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ABSTRACT
Accurate long-term forecasting from multivariate time series has
important real-world applications. However, achieving this so is
challenging. Thus, analyses reveal that time series that span long
durations often exhibit dynamic and disrupted correlations. State-of-
the-art methods employ attention mechanisms to capture dynamic
correlations, but they often do not contend well with disrupted
correlations, which reduces prediction accuracy. We introduce local
and global information concepts and then leverage these in a Mem-
ory Guided Transformer, called the Memformer. By integrating
patch-wise recurrent graph learning and global attention, the Mem-
former aims to capture dynamic correlations and take disrupted
correlations into account. We also integrate a so-called Alternating
Memory Enhancer into the Memformer to capture correlations be-
tween local and global information. We report on experiments that
offer insight into the effectiveness of the Memformer at capturing
dynamic correlations and its robustness to disrupted correlations.
The experiments offer evidence that the new method is capable of
advancing the state-of-the-art in forecasting accuracy on real-world
datasets.
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1 INTRODUCTION
With the spread of the Internet of Things and cyber-physical sys-
tems, we are witnessing a proliferation of multivariate time series
data. Among the many applications of such data, forecasting is
an important one [29]. A multivariate time series is a sequence of
temporally aligned values. In forecasting, previous, or historical,
values are used to predict future values. When the historical and
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forecasting horizons each exceeds 96 time steps, a time series is
often called long-term [27].

The variables in a time series are often correlated. For instance,
in Figure 1, the variables HUFL and MUFL exhibit similar temporal
patterns, as do the variables HULL and MULL. Using the Pearson
correlation coefficient to analyze the correlations between these
variables, we observe that the correlations often oscillate stably
around an average Pearson correlation coefficient. This stable oscil-
lation over time, as illustrated in Figure 1(a), represents global in-
formation in the time series. Furthermore, the correlations among
channels in each subsequence exhibit unique characteristics, which
we refer to as local information. Next, we observe two types of
correlations that occur widely in long-term multivariate time series:
dynamic correlations and disrupted correlations. In Figure 1(a),
the fluctuating correlations of the different subsequences in the
gray boxes represent the dynamic correlations. In Figure 1(b), the
shifts in the distributions of the observations cause outliers that
result in disrupted correlations. Outliers occur when the statistical
distributions of time series change due to external environmental
changes, sampling variations, system evolution, or other factors.
Such outliers are prevalent in time series. They disrupt the sta-
tionarity of time series and stable correlations, with models often
incorrectly capturing the disrupted correlations.

Long-termmultivariate time series, compared to short-term ones,
encompass a larger number of observations. This fact implies that,
across the entire long-term time series, there are more and greater
variations in dynamic correlations, and it faces a higher risk of
outliers. Thus, we study the problem of improving the accuracy
of long-term multivariate time series forecasting by enabling a
model to capture the dynamic correlations among subsequences
and mitigate the impact of disrupted correlations.

Three main branches of methods for long-term multivariate time
exist: methods based on channel-independent mechanisms [6, 25,
27], linear models [11, 21, 46], and transformer-based methods that
consider correlations [24, 36, 47]. The channel-independence and
linear models do not capture correlations among variables; there-
fore, they are unaffected by dynamically changing and disrupted
correlations. These methods result in the loss of important corre-
lation information. In contrast, assuming that capturing correla-
tions among variables is crucial for improving prediction accuracy,
transformer-based methods use attention mechanisms to capture
correlations among variables.

In spite of the notable progress achieved by current methods at
long-term forecasting, two important challenges persist.
Challenge 1: It is difficult for existing methods to capture dynamic
correlations while mitigating the impact of disrupted correlations in
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Historical Horizon Forecasting Horizon

Dynamic Correlations

Subsequences

(a) Dynamic correlations. The Average 𝑅1 = 0.995 and 𝑅2 = 0.990.

Historical Horizon Forecasting Horizon

Outlier

Disrupted Correlation

(b) Disrupted correlation. The Average 𝑅1 = 0.908 and 𝑅2 = 0.963.

Figure 1: Two samples from ETTh2 dataset. 𝑅1 is the Pearson correlation coefficient of variables HUFL and MUFL over time,
and 𝑅2 is that of HULL and MULL. These are computed using a sliding window of length 24 with step length 1.

long-term time series. Existing methods [36, 47] utilize the attention
mechanism to model correlations among variables. However, when
capturing dynamic correlations, methods also capture disrupted
correlations because the attentionmechanism tends to assign higher
weights to outliers [2]. This reduces model robustness [7].
Challenge 2: It is difficult for existing methods to understand
and establish the association between local and global information.
Global information is the collective result of all local information,
while local information is simultaneously influenced by global in-
formation. Understanding and modeling this association enables
improved capture of spatiotemporal features, thereby enhancing
prediction accuracy. Existing methods only consider global infor-
mation [24, 42] or focus solely on local information [36, 47].

To address these challenges, we propose a novel transformer
model named Memory Guided Transformer (Memformer).
Addressing challenge 1: To enable the model to capture dynamic
correlations while mitigating the impact of disrupted correlations,
the Memformer employs a two-tiered framework that integrates
patch-wise recurrent graph learning and global attention. Patch-
wise recurrent graph learning divides a time series into patches
and constructs an independent relational graph for each patch. The
aggregation mechanism of graph representation learning learns
correlations by aggregating the features of nodes and their neigh-
bors, thereby avoiding the assignment of higher weights to outliers.
Then, dynamic correlations can be captured by multiple graphs. In
particular, constructing correlations at the patch level rather than at
the timestamp level leverages multi-scale information and reduces
both time and space complexity. Next, compared to traditional at-
tention mechanisms, global attention imposes a global information
constraint that differs from the traditional explicit regularization
terms included in loss functions; instead, it implicitly acts as a reg-
ularization term on the features. When minimizing the loss, the
model must consider the loss of global information, thus mitigating
the impact of disrupted correlations and enhancing robustness.

Addressing challenge 2: To enable a model to understand and
establish the association between local and global information, we
propose a novel memory network named Alternating Memory En-
hancer (AME). Memory networks emulate the workings of human
memory by constructing a memory and enabling models to read it.
Such memories can learn local and global information from the data,
and their interactions establish associations. AME includes local and
global enhancers. The local enhancer provides local information to
the Memformer to capture dynamic correlations, while the global
enhancer offers global information to enhance model robustness.
The enhancers share a global memory, and the information they
output is influenced by this memory, thereby establishing an associ-
ation between local and global information. Further, to address the
uneven convergence speeds of the two enhancers, we propose an
alternating training mechanism that balances the different training
difficulties of the two.

In summary, we make three main contributions:

• We propose a transformer model named Memformer, which em-
ploys patch-wise recurrent graph learning to capture dynamic
correlations and global attention to mitigate the impact of dis-
rupted correlations, thereby enhancing robustness.

• We propose a memory network named AME, which establishes
the association between local and global information and pro-
vides this to the Memformer, thereby further enhancing predic-
tion accuracy.

• We report on extensive experiments, finding that the Memformer
can effectively capture dynamic correlations, is robust to outliers,
and is capable of state-of-the-art prediction accuracy.

The remainder of the paper is organized as follows. Section 2
covers preliminaries. Section 3 details the proposed methodology.
Section 4 reports on the experimental study. Section 5 reviews
related work, and Section 6 concludes.
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2 PRELIMINARIES
2.1 Multivariate Time Series Forecasting
A multivariate time series is a sequence of observations x𝑡 ∈
R𝑁 , where 𝑡 is a timestamp and 𝑁 indicates the number of vari-
ables in an observation. A model F uses a historical horizon H =

⟨x𝑡−𝐻+1, x𝑡−𝐻+2, . . . , x𝑡 ⟩ to forecast a future horizon F = ⟨x̂𝑡+1, x̂𝑡+2,
. . . , x̂𝑡+𝐹 ⟩, where 𝐻 and 𝐹 are the lengths of historical and future
horizons, respectively. The forecasting procedure is formulated as
follows.

FΦ (x𝑡−𝐻+1, x𝑡−𝐻+2, . . . , x𝑡 ) = (x̂𝑡+1, x̂𝑡+2, . . . , x̂𝑡+𝐹 ), (1)

where Φ represents the learnable parameters.

2.2 Graph Convolutional Network
A graph 𝐺 = (V, E) comprises of a set of nodes V , and a set of
edges E. In time series forecasting, graph nodes represent variables,
and adjacentmatrixG captures the correlations among the variables.
Thus, if the nodes of two variables are not connected by an edge, the
variables are uncorrelated. We employ a self-adaptive graph learn-
ing component [37]. This is because correlations among variables
in multivariate time series are often hidden. A self-adaptive adja-
cency matrix G is learned during training. The learning procedure
is defined as follows.

G = softmax(ReLU(EET)), (2)

where softmax(ReLU(·)) is a random walk that normalizes the non-
negative part of the matrix product of a learnable embedding matrix
E and its transposed matrix ET. Graph Convolutional Networks
utilize the diffusion convolution operation to allow features to
diffuse through the graph structure to the variables represented by
the nodes. It is defined as follows.

C =

𝐾∑︁
𝑘=1

G𝑘HW, (3)

where 𝐾 denotes the number of aggregations used in the diffusion
convolution operation, determining the extent to which features
of variables are propagated through the graph structure. Next, H
denotes input temporal features, C denotes the correlated features
output by the graph convolution, and W denotes the learnable
parameters.

