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ABSTRACT

Social scientists are increasingly interested in analyzing the seman-

tic information (e.g., emotion) of unstructured data (e.g., Tweets),

where the semantic information is not natively present. Perform-

ing this analysis in a cost-e�cient manner requires using machine

learning (ML) models to extract the semantic information and sub-

sequently analyze the now structured data. However, this process

remains challenging for domain experts.

To demonstrate the challenges in social science analytics, we col-

lect a dataset, QUIET-ML, of 120 real-world social science queries in

natural language and their ground truth answers. Existing systems

struggle with these queries since (1) they require selecting and ap-

plying ML models, and (2) more than a quarter of these queries are

vague, making standard tools like natural language to SQL systems

unsuited. To address these issues, we develop LEAP, an end-to-end

library that answers social science queries in natural language with

ML. LEAP �lters vague queries to ensure that the answers are deter-

ministic and selects from internally supported and user-de�ned ML

functions to extend the unstructured data to structured tables with

necessary annotations. LEAP further generates and executes code

to respond to these natural language queries. LEAP achieves a 100%

pass @ 3 and 92% pass @ 1 on QUIET-ML, with a $1.06 average

end-to-end cost, of which code generation costs $0.02.
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1 INTRODUCTION

With increasingly accessible unstructured datasets [18, 55, 56, 113],

social scientists are able to answer questions that were previously

beyond scope over unstructured data [28, 73], ranging frommacroe-

conomic questions like “Is the public mood correlated or even pre-

dictive of economic indicators?” [9] to sociolinguistic questions like

“How can conversational behavior reveal power relationships?” [23].
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However, domain experts face two major challenges in answering

such queries.

The �rst challenge is that, since this data is unstructured (e.g.,

raw texts), the semantic information that the domain experts want

to analyze (e.g., emotions in the texts) is not readily available [120].

Manually annotating these datasets could cost hundreds to tens of

thousands of dollars when using human labor, so social scientists

have turned to machine learning (ML) models [6, 17, 26, 30, 36, 108,

120, 126, 128]. However, applying these ML models is demanding:

it involves selecting the correct ML functions and mastering their

interfaces, as well as determining appropriate function execution

orders when multiple annotations are required [41, 109].

The second challenge is that these domain expertsmust turn their

questions (often in natural language) into actual queries, whether

using SQL, dataframe libraries, or statistics libraries. However, this

process can be di�cult because it involves complex data analytic op-

erations that require advanced programming skills, and the natural

language is often underspeci�ed (i.e., vague).

To highlight these challenges, we created a new dataset, QUIET-

ML, that consists of real-world social science research questions,

the corresponding unstructured data, and the ground-truth answers

to these questions. QUIET-ML covers all the topics in the Stanford

SALT lab’s survey [126], which identi�es core subject areas in

social science using ML, as well as the Stanford CS 224C: NLP for

Computational Social Science course [117]. Among the 120 queries

we collected, over half (61) of them require executing two or more

ML models, and over a quarter (33) of them are vague.

Existing tools struggle to answer these queries. For example,

natural language to SQL (NL2SQL) systems [22, 35, 64] are un-

able to handle ML model executions and perform poorly on vague

queries with success rates as low as 3% (Section 5.2), even for

NL2SQL systems speci�cally designed for vague queries at the

table schema level [8]. Generic applications built on large language

models (LLMs) also fall short in answering these domain-speci�c

social science questions, with failure in generating responses in 10

di�erent attempts when querying č11 in QUIET-ML (Table 1): “I

want to �nd the emotion triggers for all posts” [120] over a CSV �le

containing 1817 posts in plain text using ChatGPT (GPT-4) [78, 79].

To address these issues, we propose LEAP, an end-to-end library

that assists social scientists in analyzing unstructured data.With the

raw unstructured data and natural language queries as inputs, LEAP

automatically parses the natural language, applies the necessary

internally supported and user-de�ned ML functions, and executes

the query over the results of the ML models, i.e., structured tables

with adequate semantic information.

To accomplish this, LEAP uses LLM to parse the natural language

query, decide on the ML functions to apply, and generate the code
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to perform the necessary analysis. However, e�ectively using LLM

in LEAP requires overcoming several challenges.

First, LEAP must handle the vague queries that prior NL2SQL

systems fail to respond to. To do this, LEAP incorporates a �lter

(Section 4.1) that identi�es vague queries, terminates library execu-

tions, and suggests speci�ed alternatives to facilitate exploratory

processes, which achieves a success rate of 96% on vague queries.

Second, automatically selecting an appropriate ML function

chain is di�cult, especially in situations involving complex function

dependencies. Answering č11 requires �rst applying the emotion

classi�er Ĝemotion to the posts and then propagating its outputs

to the emotion trigger identi�er Ĝtrigger. When directly passing

č11 as the user message in the function calling interface provided

by OpenAI using gpt-4-0613 [80] with three functions (Ĝemotion,

Ĝtrigger, and named entity recognizer Ĝner) as candidates, functions

are called in incorrect orders in 10 di�erent attempts.

