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ABSTRACT
The expanding instrumentation of processes throughout society
with sensors yields a proliferation of time series data that may in
turn enable important applications, e.g., related to transportation
infrastructures or power grids. Machine-learning based methods
are increasingly being used to extract value from such data. We
providemeans of reducing the resulting considerable computational
and data storage costs. We achieve this by providing means of
condensing large time series datasets such that models trained
on the condensed data achieve performance comparable to those
trained on the original, large data. Specifically, we propose a time
series dataset condensation framework, TimeDC, that employs
two-fold modal matching, encompassing frequency matching and
training trajectory matching. Thus, TimeDC performs time series
feature extraction and decomposition-driven frequency matching
to preserve complex temporal dependencies in the reduced time
series. Further, TimeDC employs curriculum training trajectory
matching to ensure effective and generalized time series dataset
condensation. To avoid memory overflow and to reduce the cost
of dataset condensation, the framework includes an expert buffer
storing pre-computed expert trajectories. Extensive experiments
on real data offer insight into the effectiveness and efficiency of the
proposed solutions.
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Figure 1: Time Series Condensation

1 INTRODUCTION
With the proliferation of edge computing and mobile sensing, mas-
sive volumes of time series data, comprising millions of obser-
vations, are being collected and stored into time series database
systems (TSMSs) [18, 21, 36], enabling various real-world appli-
cations [44, 46]. We are seeing impressive advances in machine
learning [24, 51], especially in deep learning [10, 44, 54], that are suc-
cessful at extracting information and creating value from large time
series datasets. However, the proposed methods are also resource-
intensive. Thus, storing and preprocessing datasets is costly, and
model training often calls for the use of specialized equipment
and infrastructure [8, 22, 47, 48], limiting the application on edge
devices [36, 45].

An effective way to reduce costs associated with the use of
large data is coreset construction [1, 7, 17, 22], which often in-
volves clustering [15], Gaussian mixture models [25], and streaming
learning [22]. Coreset construction methods [15, 25] often define
heuristic criteria to select the most representative subsets from
full datasets to form small coresets, such that models trained on
the coresets are competitive with those built on the full datasets.
Unfortunately, heuristic coreset construction methods guarantee
neither optimal solutions nor promise the presence of representa-
tive observations in relation to downstream tasks [48]. Given these
limitations, a recent alternative approach, dataset condensation [49]
aims to directly synthesize small condensed, optimized datasets,
not relying on representative subset-selection.

We consider the novel problem of time series dataset condensa-
tion, where the goal is to synthesize a small but informative con-
densed time series dataset S derived from an original large dataset
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T . A model, composed of stacked time series operators (TSOpera-
tors) that perform feature extraction, is trained on the condensed
time series (CTS) dataset with the objective of achieving perfor-
mance comparable to that of a model trained on the original large
time series (OLTS) dataset for downstream tasks (see Figure 1). The
stacked TSOperators are multiple TSOperators arranged sequentially
so that the output of one TSOperator is fed into the next TSOperator.
Stacked TSOperators enable more complex feature extraction. Time
series are usually stored in TSMSs over edge devices [18, 45]. In the
setting of continuously produced time series, time series dataset
condensation aims to alleviate the storage burden of TSMSs con-
sidering the limited processing capability of edge devices, which
further contributes to the database community [2, 3]. Additionally,
due to the small-scaled CTS, time series dataset condensation is
expected to bring significant efficiency improvements in repeated
training scenarios in TSMSs, e.g., streaming learning [27] andmodel
selection [42]. Although substantial research has been devoted to
inventing effective dataset condensation methods [6, 48, 49], such
as gradient matching [48], distribution matching [49], and multi-
step parameters matching [6], existing methods target image data
and cannot be applied to time series data directly as they are not
built to contend with the unique temporal dependencies present
in time series [26, 54]. These methods thus fail to capture inher-
ent temporal dependencies such as trends and seasonalities [40].
New methods are needed to enable time series condensation. How-
ever, developing such methods is non-trivial, due to the following
challenges.

Challenge I: Effectiveness and Generalization Ability. It is challeng-
ing to guarantee the effectiveness and generalization ability of the
condensed time series dataset [2, 6]. First, typical dataset conden-
sation methods require a bi-level (even triple-level) optimization
to jointly learn a minimum of two objectives: model parameters
and a condensed time series dataset. Such complex non-convex
optimization cannot guarantee optimal solutions, thus significantly
limiting its effectiveness as the representative of the large origi-
nal time series dataset. Second, the condensed time series datasets
should be generalized to train different networks. Nonetheless, the
condensed data may suffer from various types of overfitting [6], e.g.,
overfitting to a certain network architecture. Also, the downstream
models might overfit the condensed data during training.

Challenge II: Complex Temporal Dependencies. Existing popular
dataset condensation methods mainly focus on computer vision
without specific modules to capture the unique time series char-
acteristics [4, 44]. Existing dataset condensation methods are ill-
equipped for modeling the complex temporal dependencies of time
series. For example, traffic conditions during afternoon rush hour
may be similar on consecutive workdays. Moreover, morning rush
hours may gradually start later when winter arrives as people get
up later and later due to the gradual decrease in temperature and
later sunrise. It is important to learn complex temporal dependen-
cies in a time series dataset so that a condensed version of the
dataset exhibits similar temporal patterns to the original dataset. In
addition, time series datasets are often multivariate, encompassing
correlated variables, or features (channels). Such features are often
coupled to perform feature extraction simultaneously. We argue
that analysis in independent channels enables more effective feature
extraction. For example, traffic flow is negatively correlated with

vehicle speed, but positively correlated with road occupancy [38].
Coupling features with varying and complex interactions might
confuse a model, leading to decreased model performance [38].

Challenge III: Scalability. Existing dataset condensation meth-
ods often suffer from poor scalability, as bi-level optimization is
generally time-consuming [55]. For example, gradient-matching
methods [48] set different hyper-parameters of the outer and the in-
ner loop optimization for different learning settings, which requires
extensive cross-validation, rendering condensed dataset synthesis
costly. In addition, these methods may incur memory overflow: they
require an entire model to reside in memory during training, which
is infeasible in many resource-constrained environments [33]. It is
highly desirable, but also non-trivial, to develop an efficient time
series dataset condensation method.

This study addresses the above challenges by providing an effi-
cient time series dataset condensation (TimeDC) framework, which
features a two-fold matching mechanism: time series frequency
matching and training trajectory matching. TimeDC synthesizes
a small time series dataset that summarizes a large dataset such
that models trained on the small dataset achieve comparable per-
formance to models trained on the large dataset. It encompasses
three major modules: a time series feature extraction module, a
decomposition-driven frequency matching module, and a curricu-
lum training trajectorymatchingmodule. Time series of stock prices
are among the most common time series in real-world applications.
We thus use such time series in a running example to to explain
and convey the intuition underlying definitions and the proposed
modules throughout the paper.

To achieve effective and generalized TS dataset condensation
(Challenge I ), we propose a curriculum training trajectory matching
(CT2M) module (see Figure 4), where we consider an original time
series dataset as the gold standard and seek to imitate the long-term
training dynamics of models trained on it. The parameter trajec-
tories trained on the original dataset are called expert trajectories.
CT2M first trains a set of expert trajectories of a model, composed
of a set of stacked TSOperators, on the large dataset. These are
computed offline and are stored in an expert buffer and then serve
as guidance for the condensed dataset optimization. Next, we sam-
ple trajectories from the expert buffer with curriculum trajectory
queries and conduct long-term trajectory matching to align the seg-
ments of trajectories between the condensed time series dataset and
the large dataset, enabling comprehensive and general knowledge
transfer to the condensed dataset.