2.3 Self-attention
Self-attention is a core component of transformer-based models,
allowing a feature at a certain position in a sequence to capture
the relevances of features at other positions in the sequence. This
mechanism enhances a model’s ability to understand and process se-
quences by considering the interdependencies among the elements
in the sequence. Given an input sequenceH = ⟨x𝑡−𝐻+1, x𝑡−𝐻+2, . . . , x𝑡 ⟩,
the self-attention computation is defined as follows.

Attention(Q,K,V) = softmax

(
QKT√︁
𝐷𝑘

)
V, (4)

where Q, K, and V denote the query, key, and value matrices ob-
tained by linear transformations of the input sequence H. Further,√︁
𝐷𝑘 is a scaling factor used to mitigate potential vanishing and ex-

ploding gradient issues caused by large dot products, and softmax(·)

is the softmax function, which is used to convert similarities into
attention scores. The attention score serves as weights applied to
the value vectors in V to produce the final output.

3 METHODOLOGY
This section details the proposedMemformer. Section 3.1 introduces
the backbone of the Memformer, focusing on how the Memformer
utilizes the historical horizon to predict the forecasting horizon.
Section 3.2 provides details on the Memformer encoder, including
how patch-wise recurrent learning captures dynamic correlations
using local information and how the global attention utilizes global
information to enhance the robustness. Section 3.3 covers the AME,
including how the local and global enhancers provide local and
global information, and the alternating training mechanism of AME.

3.1 Memformer Backbone
As illustrated in Figure 2, the input to the Memformer consists of
the historical horizon H, and the learnable parameter set of the
memory network Γ. Its outputs are the forecasting horizon F̂ and
the learned parameter sets Θ, Φ, and Γ, where Θ, Φ, and Γ denote
the parameter sets for patch-wise recurrent graph learning, global
attention, and AME, respectively.

Preprocessing Linear Head

Historical Horizon H Forecasting Horizon F!

Patch-wise Recurrent 
Graph Learning 𝒢𝚯($)

Global Attention 
𝒯𝚽($)

Memformer Encoder

Section 3.2

AME Local 
Enhancer 𝒜#$%(𝚪)

AME Global 
Enhancer	𝒜&#$(𝚪)

Alternating
Training

Alternating Memory Enhancer

Section 3.3
Global 

Information 𝐂!"#
Local 

Information E

Forecasting
Loss ℒ(F!, F)

𝚯,𝚽

𝚪

𝐂#$%

H’ F’

Figure 2: Memformer backbone. The Memformer Encoder
takes the preprocessed feature H′ as input, and the output
representation F′ is used for prediction. The AME provides
both local and global information to theMemformer Encoder
to enhance the quality of features. To ensure stable training,
the local and global enhancers are trained alternately.

The preprocessing for the input historical horizon H involves
instance normalization. Applying instance normalization individ-
ually to each time series mitigates the issue of internal covariate
shift, enabling models to more effectively grasp the intricate tem-
poral dynamics inherent in time series. Instance normalization is
defined as H′ = (H − 𝜇)/

√︁
(𝜎2 + constant), where H′ denotes the

preprocessed feature, 𝜇 and 𝜎 denote the mean and variance of the
sample, respectively, and “constant” is a small positive real number
included to ensure numerical stability.

The preprocessed feature H′ enters the Memformer encoder,
which performs patch-wise recurrent graph learning GΘ (·) and
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global attention TΦ (·). The patch-wise learning captures dynamic
correlations among the input features H′ using the local informa-
tion E provided by the AME local enhancer Aloc (·), outputting
local correlated features Cloc. Global attention utilizes the global
information Cglo provided by the AME global enhancer Aglo (·) to
impose constraints on the input features Cloc to enhance model
robustness, with the output features denoted as F′. To ensure stable
training of AME, we train its local and global encoders alternately.
For example, during the first iteration, we freeze the parameters
of the global encoder and train the parameters of the Memformer
Encoder and the local encoder. In the next iteration, we freeze
the parameters of the local encoder and train the parameters of
the Memformer Encoder and the global encoder. This process pro-
ceeds until all parameters converge. Via the collaboration of the
Memformer encoder and AME, the Memformer captures dynamic
correlations and also integrates robust constraints into the repre-
sentation F′. Sections 3.2 and 3.3 cover the Memformer encoder
and AME.

The representation F′ undergoes a linear head, which maps the
model’s extracted features to the target output space, defined as
F̂ = WF′ + b, where W denotes the weights of the linear layer and
b is a bias term. Then, the forecasting horizon F̂ and the ground
truth F are used to measure the discrepancy between the model’s
predictions and the actual target values. Specifically, we use the
mean absolute error (MAE) loss. The loss for each time series is
gathered and averaged over 𝑁 variables to get the overall objective
loss, as follows.

L(F̂, F) = E

(
1
𝑁

𝑁∑︁
𝑛=1
|F̂(𝑛)
𝑡 :𝑡+𝐹 − F(𝑛)

𝑡 :𝑡+𝐹 |1

)
, (5)

where E(·) denotes the expectation function used to obtain the
expected value of the L1 norm | · |1 between the forecasting horizon
F̂(𝑛)
𝑡 :𝑡+𝐹 and the ground truth F(𝑛)

𝑡 :𝑡+𝐹 for the 𝑛-th variable.

3.2 The Memformer Encoder
Delving into the details of the Memformer encoder, we focus on the
principles of patch-wise recurrent graph learning and global atten-
tion. Specifically, we elaborate on how patch-wise recurrent graph
learning effectively captures dynamic correlations. Moreover, we
consider how global attention uses global information to enhance
robustness.

3.2.1 Patch-wise Recurrent Graph Learning. The capture of corre-
lations in long-term multivariate time series are crucial to achieve
accurate forecasting due to the inherent relationships among vari-
ables that evolve over time. Patch-wise recurrent graph learning
constructs dynamic correlations at the patch level. We incorporate
a recurrent structure among patches to capture complex temporal
dynamics.

In Figure 3, the left side represents the patch-wise recurrent
graph learning of the Memformer, which takes a preprocessed mul-
tivariate time series H′ = ⟨x′1, x

′
2, . . . , x

′
𝐻
⟩ ∈ R𝐻×𝑁 and a series

of learnable local information E = ⟨E1, E2, . . . , E𝑃 ⟩ ∈ R𝑃×𝑁×𝑀 as
inputs, where 𝑃 is the number of patches into which a time series is
segmented, and𝑀 denotes the dimensionality of the information. It
outputs a local correlated feature Cloc = ⟨Cloc1,Cloc2, . . . ,Cloc𝑃 ⟩ ∈

R𝑃×𝑇×𝑁 , which diffuses the correlations among multiple variables,
and where𝑇 is the dimensionality of each correlated feature. Before
the diffusion convolution layer, we segment the time series into
patches and obtain corresponding graphs, as the input to the dif-
fusion convolution layer consists of patch-wise temporal features
and graphs.

Using a stride 𝑆 and a patch size 𝑇 , we segment H′ into patches
denoted as P = ⟨P1, P2, . . . , P𝑃 ⟩, where the 𝑖-th patch is P𝑖 ∈ R𝑇×𝑁 .
When 𝑆 ≥ 𝑇 , patches are disjoint. Hence, the number of patches 𝑃
is 𝑃 = ⌊𝐻−𝑇

𝑆
⌋ + 2. Then, unlike traditional adaptive graph learning,

we acquire graphs corresponding to each patch. For the 𝑖-th patch,
the corresponding graph G𝑖 ∈ R𝑁×𝑁 is defined as follows.

G𝑖 = softmax(ReLU(E𝑖ET𝑖 )), (6)

where E𝑖ET
𝑖
is the matrix product of the local information E𝑖 and

the transposed local information ET
𝑖
.

After obtaining a series of temporal features P = ⟨P1, P2, . . . , P𝑃 ⟩
and their corresponding graphs G = ⟨G1,G2, . . . ,G𝑃 ⟩, these fea-
tures are processed through a recurrent diffusion convolutional
layer to capture the dynamic correlations. Apart from the correla-
tions among variables, temporal dynamics exist among the patches.
Thus, apart from utilizing the diffusion convolution operation, we
use a gated recurrent unit, a recurrent neural network, to capture
the temporal dynamics among patches. The whole procedure is
defined as follows.

𝑧𝑖 = sigmoid(
𝐾∑︁
𝑘=1

G𝑘𝑖 [P𝑖 ,Cloc(𝑖−1) ]Θ𝑧 + b𝑧)

𝑟𝑖 = sigmoid(
𝐾∑︁
𝑘=1

G𝑘𝑖 [P𝑖 ,Cloc(𝑖−1) ]Θ𝑟 + b𝑟 )

C̃𝑖 = tanh(
𝐾∑︁
𝑘=1

G𝑘𝑖 [P𝑖 , (𝑟𝑖 ⊙ Cloc(𝑖−1) )]ΘC̃ + bC̃)

Cloc𝑖 = 𝑧𝑖 ⊙ Cloc(𝑖−1) + (1 − 𝑧𝑖 ) ⊙ C̃𝑖 ,

(7)

where sigmoid(·) and tanh(·) denote the sigmoid and hyperbolic
tangent activation functions; Θ = {Θ𝑧 ,Θ𝑟 ,ΘC̃𝑖

, b𝑧 , b𝑟 , bC̃𝑖
} denotes

the set of learnable parameters within the recurrent units; 𝑧𝑖 and 𝑟𝑖
denote the update and reset gates, respectively, of the 𝑖-th unit; and
Cloc𝑖 denotes the local correlated feature of the 𝑖-th patch. At this
point, the Memformer encoder captures each dynamic correlation
at each patch and utilizes a recurrent structure to capture their
temporal dynamics.