Third, in terms of e�ciency, the query cost is high due to the

extensive variety of supported ML functions. č11 takes 9,084 input

tokens with LEAP’s internally supported function list as candidates,

exceeding the token limit of 8,192 supported by gpt-4-0613 [79].

To improve e�ectiveness, LEAP integrates a forward planning

mechanism that achieves 98% accuracy in identifying ML func-

tion chains. In addition, LEAP incorporates doubly linked lists that

connect functions with mutual dependencies such as Ĝemotion and

Ĝtrigger inč11, which increases the accuracy of queries with implicit

function calls from 20% to 87.7%. To improve e�ciency, LEAP struc-

tures the supported function list into a function tree to pass only the

functions in a single leaf node as candidates for the function calling

interface and inserts alias check blocks that determine whether

the annotations to be generated already exist before executing ML

functions to prevent redundant executions, saving query costs by

55%. We introduce the details of these components in Section 4.2.

We demonstrate the performance and cost e�ciency of LEAP in

Section 5. LEAP achieves 100% pass @ 3 and 92% pass @ 1 across all

120 queries inQUIET-ML. The success rate of LEAP in responding to

vague queries is over 30 times higher than existing NL2SQL systems.

The average cost per query is $1.06, with only $0.02 spent on code

generation. The end-to-end cost, from vague query reformulation

and data annotation to code generation and execution, of LEAP is

less than 0.1% of what traditional social science research spends on

data annotation alone.

2 QUIET-ML: A SOCIAL SCIENCE RESEARCH
QUESTION DATASET

We introduceQUIET-ML, a dataset containing social science queries

on unstructured data invoking extended tables withML models.

QUIET-ML consists of queries that cover all the topics addressed

in the Stanford SALT lab’s survey [126] and the Stanford CS 224C

course [117].QUIET-ML includes 120 queries, spanning 9 prominent

social science domains and 25 popular topics, addressing social

science problems across 68 sources.We present the details in Table 1.

Among these 120 queries, 78 are non-vague queries without

unspeci�ed numerical values, 9 are non-vague queries with un-

speci�ed numerical values, and 33 are vague queries. The 33 vague

queries cover the following three common causes of ambiguity in

social science research questions:

(1) Lack of context: social scientists pose vague queries with

unspeci�ed contexts. For instance, a psychologist might

ask “Provide cognitive behavioral therapies for these neg-

ative thoughts” (č16), implicitly assuming that “cognitive

behavioral therapies” refers to positive reframing [93].

(2) Data insu�ciency: social scientists formulate vague queries

that cannot be answered from available data. For instance,

“Is the public mood correlated with, or even predictive of,

economic indicators?” (č2) [9] is not answerable by sim-

ply analyzing the provided Tweets without incorporating

relevant economic statistics.

(3) Informal or unconventional expressions: natural lan-

guage queries may include non-rigid expressions. For in-

stance, a social media researcher can ask “I want to predict

whether the conversation will get out of hand” (č24) [122],

where “get out of hand” informally denotes “become toxic”.

While the two can be considered equivalent in everyday

conversation, the lack of precision in “get out of hand” poses

challenges for computational analysis.

QUIET-ML provides the unstructured data for each query, con-

sisting of 22,323 data points on average. This data covers a diverse

range of unstructured data types, from text and PDF documents to

videos. On average, each query needs 2.0 semantic annotations for

each data point, where 61 out of the 120 queries require two or more

annotations. For evaluation, QUIET-ML includes the ground-truth

query results on the provided unstructured data.

3 USE CASES

We demonstrate how an end-to-end library helps social scientists

handle the three types of queries in QUIET-ML.

Non-vague queries without unspeci�ed numerical values. A

media researcher collects Tweets with dog whistles and asks “For

each (targeted) persona/in-group, I want to know the number of

each type of dog whistles.” (č3) [75]

The library �rst loads the Tweets as a single-column table, then

proceeds to select and apply ML functions to extend the table with

necessary semantic information to answer the query. In this case,

Ĝp/i that identi�es the targeted persona/in-group and Ĝdw-type that

classi�es dog whistle types should be executed as explicitly stated in

the query. However, Ĝdw that extracts the dog whistle terms should

�rst be applied to the Tweets, since the output of Ĝdw implicitly

serves as the input of Ĝp/i and Ĝdw-type. The detailed dependencies

can be viewed in Figure 4.

When the table is extended with adequate semantic information,

the query is translated into code similar to the following SQL code.

SELECT persona_or_ingroup , type , COUNT (*) AS count

FROM table

GROUP BY persona_or_ingroup , type

Once the extended table and code are generated, the library

executes the code and displays the execution results.

Non-vague queries with unspeci�ed numerical Values. A soci-

olinguist collects Reddit posts where people argue and aims to �lter

the posts according to persuasion e�ect scores by asking “Which

posts are persuasive?” (č17) [108]
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Table 1: Social Science Domains and Topics Covered in QUIET-ML

Domain Topic Example

Persuasion

Persuadability [108] (č1,č41,č81,č82) Recognize the “malleable” cases.

Persuasiveness [3, 116, 120] (č17,č37,č47,č77) Which posts are persuasive?

