflow, software systems of-
ten result in many graphs sharing similar substructures. Besides, our
observations on the log request graphs show distinct substructures
of normal and anomalous nodes. Therefore, this anomaly detection
can be facilitated through mining representative substructures.

When capturing representative substructures, a straightforward
method is to enumerate all substructures directly. However, this
method is impractical due to the exponential number of possible
substructures. An alternative is to use walk-based strategies to dis-
cover representative substructures, but these methods often strug-
gle to capture the diverse substructure patterns inherent in software
systems. The complex functional requirements of a system lead
to a series of invocation substructures designed to accommodate
specific business rules and workflow. These substructures vary in
size and structure forms. Walk-based strategies are typically based
on local neighborhoods, focusing on exploring the substructure
of a graph through the adjacency relationships of nodes or edges.
Moreover, their tendency to extensively traverse different parts of
the graph introduces redundancy. This redundancy includes irrele-
vant information that is unrelated to the anomaly detection task,
potentially complicating the analysis process.

Inspired by the remarkable achievements of Monte Carlo Tree
Search (MCTS) in solving combinatorial problems [24], we propose
an MCTS-based strategy for exploring representative substructures.

Definition 3.1 (Monte Carlo Tree). Given a decision problem with
a finite state space O and corresponding actions that transit one
state to the other A : D — D, a Monte Carlo Tree is a tree structure
T=(N,&):



o The set of nodes NV contains all possible decision states, and each
node n € N corresponds to a state D, € D.

e The set of edges & contains the connection relationships between
nodes, with each edge (n, n’) € & representing taking an action
from state D, to reach state D,,.

Monte Carlo Tree Search is to dynamically construct a Monte
Carlo Tree by selecting the optimal actions based on the visit count
and reward value of each tree node to balance the trade-off between
exploration and exploitation [5]. Formally, the next state used for
creating the (i + 1)-th Monte Carlo Tree node is selected by:

o Q(D) VZm N(Dm)
Diy1 = gregAr(nli)i:;(N(D) + alR(D)T(D))’ (1)

where N (D) is the number of occurrences of state D, R(D) is the
current reward of state D and Q(D) is the accumulated reward of
state D. The reward function R(-) is typically task-specific. The
weight a1 is a hyperparameter that plays a crucial role in balancing
the trade-off between exploration and exploitation. Intuitively, the

first term 1%((?);

VZm N(Dm)

AND) the more a state D is selected (quantified by N(D)),
the less likely D will be selected.

In the anomaly detection problem, we regard a substructure (i.e.,
subgraph) originating from a target node v; in the request graph G
as a state in the Monte Carlo Tree, and the removal of a node in a
substructure as an action. To perform MCTS, we first create the root
node nyqo of the Monte Carlo Tree with the k-hop subgraph of v;
in G. Subsequently, MCTS removes graph nodes from the k-hop
subgraph iteratively, resulting in a sequence of substructures, i.e.,
tree nodes in the Monte Carlo Tree. The sequence of substructures
forms a search path, which is also known as a rollout in MCTS. A
rollout in MCTS terminates when the node number of the current
substructure reaches a specific value. Fig. 5 illustrates a rollout in a
Monte Carlo Tree, which terminates with a substructure of 4 nodes.

The effectiveness of an MCTS algorithm depends on the policy
of selecting the optimal action (i.e., the graph node to remove) as
illustrated in Eq. 1, to expand the Monte Carlo Tree. Motivated by
the operational characteristics of the system, we re-design Eq. 1 for
our task with the following considerations:

is the average reward of state D. In the second term

e During the MCTS process, we aim to find a substructure that
distinguishes normal and anomalous nodes. Therefore, the em-
bedding of a representative substructure for normal nodes is
expected to be close to the embeddings of normal nodes and vice
versa. Based on this, we design the reward function for a state
D% (i.e., a substructure) of a Monte Carlo Tree node as:

e = hjl; +1

K
1
R(D*) = 2 " w log( 2 ), @
i= e = hjl; + 1
LYo, = Yo,
where w = Yor =V refers to the weight that encour-
-Lyp, # Yo;

ages label consistency between hpo; and its K-nearest node
embeddings in the training set, and penalizes cases where they
are inconsistent. The embedding h; € KNN(hpe ) denotes one
of the K'-nearest node embeddings to hpo; . We add 1 and a small
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Figure 5: An illustration of rollout in MCT.

constant g << 1 to the numerator and denominator, respectively,
within the logarithm to ensure the reward is always positive.

o Nodes with exception information are often internally connected
to the anomalous nodes. Analyzing exception information facili-
tates a more straightforward identification of anomalous nodes.
Motivated by this, we design a cost function to penalize the
substructure that does not include graph nodes with exception
information:

|[{v|v.exception # null,v € D% }|
: ®)
INic (vr)]
where N (v;) denotes the set of graph nodes in the k-hop neigh-
bors of the target graph node v;.