3.2.2 Global Attention. Modeling correlations independently for
each patch increases the risk of the model being affected by outliers.
Applying constraints similar to regularization terms to features
using global information is an effective way to mitigate the impact
of disturbed correlation. Therefore, we introduce global attention,
which utilizes the global information provided by AME to impose
constraints on the attention scores. The attention scores with global
constraints act on the valuematrix, producingmore robust temporal
features.

The right side in Figure 3 shows the global attention of the Mem-
former, with its input being the transposed local correlated features
CT
loc = ⟨C(1)loc ,C

(2)
loc , . . . ,C

(𝑁 )
loc ⟩ ∈ R𝑁×𝑇×𝑃 and global information
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Figure 3: The Memformer encoder.

Cglo = ⟨C(1)glo ,C
(2)
glo , . . . ,C

(𝑁 )
glo ⟩ ∈ R𝑁×𝐷glo×𝑃 , along with the posi-

tion encoding of the patches Φpos ∈ R𝐷att×𝑃 , where 𝐷glo and 𝐷att
denote the hyperparameters for the tensor dimensionalities of Cglo
and Φpos, repectively. The output of the global attention is the rep-
resentation F′ ∈ R𝐹

′×𝑁 , where 𝐹 ′ is the temporal dimension of
the representation. The representation F′ is then passed through
the linear head and flattened to match the forecasting horizon with
length 𝐹 .

The transposed local correlated features CT
loc first pass a linear

transformation with an added position embedding Φpos to map the
features into a latent space of dimensionality𝐷att. Then, the features
transformed through the linear operation are converted into the
query, key, and value matrices for the global attention, denoted
as Q ∈ R𝑁×𝜆×𝑃×𝐷att , K ∈ R𝑁×𝜆×𝑃×𝐷att , and V ∈ R𝑁×𝜆×𝑃×𝐷att ,
respectively, where 𝜆 is the number of heads. The transformation
to get the 𝑗-th head and 𝑛-th variable of matrices Q(𝑛)

𝑗
, K(𝑛)

𝑗
, and

V(𝑛)
𝑗

is defined as follows.

Q(𝑛)
𝑗

= [Φ𝑃C(𝑛)loc + 𝚽pos]TΦ𝑄
𝑗

K(𝑛)
𝑗

= [Φ𝑃C(𝑛)loc + 𝚽pos]TΦ𝐾𝑗

V(𝑛)
𝑗

= [Φ𝑃C(𝑛)loc + 𝚽pos]TΦ𝑉𝑗 ,

(8)

where Φ𝑃 ∈ R𝐷att×𝑇 denotes the learnable parameter for the lin-
ear transformation, and Φ𝑄

𝑗
∈ R𝐷att×𝐷𝑘 , Φ𝐾

𝑗
∈ R𝐷att×𝐷𝑘 , and

Φ𝑉
𝑗
∈ R𝐷att×𝐷att represent the learnable parameters that gener-

ate the query, key, and value matrices, respectively, where 𝐷𝑘 is
the dimensionality of the query and key matrices.

The global attention consists of 𝐿 residual-connected attention
blocks, as illustrated in Figure 3. Unlike the multi-head attention
block in the vanilla transformer, we introduce global information

Cglo when integrating features from the query, key, and value ma-
trices. The process is defined as follows.

O(𝑛)
𝑗

= Attention(Q(𝑛)
𝑗
,K(𝑛)

𝑗
,V(𝑛)
𝑗
,G(𝑛)glo )

=

softmax ©«
Q(𝑛)
𝑗

K(𝑛)T
𝑗√︁

𝐷𝑘

ª®¬ + 𝛼C(𝑛)Tglo Φglo

 V(𝑛)
𝑗
,

(9)

where O(𝑛)
𝑗
∈ R𝑃×𝐷att is the output of the attention operation,

Φglo ∈ R𝐷glo×𝑃 is a linear transformation that maps the global
information to the latent space of the attention, 1√

𝐷𝑘
is the scale

operation that scales the attention score to stabilize gradients during
training, and 𝛼 is a hyperparameter that controls the importance
of global information. The output O(𝑛)

𝑗
of the attention operation

needs to pass the two layers of a fully connected feedforward neural
network, defined as follows.

H𝑙FF = ReLU(O(𝑛)
𝑗

Φ𝑙FF1 + b𝑙FF1)Φ
𝑙
FF2 + b𝑙FF2, (10)

where ReLU(·) denotes the Rectified Linear Unit activation function,
H𝑙FF is the output hidden states of the 𝑙-th attention block, Φ𝑙FF1
and Φ𝑙FF2 are learnable parameter matrices, and b𝑙FF1 and b𝑙FF2 are
learnable biases in the 𝑙-th attention block. Residual connections
exist between the blocks in the global attention, and they are defined
as follows.

H𝑙FF = H𝑙−1FF + LayerNorm(Attention(H
𝑙−1
FF )), (11)

where LayerNorm(·) represents the layer normalization that aims
to reduce internal covariate shift and accelerate training. After the 𝐿
attention blocks, the global attention finally outputs the representa-
tion F′. In the global attention, all learnable parameters are grouped
into a set Φ = {Φpos,Φ𝑃 ,Φ

𝑄

𝑗
,Φ𝐾

𝑗
,Φ𝑉

𝑗
,Φglo,ΦFF1,ΦFF2, bFF1, bFF2}

for convenience of description.
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3.3 Alternating Memory Enhancer
We proceed to detail the AME. Specifically, we describe how the
AME’s local and global enhancers construct local and global infor-
mation. Additionally, we describe the alternating training mecha-
nism.

3.3.1 Structure of the AME. The local and global information are
crucial for the Memformer encoder to be able to capture dynamic
correlations and to be robust to outliers. We propose a novel com-
ponent, AME, a memory network designed for understanding and
establishing associations between local and global information. It
includes local and global enhancers.

The local enhancer takes as input the global memory Γglo ∈
R𝑀×𝐷glo and the local memory Γloc = {Γloc1, Γloc2, . . . , Γloc𝑖 , . . . ,
Γloc𝑃 } ∈ R𝑃×𝑁×𝐷glo , and its output is the local information E.
These memories are learnable parameters. The right side of Figure 4
illustrates the generation local information E𝑖 corresponding to
the 𝑖-th patch in the patch-wise recurrent graph learning, and the
process is defined as E𝑖 = Γloc𝑖ΓTglo. The local information requires
local and global memories because each patch’s local correlation
possesses local specificity and global universality. The construction
method can integrate these two types of memories.
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Figure 4: Alternating Memory Enhancer.

The global enhancer receives the local correlated features Cloc
and the global memory Γglo as input and then outputs the global
information Cglo. The global memory Γglo shared between the local
and global enhancers ensures that the local enhancer is constrained
by the global information when generating local information. The
left side of Figure 4 depicts how the 𝑛-th variable of the local corre-
lated features C(𝑛)loc is transformed into the corresponding global in-

formation C(𝑛)glo through the global enhancer. C(𝑛)loc ∈ R
𝑃×𝑇 initially

undergoes a linear transformation to project the tensor dimensions
into the space of the global memory. It is defined as follows.

I(𝑛) = C(𝑛)loc Γmem + bmem, (12)

where I(𝑛) ∈ R𝑃×𝑀×𝐷glo denotes the output of the linear transfor-
mation, representing an inquiry tensor used to obtain the weights
corresponding to the current inquiry across the 𝑀 entries in the
global memory. Γmem ∈ R𝑇×𝑀×𝐷glo and bmem represent the learn-
able parameter tensor and bias in the linear transformation, respec-
tively. The process of using the inquiry tensor I(𝑛) to obtain the
weights is defined as follows.

a(𝑛)𝑚 =
exp(I(𝑛)𝑚 ΓTglo [𝑚])∑𝑀
𝑚=1 exp(I

(𝑛)
𝑚 ΓTglo [𝑚])

, (13)

where a(𝑛)𝑚 ∈ R𝑃×1 denotes the weight of the current inquiry for the
𝑚-th memory, I(𝑛)𝑚 ∈ R𝑃×𝐷glo indicates the inquiry of the inquiry
tensor for the𝑚-th memory, Γglo [𝑚] ∈ R1×𝐷glo represents the𝑚-th
entry of the global memory, and exp(·) is an exponential function.
The 𝑛-th global information C(𝑛)glo is the weighted sum of the top 𝜅
entries from the global memory with the highest weights for the
current inquiry. The process is defined as follows.

C(𝑛)glo =

𝜅∑︁
𝑚=1

top(a(𝑛) )Γglo [𝑚], (14)

where function top(·) extracts the top 𝜅 entries based on their
weights, facilitating a focus on the most pertinent information.
This function enhances the salience of crucial data while mitigating
the impact of less significant or extraneous data.

3.3.2 Alternating Training. Due to the generation of local infor-
mation needing local and global memories, each iteration updates
both the local and global memories simultaneously, potentially lead-
ing to unstable training and reduced model robustness. Therefore,
AME applies an alternating training mechanism: in each iteration
of model training, AME alternates between activating the training
of local and global memories to stabilize the training process and
enhance robustness.