Attackability [46, 54, 108] (č34,č74) I want to see how sentiment a�ects the attackability of a sentence.

Emotion
Emotion Classi�cation [9, 33, 44, 58, 100] (č2,č42) Is the public mood correlated or even predictive of economic indicators?

Emotion Triggers [120] (č10,č11,č50,č51) I want to �nd the triggers for all posts of emotion that has the maximum quantity.

Social Bias

Dog Whistles [75] (č3,č43) For each persona/in-group, what is the number of each type of dog whistle?

Hate Speech [30, 63, 72, 95, 96]

(č6,č7,č8,č9,č46,č47,č48,č49)

Which posts contain hate speech?

Equality [10, 39, 87] (č38,č78,č113) I want to quantify how the bias of words evolves.

O�ensiveness [5, 11, 20, 21, 32, 97] (č111,č112) Are the defense to these texts e�ective?

Misinformation

Fake News [36, 62] (č4,č14,č44,č54) Which news headlines contain misinformation?

Imaginary Stories [49, 66, 98, 99, 105]

(č25−28,č65−68)

I want to get the imaginary stories generated based on the recalled stories.

Deceptive Videos [42, 84, 110] (č36,č39,č76,č79) I want to extract all fake videos.

Attitude
Stance [76] (č5,č45) What is the di�erence between stance and sentiment?

Ideology [6, 50, 53, 88] (č29,č30,č69,č70) I want to �nd the percentage of right political ideology.

Linguistics

Figurative Language [14, 52, 77, 106]

(č12,č13,č52,č53)

Retrieve the explanations of the premise that entails the �gurative sentences.

Dialect Features [26, 127] (č15,č55) I want to retrieve posts with the most common dialect features.

Semantics [85] (č18,č58) I want to retrieve example pairs of the same verb but with di�erent semantics.

Discourse Acts [48, 121] (č19,č59)
I want to classify comments in online discussions into a set of coarse discourse

acts toward the goal of better understanding discussions at scale.

Echo Chamber E�ect [1] (č114,č115) Extract tweets with low Echo Chamber E�ect.

Psychology

Mental Health [4, 69, 74, 94, 103, 128]

(č16,č20,č21,č32,č33,č56,č60,č61,č72,č73)

Provide cognitive-behavioral therapies for these negative thoughts.

Social Psychology [12, 24, 65, 115, 122]

(č22,č23,č24,č62,č63,č64)

I want to identify all impolite posts.

Social Roles
Trope [7, 19] (č31,č71) I want to �nd all characters that are chanteuse.

Relationship [17, 23] (č35,č40,č75,č80) I want to study how conversational behavior can reveal power relationships.

Legal Services
Documents[102] (č90,č91,č94−97,č102−110,č116−120) I want to summarize the documents.

Texts [31] (č83−89,č92,č93,č98−101) I want to give an overview of the cases.

To decide whether a post is considered “persuasive”, the user

should specify a persuasion e�ect score as the criterion. However,

the user may be unsure about this value before knowing the score

distributions. Therefore, the library issues a warning and lets the

user decide whether to proceed with this value remaining unspeci-

�ed or to input a new query with speci�ed numerical values such

as “Which posts have a persuasion e�ect score > 0.9?”

Regardless of which query the user chooses to proceed with, the

library �rst loads the posts as a single-column table and appends

an additional column containing persuasion e�ect scores from ap-

plying the persuasion e�ect score calculator Ĝpe on the posts. For

code generation, the library generates code similar to the following

SQL code.

SELECT * FROM table

WHERE persuasion_effect_score > X

where X is either the user-speci�ed value, if provided, or the library

chooses a reasonable value based on the data distribution. Finally,

the library executes the code and displays the results.

Vague queries. An economist collects Tweets to extract emotions

and analyze their correlation with economic conditions by posing

an exploratory query: “Is the public mood correlated with, or even

predictive of, economic indicators?” (č2) [9]

The library detects the vagueness, terminates the execution, and

suggests alternative queries that (1) are speci�c enough and (2)

align with user intent. For example, an alternative query could be

“I want to compute the emotion distribution of the posts.”
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Figure 1: Work�ow of LEAP.

With the recommended non-vague query, the library �rst loads

the Tweets as a single-column table and appends an additional

column containing emotion classes from applying the emotion

classi�er Ĝemotion on the posts. The library then generates code

similar to the following SQL code.

SELECT emotion , COUNT(emotion) AS count

FROM table

GROUP BY emotion

Finally, the library executes the code and displays the results.

4 LEAP: AN END-TO-END LIBRARY FOR
SOCIAL SCIENCE RESEARCH QUESTIONS

In this section, we propose LEAP, an LLM-powered end-to-end

automatic library for processing social science research questions.

We provide an overview of the work�ow of LEAP in Figure 1.

LEAP takes user-provided data D, a potentially vague query in

natural language ħ onD, and optionally, the user-de�ned functions

(UDFs), as input. It processes these inputs to generate result Ĩ in

response to ħ together with T , a structured table that contains

adequate semantic information. D can either be unstructured data

like the raw data in QUIET-ML, which LEAP loads as a single-

column table, or it can readily be a structured table containing

partial or full semantic information.