e An invocation path reflects the program’s execution path, with
each node in the invocation path closely connected to others. If a
node encounters an anomaly, the anomalous information might
spread along its invocation path, potentially causing nodes along
the path to exhibit anomalous behavior. This phenomenon offers
valuable clues to pinpoint the node anomalies. Based on this, we
design a cost function to preserve graph nodes in the invocation
path of the target node v; as much as possible:

[{vlinvo(v) Ninvo(vs) # 0,0 € D% }| @
[N (00

By integrating Equations 2, 3 and 4, we obtain the objective

function for finding the optimal pruning action given a state D%:

E(D%) =

c(D%) =

Dg’_l = argmax (Q(th) +0{1R(D”’)—Zm N(lim)
percaper) N(D*) L+N(D")  (s)

+ azE(DUz) + 0{3C(th)),

where D% is a possible selection of the resulting substructures for
the target node v; by removing a certain node from the substructure
Df’ at the i-th Monte Carlo Tree node in the current search path;
ai, ag, a3 are hyperparameters. az and a3 control the importance of
exception information and invocation path in the selection process.
Initially, Eq. 5 tends to prioritize the discovery of unexplored sub-
structures. Subsequently, it leans towards exploring substructures
with larger average rewards. It is worth noting that the pruning
actions A(D;") are executed on the node with a degree of 1 in the
substructure to maintain connectivity.

After a rollout in MCTS, we update the occurrence and the
accumulated reward of the selected states D% in the search path:

N(D%) = N(D¥) +1, (6)
1 L
Q(D*) = Q(D*) + ¢ Zl R(D}"), )



where L is the length of the search path.

Upon the completion of MCT exploration for all nodes in the
training set, numerous candidate substructures are obtained. In
order to keep the diversity of the representative substructures, for
each class c, we utilize k-means clustering to group the candidate
substructures into n clusters for both normal and anomalous classes.
Within the i-th cluster, the substructure embedding hpe: with the
highest reward R(D) is chosen as the representative substructure
embedding, denoted by sl.C €eS(1<i<nneN,ce{0,1}), where
¢ = 0 and ¢ = 1 denotes normal and anomalous classes, respectively.

3.3 Substructure Distillation

After obtaining n representative substructure embeddings for both
classes, the next goal of SLAD is to summarize key information
about these representative substructures, making them directly
usable in the inference process and avoiding excessive consumption
in substructure exploration during inference. To achieve this, we
propose a substructure distillation method to generalize essential
structural patterns of both anomalous and normal classes in the
distilled substructure representations.
The design of our distillation method follows two intuitions:

e Intuition 1: To preserve the representative patterns of substruc-
tures belonging to the same class (either normal or anomalous),
each representative substructure embedding should exhibit prox-
imity with its class’s distilled substructure representations;

e Intuition 2: To ensure the substructures can distinguish the
two classes, each representative substructure embedding should
exhibit differences from the distilled substructure representations
of the other class.

In response to Intuition 1, we design an approximation loss
Lapprox. that minimizes the average distance of each distilled
representation p; € P(j €{1,..,n},c € {0,1}) to the substructure
representations si”:

2
) ®

1 n
%( Z lejﬁn

min
ce{0,1} i=1

Lapprox. = )slc - P;

In response to Intuition 2, we design a loss Lp;y s to maximize
the distance of each distilled representation p; to the substructure

representations sié of the other class ¢ =1 —¢:

1 5 e el
Loipp. ==, C 2, Dy min [ =rfl)- O
ce{0,1} i=1
Then, the overall distillation loss is defined by:
Lpistin = PrLapprox. + P2Lpiff ., (10)

where f1 and f; are two hyperparameters that determine the im-
portance of Lapprox. and Lp;fr..

3.4 Soft Pruning with Attention Mechanism

SLAD aims to perform anomaly detection by leveraging the sub-
structure information of nodes. Therefore, once distilled substruc-
ture representations P are learned, the next step is to effectively
use P to capture the crucial substructure information of nodes for
anomaly detection. Building on this, we introduce a method of soft
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pruning to discover crucial neighbors of nodes, thereby capturing
the key substructure information.

The core idea is that a node on a graph should pay more attention
to the neighbors with similar substructure information. The input of
the soft pruning layers is the approximate substructure information
#; and the original feature x,, of each node v;. P; is obtained by
performing attention computation between the node embedding
f(xy,) and the distilled substructure representations P:

P; = Attn(f (xy,), P), (11)

where Attn(-) is the attention function [27]. We use each node em-
bedding f(xy,) to query the distilled substructure representations
P to get approximate substructure information #;.

After that, we transform the original feature x,, of each node v;
and then concatenate it with corresponding approximate substruc-
ture information #; as input node embeddings of the soft-pruning
process, shown in Eq. 12.