As shown in Algorithm 1, the input to AME is the historical
horizon and ground truth H and F, the local and global memories
Γloc and Γglo, and hyperparameters including the local training
step 𝜖 , and the learning rates of the local and global enhancers 𝜂loc
and 𝜂glo. Its output includes the local and global information E and
Cglo, the learned local and global memories Γloc and Γglo, the tensor
Γmem, and the bias bmem.

AME, as indicated in the first line in Algorithm 1, randomly
initializes its learnable parameters E, Γglo, Γloc, Γmem, and bias bmem.
Then, each epoch of AME training is divided into two phases, as
indicated by lines 2 to 11 and 12 to 20: updating the local memory
Γloc and the global memory Γglo, along with the tensor Γmem and
the bias bmem. These phases utilize different learning rates, 𝜂loc and
𝜂glo, to control the magnitude of parameter updates for the two
types of memories. Specifically, given the higher dimensionality of
the local memory compared to the global memory and the varying
difficulty of their training, we introduce a hyperparameter, the local
learning step 𝜖 , to allowmore update iterations for the localmemory,
thereby balancing the convergence rates of the two memories.
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Algorithm 1 AME alternating training
Input: Historical horizon and ground truth H, F; local and global memories Γloc , Γglo ;

local training step 𝜖 ; learning rates 𝜂loc , 𝜂glo for local and global enhancers
Output: Local and global information E, Cglo ; learned local and global memories Γloc ,

Γglo , tensor Γmem , and bias bmem
1: Initialisation: Initializing local and global memories Γloc , Γglo , tensor Γmem , and

bias bmem randomly
2: while Γloc , Γglo , Γmem , and bmem are not converged do
3: for iteration = 0 to 𝜖 do
4: H′ ← Preprocessing(H)
5: E← Aloc (Γloc, Γglo )
6: Cloc ← GΘ (H′, E)
7: Cglo ← Aglo (Cloc, Γglo )
8: F′ ← TΦ (Cloc,Cglo )
9: F̂← LinearHead(F′ )
10: Γloc ← Γloc − 𝜂𝑙𝑜𝑐∇ΓlocL(F̂, F)
11: end for
12: H′ ← Preprocessing(H)
13: E← Aloc (Γloc, Γglo )
14: Cloc ← GΘ (H′, E)
15: Cglo ← Aglo (Cloc, Γglo )
16: F′ ← TΦ (Cloc,Cglo )
17: F̂← LinearHead(F′ )
18: Γglo ← Γglo − 𝜂𝑔𝑙𝑜∇ΓgloL(F̂, F)
19: Γmem ← Γmem − 𝜂𝑔𝑙𝑜∇ΓmemL(F̂, F) ,
20: bmem ← bmem − 𝜂𝑔𝑙𝑜∇bmemL(F̂, F)
21: end while

4 EXPERIMENTAL STUDY
4.1 Experimental Setup
4.1.1 Datasets and Evaluation Metrics. We perform experimental
studies on seven benchmark datasets.
Weather1:Weather records meteorological data throughout one
year at a sampling frequency of once per 10 minutes.
Traffic2: Traffic records congestion data from the San Francisco
Bay area. This dataset has a sampling frequency of once per hour
and covers 48 months.
Electricity3: Electricity records the electricity consumption with a
sampling frequency of once per 15 minutes.
ETTDatasets4: ETT data comprising four datasets: ETTh1, ETTh2,
ETTm1, and ETTm2, which record the oil temperature and other
associated variables. The sampling rates of ETTh1 and ETTh2 are
once per hour, while ETTm1 and ETTm2 are once every 15 minutes.

Table 1: Dataset related statistics.

Dataset 𝑁 Length Split Ratio 𝐻 𝐹

Weather 21 52696 7:1:2 336 96∼720
Traffic 862 17544 7:1:2 336 96∼720

Electricity 321 26304 7:1:2 336 96∼720
ETTh1 7 17420 7:1:2 336 96∼720
ETTh2 7 17420 7:1:2 336 96∼720
ETTm1 7 69680 7:1:2 336 96∼720
ETTm2 7 69680 7:1:2 336 96∼720

Table 1 presents statistics of the seven datasets. Here, 𝑁 is the
total count of variables, while “Length” is the count of timestamps.
1Weather Dataset (last accessed on October 18, 2024).
2Traffic Dataset (last accessed on October 18, 2024).
3Electricity Dataset (last accessed on October 18, 2024)
4ETT Datasets (last accessed on October 18, 2024)

The proportion of data allocated for training, validation, and testing
is given by “Split Ratio.” The lengths of the historical and forecasting
horizons are denoted by 𝐻 and 𝐹 , respectively.
Metrics: To evaluate the prediction performance of Memformer
and other baseline models, we utilize widely recognized time series
forecasting measures, namely mean absolute error (MAE) and mean
squared error (MSE) [27, 46].

4.1.2 Baselines. We select models proficient at long-term sequence
forecasting as baselines. The channel-independence and linear mod-
els do not account for correlation among multiple variables. The
transformer models based on channel-independent mechanisms
are ModernTCN [25] and PatchTST [27], while the linear models
include DLinear and NLinear [46]. We also consider long-term time
series forecasting models that can capture correlations, including
iTransformer [24], CARD [36], Crossformer [47], and MTGNN [42].

4.1.3 Implementation Details. All experiments are conducted on
a server with Linux 18.04, an Intel Xeon W-2155 CPU @ 3.30GHz,
and two RTX GPUs with 24GB memory.

We use grid search combined with a greedy strategy to identify
the optimal hyperparameters for the above methods. This strat-
egy involves adjusting one hyperparameter at each training pro-
cedure while keeping the remaining hyperparameters constant.
Additionally, we carefully tune the hyperparameters based on the
recommendations of the baseline models. We utilize the Adam op-
timizer with learning rates 𝜂, 𝜂𝑙𝑜𝑐 , and 𝜂𝑔𝑙𝑜 chosen from the set
{0.01, 0.003, 0.001, 0.0003, 0.0001}. The entries of global memory𝑀
are chosen among {2, 4, 8, 16, 32, 64}. The dimension of the global
memory 𝐷glo is chosen among {4, 8, 16, 32, 64, 128}. The weight of
global information 𝛼 is chosen among {0.1, 0.2, 0.5, 1.0, 2.0}. Addi-
tionally, the local learning step 𝜖 is chosen among {1, 2, 3, 5, 10}.

4.2 Comparison of Forecasting Accuracy
We compare the prediction accuracy of all methods on publicly
available real-world benchmark datasets. The experimental setup
follows that of the baselines, where the length 𝐻 of the historical
horizon is fixed at 336 and the forecasting horizon 𝐹 is set to 96,
192, 336, or 720. The results are shown in Table 2. The best result is
in boldface, while the second-best result is underlined. Memformer
achieves the best prediction accuracy across almost all datasets.

Models that capture correlations, such as iTransformer, CARD,
Crossformer, and MTGNN, achieve some second-best results when
the length of the historical horizon is up to 192, indicating that
correlation contributes to prediction accuracy. However, as the
length of the historical horizon increases, the models face more
complex and dynamic correlations and greater risks of distribution
shift outliers, leading to a rapid decay in prediction accuracy.

Baselines that do not capture correlations include transformer
models based on channel-independence mechanisms and linear
models. Transformer models based on channel-independence mech-
anisms effectively incorporate multiscale information and achieve
many of the second-best results. However, as they do not capture
correlations, their prediction accuracy is not as high as that of
Memformer. The structures of linear models are simple, making it
difficult to achieve good prediction accuracy on large-scale datasets
such as Traffic and Electricity.
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Table 2: Forecasting comparison of methods. Best results are in boldface, and second-best results are underlined.

Models Memformer ModernTCN PatchTST NLinear DLinear iTransformer CARD Crossformer MTGNN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.151 0.185 0.155 0.201 0.152 0.199 0.182 0.232 0.176 0.237 0.174 0.214 0.150 0.188 0.145 0.211 0.342 0.385
192 0.197 0.231 0.198 0.245 0.197 0.243 0.225 0.269 0.220 0.282 0.221 0.254 0.202 0.238 0.190 0.259 0.427 0.445
336 0.247 0.274 0.251 0.286 0.249 0.283 0.271 0.301 0.265 0.319 0.278 0.296 0.260 0.282 0.259 0.326 0.506 0.523
720 0.318 0.326 0.321 0.336 0.320 0.335 0.338 0.348 0.323 0.362 0.358 0.347 0.343 0.353 0.332 0.382 0.510 0.527

Traffic

96 0.361 0.230 0.368 0.253 0.367 0.251 0.410 0.279 0.410 0.282 0.395 0.268 0.419 0.269 0.511 0.292 0.516 0.308
192 0.381 0.239 0.384 0.261 0.385 0.259 0.423 0.284 0.423 0.287 0.417 0.276 0.443 0.276 0.523 0.311 0.534 0.324
336 0.394 0.245 0.397 0.270 0.398 0.265 0.435 0.290 0.436 0.296 0.433 0.283 0.460 0.283 0.530 0.300 0.540 0.335
720 0.432 0.267 0.440 0.296 0.434 0.287 0.464 0.307 0.466 0.315 0.467 0.302 0.490 0.299 0.573 0.313 0.557 0.343