LEAP consists of (1) a forward planning �lter (Section 4.1) that

determines if ħ is vague, and (2) a stage selector (Section 4.2) that

selects among candidate stages of table generation (Section 4.2.1),

code generation (Section 4.2.2), code execution (Section 4.2.3), and

result display (Section 4.2.3). We introduce the user interface of

LEAP, including the integration of UDFs, in Section 4.3.

4.1 Forward Planning Filter

To prevent users from multiple aimless retries when giving vague

queries, LEAP starts with a forward planning �lter ĂČ . Given the

full function list F , which consists of LEAP’s internally supported

functions and any UDFs, and user-provided data D, ĂČ decides

whether the user query ħ is vague through a query check.

ĂČ prompts gpt-4-0613 [80] and checks (i) whether there exists

a well-de�ned function chain to annotate the data (i.e., whether D

can be extended into deterministic structured tables), (ii) whether

ħ can be answered through a deterministic sequence of SQL oper-

ations given a table with adequate information, and (iii) whether

there are any unspeci�ed numerical values (i.e., whether ħ can be

translated into executable code). ĂČ (ħ, F ,D) falls into three cases:

(1) When ħ is clear in terms of (i), (ii), and (iii), ĂČ passes the

query check and generates a planned function chain C.

(2) When ħ satis�es only (i) and (ii), ĂČ generates a planned

function chain C and a warning message where users can

decide whether to proceed or not. If users decide to proceed,

ĂČ passes the query check and lets the code generation (Sec-

tion 4.2.2) stage handle the unspeci�ed numerical values.

(3) When ħ does not meet the criteria of either (i) or (ii), ĂČ

identi�es ħ as a vague query and fails the query check by

terminating the execution and generating an alternative

query list Q based on F , D, and ħ.

In cases (1) and (2), ĂČ falls back to returning an empty function

chain C = ∅ when D already contains adequate semantic infor-

mation, such that ħ can be directly translated into SQL code. For

example, if ħ extracts Tweets containing a speci�c keyword, it can

be answered with code similar to

SELECT * FROM table WHERE Tweet LIKE '%keyword%'

without applying ML functions to Tweet.

We use chain of thoughts (COT) [114], a forward planning prompt

technique that decomposes large tasks into small steps, to help ĂČ

plan for the function chain C, as well as few-shot learning [13], a

prompt technique that provides a limited number of examples to

guide the LLMs, to improve query recommendations.

4.2 Stage Selector

The user query ħ that passes ĂČ and enters the stage selector is

non-vague. The stage selector follows the typical steps of data

analysis in social science: �rst, annotate the raw data with the

necessary semantic information; then, write code based on the

research question; when the code is ready, execute it in the correct

setup; once the result is ready, display it for social scientists to

view and evaluate. The stage selector maintains a progress record

Ď to track the executed stages. The stage selector automatically

selects the next stage to be executed according to ħ, the current

table, and Ď. The stage selector enters the table generation stage

(Section 4.2.1) when the current table is incomplete, and enters the

code generation stage (Section 4.2.2) otherwise. If given a complete

table and executable code, LEAP proceeds to the code execution stage

(Section 4.2.3). Upon detecting an execution result, LEAP moves

to the �nal result display stage (Section 4.2.3). LEAP automatically

terminates after entering the same stage three times consecutively,

providing detailed feedback for users to re�neħ.We use the function

calling interface provided by OpenAI API with gpt-4-0613 [80],

where each stage is wrapped as an individual function call.

4.2.1 Table Generation. In this stage, LEAP generates a structured

table T and corresponding column descriptions by extending the

current table with columns annotated with ML functions, ensuring

adequate and correct information is included to answer ħ (Figure 2).

We use the function calling interface provided by OpenAI API

with gpt-4-0613 [80]. Inspired by the idea of COT [114], we deploy

a step-to-step example as guidance. Speci�cally, we integrate an

example query “I want to count the number of positive paragraphs

in the PDF document.” as part of the prompt. For each progres-

sive status indicated by existing column descriptions, the prompt

includes the ground-truth function selections in order (Ĝocr: OCR
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function that translates from pdf �les to texts; Ĝpara: paragraph sep-

arator; Ĝsentiment: sentiment analyzer applied on each paragraph;

Ĝstopper: function call chain stopper), together with the ground-truth

parameter selections (i.e., the columns to apply these functions).

To further optimize function call accuracy and minimize query

costs, the function list F is organized into a function tree, where

mutually dependent functions form doubly linked lists (Figure 3).

Function tree. To support a wide range of user queries, the func-

tion list size |F | is enormous such that it exceeds the token limit

of 8,192 for gpt-4-0613 even without any UDFs when the entire

list becomes candidates. To overcome the issue, we organize F

into a function tree where functions are grouped into subgroups

based on their types and stored in leaf nodes (Figure 3). Every leaf

node includes a stopper function Ĝstopper for the function chain to

end when the current table includes adequate information. LEAP

goes through a tree search process based on the hierarchical struc-

ture, and only the functions in the targeted leaf node become the

candidates for the function calling interface.