K = o(Wxy, +b) || P; (12)

The soft pruning layer employs the multi-head attention mecha-
nism with GNNs to capture the key substructures for nodes. More
specifically, soft pruning assigns attention weights to neighbors
of the target node in the aggregation step of GNNs. The attention
weights are determined by both the features and the approximate
substructure information of nodes. Given the node embeddings
H = {hl,hé, hﬁl} in layer [ of soft pruning layers, node v;’s
attention weight to node v; is formulated as:

1 1 41 1
9ei = We’qhi + be’q
I _ gyl gl 1
kesj - We,khj + be,k (13)
1 1
1 <qe,i’ ke,j>

w, = —
o ZueN(i) <qé,is k!:,u)

where qle ; € R4 and ké ;€ R refer to query vector and key vector,

respectively; Wel,q and Wel . denote some trainable parameters in

layer I for head e; (g, k) = exp( %) refers to dot product function

with exponential scale; N (i) refers to the neighbors of node v;.
Then we aggregate the messages from neighbors with attention
weight and concatenate each head to get node embeddings:

1 1 4l 1
Vg = We’vhj + be’ZJ

(14)
hl.+1=||c 3. 'CL)I-~UI .
i e=1-jeEN(i)We,ijY%,j
where vé ;€ R refers to value vector as messages from neighbors;

Wel,v denotes the trainable parameters; C is the number of heads;
and || is the concatenation operation.

In this way, each node can identify more important neighbors
and thus find a key substructure in a soft pruning manner. Then, we
employ a multi-layer perception with a softmax activation function
to output the final classification result for the node v;.

The pseudo-code of the anomaly inference of SLAD is illustrated
in Alg. 1. Initially, given a request graph G, line 1 utilizes a GNN
encoder for the node embeddings. Subsequently, for each node em-
bedding, at line 3 it gets the approximate substructure information
P;. Following this, lines 4 - 5 make a soft pruning. Finally, line 6
gets a prediction label by an MLP with softmax for each node.



Algorithm 1 Overview of SLAD for anomaly inference phase

Require: (1) A request graph G with nodes {v; |v; € G,1 < i <
|G|}; (2) the well-trained SLAD including GNN encoder f, dis-
tilled substructure representations P, soft-pruning layers f;,
and an MLP layer with Softmax

Ensure: The predicted label §,, for each node v; € G

1: Encode each node v; via f to get node embedding f(xy,).

2 for Each node embedding f(xy,) in {f(x5)}°! do

3 Acquire the approximate substructure information #; via
the attention mechanism Attn(f (xy,), P).
4 Concatenate transformed original feature with $; to get

node embedding h?, shown in Eq. 12.
5 Acquire the key substructure information h; = f5p (h?)
with soft pruning in Eq. 13 and Eq. 14.
6: Apply Softmax(MLPy (h;)) to predict node v;’s label §,,.
7. end for

3.5 Objective Function

The loss function of SLAD mainly consists of two components,
distill loss L ;17 and cross-entropy loss Lysgn:. Our objective is
to: 1) enable representative substructures to assist SLAD in distilling
important structural patterns of both anomalous and normal classes;
and 2) maximize the classification accuracy, which is quantified by
cross-entropy loss, on the training data. Overall, the loss function
of SLAD is defined as:

L= Lpistint + LersEnt (15)

I N,
LcrsEnt = N, Zizvl CrsEnt(SLAD(xy,), Yo, ) (16)
v

where Ny is the number of nodes in the training set, and SLAD(+)
denotes our framework as a function.

The pseudo-code of the training phase of SLAD is illustrated in
Alg. 2. Within each request graph, line 4 represents the warm-up
stage. Line 6 uses loss in Eq. 15 to train SLAD. Line 8 involves
identifying and updating the current representative substructures
via MCTS, followed by model training.

Algorithm 2 Overview of SLAD for training phase

Require: Training graph dataset {Gi}fi(l; with node dataset
{(vj,Y0;) | vj € Gi}, Training epochs T, Warm-up epoch Ty,
MCTS epoch set T,

Ensure: The trained SLAD for anomaly detection

1: Initialize the SLAD model
2: for Training epoch from ¢t = 1,2,3,...,T do
3: if t < T,, then
4 Warm-up the model using the loss in Eq. 16.
5 elseif t > T, & t ¢ T, then
6: Train the model by the loss in Eq. 15.
7 else
8 Update representative substructures via MCTS, and
train the model by loss in Eq. 15.
9: end if
10: end for
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3.6 Complexity Analysis

Next, we analyze the complexity of SLAD. Given a set of request
graphs with total n nodes as input, SLAD mainly consists of four
components, i.e., substructure search via MCTS, GNN encoder, ap-
proximate substructure acquisition, and soft-pruning layers. For
substructure search via MCTS, we get n k-hop subgraphs to look for
representative substructures. For the MCTS of each k-hop subgraph,
the complexity is O(dmnr), where d is the dimension of GNN hid-
den layer, m is the node number of the k-hop subgraph, and r is the
number of rollouts. So for the MCTS component, the complexity is
O(dmn?r). For the GNN encoder component (GTNN [23] for SLAD),
the complexity is O(and?), as well as the soft-pruning layers, in
which a is the average neighbor number of nodes. For the approx-
imate substructure acquisition, the complexity is O((n + p)d?),
where p is the number of the distilled substructure representations.