To support the capture of complex temporal dependencies (Chal-
lenge II ), we propose a time series feature extraction (TSFE) module.
In particular, TSFE contains a channel-independent mechanism
and a set of stacked TSOperators, where a TSOperator includes a
set of self-attention and fully connected layers. A decomposition
block separates and refines the frequency, i.e., trend and seasonal-
ity, progressively from the intermediate results extracted by each
TSOperator. We design a decomposition-driven frequency matching
(DDFM) module to facilitate consistent temporal pattern preserva-
tion between the condensed time series dataset and the original
one. It maps the decomposed frequencies when optimizing the
condensed dataset.

To address the issue of high computation costs and poor scal-
ability (Challenge III ), we propose an expert buffer to save expert
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trajectories pre-computed on original time series data to avoid
memory overflow and reduce the overall training time. Further,
we employ a patching mechanism that splits the time series into
patches, thereby accelerating time series feature extraction in the
TSFE module and also enabling effective local semantics modeling
for time series.

The main contributions are summarized as follows.
• To the best of our knowledge, this is the first study to learn

dataset condensation over time series. We propose a frame-
work called TimeDC that aims to condense large time series
datasets into small synthetic time series datasets while retain-
ing the expressiveness of the large datasets.

• We design a TSFE module to capture temporal dependencies
of time series effectively. We further propose a DDFM module
to reduce the discrepancy of frequencies between original and
condensed time series.

• A novel curriculum trajectory query and matching module
is proposed to penalize condensed time series data based on
how far the synthetically trained model deviates from expert
trajectories.

• We report on experiments using real data, offering evidence
of the effectiveness and efficiency of the proposals.

The remainder of this paper is organized as follows. Section 2
covers preliminary concepts and formalizes the problem of time
series dataset condensation. We detail the TimeDC framework in
Section 3, followed by the experimental study in Section 4. Section 5
surveys related work, and Section 6 concludes the paper.

2 PRELIMINARIES
We proceed to present the necessary preliminaries and then define
the problem addressed.

Definition 2.1 (Time Series). A time series 𝑇 = ⟨𝑡1, 𝑡2, · · · , 𝑡𝑛⟩ is
a time ordered sequence of 𝑛 observations, where each observa-
tion 𝑡𝑖 ∈ R𝐶 is a 𝐶-dimensional vector. If 𝐶 = 1, 𝑇 is univariate;
otherwise, 𝑇 is multivariate. For example, a series of stock prices
with multiple features, e.g., the opening price, closing price, highest
price, and lowest price, is an example of multivariate time series.

Definition 2.2 (Time Series Dataset). A time series dataset T is a
set of time series T = {𝑇1,𝑇2, · · · ,𝑇𝑀 }, where𝑀 is the cardinality.

2.1 Dataset Condensation over Time Series
Definition 2.3 (Condensed Time Series Dataset). Given a time

series dataset T , a time series dataset S =

{︂˜︁𝑇1,˜︁𝑇2, · · · ,˜︁𝑇𝑁 }︂
is con-

densed if 𝑁 is much smaller than𝑀 , where ˜︁𝑇 is the condensed time
series,𝑀 is the cardinality, and S is derived from T .

Note that we can initialize each item in S with a random time
series in the original dataset or a Gaussian noise. After dataset
condensation, we expect to learn an optimized S to replace T .

Given a large time series dataset T = {𝑇1,𝑇2, · · · ,𝑇𝑀 }, we aim to
learn an optimal differentiable function 𝑓 parameterized by 𝜃 that
correctly performs time series tasks, e.g., time series forecasting.
We use T as a training set to learn the optimal parameters 𝜃 T by
minimizing an empirical loss term as follows.

𝜃 T = argmin
𝜃

LT (𝜃 ), (1)

where LT (𝜃 ) = 1
𝑀

∑︁
𝑇𝑖 ∈T ℓ (𝑓𝜃 ,𝑇𝑖 ), and ℓ (·) is a task specific loss

(e.g., Mean Squared Error). We denote the generalization perfor-
mance of the obtained model 𝑓𝜃T by E𝑇𝑖∼𝑃T [ℓ (𝑓𝜃T ,𝑇𝑖 )], where 𝑃T
is the data distribution of T .

Dataset Condensation over Time Series. Given a large time
series dataset T , our goal is to synthesize a small time series dataset
S =

{︂˜︁𝑇1,˜︁𝑇2, · · · ,˜︁𝑇𝑁 }︂
that preserves most of the information in T

and𝑁 ≪ 𝑀 . Once the condensed time series setS is learned, we can
train 𝑓 on it by replacing T by S in Equation 1. As the condensed
set S is significantly smaller than T , we expect the optimization
to be considerably faster. In addition, we expect the generalization
performance of 𝑓𝜃S to be close to 𝑓𝜃T , i.e., E𝑇𝑖∼𝑃T [ℓ (𝑓𝜃T ,𝑇𝑖 )] ≃
E𝑇𝑖∼𝑃S [ℓ (𝑓𝜃S ,𝑇𝑖 )], on the real data distribution 𝑃T .

Thus, given a learnable function 𝑓 parameterized by 𝜃 , our prob-
lem, dataset condensation over time series, can be formulated as a
bi-level optimization problem [48] as follows.

outer level⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟
min
S
L(𝑓𝜃S ,T), 𝑠 .𝑡 . 𝜃

S =

inner level⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟
argmin

𝜃

L(𝑓𝜃 ,S), (2)

where the outer loop optimizes the condensed time series set S,
while the inner loop aims to learn an optimal function 𝑓𝜃S on S.

Offline Expert Trajectories. We denote the time sequence of
parameters {𝜃𝑘𝑒 }𝐸𝑒=1 as expert trajectories, that are obtained during
the training of the proposed TSFE module on the full, original time
series dataset, where 𝐸 is the training epoch intervals. To generate
these expert trajectories, we train TSFE several times on original
datasets and save their snapshot parameters at every epoch. We call
these parameter sequences as expert trajectories since they repre-
sent the theoretical upper bound for the downstream applications.

3 METHODOLOGY
We proceed to detail the efficient time series dataset condensation
framework, TimeDC. We first give an overview of the framework
and then provide specifics on each module in the framework.

3.1 Framework Overview
As illustrated in Figure 2, given a model composed of stacked TSOp-
erators, we first pre-train a set of training trajectories on the original
large time series (OLTS) dataset and store these pre-trained trajecto-
ries as expert trajectories in an expert buffer. As the original dataset
is used to guide the network training, we denote the parameters
trained on the original dataset as expert trajectory. Then, we train
the same model on the condensed time series (CTS) dataset and per-
form two-fold modal matching: trajectory matching and frequency
matching. Specifically, we optimize the condensed dataset with re-
spect to the distance between the synthetically training trajectories
and the trajectories trained on the original dataset. Further, we align
the frequencies (i.e., trend and seasonality) between the original
dataset and the condensed dataset to preserve temporal correla-
tions when synthesizing the condensed dataset. The framework
encompasses three major modules: time series feature extraction
(TSFE), decomposition-driven frequency matching (DDFM), and
curriculum training trajectory matching (CT2M).
• Time Series Feature Extraction. This module aims to extract ef-

fective high-dimensional features from the input time series.
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Figure 2: TimeDC Framework Overview

A channel-independent mechanism is adopted to decouple the
time series 𝑇input ∈ RB×𝑛×𝐶 (𝐶 ≥ 1) into 𝐶 univariate time
series {𝑇𝑐input }

𝐶
𝑐=1 ∈ R

B×𝑛×1 for subsequent feature extraction.
Next, the module splits each decoupled univariate (i.e., channel-
independent) time series into 𝑃 patches to learn local semantic
information employing the patching mechanism. Then, the mod-
ule stacks several TSOperators, composed of self-attention and
fully connected layers, for channel-independent feature extrac-
tion. Finally, the channel-independent features are concatenated
to enable prediction.

• Decomposition-Driven FrequencyMatching. This module adopts a
decomposition-driven frequencymatchingmechanism to reduce
the discrepancy of decomposed frequencies between the orig-
inal time series dataset and the condensed time series dataset,
aiming to preserve temporal dependencies from the original
dataset when synthesizing the condensed dataset. Specifically, it
incorporates a moving-average based [12, 40] series decomposi-
tion block into each TSOperator, which separates the trend and
seasonal information progressively from the learned features.
This decomposition block enables a TSOperator to alternately
decompose and refine the intermediate results during the time
series feature extraction.