Doubly linked lists. The ML function executions can be mutually

dependent, but user queries are often implicit with such dependen-

cies. For example, a social media researcher asks “I want to get the

readers’ actions of headlines that have a high rate of likelihood to

spread” (č14) [37]. To get readers’ actions using Ĝreader-action, the

writers’ intent should �rst be identi�ed using Ĝwriter-intent, and to

assess a headline’s likelihood of spreading using Ĝspread-likelihood,

the reader perception should �rst be inferred using Ĝreader-perception.

To resolve the issue, we connect dependent functionswith doubly

linked lists (Figure 3), where a forward pointer Ĝý → Ĝþ represents

that the outputs of Ĝý is necessary for the execution of Ĝþ , and a

backward pointer Ĝÿ ← ĜĀ represents that the execution of ĜĀ
depends on the outputs of Ĝÿ . This design reveals the underlying

relationships among functions, and connects di�erent leaf nodes

based on function dependencies, resulting in a more accurate tree

path search. The doubly linked lists allow users to obtain the cor-

rect results without having to know or explicitly state the implicit

function dependencies, which are easy to neglect.

Alias check blocks. ML functions can be repeatedly called, which

is especially common in cases where (1) complex function depen-

dencies exist, and/or (2) D contains information derived from ML

functions. For example, a literature scholar can ask “I want to get

the imaginary stories generated based on the recalled stories.” [98].

Function
Tree

...

fA fD

fB

fC

... ...

Doubly Linked Lists
Function Chain Stopper

Figure 3: Structure of the supported function list F in LEAP.

To do so, one �rst summarizes the provided recalled stories using

the summarizer Ĝ1, and then generates imaginary stories based

on the summaries using the story generator Ĝ2. Given that sum-

marizing texts is easier and cheaper than generating them, users

can readily provide the summaries of the recalled stories, i.e., the

outputs of Ĝ1, in D. However, due to the function dependencies

indicated by Ĝ1 ← Ĝ2, where the execution of Ĝ2 depends on the out-

puts of Ĝ1, executing Ĝ2 can result in repeated calls to Ĝ1. Although

the correctness of the �nal results is not a�ected by such repetitive

execution, it is ine�cient both in resources, since ML functions

are expensive to execute, and in time, since users have to wait for

additional rounds of ML function execution time.

To avoid this, LEAP inserts an alias check block before the exe-

cution of each function to determine if any column ęcurrent already

contains information that exactly matches the outputs to be gener-

ated. In such cases, columns are aliased as ęnew = ęcurrent instead

of generating new ones. This also generates more organized tables

T , preventing confusion in subsequent stages.

4.2.2 Code Generation. In this stage, LEAP translates the users’

natural language query ħ into executable code on the extended

table T . The code generator generates code that assigns the �nal

execution result to a user-de�ned variable. The code generator is

an NL2SQL system using gpt-4-0613 [80]. It takes the column

descriptions and, if any, sample values of T along with ħ as input,

and produces executable code that answers ħ on T as output. If ħ

contains unspeci�ed numerical values, the code generator automat-

ically chooses a reasonable value based on the data distribution.

4.2.3 Code Execution and Result Display. With the extended ta-

ble T and corresponding code prepared to address user queries,

LEAP directly executes the code and displays the execution results.

The code executor executes the generated code on the extended

table T . The result display function reads and displays the result.

4.3 User Interface

After installing LEAP via commands like pip install, which are

typically familiar to users, they can initiate and execute the entire

process with a single function signature:

result , table = leap(query , data , description),

where result is the response to the user query in natural language

query based on the user-provided data data, and table is the

table containing adequate semantic information annotated by ML

functions. description contains descriptions of data.

257



Tweet dog_whistle
get_dog_whistle

persona_or_ingroup

get_dog_whistle
persona_ingroup

type
get_dog_whistle_type

Figure 4: LEAP table generation stage’s display for č3: “For

each (targeted) persona/in-group, I want to know the number

of each type of dog whistle.” [75]

LEAP displays the current stage during its execution to indicate

the progress. During the table generation stage, LEAP dynamically

updates the column mapping relation graph (Figure 4).

To include UDFs to answer a query, users simply need to pass a

list containing function metadata, udf_metadata, as a parameter

in the leap function. LEAP integrates UDFs with the internally

supported function list and executes them in user space.

We invited a legal researcher to use LEAP for their research.

They found that LEAP streamlines legal document annotations

and enhances time e�ciency for vague queries. They also found

LEAP easy to install, load, and use with an intuitive interface.

5 EXPERIMENTS

In this section, we evaluate the applicability of LEAP and its com-

ponents. We introduce the experiment setup in Section 5.1. We

demonstrate the applicability of LEAP in social science research in

Section 5.2. We explore the e�ectiveness of the critical components

in Section 5.3 and conduct ablation studies in Section 5.4.

5.1 Experiment Setup

We outline the metrics and baselines for evaluation.