Therefore, during the training phase, the complexity of SLAD is
O(dmn®r + (an + p)d®). While in the anomaly inference phase, the
complexity will be reduced to O((an + p)d?).

4 EXPERIMENTS

4.1 Experimental Setup

4.1.1  Benckmark. We evaluate SLAD on three log datasets, Forum
[15], Halo, and Novel, collected from three open-source systems,
respectively. Forum contains 6,785,624 log messages with 13.19%
anomalous, Halo includes 37,528,612 log messages with 10.58%
anomalous, Novel has 14,492,161 log messages with 6.4% anoma-
lous.

4.1.2  Data Preprocessing. It mainly includes log Parsing and log
Grouping. Log parsing involves extracting event types that trans-
form log messages with similar structures into a universal type. Log
grouping is to divide logs into different groups, with each group
representing a distinct set of log messages. In experiments, we use
trace window for log grouping, assigning log messages with the
same tracelD to the same group and constructing a request graph.

After data preprocessing, we construct a request graph for each
log group. The statistics of the three datasets are shown in Table 1.

4.1.3 Baselines. We compare four classes of baselines. 1. General
GNNs: GAT [28], GIN [31], GTNN [23]; 2. Substructure-based meth-
ods: SAGNN [38], GNNAK [42]; 3. Log anomaly detection methods:
DeepLog [6], LogGD [30], Glad-PAW [29], TP-GNN [15]; 4. Graph
anomaly detection methods: BWGNN [26], GHRN [7].

4.1.4 Experimental Settings. All experiments are conducted on a
Nvidia RTX 4090 GPU with 24GB GPU memory, an AMD Ryzen 7
7700X 8-Core CPU with 64GB CPU memory, and Ubuntu 22.04.3
LTS. The split ratio for train/validation/test is set to 8:1:1. In order
to prevent information leakage, we place all graphs obtained from
requests accessing the same functionality into either the training,
validation, or testing set. For dataset Forum, Halo and Novel, the
input feature dimension of each node is 247, 484 and 499, respec-
tively, which includes the one-hot representation of the file name,
the one-hot representation of the event type, the one-hot repre-
sentation of the exception type and the cost time of the action
instance. The number of hidden layers of GNNss is set to 3 (k of
k-hop subgraphs is equal to the number of hidden layers). The



Table 1: The statistics of our benchmarks.

|G| V]| [E| # Anomalous Graphs % Anomalous Graphs # Anomalous Nodes % Anomalous Nodes
Forum 214,233 6,455,450 6,241,217 97,825 45.66% 854,988 13.24%
Halo 100,000 1,563,462 1,687,186 45,181 45.18% 54,448 3.48%
Novel 149,499 1,926,609 1,777,110 68,466 45.80% 68,471 3.80%
dimension of the hidden size is set to 256. The number of distilled
substructure representations is set to 110 for Forum, 90 for Halo *

. . . SLAD GHRN * Halo
and 70 for Novel. For other parameter settings, y in Eq. 2 is set to 0.9 TG ® Forum
le-4; a1, g, a3 in Eq. 5 are set to 10,1000,1000,respectively; f1, f2 LogGD * R A Novel
in Eq. 10 are set to 0.25 and 0.0025,respectively; K in Eq. 2 is set 0038 SLAD
to 200. The total training epochs are 20, containing 14 epochs for é’ <25 G A GHRN TP-GNN
warm-up. For each MCTS, we make rollout for 5 times and each o7 GTNN GNNAK
rollout ends when the resulting substructures are with 4 nodes. For . e GNNAKE BAK tooeD ATP_GNNSA.G " LA
each approach, experiments are repeated 5 times to get mean and 0-8] GTNNGTNN :(
standard derivation. In the end, we use Adam as the optimizer with . '—°9GD4° . SAGNN _

10 10 10 10

a learning rate of le-3.

4.2 Overall Comparison

Table 2 compares F1 score, Recall, Precision, and PR-AUC for base-
lines and SLAD. SLAD consistently achieves competitive or superior
results, demonstrating robustness and effectiveness. In comparison,
TP-GNN, BWGNN, GHRN are relatively competitive approaches.
TP-GNN combines temporal information and structural informa-
tion to learn node representations, achieving good results. BWGNN
and GHRN focus on the anomaly problem by analyzing the graph
spectral energy distribution. However, these approaches primarily
consider the overall information of the entire graph and overlook
the subtle changes in substructure, which are essential for code file
anomaly detection from system logs. Compared to GHRN, SLAD
achieves additional performance gains of at least 4% on the F1 score.
In contrast, substructure-based approaches, GNNAK and SAGNN,
capture information from the perspective of substructures. How-
ever, they tend to explore substructures about the entire graph
for graph classification. This emphasis on overall graph structure
changes, rather than from the perspective of nodes, results in worse
performance compared to SLAD. Sequence-based approaches like
DeepLog, which are based on sequences, only focus on the temporal
correlations of log events and fail to effectively capture anomalous
behaviors in code files, as discussed in the introduction, hence ex-
hibiting poor performance. In addition, for existing log anomaly
detection methods, such as LogGD, although they have achieved
significant results in detecting whether a segment of logs is anoma-
lous, their performance is not ideal for our more fine-grained node
classification task. This is because they typically consider the over-
all information of the graph or sequence and fail to effectively
capture changes in the local environment of nodes.