• Curriculum Training Trajectory Matching. This module first
trains a set of training trajectories (i.e., parameters) of stacked
TSOperators on the large original time series dataset, which are
stored in an expert buffer. In addition, we design a curriculum
trajectory query and matching mechanism to organize training
trajectories matching from similar (easy) to dissimilar (hard). In
particular, we sample trajectories from the expert buffer with
minimally modified parameters to those with highly modified
parameters, iteratively.
We train TimeDC on the original dataset to extract frequencies

and compute original parameters denoted as expert trajectories,
aiming at guiding the effective condensed dataset synthesis. Thus,
extracting frequencies and expert trajectories from the original
dataset supports the purpose of TimeDC, which enables models
trained on the small dataset to achieve comparable performance to
models trained on the large dataset. Next, we provide the technical
details of each module.

𝐹𝐶

𝐶𝐼𝑀
	

𝑃𝑎𝑡𝑐ℎ𝑖𝑛𝑔

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛

𝑆𝑒𝑙𝑓	𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝑀
𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒	𝑇𝑆

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑇𝑆𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

Figure 3: Feature Extraction Module

3.2 Time Series Feature Extraction
We first consider the time series feature extraction (TSFE) module.
As shown in Figure 3, TSFE is composed of a channel-independent
mechanism, a patching mechanism, and stacked TSOperators.

Channel Independent Mechanism. Most existing time series
modeling methods [41, 44] perform time series feature extraction
by coupling all features and projecting them together into an em-
bedding space. However, simply coupling different features may
influencemodel performance very uncontrollably [38]. To avoid this
problem, we employ the channel-independent mechanism CIM (·)
to model each time series feature independently.

We consider a time series with 𝐶 features as a sequence of
multi-channel variables. Specifically, given a time series 𝑇𝑖𝑛𝑝𝑢𝑡 =
⟨𝑡1, 𝑡2, · · · , 𝑡𝑛⟩ ∈ RB×𝑛×𝐶 (𝐶 ≥ 1), the channel independent mecha-
nism separates𝑇𝑖𝑛𝑝𝑢𝑡 into𝐶 univariate time series along the feature
(i.e., channel) dimension, where B is the batch size. For example, in
a series of stock prices with multiple features, e.g., opening prices
and closing prices, the channel-independent mechanism separates
these features by forming univariate time series. This means that
the opening and closing prices are considered as two different time
series in the subsequent feature extraction. Formally, the channel-
independent mechanism works as follows.

𝐶𝐼𝑀 (𝑇input ) = 𝑇 1
input , · · · ,𝑇

𝑐
input , · · · ,𝑇

𝐶
input , (3)

where 𝑇𝑐input ∈ R
B×𝑛×1. The separated univariate time series are

then fed independently into the stacked TSOperators. The TSOpera-
tors share the same architecture, but their forward processes are
independent.
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Patching Mechanism. Time series feature extraction aims to
model the correlations between observations at different time steps.
We aggregate observations over several time steps of the separated
univariate time series 𝑇𝑐

𝑖𝑛𝑝𝑢𝑡
into subseries-level patches [29] to

enable local semantics modeling, which allows the model to see
the longer historical sequences to improve feature extraction. For
instance, in the context of stock prices, if the original time series
represents hourly prices over a week, the patching mechanism may
create patches where each patch contains the stock prices for each
day, enhancing the capture of local semantics capturing.

We feed the univariate time series obtained from the channel
independent mechanism into the patching mechanism that then
divides them into patches that can be set to be overlapping or
non-overlapping. Given a patch length 𝐿 and a stride (i.e., the non-
overlapping region between two consecutive patches) 𝑆 , a sequence
of patches𝑇𝑐𝑝 ∈ RB×𝐿×P is generated, where P = ⌊𝑛−𝐿

𝑆
+ 2⌋ is the

number of patches. The last value 𝑡𝑛 repeated 𝑆 − 1 times is padded
to the end of the input time series before patching.

The patching decreases the memory usage and computational
complexity of the following TSOperator, containing self-attention
and fully connected (FC) layers quadratically, by a factor of 𝑆 since
the input time series length reduced from 𝑛 to approximately 𝑛/𝑆 .

TSOperator.We then feed the patches𝑇𝑐𝑝 into the stacked TSOp-
erators to learn latent features for the following frequency matching
and trajectory matching. As illustrated in Figure 3, a TSOpera-
tor includes a multi-head self-attention layer followed by a fully-
connected (FC) layer. In the context of stock prices, the multi-head
self-attention mechanism learns the temporal correlations between
different time steps. This may include how the opening prices at
the beginning of a day influence the prices in the next few days.
The FC layer summarizes these temporal correlations for future
prediction. The 𝑗-𝑡ℎ TSOperator can be formulated as follows.

ℎ 𝑗 = TSOperator (ℎ 𝑗−1) = Norm(FC (MultiHead (ℎ 𝑗−1))), (4)

where ℎ0 = 𝑇𝑐𝑝 , and 𝑁𝑜𝑟𝑚(·) is the normalization layer (i.e., Batch-
Norm). The multi-head self-attention layer has three components:
Query, Key, and Value. The multi-head self-attention is computed
by concatenating the output matrix of each attention head. For
𝑖-𝑡ℎ attention head, the input latent features ℎ 𝑗 are transformed as
follows.

𝐴
𝑗

𝑖
= Attention(ℎ 𝑗𝑊𝑄

𝑖
, ℎ 𝑗𝑊𝐾

𝑖 , ℎ
𝑗𝑊𝑉

𝑖 )

Attention(𝑄,𝐾,𝑉 ) = softmax (𝑄 · 𝐾
𝑇√︁

𝑑𝑘

) · 𝑉

ℎ 𝑗+1 = Norm(ℎ 𝑗 + FC𝑖 (𝐴𝑗𝑖 ℎ
𝑗 ) ),

(5)

where 𝑑𝑘 is a scaling factor, and𝑊𝑄

𝑖
,𝑊𝐾

𝑖
, and𝑊𝑉

𝑖
are the linear

transformation parameter of the Query, Key, and Value, respectively.
The time series feature extraction is shown inAlgorithm 1. Specif-

ically, we first separate the batch of input time series 𝑇input into 𝐶
univariate time series (line 1) and apply the patching mechanism
to split the univariate time series into patches (line 2). Then, we
input the patches obtained in line 2 into the stacked TSOperators
for feature extraction (lines 3–8). Finally, 𝐶 extracted features are
concatenated to get the overall hidden features ℎ (line 9). The space
and time complexities of the TSFE module are both O( 𝑛2

𝑆2
).

Algorithm 1: Time Series Feature Extraction
Input: a batch of time series: 𝑇𝑖𝑛𝑝𝑢𝑡 ∈ B × 𝑛 ×𝐶; the

number of TSOperators: 𝑁𝑜𝑝 .
Output: extracted features: ℎ.

1 𝑇 1
input , · · · ,𝑇

𝑐
input , · · · ,𝑇

𝐶
input ← Separate 𝑇𝑖𝑛𝑝𝑢𝑡 into 𝐶

univariate channel-independent time series with
Equation 3;

2 Split each univariate time series into patches;
3 for 1 ≤ 𝑐 ≤ 𝐶 do
4 ℎ0𝑐 ← 𝑇𝑐

𝑖𝑛𝑝𝑢𝑡
;

5 for 0 < 𝑗 < 𝑁𝑜𝑝 do
6 Feature extraction with Equation 4;
7 ℎ

𝑗
𝑐 ← TSOperator (ℎ 𝑗−1𝑐 );

8 ℎ𝑐 ← ℎ
𝑁𝑜𝑝−1
𝑐 ;

9 ℎ ← Concatenate {ℎ𝑐 }𝐶𝑐=1 along the channel;
10 return ℎ.