Metrics. We use pass @ k [16, 59], where a query is considered cor-

rectly answered if the result from any of the ġ executions matches

the ground truth, as our primary performance metric. We select

ġ = 1, 3, 5. With the goal of improving e�ciency in social science

research, we place a greater emphasis on ġ = 1. We also track the

average API cost for all requests in answering each query [82].

Baselines. To demonstrate the superiority of LEAP compared to

existing NL2SQL and question answering systems, we select 9 repre-

sentative baselines. We select (1) TAPAS large model �ne-tuned on

WikiTable Questions [29, 40, 45, 83] (TAPAS), the state of the art for

table question answering tasks. WikiSQL [125] and Spider [119] are

the two major datasets for training and evaluating NL2SQL systems.

We select (2) TAPEX [68], the state of the art on WikiSQL, (3) T5

�netuned onWikiSQL (T5-WikiSQL) [90, 92], the most downloaded

model on Huggingface as of 02/25/2024 �netuned on WikiSQL for

NL2SQL tasks, (4) DAIL-SQL + GPT-4 + Self-Consistency (DAIL-

SQL) [38], the state of the art on Spider, and (5) T5 �netuned on Spi-

der (T5-Spider) [2, 90], the most downloaded model on Huggingface

as of 02/25/2024 �netuned on Spider for NL2SQL tasks. To compare

the performance of LEAP with existing NL2SQL systems designed

for vague queries, we select (6) LogicalBeam [8], which success-

fully handles vague queries at the table schema level. To show

the e�ectiveness of the design of LEAP, we select (7) gpt-4-0613

(GPT-4), the LLM prompted by LEAP’s code generator, including a

performance comparison with (8) gpt-3.5-turbo-0125 (GPT-3.5),

Pass @ 5

Pass @ 3

Pass @ 1

0% 25% 50% 75% 100%

Figure 5: Pass @ k of LEAP over QUIET-ML.

both prompted with the o�cial NL2SQL prompt [81]. To compare

LEAP with question answering systems on unstructured data, we

select (9) RoberTa + Parallel + Adapters (Roberta) [15, 70], the latest

model on SQuAD2.0 [91], a benchmark dataset consisting of ques-

tion and answer pairs, including unanswerable questions, based on

Wikipedia articles.

5.2 LEAP Achieves Reliable Performance With
Low Cost

We demonstrate the performance and cost e�ciency of LEAP.

LEAP achieves a 92% accuracy. We�rst examine the performance

of LEAP in various social science domains. We run LEAP 5 times

over each of the 120 queries in QUIET-ML to obtain pass @ 3,

pass @ 5, and the average pass @ 1. For vague queries, a run is

successful if LEAP correctly rejects the query and recommends

alternatives, one of which yields a result that matches the ground

truth. For non-vague queries with unspeci�ed numerical values, a

run is successful if LEAP generates a warning, and the result of the

query with speci�ed numerical values matches the ground truth.

As we show in Figure 5, LEAP achieves an average of 92% pass

@ 1, where 79 out of 120 queries achieve a 5 out of 5 success rate,

34 achieve a 4 out of 5 success rate, and the remaining 7 achieve

a 3 out of 5 success rate. The average pass @ 1 achieves 91.5% for

non-vague queries, and 93.3% for vague queries. LEAP achieves

100% for both pass @ 3 and pass @ 5. LEAP consistently performs

well despite the large variance in query complexity across di�erent

social science research questions.

LEAP outperforms baselines in responding to vague queries.

We compare the performance of LEAP to 7 NL2SQL systems and

2 question answering systems on vague queries. For LEAP and

baselines (1)-(8), we run the 33 vague queries in QUIET-ML on

the pre-generated structured tables with adequate information.

Roberta is provided with texts following its original con�guration.

We perform 5 runs for each query.

As we show in Figure 6, LEAP succeeds in producing correct

results in 96.97% of all runs, GPT-3.5 succeeds in 41.21% of all runs,

GPT-4 succeeds in 39.39% of all runs, DAIL-SQL succeeds in 29.09%

of all runs, TAPAS succeeds in 24.24% of all runs, and TAPEX, T5-

Spider, LogicalBeam, and T5-WikiSQL have accuracy of 15.15%,

12.12%, 9.09%, and 3.03% respectively. Roberta has an accuracy of

3.03%, while LEAP achieves an accuracy of 93.3% on the 33 vague

queries when also provided with unstructured data.

LEAP outperforms existing systems due to its capability to iden-

tify common vagueness in social science queries and generate al-

ternative speci�ed queries. The execution results of LogicalBeam

and Roberta indicate that the ambiguity in social science queries
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Figure 6: Pass @ 1 of LEAP and baselines over the 33 vague

queries in QUIET-ML on structured tables.

Figure 7: Cost breakdown of LEAP and comparison with

traditional social science research methods.

extends beyond the table schema level and a limited number of text

segments, where LEAP demonstrates a signi�cant advantage.

LEAP is cost-e�cient. We compare the query cost of LEAP with

traditional social science research methods. The end-to-end exe-

cution cost of LEAP on QUIET-ML queries is $1.06 per query on

average. Speci�cally, the cost of the forward planning �lter is $0.17,

the stage selector is $0.22, the table generation stage is $0.66, and

the code generation stage is $0.02 (Figure 7).