4.3 Ablation Study

The ablation study aimed to analyze the effectiveness of different
components in SLAD. The results are summarized in Table 3, which
evaluates key metrics including F1 score, Recall, Precision, and
PR-AUC on our datasets. Different component combinations are
assessed, ranging from 1) GNN Encoder only, which only preserves
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Inference Time (ms)

Figure 6: Inference Efficiency Comparison. For each dataset,
the approach is positioned closer to the top-left if it achieves
better performance in both efficiency and effectiveness.

GNN encoder and MLP with Softmax; 2) SLAD w/o MCTS, which
retains GNN encoder, soft-pruning layers and MLP with Softmax;
3) SLAD w/ random MCTS which, based on our framework, uses a
random strategy in substructure search via MCTS; 4) SLAD w/o soft-
pruning, which refers to our full framework without soft-pruning
layers; 5) SLAD (full components). This suggests that each compo-
nent of SLAD contributes significantly to the overall performance.
MCTS improves performance owing to its capability to search essen-
tial substructures. The soft-pruning layers further refine the model
by selectively focusing on key substructures, leading to noticeable
gains.

4.4 Inference Efficiency and Efficacy Analysis

Then, we compare SLAD with some competitive baselines in terms
of inference efficiency and F1 score, as shown in Fig. 6. The closer
an approach is to the top-left corner of this figure, the better the
trade-off between the F1 score and inference time. For each dataset,
SLAD consistently occupies the top-left corner. Although SLAD
slightly lags behind GTNN in inference efficiency, its accuracy far
surpasses that of GTNN. Furthermore, compared to other methods,
SLAD significantly outperforms them in both F1 score and inference
efficiency. Particularly noteworthy is SLAD’s inference time, which
is at least 15 times faster than substructure-based methods.

SLAD is a substructure exploration-based approach. To better
evaluate the performance of SLAD, we further compared it with two
substructure exploration-based approaches, GNNAK and SAGNN,
in terms of the trade-offs in substructure exploration. Fig. 7 displays
the F1 score of SLAD with distilled substructure representations
set to 70, 90, 110, 130, and 150, along with two existing substructure
exploration approaches with walk step lengths set to 1, 2, 3, 4, and 5.
In summary, SLAD outperforms GNNAK and SAGNN significantly



Table 2: The experiment results with 11 baselines and our SLAD. The best performance on each metric is marked in bold font.

Forum Halo Novel

F1 Recall Precision PR-AUC F1 Recall Precision PR-AUC F1 Recall Precision PR-AUC

GAT 0.34+0.15  0.26+0.14  0.59+0.05  0.49+0.06 0.56+0.01 0.52+0.02  0.60+0.02  0.57+0.01 0.63+0.03  0.78+0.12  0.54+0.09  0.49+0.07
GIN 0.39+£0.05  0.28+0.06  0.71+0.11 0.64+0.04 0.64+0.02  0.76+0.01 0.56+0.02  0.65+0.03 0.55+0.10  0.58+0.13  0.53+0.08  0.45+0.13
GTNN 0.62+0.08  0.66+0.15 0.61+0.09  0.68+0.09 0.74+0.01 0.91+0.01 0.62+0.01 0.84+0.01 0.73+£0.06  0.80+0.09  0.69+0.13  0.86+0.08
GNNAK 0.62+0.06  0.64+0.08  0.63+0.11 0.66+0.14 0.62+0.09  0.60+0.18  0.71+0.11 0.71+0.12 0.66+0.09  0.77+0.11 0.61+0.13  0.71+0.14
SAGNN 0.63+0.07  0.62+0.14  0.68+0.10  0.70+0.06 0.56+0.15  0.52+0.18  0.72+0.04  0.68+0.10 0.65+0.09  0.78+0.08  0.57+0.13  0.78+0.09
DeepLog 0.34+£0.09  0.69+0.01 0.23+0.06  0.44+0.04 0.43+0.03  0.45+0.01 0.41+0.02  0.48+0.02 0.51+0.09  0.51+0.11 0.52+0.10  0.46+0.11
LogGD 0.53+0.03  0.48+0.08  0.66+0.16  0.61+0.13 0.84+0.08  0.95+0.04  0.75+0.11 0.91+0.13 0.66+0.11 0.70+0.08  0.65+0.15  0.77+0.13
Glad-PAW  0.51£0.10  0.42+0.12  0.73%0.11 0.66+0.08 0.36+0.12  0.27+0.13  0.61+£0.05  0.38+0.10 0.63+£0.02  0.60+0.06  0.68+0.08  0.71+0.04
TP-GNN 0.60+£0.02  0.49+0.04 0.79+0.10 0.71+0.13 0.87+0.01 0.81+0.02  0.95+0.04  0.95+0.01 0.73+£0.08  0.72+0.14  0.74+0.04  0.78+0.09
BWGNN 0.68+0.08  0.83+0.03  0.61+0.10  0.73+0.12 0.90+0.02  0.86+0.02  0.94+0.03  0.95+0.03 0.75+£0.06  0.88+0.07  0.65+0.09  0.80+0.07
GHRN 0.71+£0.11 0.79+0.08  0.65+0.11 0.78+0.10 0.91+0.01 0.88+0.01 0.95+0.02  0.96+0.01 0.73+0.10  0.89+0.12  0.63+0.12  0.77+0.10
SLAD(ours) 0.75+0.06 0.85+0.10 0.69+0.09  0.83+0.09 0.96+0.01 0.98+0.01 0.95+0.02 0.99+0.01 0.82+0.02 0.89+0.12 0.78+0.10 0.91+0.05