Electricity

96 0.130 0.217 0.131 0.228 0.130 0.222 0.141 0.237 0.140 0.237 0.132 0.228 0.141 0.233 0.186 0.281 0.202 0.314
192 0.147 0.232 0.150 0.242 0.148 0.240 0.154 0.248 0.153 0.249 0.154 0.249 0.160 0.250 0.208 0.300 0.266 0.349
336 0.162 0.249 0.171 0.265 0.167 0.261 0.171 0.265 0.169 0.267 0.172 0.267 0.173 0.263 0.323 0.369 0.328 0.373
720 0.199 0.281 0.203 0.294 0.202 0.291 0.210 0.297 0.203 0.301 0.204 0.296 0.197 0.284 0.404 0.423 0.422 0.410

ETTh1

96 0.362 0.385 0.382 0.401 0.375 0.399 0.374 0.394 0.375 0.399 0.386 0.405 0.383 0.391 0.377 0.419 0.401 0.442
192 0.386 0.404 0.420 0.424 0.414 0.421 0.408 0.415 0.405 0.416 0.441 0.436 0.435 0.420 0.410 0.439 0.587 0.601
336 0.402 0.421 0.427 0.434 0.431 0.436 0.429 0.427 0.439 0.443 0.487 0.458 0.479 0.442 0.440 0.461 0.736 0.643
720 0.436 0.452 0.450 0.461 0.449 0.466 0.440 0.453 0.472 0.490 0.503 0.491 0.471 0.461 0.519 0.524 0.916 0.750

ETTh2

96 0.264 0.321 0.276 0.342 0.274 0.336 0.277 0.338 0.289 0.353 0.297 0.349 0.281 0.330 0.770 0.529 0.735 0.643
192 0.314 0.358 0.340 0.381 0.339 0.379 0.344 0.381 0.383 0.418 0.380 0.400 0.363 0.381 0.848 0.657 0.859 0.717
336 0.312 0.364 0.329 0.378 0.331 0.380 0.357 0.400 0.448 0.465 0.428 0.432 0.411 0.418 0.859 0.674 1.050 0.849
720 0.374 0.410 0.392 0.433 0.379 0.422 0.394 0.436 0.605 0.551 0.427 0.445 0.416 0.431 1.221 0.825 1.336 0.963

ETTm1

96 0.285 0.336 0.292 0.346 0.290 0.342 0.306 0.348 0.299 0.343 0.334 0.368 0.316 0.347 0.320 0.373 0.428 0.446
192 0.323 0.358 0.332 0.368 0.332 0.369 0.349 0.375 0.335 0.365 0.377 0.391 0.363 0.370 0.372 0.411 0.551 0.505
336 0.365 0.381 0.367 0.393 0.366 0.392 0.375 0.388 0.369 0.386 0.426 0.420 0.392 0.390 0.429 0.441 0.706 0.622
720 0.419 0.409 0.422 0.429 0.420 0.424 0.433 0.422 0.425 0.421 0.491 0.459 0.458 0.425 0.573 0.531 0.982 0.764

ETTm2

96 0.160 0.245 0.166 0.256 0.165 0.255 0.167 0.255 0.167 0.260 0.180 0.264 0.169 0.248 0.254 0.348 0.442 0.483
192 0.215 0.285 0.222 0.293 0.220 0.292 0.221 0.293 0.224 0.303 0.250 0.309 0.234 0.292 0.370 0.433 0.642 0.570
336 0.263 0.317 0.276 0.327 0.278 0.329 0.274 0.327 0.281 0.342 0.311 0.348 0.294 0.339 0.511 0.527 0.726 0.658
720 0.350 0.372 0.365 0.383 0.367 0.385 0.368 0.384 0.397 0.421 0.412 0.407 0.390 0.388 0.901 0.689 1.139 0.862

Table 3: Ablation study on Memformer.

Models Memformer w/o Graph w/o Recurrent w/o Local w/o Global w/o Sharing w/o Alternating
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.151 0.185 0.152 0.197 0.155 0.194 0.159 0.204 0.153 0.195 0.151 0.187 0.155 0.199
192 0.197 0.231 0.200 0.235 0.204 0.248 0.199 0.255 0.202 0.238 0.199 0.234 0.202 0.235
336 0.247 0.274 0.252 0.279 0.254 0.298 0.257 0.307 0.251 0.284 0.252 0.279 0.255 0.286
720 0.318 0.326 0.334 0.341 0.332 0.355 0.364 0.380 0.323 0.333 0.324 0.335 0.334 0.360

Electricity

96 0.130 0.217 0.133 0.226 0.132 0.224 0.132 0.243 0.131 0.223 0.131 0.223 0.138 0.235
192 0.147 0.232 0.154 0.245 0.155 0.248 0.153 0.250 0.150 0.238 0.152 0.241 0.158 0.252
336 0.162 0.249 0.169 0.260 0.174 0.268 0.179 0.270 0.169 0.258 0.170 0.261 0.181 0.274
720 0.199 0.281 0.208 0.299 0.220 0.317 0.231 0.341 0.205 0.293 0.210 0.300 0.229 0.339

ETTh2

96 0.264 0.321 0.271 0.329 0.269 0.326 0.322 0.369 0.266 0.324 0.266 0.324 0.294 0.347
192 0.314 0.358 0.328 0.365 0.325 0.362 0.458 0.478 0.320 0.364 0.318 0.361 0.372 0.401
336 0.312 0.364 0.329 0.376 0.334 0.381 0.530 0.517 0.317 0.370 0.319 0.370 0.380 0.419
720 0.374 0.410 0.379 0.421 0.401 0.437 0.705 0.627 0.385 0.422 0.388 0.425 0.437 0.463

4.3 Ablation Study
To assess the effectiveness of the components making up Mem-
former, we use three datasets with varying numbers of variables:
ETTh2 (7 variables), Weather (21 variables), and Electricity (321
variables).

The columns “w/o Graph” in Table 3 show the results of patch-
wise recurrent graph learning when replacing the graph convo-
lutional structure with a self-attention mechanism, where self-
attention operates among variables. The prediction accuracy of
“w/o Graph” exhibits less degradation on the dataset with fewer
variables, ETTh2, while experiencing higher degradation on the
dataset with many variables, Electricity. This indicates the advan-
tage of using graph convolution on large-scale datasets.

The columns “w/o Recurrent” show the results of patch-wise
recurrent graph learning after removing the gated recurrent unit
structure, meaning that the patches no longer possess short-term

and long-term memory across them. The results indicate less degra-
dation in prediction accuracy for forecasting horizons 96 and 192,
while a more pronounced decline is observed for forecasting hori-
zons 336 and 720. This suggests that the recurrent structure among
patches facilitates the capture of temporal dynamics among patches.

The columns “w/o Local” show the results of patch-wise re-
current graph learning after removal of the influence of the local
enhancer, meaning that local information is no longer provided
individually to each patch, but that all patches instead utilize the
same static graph embedding. As the forecasting horizon increases,
the prediction accuracy of “w/o Local” declines more rapidly than
that of Memformer, indicating that the static graph embedding
struggles to capture the dynamic changes in correlation over time.

The columns “w/o Global” show the results of global attention.
Here, we remove the influence of the global information, by setting
the hyperparameter 𝛼 , controlling the weight of global information,
to 0. We observe that removing the global information decreases
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prediction accuracy compared to that of Memformer, suggesting
that global information is beneficial for time series forecasting.

The columns “w/o Sharing” cover the scenario where the local
and global enhancers of AME no longer share a global memory;
each local and global enhancer has its own global memory. Local
memories are no longer constrained by global memory trained
by the global enhancer, thus removing the regularization effect of
global memory. The prediction accuracy of “w/o Sharing” decreases
compared to that of Memformer, especially when the forecasting
horizon is 720. This suggests that sharing global memory for the
local and global enhancers serves as regularization, reducing the
risk of overfitting.

The columns “w/o Alternating” show the results of AME when
removing the alternating training mechanism, meaning that the
learnable parameters in the local and global enhancers are no longer
updated alternately for each training iteration. We observe a de-
crease in prediction accuracy for “w/o Alternating” compared to
that of Memformer, indicating that AME struggles to achieve sta-
ble optimization of its learnable parameters to improve prediction
accuracy.

4.4 Robustness Study
We proceed to assess the extent to which hierarchical capture of
information at both local and global levels contributes to enhancing
the robustness of the model, particularly its robustness to distribu-
tion shift outliers. Distribution shifts are common outliers in time
series. In multivariate time series, distribution shift outliers may be
both independent and dependent. Independent distribution shift
outliers denote instances where multiple variables experience distri-
bution shifts at different time points, while dependent distribution
shift outliers denote instances where multiple variables undergo
distribution shifts simultaneously.

We select the ETTh2 dataset, which exhibits clear physical re-
lationships among variables, to investigate the impact of the two
types of outliers on Memformer’s robustness. The historical and
forecasting horizons𝐻 and 𝐹 are set to 336 and 96, respectively. We
add 1, 2, 4, and 8 outliers to each sample in the dataset. The outliers
are introduced by adding or subtracting five times the standard
deviation of a randomly selected 32-length time window within
the historical horizon, with a 50% probability of either adding or
subtracting. Additionally, outliers are independently added to all
variables within a sample. Then, the method of adding dependent
distribution shift outliers is similar to that of adding independent
outliers. We add outliers to all variables within the same time win-
dow.