When estimating the costs of traditional social science research

methods, we consider only the data annotation costs, excluding all

other costs such as labor and time for code writing and execution,

and assuming a speci�ed research question is readily formulated.

We estimate traditional data annotation costs based on the average

size of the unstructured data with 22,323 data points, and on average

each query requires 2.0 new annotations for each data point. We

calculate the cost in two distinct ways: (1) with professional label

providers from enterprises like Scale [101], each annotation costs

$0.05, yielding a total cost of $2,265.78 per query; and (2) by hiring

research assistants (RAs) at the minimum wage in Illinois of $14

per hour. Assuming it takes 10 seconds for an RA to provide an

annotation, which is conservative given the extensive volume of

videos and documents, it costs $1,736.23 per query.

As we show in Figure 7, it costs less than 1/1000 to answer a

query using LEAP than using traditional social science research

methods. This low cost results from LEAP’s e�cient prompt designs

with various structures, as we demonstrate in Sections 5.3 and 5.4.

5.3 Component Studies

We study the e�ectiveness of the critical components in LEAP.

Forward planning �lter achieves over 96% accuracy. We study

the accuracy of the results of the forward planning �lter. We �rst

de�ne which results are considered accurate case by case.

(1) For non-vague queries without unspeci�ed numerical val-

ues, the forward planning �lter should not signal unneces-

sary warnings or incorrectly label these queries as vague,

and should accurately identify function chains.

(2) For non-vague queries with unspeci�ed numerical values,

the forward planning �lter should issue warnings inquiring

whether the user intends to proceed, and should accurately

identify function chains.

(3) For vague queries, the forward planning �lter should detect

the vagueness and terminate the execution. The forward

planning �lter should recommend alternative queries, at

least one of which satis�es condition (1) or (2).

We run LEAP 5 times for each query, and the accuracy for all

120 queries achieves 96.5%. The accuracy for the non-vague queries

without unspeci�ed numerical values achieves 96.9%, the accu-

racy for the non-vague queries with unspeci�ed numerical values

achieves 97.8%, and the accuracy for the vague queries achieves

95.8%. The accuracy for vague queries is lower due to the uncer-

tainty introduced by generating speci�ed queries, including those

that do not match the user’s original intentions.

Stage selector achieves 99% accuracy. We study the accuracy

of the stage selector. A run is accurate if all necessary stages are

selected and executed without errors or repetitions. We run LEAP

5 times over all 120 queries. The accuracy of the stage selector

achieves 98.5%. Out of the 9 failure cases, only 1 is due to redundant

selection, and the remaining 8 are due to inaccurate selection or

erroneous execution. The stable performance of the stage selector

ensures the work�ow of LEAP is logically and e�ciently divided.

Function selection achieves 98% accuracy. To evaluate the

capability of LEAP in calling appropriate functions, we study the

accuracy of function selection. The function selection of a query is

considered accurate if (1) the function tree search engine identi�es

correct paths to the tree leaves, (2) the correct functions are called

in appropriate orders, and (3) the function chain stopper Ĝstopper
is correctly called. We run LEAP 5 times over all 120 queries. The

accuracy of function selection achieves 97.8%. The prompt designs

for function calling in LEAP’s table generation stage ensure correct

data annotations in social science research.

Parameter selection achieves 99% accuracy. We further ex-

plore LEAP’s capability in mapping relationships among columns

by analyzing the accuracy of parameter selection. The parameter

selection is considered accurate if the correct columns are selected

to derive the new columns. We run LEAP 5 times for all 120 queries.

The accuracy of parameter selection achieves 98.8%. The table col-

umn descriptions are properly maintained during LEAP’s table

generation stage to ensure correct column mappings.

Alias check blocks work with forward planning �lter to en-

sure 0% redundancy. We study the capability of LEAP tominimize

unnecessary ML function executions. We select the 20 queries in

QUIET-ML that require multiple function calls with mutual depen-

dencies, and extend the data with intermediate annotations. For

tests in Section 5.2 that provide unstructured data X, and where

the ML functions annotate this data into a table with columns [X,

Ĝ1(X), Ĝ2(Ĝ1(X))], we provide a structured table with columns
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[X, Y], where Y = Ĝ1(X). We examine whether the ML func-

tions that generate these intermediate annotations (i.e., the Ĝ1’s)

are redundantly executed. We run each of these 20 queries 5 times.

Of the 94 runs (accuracy 94%) that produces correct results, all

(100%) successfully avoid redundant ML function executions. The

forward planning �lter avoids the calling of these functions by

excluding them from the planned function chains in 54.3% of the

runs, and alias check blocks avoid the execution of these functions in

all the remaining 45.7% when they are redundantly called. In 11 out

of 20 queries, alias check blocks avoid the execution of unnecessary

ML functions in at least 3 out of the 5 total runs. LEAP avoids all

(100%) of the unnecessary function executions when given multiple

intermediate columns. By accurately identifying redundancy in

annotations, LEAP minimizes ML function execution costs.

5.4 Ablation Studies

We conduct ablation studies to reveal the impact of each component.