3.3 Decomposition-Driven Frequency Matching
Time series data usually exhibit distinct frequencies, such as trend
and seasonality, separating from other modalities (e.g., images). For
instance, the trend in stock prices indicates the prolonged direction
of prices over time, which can be upward or downward. Season-
ality refers to the regular, periodic fluctuations in stock prices,
often influenced by seasonal business cycles or holidays. We argue
that it would give more guidance on time series condensation if
the condensed and original time series share similar frequencies.
Thus, to preserve temporal patterns in the condensed time series
dataset, we propose a novel decomposition-driven frequencymatch-
ing (DDFM) mechanism that incorporates a decomposition block
into the stacked TSOperators.

As shown in Figure 2, for each TSOperator, DDFM decomposes
the intermediate hidden features, learned from the original dataset
T and the condensed dataset S, into their frequencies (i.e., trend
and seasonality) progressively. It then aligns the frequencies to re-
duce the discrepancy of the temporal patterns between the original
dataset and the condensed dataset based on the moving average.
Concretely, for the hidden features ℎ 𝑗 of the 𝑗-𝑡ℎ TSOperator, we
adopt the moving average by means of average pooling AvgPool(·)
to smooth periodic fluctuations and highlight the trend and sea-
sonality. In particular, the process of series decomposition is as
follows.

ℎ
𝑗

𝑇𝑅𝐸
= AvgPool(Padding(ℎ 𝑗 )), ℎ 𝑗SEA = ℎ 𝑗 − ℎ 𝑗TRE, (6)

where ℎ 𝑗
𝑇𝑅𝐸

and ℎ 𝑗
𝑆𝐸𝐴

are the decomposed trend and seasonality,
respectively. We employ the average pooling AvgPool(·) with the
padding operation Padding(·) to keep the time series length un-
changed. We denote the decomposition process as follows.

ℎ
𝑗

TRE, ℎ
𝑗

SEA = SeriesDecomposition(ℎ 𝑗 ) (7)

Given the extracted features ℎ 𝑗T and ℎ 𝑗S of the original dataset
T and the condensed dataset S, we decompose the corresponding
trend and seasonality according to Equation 7, We use cosine sim-
ilarity cos(·, ·) to measure similarities between the trends ℎ 𝑗TRET ,
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ℎ
𝑗

TRES
and seasonalities ℎ 𝑗SEAT , ℎ

𝑗

SEAS
, formulated as follows.

𝑐𝑜𝑠 (ℎ 𝑗TRET , ℎ
𝑗

TRES
) =

ℎ
𝑗

TRET

| |ℎ 𝑗TRET | |2
·

ℎ
𝑗

TRES

| |ℎ 𝑗TRES | |2

𝑐𝑜𝑠 (ℎ 𝑗SEAT , ℎ
𝑗

SEAS
) =

ℎ
𝑗

SEAT

| |ℎ 𝑗SEAT | |2
·

ℎ
𝑗

SEAS

| |ℎ 𝑗SEAS | |2
,

(8)

where | | · | |2 is 𝑙2-norm.
We aim to maximize the cosine similarity to reduce the discrep-

ancy of frequencies between the condensed data and the original
data. The objective function of DDFM is formulated as follows.

𝐿Fre = −
1
𝑁𝑜𝑝

𝑁𝑜𝑝∑︂
𝑗

(cos(ℎ 𝑗TRET , ℎ
𝑗

TRES
) + 𝑐𝑜𝑠 (ℎ 𝑗SEAT , ℎ

𝑗

SEAS
)), (9)

where 𝑁𝑜𝑝 is the number of TSOperators.

3.4 Curriculum Training Trajectory Matching
To enable effective dataset condensation, we propose a curriculum
training trajectory matching mechanism. Existing popular dataset
condensation methods, which are often based on gradient match-
ing [48], conduct online gradient matching step by step. These
methods have drawbacks when used for short-range matching,
causing short-sightedness issues, thus failing to imitate holistic
learning behaviors, and reducing the quality of condensed time
series data.

Motivated by an existing study [6], we match the long-term
training trajectories of the TTFM module with the offline guidance
of expert trajectories, which are pre-trained and stored in the expert
buffer. We consider the expert trajectories (i.e., the performance
of stacked TSOperators trained on the original dataset T ) as the
theoretical upper bound for the downstream application tasks. Our
goal is to obtain a condensed dataset S that will induce a similar
trajectory as that induced by the real training data T such that
models trained on T and S achieve similar performance. In addi-
tion, we propose a curriculum training trajectory query to perform
trajectory matching from similar to dissimilar expert trajectories,
which further accelerates the model training. For example, expert
trajectories derived from historical stock prices will then guide
the alignment of training trajectories extracted from a condensed
dataset. This alignment ensures that the condensed dataset’s train-
ing trajectories capture similar dynamics (such as relationships
across different time steps) to those learned from historical data.

In particular, we first train 𝐾 time series models with the same
architecture, i.e., stacked TSOperators, denoted as 𝑓T , on the original
large time series dataset. Then, we can obtain 𝐾 numbers of expert
training trajectories that have a holistic knowledge of the original
time series dataset in terms of 𝑓T ’s training process. We save these
model parameters {Θ𝑘T }

𝐾
𝑘=1 = {𝜃

𝑘
𝑒 }𝐸𝑒=1 at certain epoch intervals 𝐸

in the expert buffer B. Finally, we design a curriculum trajectory
querymechanism to sample training trajectories of the expert buffer
from similar to dissimilar for trajectory matching. Here, the pre-
training of 𝑓T is offline and can be separated from the end-to-end
time series condensation, reducing the online computation costs.

Training Trajectory Matching. We use the original dataset
to guide the network training, and the parameters trained on this

Figure 4: Curriculum Trajectory Query and Matching

dataset are called an expert trajectory. If a condensed time series
dataset is capable of forcing network training dynamics to follow
expert trajectories, the idea is that the synthetically trained network
will be located close to the model trained on the original time series
dataset and will achieve similar test performance for downstream
applications.

When sampling a pre-computed parameter trajectory 𝜃𝑒 from
the expert buffer B, we aim to minimize the distance between the
parameters ˜︁𝜃𝑒 trained on the condensed dataset and 𝜃𝑒 :

argmin
S
E𝜃𝑒∼B [𝐿tmm (𝜃𝑒 |𝑎𝑒=𝑒0 , ˜︁𝜃𝑒 |𝑏𝑒=𝑒0 )], (10)

where E is the expectation, 𝜃𝑒 |𝑎𝑒=𝑒0 , ˜︁𝜃𝑒 |𝑏𝑒=𝑒0 are the parameters with
range (𝑒0, 𝑒0 + 𝑎) and (𝑒0, 𝑒0 + 𝑏), where 𝑒0 < 𝑒0 + 𝑎 < 𝐸. More
specifically, we update the condensed TS data according to the
trajectory matching loss 𝐿𝑡𝑚𝑚 .

𝐿tmm =
| |˜︁𝜃𝑒0+𝑏 − 𝜃𝑒0+𝑎 | |22
| |˜︁𝜃𝑒0 − 𝜃𝑒0+𝑎 | |22 (11)

Note that we initialize the parameters of 𝑓𝜃S with those of 𝑓T at 𝑒0
training step, i.e., ˜︁𝜃𝑒0 = 𝜃𝑒0 , for more focused training. This way,
we align the learning behavior of 𝑓T with 𝑎-steps optimization to
𝑓𝜃S with 𝑏-steps optimization, imitating the long-term learning
behavior of time series modeling.