Table 3: Ablation study. GNN Encoder only represents only using GNNs to detect anomalies; SLAD w/o MCTS denotes SLAD
without MCTS; SLAD w/ random MCTS refers to SLAD with a random strategy in MCTS; SLAD w/o soft-pruning means that the

soft-pruning module is removed from SLAD.

Forum Halo Novel
F1 Recall Precision ~ PR-AUC F1 Recall Precision ~ PR-AUC F1 Recall Precision ~ PR-AUC
GNN Encoder only 0.62+0.08  0.66+0.15  0.61£0.09  0.68+0.09 0.74+0.01  0.91+0.01  0.62+0.01 0.84+0.01 0.73+0.06  0.80+0.09  0.69+0.13  0.86+0.08
SLAD w/o MCTS 0.61+0.07  0.89+0.11  0.48+0.12  0.68+0.09 0.81+£0.01  0.94+0.01  0.71+£0.01  0.94+0.01 0.75+0.07  0.80+0.12  0.71+£0.11  0.85+0.09
SLAD w/ random MCTS  0.65+0.12  0.93+0.05  0.52+0.17  0.74+0.11 0.87+£0.01  0.96+0.01  0.79+0.01  0.97+0.01 0.69+0.08  0.81+0.10  0.62+0.11  0.81+0.09
SLAD w/o soft-pruning ~ 0.71+0.10  0.94+0.07 0.59+0.18  0.78+0.10 0.91+£0.01  0.97+0.01  0.86+0.02  0.98+0.01 0.77+£0.04  0.84+0.11  0.73£0.13  0.88+0.05
SLAD 0.75+0.06 0.85+0.10  0.69+0.09 0.83+0.09 0.96+0.01 0.98+0.01 0.95+0.02 0.99+0.01 0.82+0.02 0.89+0.12 0.78+0.10 0.91+0.05
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Figure 7: Substructure exploration trade-off for SLAD, GNNAK and SAGNN. “e” refers to SLAD(ours) in different numbers of
distilled substructure representations P(70 to 150), “x” denotes GNNAK in walks with varying step lengths W(1 to 5), and “A”
represents SAGNN in walks with varying step lengths W(1 to 5). The approach is positioned closer to the top-left if it achieves

better performance in both efficiency and effectiveness.

in both time and accuracy. GNNAK and SAGNN exhibit some in-
stability on the these datasets, and they consume lots of time with
the increase in step length, especially for SAGNN.

We also conduct a statistical analysis of the computational re-
source usage of baselines and SLAD during the anomaly inference
phase. The statistical results are shown in Table 4. The computa-
tional resources used by SLAD and other baselines during anomaly
inference are within reasonable ranges.

Overall, SLAD achieves a good balance between inference effi-
ciency and efficacy. It ensures the advantage of anomaly detection
accuracy while maintaining good inference efficiency.

4.5 Impact of Hyperparameters

We conducted a series of experiments to investigate the impact of
various hyperparameters on SLAD. To study the impact of each

hyperparameter on the overall performance of the model, we vary
one hyperparameter at a time while fixing all other hyperparam-
eters (shown in 4.1.4). Each experiment is repeated 5 times. The
results related to the scale of SLAD parameters are shown in Fig. 8.