As shown in Table 4, for the independent outliers, the prediction
accuracies of all models decrease with the increase in the number
of outliers. Specifically, iTransformer and MTGNN, which rely on
static correlations, experience significant declines in prediction ac-
curacy. This is because there are fixed physical relationships among
variables in ETTh2 in the absence of outliers. The random occur-
rences of outliers disrupt these static physical relationships, mak-
ing it challenging for static components to construct correlations
effectively. Consequently, iTransformer and MTGNN exhibit the
most significant decline in prediction accuracy. The linear models
NLinear and DLinear also show sensitivity to outliers. The outliers

disrupt the stationarity of the time series, leading to a significant
reduction in accuracy. Memformer constructs dynamically chang-
ing correlations patch-wised and captures these features through
the local enhancer, which helps alleviate the impact of outliers.
Although the overall physical relationships among variables are dis-
rupted, local relationships that can be captured by Memformer still
exist. The findings indicate that Memformer achieves robustness to
independent distribution shift outliers.

Then, for the dependent outliers, the prediction accuracy of
models based on channel-independence mechanisms, such as Mod-
ernTCN and PatchTST, as well as dynamically correlated trans-
former models like Crossformer and CARD, decay under dependent
distribution shifts similarly to their performance under indepen-
dent shifts. However, the declines in prediction accuracy for iTrans-
former and MTGNN are less pronounced. Despite the alteration
in time series stationarity caused by the dependent distribution
shifts, the original physical relationships among the changed local
variables are preserved, and static components can capture these
physical relationships. Hence, the static components of iTrans-
former and MTGNN act as regularizers, reducing the decline in
prediction accuracy caused by outliers. Furthermore, the linear
models NLinear and DLinear experience a more severe decrease in
prediction accuracy. Memformer’s global memory retains global
information and incorporates this regularization information into
training via the global enhancer, thus mitigating such outliers. The
findings indicate that Memformer is capable of robustness against
dependent distribution shifts.

4.5 Dynamic Correlation Study
Using the ETTh2 dataset, which exhibits linear correlations among
its variables, we investigate Memformer’s ability to capture dy-
namic correlations. The length of the historical and forecasting
horizons 𝐻 and 𝐹 are set to 336 and 96, respectively. We randomly
select 1, 2, 4, and 8 time windows of length 32 and perform a base-
10 logarithmic transformation on the variables HULL, MULL, and
LULL. If a logarithmic transformation is applied to one of two vari-
ables that have a linear relationship, the linear relationship between
the two variables transforms into an exponential relationship. Then,
these variables’ correlations with HUFL, MUFL, and LUFL in the
selected time windows change from linear to exponential. In this
way, we introduce dynamic correlations into the dataset.

As shown in Table 5, Memformer achieves the best prediction
accuracy. Then, as the number of logarithmic transformations in-
creases, the prediction accuracy of both Memformer and the base-
lines decreases, with Memformer exhibiting the smallest decline.
Furthermore, the models capable of capturing dynamic correla-
tions, CARD and Crossformer, exhibit small declines in prediction
accuracy. Specifically, CARD achieves the second-best prediction
accuracy. This highlights the necessity of modeling dynamic corre-
lations.

4.6 Visualization
We proceed to visualize the predictions of Memformer and its dy-
namically changing correlations.

4.6.1 Forecasting. We randomly select a sample from Electricity,
which has a large number of variables (321) and is long (26,304), to
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Table 4: Accuracy across Distribution Shifts. Best results are in boldface, and second-best results are underlined.

Models Memformer ModernTCN PatchTST NLinear DLinear iTransformer CARD Crossformer MTGNN
Type Outliers MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Independent

1 0.271 0.328 0.284 0.349 0.284 0.346 0.306 0.383 0.378 0.422 0.308 0.360 0.292 0.358 0.794 0.548 0.900 0.685
2 0.274 0.331 0.288 0.356 0.288 0.352 0.353 0.411 0.490 0.498 0.356 0.431 0.299 0.368 0.814 0.578 0.993 0.731
4 0.278 0.340 0.301 0.360 0.294 0.358 0.402 0.431 0.524 0.515 0.478 0.482 0.303 0.371 0.835 0.580 1.141 0.748
8 0.280 0.344 0.311 0.374 0.308 0.369 0.465 0.480 0.572 0.543 0.552 0.543 0.313 0.375 0.886 0.599 1.464 0.902

Dependent

1 0.265 0.325 0.286 0.355 0.287 0.351 0.324 0.385 0.408 0.441 0.319 0.362 0.290 0.356 0.804 0.555 0.763 0.659
2 0.266 0.333 0.296 0.357 0.288 0.352 0.327 0.386 0.414 0.452 0.325 0.371 0.302 0.363 0.810 0.572 0.771 0.680
4 0.276 0.336 0.299 0.358 0.297 0.356 0.342 0.404 0.475 0.491 0.334 0.392 0.315 0.390 0.813 0.574 0.785 0.693
8 0.280 0.347 0.314 0.381 0.309 0.375 0.484 0.538 0.758 0.673 0.352 0.395 0.324 0.406 0.825 0.588 0.858 0.709

Table 5: Accuracy across Dynamic Correlations. Best results are in boldface, and second-best results are underlined.

Models Memformer ModernTCN PatchTST NLinear DLinear iTransformer CARD Crossformer MTGNN
Transformations MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1 0.266 0.322 0.282 0.364 0.290 0.356 0.335 0.393 0.405 0.436 0.325 0.374 0.285 0.336 0.777 0.534 0.778 0.667
2 0.269 0.327 0.301 0.369 0.293 0.360 0.339 0.396 0.409 0.442 0.338 0.386 0.287 0.340 0.784 0.540 0.792 0.695
4 0.272 0.332 0.305 0.372 0.303 0.364 0.343 0.407 0.457 0.478 0.359 0.412 0.291 0.345 0.792 0.547 0.808 0.704
8 0.276 0.338 0.319 0.385 0.317 0.380 0.502 0.546 0.693 0.574 0.399 0.431 0.296 0.358 0.806 0.560 0.883 0.718

(a) Forecasting Horizon 𝐹 = 336. (b) Forecasting Horizon 𝐹 = 720.

Figure 5: Prediction on the Electricity dataset.

assess the predictive ability of Memformer. As the forecasting hori-
zon increases, the prediction task becomes more challenging. Fig-
ure 5 presents the prediction results of Memformer with forecasting
horizons of F=336 and F=720. The figure shows that Memformer is
capable of effective prediction on long-term time series.

4.6.2 Dynamic Correlations. We visualize the dynamic changes in
correlation over time for a randomly selected sample fromETTh2. Fig-
ure 6(a)–(d) illustrate that the correlations of this sample from
the 1st to the 40th patch are dynamically. We represent the cor-
responding graphs of these patches as heatmaps, where higher
values indicate stronger positive correlations among variables, and
lower values indicate stronger negative correlations among vari-
ables. Specifically, as shown in Figure 6(b), the correlation at the
14th patch of the time series is more distinct compared to other
patches. Patch-wise recurrent graph learning enables the capture
of this correlation.

4.7 Parameter Sensitivity Study
We conduct sensitivity analyses of four critical hyperparameters
of Memformer, including the number of entries of global memory
𝑀 , the dimensionality of the global memory 𝐷glo, the weight of
the global information 𝛼 , the number of local learning steps 𝜖 , and
the stride of patches 𝑆 . Figure 7 reports the changes in MAE on
ETTh2 when varying the hyperparameters, with the length of the

historical horizon set to 336 and the length forecasting horizon set
to 96, 192, 336, or 720.

As seen in Figure 7(a), when𝑀 is 8 or higher, the MAE tends to
stabilize. This indicates that the𝑀 of the memory network should
not be set to be too small, as the top function automatically selects
the most relevant memories to enhance features. Additionally, Fig-
ure 7(b) shows that 𝐷glo achieves the best MAE when set to 32.
This suggests that setting 𝐷glo too small or too large may lead
to underfitting or overfitting, requiring adjustment based on the
distribution of the dataset to find the optimal 𝐷glo.

Further, as shown in Figure 7(c), the value of 𝛼 that yields the
best MAE is 0.2. We find that 𝛼 , as a regularization term, may
hinder the capture of local information if its value is set too high,
while a smaller 𝛼 contributes to improving the generalization of
Memformer. Then, as seen in Figure 7(d), 𝜖 achieves the best MAE
when set to 5. At this point, Memformer effectively balances the
difficulty of training between the local and global enhancers.

Finally, in Figure 7(e), we set patch size 𝑇 to 32 and vary 𝑆
among 𝑇 /4, 𝑇 /2, 𝑇 , 2𝑇 , and 4𝑇 , i.e., 8, 16, 32, 64, and 128. The MAE
of Memformer increases as 𝑆 increases. This is because, with a
higher 𝑆 , the number of patches decreases, leading to a loss of
valuable information. Furthermore, when 𝑆 ≤ 𝑇 , the increase in
Memformer’s MAE is small, whereas when 𝑆 > 𝑇 , the increase is
more pronounced. This is because, when 𝑆 ≤ 𝑇 , all information in
the time series is retained, whereas when 𝑆 > 𝑇 , some information
is lost. We recommend setting the ratio of 𝑇 to 𝑆 to 2.

4.8 Scalability Study
We proceed to investigate the scalability of Memformer with re-
spect to the length 𝐻 of the historical horizon and the number
𝑁 of variables. Next, we provide the time and space complexity
of Memformer. Additionally, we present a scalability experiment
involving Memformer and the baselines. We use the large-scale
dataset Electricity to assess scalability. The Electricity dataset con-
sists of 321 variables, has a length of 26,304, and a total of 26,976
samples.
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(a) Correlation of the 1-st Patch. (b) Correlation of the 14-th Patch. (c) Correlation of the 27-th Patch. (d) Correlation of the 40-th Patch.