For the inner loop, we train 𝑓𝜃S on the condensed time series data
for optimization until the optimal ˜︁𝜃∗. Thus, the objective function
of the CT2M is defined as follows.

min
S
E𝜃 ∗𝑒∼B [𝐿𝑡𝑚𝑚 (𝜃𝑒 |

𝑎
𝑒=𝑒0 ,

˜︁𝜃𝑒 |𝑏𝑒=𝑒0 )] 𝑠 .𝑡 . ˜︁𝜃∗,S = argmin˜︁𝜃 L(𝑓˜︁𝜃 ,S),
(12)

where L(·) is the task-specific loss (e.g., Mean Square Error (MSE)).
Utilizing training trajectory matching, we can reduce computa-

tion and memory costs during the condensation process by sam-
pling pre-trained expert trajectories offline. Moreover, long-term
trajectory matching provides a more holistic and comprehensive
method to imitate the learning behaviors over the original dataset
by avoiding that the condensed dataset fits to certain optimization
steps short-sightedly.

Curriculum Training Trajectory Query. As shown in Fig-
ure 4, we propose a curriculum training trajectory query method to
further enhance the generalization of time series condensation and
accelerate the model convergence [37, 52]. Curriculum learning
aims to train a model with easy samples first, and then gradually
increases the difficulty levels. In our setting, we first query similar
training trajectories 𝜃𝑒 |𝑎𝑒=𝑒0 and ˜︁𝜃𝑒 |𝑏𝑒=𝑒0 , learned on the original and
condensed datasets, respectively, to perform trajectory matching.
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Algorithm 2: Curriculum Training Trajectory Query and
Matching
Input: A buffer B with a set of trajectories pre-trained on

the original TS dataset T parameterized by
{Θ𝑘T }

𝐾
𝑘=1; current model parameters ˜︁𝜃S on S.

Output: Trajectory matching loss 𝐿𝑡𝑚𝑚 .
1 Distance list 𝐷𝑇 ← [];
2 Pre-update ˜︁𝜃S for 𝑎-steps with Equation 13;
3 ˜︁𝜃𝑒0+𝑎 ← ˜︁𝜃𝑒0 −∑︁𝑎𝑠=1 (𝛼∇L(𝑓𝜃S ,S));
4 for Θ𝑘T ∈ {Θ

𝑘
T }

𝐾
𝑘=1 do

5 Compute the distance 𝑑𝑖𝑠𝑘 between ˜︁𝜃 |𝑎𝑒0 and Θ𝑘T with
Equation 15;

6 𝑑𝑖𝑠𝑘 ← −𝐷 (˜︁𝜃 |𝑎𝑒=𝑒0 , 𝜃𝑘 |𝑎𝑒=𝑒0 );
7 𝐷𝑇 ← (𝑘,𝑑𝑖𝑠𝑘 );
8 Rank 𝐷𝑇 in a descending order;
9 𝛽 ← 0

10 while 𝛽 < 𝐾 do
11 𝑘 ← 𝐷𝑇 [𝛽] [0]
12 𝐿𝑡𝑚𝑚 ← Sample trajectory Θ𝑘T and match the training

trajectory according to Equation 11;
13 𝛽 ← 𝛽 + 1;
14 return 𝐿𝑡𝑚𝑚

Then, we gradually increase the dissimilarity of the original data
training trajectory.

To quantify the similarity between training trajectories of the
original dataset T and the condensed dataset S, we design a min-
imally interfered retrieval sampling strategy. Specifically, given
current parameters ˜︁𝜃𝑒0 of 𝑓𝜃S learned on the condensed dataset,
trajectories {Θ𝑘T }

𝐾
𝑘=1 in buffer B, and a standard task-specific ob-

jective function min𝜃S L(𝑓𝜃S ,S), we retrieve trajectories that will
be close to ˜︁𝜃 by the update of the foreseen (i.e., future) parameters
to select more similar trajectories from B. We update the parameter˜︁𝜃𝑒0 for 𝑎-steps by gradient matching, as shown in Equation 13.

˜︁𝜃𝑒0+𝑎 = ˜︁𝜃𝑒0 − 𝑎∑︂
𝑠=1
(𝛼∇L(𝑓𝜃S ,S)), (13)

where 𝛼 is the learning rate. Then, we compute the distance 𝐷 (·, ·)
between the foreseen trajectory ˜︁𝜃 |𝑎𝑒=𝑒0 of S and sub-trajectories
𝜃𝑘 |𝑎𝑒=𝑒0 of {Θ

𝑘
T }

𝐾
𝑘=1 in B as follows.

𝑑𝑖𝑠𝑘 = −𝐷 (˜︁𝜃 |𝑎𝑒=𝑒0 , 𝜃𝑘 |𝑎𝑒=𝑒0 ) (14)

We use the cosine similarity to measure the distance 𝐷 (·).

𝐷 (˜︁𝜃 |𝑎𝑒=𝑒0 , 𝜃𝑘 |𝑎𝑒=𝑒0 ) = ˜︁𝜃 |𝑎𝑒=𝑒0
| |˜︁𝜃 |𝑎𝑒=𝑒0 | |2 · 𝜃𝑘 |𝑎𝑒=𝑒0

| |𝜃𝑘 |𝑎𝑒=𝑒0 | |2
(15)

Finally, we match current model trajectories of S with the pre-
trained trajectories in descending order based on the similarity
{𝑑𝑖𝑠𝑘 }𝐾𝑘=1.

Algorithm 2 shows the process of the proposed curriculum
training trajectory matching. Lines 1–8 concern the curriculum
trajectory query, and lines 9–13 concern the trajectory matching.

The space and time complexities of Algorithm 2 are O(𝐾 · 𝑛) and
O((𝑎 + 𝐾) · 𝑛 + 𝐾𝑙𝑜𝑔𝐾), respectively.

3.5 Overall Objective Function
The final loss contains three parts: a task-specific loss L, a fre-
quency matching loss 𝐿𝐹𝑟𝑒 , and a trajectory matching loss 𝐿𝑡𝑚𝑚 .
We combine them together and the overall loss is as follows.

𝐿𝑎𝑙𝑙 = L + 𝐿Fre + 𝐿tmm . (16)

The task-specific loss L is specific to the particular downstream
tasks to achieve a better condensed dataset tailored for the intended
use. For example, we adopt the cross-entropy loss for task-specific
optimization for time series classification tasks to optimize accuracy,
while we adopt the mean square error (MSE) loss to minimize the
discrepancy between ground truth and predicted values for time
series forecasting tasks.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup
4.1.1 Datasets. Various time series analytics are on edge devices
where the storage is limited. We aim at getting a really small con-
densed dataset. The experiments are carried out on six widely-used
time series datasets, covering four application domains: weather,
traffic, economics, and energy.
• Weather. TheWeather dataset contains 21 indicators of weather

(e.g., air temperature and humidity), which are collected in Ger-
many. The data is recorded every 10 minutes.

• Traffic. The Traffic dataset contains hourly road occupancy
rates obtained from sensors located at San Francisco freeways
from 2015 to 2016.

• Electricity. The Electricity dataset contains the hourly electric-
ity consumption of 321 clients from 2012 to 2014.

• ETT.The ETT dataset includes two hourly-level datasets (ETTh1
and ETTh2) and two 15-minute-level datasets (ETTm1 and
ETTm2). Each dataset includes 7 oil and load features of elec-
tricity transformers between July 2016 and July 2018.
We choose time series forecasting as a representative down-

stream task, as it is a popular analytics task. In Section 4.4, we also
present the performance comparison on the task of time series clas-
sification. The numbers of condensed time series are set to 500 and
50 as default for forecasting and classification tasks, respectively.
We employ the proposed stacked TSOperators as the forecasting
and classification models.