We vary the size of the hidden layer in the GNN encoder from 32
to 512. The F1 score of SLAD peaks at the hidden layer size of 256
and then shows a slight decline. Therefore, we set the GNN hidden
layer size at 256. For the number of hidden layers, we vary it from 1
to 5. The F1 score reaches its maximum value when 3 hidden layers
are applied. As the number of hidden layers continues to increase,
over-smoothing may occur, leading to a slight decline in the F1 score.
Consequently, we set the number of GNN hidden layers as 3. For
the number of distilled substructure representations, we set values
from 30 to 110. Within this range, the F1 score on Halo, peaks at 90
and then stabilizes. On Forum, the F1 score shows an upward trend
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Table 4: The statistics of computing resource usage for the anomaly inference phase on our datasets.

Forum Halo Novel

Baseline CPU Memory GPU GPU Memory CPU Memory GPU GPU Memory CPU Memory GPU GPU Memory
GAT 2.60% 5.50% 11.62% 1.00% 0.42% 7.98% 8.99% 0.68% 0.57% 9.88% 9.21% 1.03%
GIN 0.40% 5.30% 8.65% 1.54% 0.70% 7.84% 9.60% 0.86% 0.98% 8.99% 9.73% 1.33%
GTNN 0.60% 5.30% 12.32% 0.47% 0.60% 7.90% 11.63% 0.51% 0.97% 8.97% 11.87% 1.99%
GNNAK  0.69%  7.50%  12.50% 2.54% 0.85%  8.87%  10.56% 2.30% 1.35%  8.65%  10.34% 1.79%
SAGNN 0.65%  6.40%  10.65% 2.62% 0.60%  6.40% 9.55% 2.62% 0.91%  6.88% 9.39% 2.88%
DeepLog 0.64% 9.40% 11.20% 3.43% 0.80% 7.56% 10.10% 3.64% 1.08% 8.76% 10.55% 3.95%
LogGD 0.50% 5.50% 11.54% 2.62% 0.45% 7.95% 8.69% 2.61% 0.75% 8.33% 9.77% 2.91%
Glad-PAW  0.52% 5.40% 8.33% 2.64% 0.63% 7.80% 7.92% 2.35% 0.91% 8.11% 8.54% 2.81%
TP-GNN 0.62% 5.40% 10.57% 2.25% 0.55% 5.80% 8.10% 2.40% 0.97% 6.44% 8.99% 2.79%
BWGNN  0.71%  6.10% 9.47% 2.45% 0.64%  7.10% 8.83% 2.10% 0.75%  7.44% 8.19% 3.82%
GHRN 0.92%  9.23%  12.55% 3.16% 0.80%  9.22%  10.01% 3.12% 1.11%  9.57%  10.98% 3.45%
SLAD(ours) 0.53% 5.60% 10.23% 0.95% 0.71% 8.35% 9.50% 1.03% 1.11% 8.65% 10.01% 1.96%
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Figure 8: Impact of hyper-parameters for SLAD

as the number of distilled substructure representations increases.
On Novel, it reaches its peak when the number is 70. Based on these
results, we set the number of distilled substructure representations
to 90 for Halo, 110 for Forum, and 70 for Novel.

4.6 Performance on Different Anomaly Types

Next, we display the performance on anomaly detection of different
anomaly types for SLAD and some competitive baselines in Table 5.
For different types of these anomalies, "chain change" represents
the removal or addition of other source code files in the original
invocation chain, "invocation change" denotes an anomaly resulting
in invoking the wrong source code file, while "argument change"
indicates an anomaly that causes anomalous parameters. Finally,
"condition change" refers to an anomaly leading to anomalous
conditional statements. For each type of anomaly, we compute the
prediction accuracy, which represents the proportion of correctly
predicted instances within a particular anomaly type.

Overall, SLAD demonstrates the best performance, particularly
showing significant advantages on Forum and Halo datasets, while
the other baselines exhibit unstable performance on different anom-
aly types. For Novel, where the log graphs are relatively small in
scale, making the advantage of substructure information less pro-
nounced in smaller graphs, SLAD’s superiority is less prominent.
This result highlights SLAD’s stability and comprehensiveness in
recognizing different types of anomalies.

4.7 Performance on Unseen Anomaly Types

System updates may lead to the emergence of new anomaly types,
with anomaly patterns potentially differing from those previously
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observed. To demonstrate the performance of SLAD for unseen
anomaly types, we respectively conduct experiments by removing
one type of anomaly sample from the training set and then using
the trained model to predict the unseen anomaly type. Furthermore,
we fine-tune the trained model sequentially using 100, 300, 500,
and 700 graphs of the corresponding anomaly type. Due to space
constraints, only Halo dataset results are shown in Fig. 9, consistent
across all datasets.

The results indicate that SLAD significantly outperforms other
baselines in recognizing unseen anomaly types. With only a small
portion of the unseen anomaly type data used for fine-tuning, SLAD
can effectively identify these anomalies, clearly surpassing the per-
formance of the baselines. This demonstrates the robust capabilities
of SLAD in adapting to new anomaly patterns.