Forward planning �lter doubles accuracy. We study how the

forward planning �lter a�ects LEAP’s performance by removing it

and running the same tests as Section 5.2 on all 120 queries.

With the forward planning �lter removed, the average pass @ 1

drops from 92% to 43.7%, where only 19 out of 120 queries achieve

a 5 out of 5 success rate, which is less than a quarter of the number

of LEAP with the forward planning �lter. Speci�cally, the average

pass @ 1 for non-vague queries drops from 91.5% to 54.7%, and

the average pass @ 1 for vague queries drops from 93.3% to 14.5%.

The pass @ 3 drops from 100% to 59.2%, where pass @ 3 for non-

vague queries drops to 73.6%, and pass @ 3 for vague queries drops

to 21.2%. The pass @ 5 drops from 100% to 66.7%, where pass @

5 for non-vague queries drops to 78.2%, and pass @ 5 for vague

queries drops to 36.4%. This indicates that the forward planning

�lter contributes both to specifying vague queries and identifying

complex function chains, with the former having greater in�uence.

Doubly linked lists raise accuracy by 4×. We examine how

doubly linked lists help answer queries that require executing mu-

tually dependent functions. We remove all doubly linked lists and

run the same tests as Section 5.2 on all 13 queries whose function

chains involve functions in these doubly linked lists.

Doubly linked lists provide explicit information about function

dependencies, which otherwise can only be inferred from column

descriptions. With all doubly linked lists removed, the average pass

@ 1 drops from 87.7% to 20%, the pass @ 3 drops from 100% to

46.2%, and the pass @ 5 drops from 100% to 61.5%.

Function tree halves query costs. We study how the function

tree structure lowers query cost.We remove the function tree search

engine and pass all internally supported ML functions as candidates

for the function calling interface. We measure query costs in terms

of the total number of prompt tokens used in table generation, the

stage where the function tree structure contributes.

Instead of the entire function list, LEAP only selects from a small

subset of functions (i.e., the selected tree leaf nodes) for each func-

tion call. This reduction in prompt tokens outweighs the additional

prompts used by the tree search engine, especially when multiple

function calls (i.e., multiple annotations) are required. By removing

the function tree structure, the average number of prompt tokens

increases from 20,861 to 46,318, resulting in the total query cost be-

ing 122.03% higher than that of the original LEAP with the function

tree structure in the table generation stage.

Function tree raises accuracy by 5×. We study how the function

tree structure a�ects LEAP’s performance by modifying LEAP as

in the previous section and running the same tests as Section 5.2

on all 120 queries.

The function tree’s removal impedes the selection of the function

chain stopper Ĝstopper among the extensive pool of candidates. The

average pass @ 1 drops from 92% to 16.2%, pass @ 3 drops from

100% to 34.2%, and pass @ 5 drops from 100% to 39.2%.

6 RELATED WORK

We review related work from the following two aspects.

Computational social science. As available data scales, social

scientists increasingly quantify complex social science problems

and leverage computational resources for solutions [61]. This leads

to the development of the computational social science �eld [28,

60], enabling social scientists to derive deep insights from large

amounts of data [47, 67, 123]. Additionally, ML models [25] achieve

satisfactory performance in quantitatively analyzing social science

problems across a wide range of popular domains [6, 17, 26, 30, 36,

108, 120, 126, 128]. However, a signi�cant gap remains between

the advancements in ML models and their practical deployment in

social science research due to their complexity [41, 109].

NL2SQL. Natural language access to databases is a key area of

research [22]. One branch is table question answering systems that

understand and answer questions directly based on data presented

in tabular form [29, 45, 51, 83, 125]. As database sizes and complexity

grow, the scalability of NL2SQL systems makes them more viable

options [71]. Existing NL2SQL systems achieve high accuracy [57]

by (1) improving the representation of table schema [27, 112], and

(2) improving the mapping between the intent of natural language

queries and the translated SQL codes [43, 118]. The generalizability

of existing NL2SQL systems has also been widely studied [107]

and improved [35, 104]. The development of LLMs makes NL2SQL

systems more e�ective for handling complex database queries [64,

86, 124]. Existing NL2SQL systems and benchmarks addressing

vague queries focus on the table schema level [8, 34, 111]. However,

in actual social science research [19, 62, 76, 94, 98–100, 103, 108,

115, 122], the causes of ambiguity are more complex, impeding the

deployment of NL2SQL systems in social science research [89].

7 CONCLUSION

In this work, we presentQUIET-ML, a dataset that comprehensively

covers 120 popular queries in social science research. Along with

QUIET-ML, we introduce LEAP, an end-to-end library designed to

support social science research by automatically analyzing user-

collected unstructured data in response to their natural language

queries. LEAP incorporates a forward planning �lter that handles

vague queries and generates function chains e�ectively. By integrat-

ing innovative structures such as the function tree, doubly linked

lists, and alias check blocks, LEAP achieves 100% pass @ 3 and 92%

pass @ 1 with an average end-to-end cost being $1.06 per query on

QUIET-ML, signi�cantly outperforming the baselines.
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