4.1.2 Baselines. We compare TimeDC with the following existing
methods that include coreset construction methods (i.e., Random,
Herding [39], and K-Center [14]), and dataset condensation meth-
ods (i.e., DC [48] and MTT [6] ).
• Random. The Random method randomly selects certain num-

bers of time series as a coreset.
• Herding. The Herding method adds time series observations

to coresets greedily [39].
• K-Center. The K-Center method first performs K-Center clus-

tering on the original datasets and then chooses observations
from each cluster [14].
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Table 1: Overall Performance Comparison on Seven Datasets
Baseline Random K-Center Herding DC MTT TimeDC Whole Dataset

Dataset 𝑃𝐿 MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Weather
96 0.731 1.256 0.452 0.687 0.478 0.677 0.361 0.514 0.295 0.244 0.257 0.188 0.239 0.182
192 0.786 1.302 0.487 0.723 0.512 0.688 0.413 0.527 0.344 0.301 0.285 0.247 0.261 0.195
336 0.794 1.311 0.524 0.756 0.554 0.712 0.444 0.567 0.368 0.328 0.330 0.287 0.282 0.241

Traffic
96 0.675 1.125 0.503 0.576 0.483 0.554 0.375 0.603 0.279 0.403 0.254 0.375 0.247 0.337
192 0.712 1.144 0.514 0.604 0.517 0.606 0.432 0.633 0.336 0.442 0.297 0.405 0.265 0.338
336 0.729 1.117 0.523 0.611 0.553 0.654 0.449 0.676 0.355 0.471 0.312 0.423 0.297 0.360

Electricity
96 0.421 0.669 0.448 0.583 0.501 0.592 0.376 0.513 0.296 0.283 0.274 0.267 0.252 0.268
192 0.450 0.743 0.476 0.601 0.534 0.628 0.419 0.532 0.315 0.337 0.285 0.294 0.239 0.255
336 0.491 0.853 0.506 0.622 0.569 0.477 0.436 0.544 0.339 0.356 0.304 0.322 0.271 0.285

ETTh1
96 0.523 0.745 0.554 0.698 0.536 0.656 0.503 0.442 0.456 0.464 0.413 0.401 0.354 0.386
192 0.557 0.786 0.578 0.722 0.589 0.698 0.552 0.508 0.504 0.471 0.436 0.428 0.362 0.355
336 0.588 0.802 0.604 0.745 0.603 0.723 0.556 0.513 0.498 0.464 0.447 0.431 0.409 0.387

ETTh2
96 0.487 0.655 0.589 0.711 0.521 0.589 0.463 0.524 0.388 0.342 0.368 0.271 0.324 0.255
192 0.509 0.673 0.605 0.732 0.553 0.621 0.488 0.536 0.416 0.384 0.389 0.302 0.332 0.257
336 0.524 0.689 0.623 0.744 0.564 0.640 0.505 0.540 0.435 0.455 0.411 0.334 0.376 0.296

ETTm1
96 0.743 1.124 0.525 0.492 0.607 0.554 0.603 0.665 0.512 0.453 0.503 0.442 0.453 0.403
192 0.764 1.245 0.566 0.510 0.628 0.571 0.597 0.647 0.563 0.501 0.512 0.465 0.464 0.432
336 0.801 1.128 0.571 0.523 0.644 0.582 0.624 0.668 0.552 0.488 0.500 0.483 0.477 0.455

ETTm2
96 0.664 0.795 0.486 0.623 0.524 0.558 0.472 0.535 0.376 0.421 0.354 0.391 0.347 0.381
192 0.687 0.804 0.512 0.643 0.549 0.583 0.488 0.567 0.453 0.479 0.401 0.421 0.358 0.403
336 0.702 0.823 0.558 0.661 0.598 0.624 0.493 0.556 0.473 0.523 0.453 0.474 0.406 0.435

• DC. The DC method employs gradient matching to perform
dataset condensation [48].

• MTT. The MTT method matches the multi-step training param-
eters of the condensed data and the original data [6].

4.1.3 Evaluation Metrics. Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) are adopted as the evaluation metrics,
which are defined as follows.

MAE =
1
𝑀

𝑀∑︂
𝑚=1
|Y�̂� − Y𝑚 |, MSE =

1
𝑀

𝑀∑︂
𝑚=1
| |Y�̂� − Y𝑚 | |2, (17)

where𝑀 is the testing data size, �̂�𝑡 is the prediction and 𝑦𝑡 is the
ground truth. The smaller the MAE and the RMSE are, the more
accurate method is. We also evaluate the efficiency of the models,
including the training and dynamic tensor memory cost.

4.1.4 Implementation Details. We implement our model using the
Pytorch framework on an NVIDIA GTX 3090 GPU. The hyper-
parameters in the model are set as follows. The patch length and
stride are set to 16 and 8, respectively. The initial learning rate
is 0.0001. The number of TSOperator layers is 3. The number of
heads in the self-attention layer is set to 16. The number of expert
trajectories in the expert buffer is set to 10 by default. ETT datasets
and other datasets are split into the training data, validation data,
and test data by the ratio of 6 : 2 : 2 and 7 : 1 : 2, respectively.
The parameters of the baseline methods are set according to their
original papers and any accompanying code. All of the models
follow the same experimental setup with prediction length 𝑃𝐿 ∈
{96, 192, 336} on all datasets.

4.2 Experimental Results
4.2.1 Overall Performance Comparison. We report the MAE and
RMSE values of the methods in Table 1. The best performance by
an existing method (Random, Herding, K-Center, DC, and MTT)
is underlined, and the overall best performance is marked in bold.
Whole Dataset indicates training on the original dataset and serves
as an approximate upper-bound performance; is marked in italics.
We use a set of stacked TSFE modules as the basic forecasting model
for each baseline. The following observations are made.

• TimeDC achieves the best results on all datasets across all pre-
diction lengths (𝑃𝐿 ∈ {96, 192, 336}). TimeDC performs better
than the best among the baselines by up to 13.49% and 26.59% in
terms of MAE and RMSE, respectively. We observe that the per-
formance improvements obtained by TimeDC on the Weather
dataset exceed those on the Traffic, Electricity, ETTh1, and
ETTh2 in most cases. This is because the Weather has much
more training data than the other datasets. TimeDC trained with
more training data results in better results. Though the ETTm1
and ETTm2 datasets have substantial training data, TimeDC
performs slightly better than baselines on these two datasets.
This is because the temporal patterns in ETTm1 and ETTm2 are
highly regular and can be captured easily by existing methods.

• The coreset methods (i.e., Random, K-Center, and Herding), per-
form worse than the condensation methods (i.e., DC, MTT, and
TimeDC), where Random has the worst performance in most
cases. This is because coreset methods are based on heuristic
metrics, that makes it hard to select representative observations
and guarantee the optimal solutions.

• A popular condensation method, MTT performs the best among
the existing methods except when 𝑃𝐿 = 96 on ETTh1, due to
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its powerful condensation capability that involves matching
multi-step parameters.
The experiment offers evidence that TimeDC is more effective

than existing coreset and dataset condensation methods.
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Figure 5: Effect of the Size of Condensed TS Dataset on Four
Datasets (𝑃𝐿 = 96)

4.2.2 Effect of the Size of Condensed Time Series Dataset. To study
the effect of the size of a condensed time series dataset, we conduct
experiments with 100, 200, 300, 500, and 800 condensed time series.
The results are shown in Figure 5. We observe that the curves first
drop significantly and then increase slightly (Figures 5(a) and 5(c))
or remain almost the same (Figures 5(b) and 5(d)). Generally, the
results demonstrate that the model performance improves with
an increase in the condensed time series data, as more condensed
data yields more training data. In addition, it shows that using
more condensed time series data for training is more likely to lead
to better performance because more useful knowledge is learned
from more data. One can also observe that TimeDC with 800 con-
densed time series performs slightly worse than TimeDC with 500
condensed time series data on the Weather and Electricity. This
may be because the patterns in these datasets are relatively simple.
Additional condensed time series data might introduce recurring
patterns, thereby making the model overfit to these patterns and
degrading performance on other data.

4.2.3 Ablation Study. To gain insight into the effects of the differ-
ent components of TimeDC, including the patching mechanism
(patch), decomposition-driven frequency matching (DDFM), and
curriculum training trajectory matching (CT2M), we evaluate three
variants:
• w/o_Patch. TimeDC without the patching mechanism.
• w/o_DDFM . TimeDC without the DDFM module.
• w/o_CT2M . TimeDC without the CT2M module.
Figure 6 shows results onWeather, Traffic, Electricity, and ETTh1.