5 RELATED WORK
5.1 Log Anomaly Detection

Early studies on log anomaly detection often rely on predefined
rules, such as explicit criteria and thresholds [17, 21, 35]. However,
these approaches require strong domain expertise and thus cannot
be generalized to different datasets. Subsequently, researchers begin
to explore machine learning techniques for log anomaly detection,
including Principal Component Analysis [32], Clustering [14] and
Support Vector Machines [13]. However, they struggle to effectively
capture complex patterns and dependencies within log data.
Recently, deep learning techniques have been exploited in this
field. Some treat logs as event sequences and apply sequence-based
neural networks to detect anomalies, such as the Long Short-Term



Table 5: The accuracy of anomaly detection w.r.t. different anomaly types on our datasets. The column “Normal” denotes the
prediction accuracy of normal nodes. The other columns denote the detection accuracy of different anomaly types.

Forum Halo Novel
Normal Chain Invocation Argument Normal Chain Invocation Condition Argument Normal Chain Invocation Condition Argument
GTNN 0.80 0.80 1.00 0.85 0.98 0.88 0.91 0.94 0.26 0.98 0.93 0.37 0.56 0.87
SAGNN 0.85 0.75 0.92 0.74 0.99 0.49 0.27 0.28 0.18 0.97 0.89 0.51 0.30 0.90
GNNAK 0.80 0.63 0.77 0.77 0.78 0.55 0.53 0.46 0.30 0.97 0.95 0.38 0.73 0.79
TP-GNN 0.98 0.54 0.31 0.18 0.99 0.67 0.83 0.95 0.91 0.97 0.47 0.51 0.83 0.85
GHRN 0.88 0.79 0.85 0.81 0.99 0.85 0.92 0.95 0.83 0.97 0.98 0.72 0.51 0.89
SLAD(ours) 0.91 0.81 1.00 0.88 0.99 0.92 0.99 0.99 0.77 0.99 1.00 0.62 0.76 0.90
10 Invocation Change on Halo Chain Change on Halo Condition Change on Halo
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Figure 9: Performance for unseen anomaly types on Halo

Memory (LSTM) [3, 6, 12, 18, 40], Gated Recurrent Unit (GRU) [34].
Additionally, some studies also explore the application of recently
popular neural networks such as Transformer and BERT (8, 9, 19].

Following this, several studies have shown that graph represen-
tation learning can significantly improve the performance of log
anomaly detection. These studies concentrate on the task of graph
classification. Xie et al. [30] propose to represent logs as graphs and
employ a Graph Transformer Neural Network to detect anomalies
within the graph. Wang et al. [29] integrate positional information
of events into the graph representation, followed by the application
of a position-aware weighted graph attention layer to acquire the
graph representation for log anomaly detection. Zhang et al. [39]
constructs graphs by utilizing log events occurring within the same
trace. They employ a gated graph neural network to acquire graph
representations and detect log anomalies through Deep Support
Vector Data Description. Yan et al. [33] incorporated temporal in-
formation into graph learning models for log anomaly detection.

Existing graph-based approaches emphasize the analysis of the
overall graph structure. However, they fail to adequately explore
the substructures containing crucial information regarding node
anomalies, thus impeding accurate anomaly detection.

5.2 Substructure-based Graph Representation
Learning

Several research studies have been dedicated to extracting substruc-
ture to enhance the expressive capabilities of GNNs. Certain re-
search focuses on prior encoding substructure [1, 2], such as cliques,
Others concentrate on random walk-based methods [25, 38, 41], and
some utilize the information related to the k-hop subgraph [4, 20, 22,
42]. Zeng et al. [38] combine the random walk-based method and
k-hop subgraphs to capture substructure information. Nonetheless,
these methods not only require significant time for walks during
inference but also fail to discover specific substructures within
software systems.
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Additionally, some research focuses on learning a representation
of query-induced subgraphs for making link predictions [36, 37].
However, these methods store the local structural context of nodes
during training to save inference time. Because the induction of
subgraphs relies on the local structural context of query points,
they cannot represent unseen points, making it difficult to apply
them to inductive node classification tasks.

Comparsion. Our research focuses on detecting anomalous
code files through log analysis, integrating file invocation informa-
tion into log graphs, and employing substructure patterns of nodes
for anomaly detection. It distinguishes the existing works: 1) an
MCTS-based method that automatically discovers representative
substructures; 2) an effective knowledge distillation method is to
avoid substructure exploration during inference, thus reducing the
computational cost; 3) a novel soft pruning method is introduced
to obtain the key substructure during inference.

6 CONCLUSION

This paper introduces a framework, SLAD, to identify anomalous
code files from system logs. It employs a novel Monte Carlo Tree
Search strategy aimed to automatically identify representative sub-
structures. Additionally, SLAD integrates a substructure distillation
method to summarize the general patterns from the representative
substructures, avoiding the exploration of substructures during
inference. Building upon this, a soft pruning method is designed to
find the key substructure for each node. The experiments indicate
that SLAD outperforms the state-of-the-art log anomaly detection
approaches and node classification methods. Furthermore, SLAD
excels in inference efficiency compared to current substructure
exploration approaches.
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