Figure 6: Visualization of dynamic correlations.

(a) MAE When Varying𝑀 . (b) MAE When Varying 𝐷glo . (c) MAE When Varying 𝛼 . (d) MAE When Varying 𝜖 . (e) MAE When Varying 𝑆 .

Figure 7: Parameter sensitivity of Memformer.

(a) Training Time When Varying 𝐻 . (b) Memory Use When Varying 𝐻 . (c) Training Time When Varying 𝑁 . (d) Memory Use When Varying 𝑁 .

(e) Time Comparison When Varying 𝐻 . (f) Memory Comparison When Varying 𝐻 . (g) Time Comparison When Varying 𝑁 . (h) Memory Comparison When Varying 𝑁 .

Figure 8: Scalability Study for Memformer and Baselines.

4.8.1 Length of the Historical Horizon. We utilize all variables in
this experiment. As shown in Figure 8(a) and Figure 8(b), we vary
𝐻 from 48 to 720 and measure the training time and GPU memory
usage for four different 𝐹 : 96, 192, 336, and 720. We observe that
the time and space costs of Memformer are linearly correlated with
𝐻 . This is due to the patch-wise processing of temporal features,
and it is in contrast to the quadratic complexity associated with
self-attention. The quadratic costs of time and space are reduced
to linear costs by processing temporal features patch-wise. The
increase in 𝐹 increases the training time slightly but has a negligible
impact on GPU memory usage.

4.8.2 Number of Variables. Here, we set 𝐻 to 336. As shown in Fig-
ure 8(c) and Figure 8(d), we vary 𝑁 from 60 to 300. We observe
that the time cost of Memformer is correlated quadratically with 𝑁 ,
while the space cost is correlated linearly with 𝑁 . These findings oc-
cur because the time complexity of graph convolutional operations
are quadratic in 𝑁 , while the storage space of local information
maintained by Memformer is linear in 𝑁 . Changes to 𝐹 do not affect
the time and space costs of Memformer markedly.

4.8.3 Complexity ofMemformer. Themost time and space-intensive
components of Memformer are the Memformer Encoder and the
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AME. The time complexity of theMemformer Encoder is𝑂 (
√
𝐻𝑁 2+

𝐻𝑁 ), and its space complexity is𝑂 (𝐻𝑁 ). For the AME, the time and
space complexities are 𝑂 (

√
𝐻𝑁 ). Therefore, the overall time com-

plexity of Memformer is𝑂 (
√
𝐻𝑁 2+𝐻𝑁 ), and the space complexity

is 𝑂 (𝐻𝑁 ).

4.8.4 Scalability. As shown in Figure 8(e) and Figure 8(f), we com-
pare the impact of varying𝐻 on the training time and GPUmemory
usage of Memformer and the baselines. We fix 𝐹 at 96. Memformer
exhibits better training time and memory usage than all baselines
that capture correlations, such as iTransformer, CARD, Crossformer,
and MEGNN. The linear models NLinear and DLinear perform the
best, followed by the models based on channel-independent mech-
anisms, ModernTCN and PatchTST. Next, we vary 𝑁 and report
the results in Figure 8(g) and Figure 8(h). Here, we fix 𝐻 and 𝐹 at
336 and 96, respectively. Memformer still exhibits better training
time and memory usage than baselines that capture correlations.
In summary, Memformer achieves state-of-the-art performance
among the methods that capture correlations.

5 RELATEDWORK
Long-term Time Series Forecasting. Long-term time series fore-
casting generally refers to forecasting tasks where the historical
or forecasting horizons are at least 96, requiring time and space
complexities to be within acceptable ranges. Long-term time series
forecasting primarily consists of two branches: transformer-based
and linear models.

The Transformer [35] was initially applied in natural language
processing (NLP) [16] and computer vision (CV) [12]. LogTrans [19]
was the first to apply transformers to time series forecasting, propos-
ing sparse attention to reduce the time complexity of self-attention
from 𝑂 (𝐻2) to 𝑂 (𝐻 (log𝐻 )2). Subsequent studies reduce the com-
plexity of attention. Informer [49] and Autoformer [39] reduce
the attention time complexity to 𝑂 (𝐻 log𝐻 ), while Triformer [9],
Pyraformer [22], and FEDformer [50] further lower it to 𝑂 (𝐻 ). Fol-
lowing this, transformer-based studies branch in two directions:
models based on channel-independence mechanisms and models
capturing correlations among multiple channels. PatchTST [27] and
Pathformer [6] utilize channel-independence mechanisms, which
improve model transferability and robustness. In the other branch,
Crossformer [47], CARD [36], and iTransformer [24] utilize atten-
tion mechanisms to establish correlations among channels, thus
improving prediction accuracy when the historical horizon is short.

The linear models TiDE [11], RLinear [21], NLinear [46], and
DLinear [46] reconsider the permutation invariance of self-attention
and propose a paradigm for long-term time series forecasting. This
paradigm involves processing based on temporal features as the
encoder and a purely linear layer decoder. Compared to transformer-
based models, linear models have lower time and space complex-
ities. However, their structures are simple and are challenged by
large datasets with many samples and variables. Additionally, they
struggle to match the performance of transformer-based models at
handling outliers.
Memory Networks. Early research [13] on memory networks
focuses on combining neural networks with external memory and
proposes an end-to-end solution. Subsequently, memory networks
make advances in fields such as NLP [18, 34, 44] and CV [3, 14, 30].

In the time series field, memory networks are applied to outlier
detection [33] and forecasting [15, 23, 38]. Specifically, DAMA-
Net [38] employs memory networks to enhance multi-head at-
tention for predicting non-standard human activity sequences.
MAGL [23] and MegaCRN [15] leverage the advantages of graph
neural networks and memory networks to improve the prediction
accuracy of short-term time series. To the best of our knowledge,
the present study is the first to propose the use of memory networks
for long-term time series forecasting.
Graph Neural Networks. Graph neural networks are commonly
used on traffic data. The early DCRNN method [20] requires pri-
ors such as road graphs or Euclidean distances to enable training.
Subsequently, Graph WaveNet [43] introduces an adaptive graph
construction method that does not rely on priors. MTGNN [42]
and GTS [31] propose a parameterized 𝑘-degree discrete graph to
enhance the performance of graph propagation. AGCRN [1] and
CCRNN [45] introduce convolutional filters based on node embed-
dings and adaptive multi-layer graph convolutions, respectively.
Next, STEP [32] utilizes transformer pretraining components to im-
prove the capture of long-term dependencies, while MegaCRN [15]
and MTSF-DG [48] construct independent adaptive graphs for each
timestamp to adapt to road network relationships that evolve over
time. Although graph neural networks achieve good prediction
accuracy at short-term traffic flow forecasting, the challenge lies in
ensuring that models capture dynamic correlations and maintain
low complexity when applied to long-term time series.

6 CONCLUSIONS
Our study highlights the importance of addressing both dynamic
and disrupted correlations in long-term time series forecasting. We
introduce the Memformer framework, which effectively captures
dynamic correlations and also mitigates the impact of disrupted
correlation through the integration of patch-wise recurrent graph
learning and global attention mechanisms. Further, the framework
integrates an Alternating Memory Enhancer that enables effective
association between local and global information and enhances
prediction accuracy. We report on experiments that offer evidence
that Memformer is successful at handling dynamic correlations and
disrupted correlations and is capable of state-of-the-art forecast-
ing performance across diverse real-world datasets. This research
paves the way for more accurate and reliable long-term time series
forecasting in spatiotemporal data analysis. The Memformer has a
number of sensitive hyperparameters, which require users to un-
derstand the data distribution and make nontrivial hyperparameter
setting decisions. In future research, it is of interest to integrate
automatic hyperparameter tuning techniques. Further, it is of inter-
est to explore the potential of Memformer in the settings of auto
machine learning [40, 41], light-weight models [4, 5, 26] and traffic
tasks [8, 10, 17, 28].

ACKNOWLEDGMENTS
This research was supported in part by the Innovation Fund Den-
mark project DIREC (9142-00001B), Independent Research Fund
Denmark (8048-00038B), and the Villum Fonden (40567).

250



REFERENCES
[1] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive graph

convolutional recurrent network for traffic forecasting. Advances in Neural
Information Processing Systems 33 (2020), 17804–17815.

[2] Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. 2024. Quantizable
transformers: Removing outliers by helping attention heads do nothing. Advances
in Neural Information Processing Systems 36 (2024).

[3] Qi Cai, Yingwei Pan, Ting Yao, Chenggang Yan, and Tao Mei. 2018. Memory
Matching Networks for One-Shot Image Recognition. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018. 4080–4088.

[4] David Campos, Bin Yang, Tung Kieu, Miao Zhang, Chenjuan Guo, and Chris-
tian S. Jensen. 2024. QCore: Data-Efficient, On-Device Continual Calibration for
Quantized Models. Proc. VLDB Endow. 17, 11 (2024), 2708–2721.

[5] David Campos, Miao Zhang, Bin Yang, Tung Kieu, Chenjuan Guo, and Christian S.
Jensen. 2023. LightTS: Lightweight Time Series Classification with Adaptive
Ensemble Distillation. Proc. ACM Manag. Data 1, 2 (2023), 171:1–171:27.

[6] Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong
Wen, Bin Yang, and Chenjuan Guo. 2024. Pathformer: Multi-scale transformers
with Adaptive Pathways for Time Series Forecasting. In The Twelfth International
Conference on Learning Representations.