Regardless of the datasets, TimeDC outperforms its counterparts
without the patching mechanism, the DDFMmodule, and the CT2M
module. This shows that these three components are all useful for
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Figure 6: Performance of TimeDC and Its Variants on Four
Datasets (𝑃𝐿 = 96)

effective time series dataset condensation. TimeDC obtains MAE
and RMSE reductions by up to 12.88% and 22.95%, respectively,
compared with w/o_DDFM. Further, on all datasets, w/o_CT2M
performs worst among all variants. TimeDC performs better than
w/o_CT2M by at least 44.64% and 48.49% in terms of MAE and MSE,
respectively, which indicates the effectiveness of the CT2Mmodule.

4.2.4 Cross-Architecture Performance. Next, we consider the cross-
architecture performance of TimeDC. It is important to determine
whether the condensed time series data generated by TimeDC
can be used to train an unseen network. To assess such cross-
architecture performance comprehensively, we consider three rep-
resentative state-of-the-art network architectures for time series
forecasting, including Autoformer [41], Informer [53], and Trans-
former [35]. We first synthesize condensed time series data with
TimeDC and then train these networks with the condensed time se-
ries data. The hyper parameters of these network architectures are
set based on their original papers and any accompanying code. For
TimeDC, we use a set of stacked TSFE modules as the forecasting
network.

The prediction results are given in Table 2. Overall, TimeDC
has the best performance in most cases, indicating its stable and
superior performance, especially on Traffic and Electricity. It also
illustrates the effectiveness of the TSFE module. We observe that
Autoformer performs worse than TimeDC but better than Informer
and Transformer, while the performances of Informer and Trans-
former are comparable, especially on ETTm1 and ETTm2. These
observations are in line with their performances when trained on
the original dataset [41], indicating that TimeDC learns a gener-
alized condensed time series dataset that works across different
network architectures. This is because of the powerful feature ex-
traction capabilities of the proposed stacked TSOperators, as well as
the trajectory matching that imitates the long-term training dynam-
ics of models trained on the original dataset. In addition, training
a model on the condensed dataset consumes much less time than
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Table 2: Cross-Architecture Performance Comparison

Method Metric PL Weather Traffic Electricity ETT
ETTh1 ETTh2 ETTm1 ETTm2

TimeDC
MAE 96 0.257 0.254 0.274 0.413 0.368 0.503 0.354

192 0.285 0.297 0.285 0.436 0.389 0.512 0.401

MSE 96 0.188 0.375 0.267 0.401 0.271 0.442 0.391
192 0.247 0.405 0.294 0.428 0.302 0.465 0.421

Autoformer
MAE 96 0.312 0.370 0.343 0.453 0.473 0.548 0.342

192 0.381 0.385 0.355 0.478 0.491 0.550 0.334

MSE 96 0.255 0.597 0.236 0.465 0.412 0.542 0.265
192 0.334 0.613 0.264 0.493 0.488 0.532 0.287

Informer
MAE 96 0.423 0.430 0.428 0.773 0.842 0.576 0.552

192 0.482 0.476 0.446 0.788 0.954 0.597 0.532

MSE 96 0.354 0.643 0.253 0.992 1.032 0.624 0.402
192 0.478 0.710 0.271 0.987 1.055 0.653 0.432

Transformer
MAE 96 0.389 0.412 0.398 0.632 0.506 0.563 0.555

192 0.588 0.431 0.422 0.612 0.513 0.588 0.576

MSE 96 0.344 0.578 0.267 0.785 0.579 0.615 0.479
192 0.524 0.567 0.288 0.732 0.542 0.643 0.455

Table 3: Dynamic Tensor Memory Cost on Four Datasets
Dataset DC MTT TimeDC
Weather 10.0 GB 8.9 GB 3.3 GB
Traffic 17.8 GB 13.7 GB 10.9 GB

Electricity 8.5 GB 932.5 MB 516.0 MB
ETTh1 1.9 GB 845.5 MB 280.9 MB

training that on the original dataset (see Table 4). This makes it
possible to train different candidate models using the condensed
data set when performing model selection in TSMSs, thus saving
considerable training time.
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Figure 7: Training Time Comparison

4.2.5 Training Time. As resource efficiency is important in dataset
condensation to enable scalability, especially on resource-constrained
edge computing devices, we study training time (of an epoch) for

the condensation methods. Figures 7(a) and 7(b) report the train-
ing time on Weather and ETTh1. We see that the training time of
TimeDC is much lower than those of DC and MTT, which is largely
because of the expert buffer in the CT2Mmodule that stores the pre-
computed trajectories. This indicates the feasibility of TimeDC for
model deployment in large time series dataset reduction scenarios.
We also compare the training time of TimeDC and coreset meth-
ods, which are included in the code repository, showing TimeDC
achieves training times comparable to those of coreset methods. But
coreset methods, especially Herding, need more time to construct
coresets while having worse performance. Moreover, we compare
the memory used by the dynamic (online) tensor across DC, MTT,
and TimeDC in Table 3. TimeDC is able to reduce markedly the
online memory and computation costs thanks to the training tra-
jectories precomputed offline.

Table 4: Training Time of TimeDC and Training Time on
Condensed and Original Datasets (s/epoch)

Dataset TimeDC Condensed Dataset Original Dataset
Weather 22.39 4.31 35.26
Traffic 232.34 61.94 346.76

Electricity 314.56 41.14 522.85
ETTh1 14.38 4.93 20.43

We also study training time across different network architec-
tures on Weather and ETTh1—see Figures 7(c) and 7(d). It is clear
that TimeDC consumes the least training time. TimeDC is faster
than the other methods by at least 73.0%, due to its patching mecha-
nism, which reduces the complexity of the self-attentionmechanism
through input data simplification. Thus, TimeDC has lower training
time across different networks, which still offering better perfor-
mance. Finally, we compare the training time of TimeDC and the
training time on original time series datasets based on the stacked
TSOperators, as shown in Table 4. One can see that the training
time of TimeDC is notably lower than when using original datasets,
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showing the efficiency and practicality of time series dataset con-
densation. For example, the training time of TimeDC for dataset
condensation is reduced by 39.84% compared to using the original
dataset on Electricity.

Real TS Condensed TS

(a) Weather

Real TS Condensed TS

(b) ETTh1

Figure 8: Dataset Distribution Comparison on Two Datasets

4.2.6 Case Study on Dataset Distribution. To observe the effective-
ness of TimeDC on synthesizing condensed time series datasets
that cover the original time series distribution well, we visualize
the t-SNE [34] graphs of the original time series dataset and the
condensed time series dataset on Weather and ETTh1. Figure 8
compares the dataset distributions. Blue and red dots represent
the original (i.e., real) time series dataset and the condensed time
series dataset, respectively. We sample 500 time series from the
original time series dataset for the visualization of the original time
series. We observe that the red dots are integrated with the blue
dots, indicating that the original time series and condensed time
series datasets exhibit similar distributions. This indicates that the
condensed dataset is of high quality and that the proposed method
is effective. Moreover, the condensed dataset can cover the original
dataset evenly on Weather, showing that TimeDC achieves a more
diverse and robust condensation result on Weather that exhibits
less complicated temporal patterns.

Table 5: Performance on Streaming Learning (𝑃𝐿 = 96)

Dataset Metric MAE RMSE
Method Autoformer𝑓 TimeDC Autoformer𝑓 TimeDC

Weather
B0 0.603 0.456 0.625 0.477
B1 0.694 0.512 0.873 0.533
I 0.823 0.656 1.014 0.512

Traffic
B0 0.541 0.465 0.657 0.489
B1 0.635 0.502 0.829 0.611
I 0.735 0.624 0.929 0.784

Electricity
B0 0.557 0.437 0.601 0.542
B1 0.628 0.504 0.875 0.599
I 0.844 0.689 1.046 0.702

ETTh1
B0 0.655 0.573 0.812 0.705
B1 0.712 0.604 0.933 0.742
I 1.297 0.762 2.015 0.979

4.3 Application on Streaming Time Series
In real-world scenarios, time series data is often generated incre-
mentally at edge devices that are distributed geographically. It may
be preferable to process such streaming time series data on the
edge directly to enable compliance with data access restrictions
and exploit the potential for more efficient processing and lower

Table 6: Storage Comparison on Four Datasets
Storage Weather Traffic Electricity ETTh1

Whole Dataset 2.9 GB 20.0 GB 11.2 GB 313.1 MB
Condensed TS 38.5 MB 827.5 MB 308.2 MB 12.8 MB

latencies. However, time series data keeps growing while the ca-
pacities of edge devices are limited. We perform a performance,
storage, and parameter comparison to determine whether our con-
densed time series data can be a key ingredient for streaming time
series learning, thereby addressing also the catastrophic forgetting
problem [11, 22], due to its condensed nature.

4.3.1 Performance Comparison. A naive solution to streaming time
series learning is to use only newly arrived data, not all the data
collected so far, to update model parameters continuously, called
fine-tuning. We compare the performance of TimeDC and fine-
tuning to test the effectiveness of TimeDC at streaming learning.
For the fine-tuning, we use Autoformer as the basic model, entitled
Autoformer𝑓 . We split the original dataset into a base set B and an
incremental set I with the ratio 7 : 3. B and I are further split into
training data, validation data, and test data with the ratios 7 : 1 : 2.
We first train and test the model on B. The result is denoted as B0.
Then, we update the learned model with I and test on B and I
simultaneously, with the results denoted as B1 and I, respectively.
For the model update stage of TimeDC, we condense the base set
and incorporate the condensed data into I for subsequent model
training to address concept drift in evolving time series datasets.
The results in Table 5 show that TimeDC has the best performance
in terms of MAE and RMSE when compared with Autoformer𝑓
on four datasets. For example, TimeDC outperforms Autoformer𝑓
by 18.36% ∼ 21.54% and 9.82% ∼ 32.89% in terms of MAE and
RMSE on Electricity, respectively. Autoformer𝑓 provides acceptable
MAE and RMSE results on the base set, but their performance
deteriorates on incremental set, especially on ETTh1. This indicates
that a simple fine-tuning method is insufficient, due to forgetting
problems caused by the possible concept drift. TimeDC achieves
relatively stable performance on all base sets and incremental sets,
demonstrating its superiority.

Table 7: Parameter Comparison on Four Architectures
Dataset Autoformer Informer Transformer TimeDC
Weather 10.6 M 11.4 M 10.6 M 1.8 M
Etth1 10.5 M 11.3 M 10.5 M 0.2 M

4.3.2 Storage and Parameter Comparison. As storage size is a main
concern in time series streaming learning on edge devices, we
compare the storage cost of the pre-processed whole dataset and
the condensed time series dataset using four datasets, as shown
in Table 6. Generally, the condensed time series data of TimeDC
reduces the storage space substantially compared with the whole
dataset. The condensed time series data is only 4.09% of the whole
dataset on ETTh1. Thus, TimeDC enables much lower storage
costs while achieving more promising performance on time series
streaming learning.

Another characteristic of edge devices is limited computational
capabilities. We thus compare the number of parameters of different
network architectures including TimeDC (i.e., TSFE), Autoformer,
Informer, and Transformer—see Table 7. TimeDC achieves much
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fewer parameters, indicating that the TSFE module of TimeDC
(mainly the patching mechanism) can significantly reduce computa-
tional costs. Tables 5, 6, and 7 indicate the feasibility and scalability
of TimeDC for streaming learning on edge devices.
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Figure 9: Time Series Classification Performance

4.4 Performance on Time Series Classification
It is important to show that the proposed TimeDC generalizes and
can be used in other time series tasks. We conduct experiments on
time series classification, considering three datasets (i.e., ECG200,
ElectricDevices, and FordB) of the UCR time series archive†. A set of
stacked TSFE modules with an FC is used as the basic classification
model. CrossEntropy Loss is used as the objective of time series clas-
sification. Accuracy and Recall are adopted as evaluation metrics.
The number of condensed time series is set to 50 for each dataset.
The overall performance results are provided in Figure 9. The whole
(dataset) indicates training on the whole original dataset, serving
as an approximate upper-bound performance. TimeDC performs
better than the best among the baselines. All coreset construction
methods perform worse than dataset condensation methods. Herd-
ing has the best performance in most cases among the coreset
methods. Overall, TimeDC achieves the best results on three time
series classification datasets among the baselines, which shows that
TimeDC can be extended to other time series tasks.

5 RELATEDWORK
5.1 Time Series Modeling
Time series modeling attracts increasing interest due to the grow-
ing availability of time series data and rich downstream applica-
tions [13, 19, 20, 50, 51], such as traffic prediction [31, 44], electricity
prediction [29, 53], and anomaly detection [32, 46]. Traditional time
series analytic models are mostly based on statistical models [31].
However, the statistical models cannot capture complex temporal
correlations of time series data effectively due to their limited learn-
ing capacity. Recent advances in deep learning techniques have
sparked a surge of interest in applying neural network architectures
for time series modeling [4, 43, 44, 53] outperforming traditional
statistical models, including temporal convolutional network (TCN)
based methods [9, 23], recurrent neural network (RNN) based meth-
ods [30], and transformer based methods [53, 54]. However, these
methods are mostly supervised, and large training data is required
resulting in high computational cost. At such scales, it becomes bur-
densome to store and preprocess the data and calls for specialized
equipment and infrastructure to train machine learning models on
them.
†https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

5.2 Coreset and Dataset Condensation
Coreset construction [1, 5, 7, 16, 22] is the traditional dataset reduc-
tion approach that works by identifying the most representative
training samples in an original dataset, aiming at achieving models
trained on the coreset that are provably competitive with those
built on the full dataset. Typically, coreset construction methods
choose samples that are representative for training based on heuris-
tic criteria [1, 7, 22], e.g., minimizing distance between coreset and
whole-dataset centers [1], Nonetheless, these heuristic methods
cannot guarantee optimal solutions and the presence of representa-
tive samples for the downstream task. A recent approach, dataset
condensation (or distillation) [6, 48], is proposed to address these
limitations by learning a small typical dataset that distills the most
important knowledge from a given large dataset, such that a model
trained on it can obtain comparable testing accuracy to that trained
on the original training set. Existing dataset distillation methods
have demonstrated superior performance, which can be categorized
into matching-based methods [6, 48, 49] and kernel-based meth-
ods [28, 55]. Matching-based methods generate synthetic datasets
by matching gradients [48], multi-step parameters [6], and distribu-
tions [49] between two surrogate models trained on the synthetic
dataset and the original dataset. Kernel-based methods [28, 55] treat
the synthetic dataset as the parameters to be optimized inspired by
kernel functions e.g., neural tangent kernel. However, most of the
above methods are designed for computer vision, and cannot be
applied to time series directly due to complex temporal correlations
such as seasonality and trend. In addition, these methods require
substantial storage costs.

6 CONCLUSION
We present TimeDC, a new efficient time series dataset conden-
sation framework that aims to synthesize a small but informative
condensed time series dataset summarizing an original large time se-
ries dataset. To capture complex temporal dependencies, we design
a time series feature extraction module with stacked TSOperators.
In addition, decomposition-driven frequency matching is proposed
to ensure similar temporal patterns between the condensed and
original time series datasets. To enable effective and generalized
dataset condensation, we propose a curriculum training trajectory
matching module with an expert buffer that aims to decrease the
training cost. Comprehensive experiments on original datasets of-
fer evidence that TimeDC achieves state-of-the-art accuracy and
requires fewer computational and storage resources.
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