[7] Yunyao Cheng, Peng Chen, Chenjuan Guo, Kai Zhao, Qingsong Wen, Bin Yang,
and Christian S. Jensen. 2023. Weakly Guided Adaptation for Robust Time Series
Forecasting. Proc. VLDB Endow. 17, 4 (2023), 766–779.

[8] Yunyao Cheng, Bin Wu, Li Song, and Chuan Shi. 2019. Spatial-Temporal Recur-
rent Neural Network for Anomalous Trajectories Detection. In Advanced Data
Mining and Applications - 15th International Conference, ADMA 2019, Dalian,
China, November 21-23, 2019, Proceedings, Vol. 11888. 565–578.

[9] Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and
Shirui Pan. 2022. Triformer: Triangular, Variable-Specific Attentions for Long
Sequence Multivariate Time Series Forecasting. International Joint Conference
on Artificial Intelligence, 1994–2001.

[10] Razvan-Gabriel Cirstea, Bin Yang, and Chenjuan Guo. 2019. Graph Atten-
tion Recurrent Neural Networks for Correlated Time Series Forecasting.. In
MileTS19@KDD.

[11] Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan K Mathur, Rajat Sen, and
Rose Yu. 2023. Long-term Forecasting with TiDE: Time-series Dense Encoder.
Transactions on Machine Learning Research (2023).

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. International Conference on Learning
Representations.

[13] Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural turing machines.
arXiv preprint arXiv:1410.5401 (2014).

[14] Tengda Han, Weidi Xie, and Andrew Zisserman. 2020. Memory-augmented
dense predictive coding for video representation learning. European Conference
on Computer Vision, 312–329.

[15] Renhe Jiang, ZhaonanWang, Jiawei Yong, Puneet Jeph, Quanjun Chen, Yasumasa
Kobayashi, Xuan Song, Shintaro Fukushima, and Toyotaro Suzumura. 2023.
Spatio-temporal meta-graph learning for traffic forecasting. AAAI Conference on
Artificial Intelligence 37, 7, 8078–8086.

[16] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
NAACL-HLT, 4171–4186.

[17] Duc Kieu, Tung Kieu, Peng Han, Bin Yang, Christian S. Jensen, and Bac Le. 2024.
TEAM: Topological Evolution-aware Framework for Traffic Forecasting. Proc.
VLDB Endow. 18 (2024).

[18] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. 2016. Ask me any-
thing: Dynamic memory networks for natural language processing. International
Conference on Machine Learning, 1378–1387.

[19] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,
and Xifeng Yan. 2019. Enhancing the locality and breaking the memory bottle-
neck of transformer on time series forecasting. Advances in Neural Information
Processing Systems 32 (2019).

[20] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolu-
tional Recurrent Neural Network: Data-Driven Traffic Forecasting. International
Conference on Learning Representations.

[21] Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. 2023. Revisiting long-term time series
forecasting: An investigation on linear mapping. arXiv preprint arXiv:2305.10721
(2023).

[22] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and
Schahram Dustdar. 2021. Pyraformer: Low-complexity pyramidal attention for
long-range time series modeling and forecasting. International Conference on
Learning Representations.

[23] Xiangyue Liu, Xinqi Lyu, Xiangchi Zhang, Jianliang Gao, and Jiamin Chen. 2022.
Memory augmented graph learning networks for multivariate time series fore-
casting. ACM International Conference on Information & Knowledge Management,
4254–4258.

[24] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and
Mingsheng Long. 2024. itransformer: Inverted transformers are effective for time
series forecasting. International Conference on Learning Representations (2024).

[25] Donghao Luo and Xue Wang. 2024. ModernTCN: A modern pure convolution
structure for general time series analysis. International Conference on Learning
Representations.

[26] Hao Miao, Ziqiao Liu, Yan Zhao, Chenjuan Guo, Bin Yang, Kai Zheng, and Chris-
tian S. Jensen. 2024. Less is More: Efficient Time Series Dataset Condensation
via Two-fold Modal Matching. Proc. VLDB Endow. 18 (2024).

[27] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. 2023.
A time series is worth 64 words: Long-term forecasting with transformers. Inter-
national Conference on Learning Representations (2023).

[28] Simon Aagaard Pedersen, Bin Yang, and Christian S. Jensen. 2020. Anytime
Stochastic Routing with Hybrid Learning. Proc. VLDB Endow. 13, 9 (2020), 1555–
1567.

[29] Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang,
Chenjuan Guo, Aoying Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang.
2024. TFB: Towards Comprehensive and Fair Benchmarking of Time Series
Forecasting Methods. Proc. VLDB Endow. 17, 9 (2024), 2363–2377.

[30] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timo-
thy Lillicrap. 2016. Meta-learning with memory-augmented neural networks.
International Conference on Machine Learning, 1842–1850.

[31] Chao Shang and Jie Chen. 2021. Discrete Graph Structure Learning for Forecast-
ing Multiple Time Series. International Conference on Learning Representations.

[32] Zezhi Shao, Zhao Zhang, Fei Wang, and Yongjun Xu. 2022. Pre-training enhanced
spatial-temporal graph neural network for multivariate time series forecasting.
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 1567–1577.

[33] Junho Song, Keonwoo Kim, Jeonglyul Oh, and Sungzoon Cho. 2024. Memto:
Memory-guided transformer for multivariate time series anomaly detection.
Advances in Neural Information Processing Systems 36 (2024).

[34] Sainbayar Sukhbaatar, JasonWeston, Rob Fergus, et al. 2015. End-to-end memory
networks. Advances in Neural Information Processing Systems 28 (2015).

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Processing Systems 30 (2017).

[36] Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong
Jin. 2024. CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting. International Conference on Learning Representations.

[37] Zhaonan Wang, Renhe Jiang, Hao Xue, Flora D Salim, Xuan Song, and Ryosuke
Shibasaki. 2022. Event-aware multimodal mobility nowcasting. AAAI Conference
on Artificial Intelligence 36, 4, 4228–4236.

[38] Zhen Wang, Yang Zhang, Ai Jiang, Ji Zhang, Zhao Li, Jun Gao, Ke Li, Chenhao
Lu, and Zujie Ren. 2021. Improving irregularly sampled time series learning with
time-aware dual-attention memory-augmented networks. ACM International
Conference on Information & Knowledge Management, 3523–3527.

[39] HaixuWu, Jiehui Xu, JianminWang, andMingsheng Long. 2021. Autoformer: De-
composition transformers with auto-correlation for long-term series forecasting.
Advances in Neural Information Processing Systems 34 (2021), 22419–22430.

[40] Xinle Wu, Xingjian Wu, Bin Yang, Lekui Zhou, Chenjuan Guo, Xiangfei Qiu,
Jilin Hu, Zhenli Sheng, and Christian S. Jensen. 2024. AutoCTS++: zero-shot
joint neural architecture and hyperparameter search for correlated time series
forecasting. VLDB J. 33, 5 (2024), 1743–1770.

[41] Xinle Wu, Xingjian Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, and
Christian S. Jensen. 2024. Fully Automated Correlated Time Series Forecasting
in Minutes. Proc. VLDB Endow. 18 (2024).

[42] ZonghanWu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi
Zhang. 2020. Connecting the dots: Multivariate time series forecasting with
graph neural networks. ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 753–763.

[43] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.
Graph wavenet for deep spatial-temporal graph modeling. International Joint
Conference on Artificial Intelligence, 1907–1913.

[44] Caiming Xiong, Stephen Merity, and Richard Socher. 2016. Dynamic memory
networks for visual and textual question answering. International Conference on
Machine Learning, 2397–2406.

[45] Junchen Ye, Leilei Sun, Bowen Du, Yanjie Fu, and Hui Xiong. 2021. Coupled layer-
wise graph convolution for transportation demand prediction. AAAI Conference
on Artificial Intelligence 35, 5, 4617–4625.

[46] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 2023. Are transformers
effective for time series forecasting? AAAI Conference on Artificial Intelligence
37, 9, 11121–11128.

[47] Yunhao Zhang and Junchi Yan. 2023. Crossformer: Transformer utilizing cross-
dimension dependency for multivariate time series forecasting. International
Conference on Learning Representations.

251



[48] Kai Zhao, Chenjuan Guo, Yunyao Cheng, Peng Han, Miao Zhang, and Bin Yang.
2023. Multiple time series forecasting with dynamic graph modeling. VLDB
Endowment 17, 4 (2023), 753–765.

[49] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond efficient transformer for long se-
quence time-series forecasting. AAAI Conference on Artificial Intelligence 35, 12,

11106–11115.
[50] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. 2022.

Fedformer: Frequency enhanced decomposed transformer for long-term series
forecasting. International Conference on Machine Learning, 27268–27286.

252


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Multivariate Time Series Forecasting
	2.2 Graph Convolutional Network
	2.3 Self-attention

	3 Methodology
	3.1 Memformer Backbone
	3.2 The Memformer Encoder
	3.3 Alternating Memory Enhancer

	4 EXPERIMENTAL STUDY
	4.1 Experimental Setup
	4.2 Comparison of Forecasting Accuracy
	4.3 Ablation Study
	4.4 Robustness Study
	4.5 Dynamic Correlation Study
	4.6 Visualization
	4.7 Parameter Sensitivity Study
	4.8 Scalability Study

	5 RELATED WORK
	6 CONCLUSIONS
	Acknowledgments
	References

