
TEAM: Topological Evolution-aware Framework
for Tra�ic Forecasting

Duc Kieu1,2,∗, Tung Kieu3,∗, Peng Han4, Bin Yang5,#, Christian S. Jensen3, and Bac Le1,2
1University of Science, Ho Chi Minh City, Vietnam 2Vietnam National University, Ho Chi Minh City, Vietnam

3Aalborg University, Denmark 4University of Electronic Science and Technology of China, China
5East China Normal University, China

1,2{18127080,lhbac}@hcmus.edu.vn 3{tungkvt,csj}@cs.aau.dk 4penghan@uestc.edu.cn 5byang@dase.ecnu.edu.cn

ABSTRACT

Due to the global trend towards urbanization, people increasingly

move to and live in cities that then continue to grow. Tra�c fore-

casting plays an important role in the intelligent transportation

systems of cities as well as in spatio-temporal data mining. State-

of-the-art forecasting is achieved by deep-learning approaches due

to their ability to contend with complex spatio-temporal dynam-

ics. However, existing methods assume the input is �xed-topology

road networks and static tra�c time series. These assumptions

fail to align with urbanization, where time series are collected

continuously and road networks evolve over time. In such set-

tings, deep-learning models require frequent re-initialization and

re-training, imposing high computational costs. To enable much

more e�cient training without jeopardizing model accuracy, we

propose the Topological Evolution-aware Framework (TEAM) for

tra�c forecasting that incorporates convolution and attention. This

combination of mechanisms enables better adaptation to newly col-

lected time series while being able to maintain learned knowledge

from old time series. TEAM features a continual learning module

based on the Wasserstein metric that acts as a bu�er that can iden-

tify the most stable and the most changing network nodes. Then,

only data related to stable nodes is employed for re-training when

consolidating a model. Further, only data of new nodes and their

adjacent nodes as well as data pertaining to changing nodes are

used to re-train the model. Empirical studies with two real-world

tra�c datasets o�er evidence that TEAM is capable of much lower

re-training costs than existing methods are, without jeopardizing

forecasting accuracy.

PVLDB Reference Format:

Duc Kieu, Tung Kieu, Peng Han, Bin Yang, Christian S. Jensen, and Bac Le.

TEAM: Topological Evolution-aware Framework for Tra�c Forecasting.

PVLDB, 18(2): 265 - 278, 2024.

doi:10.14778/3705829.3705844

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/kvmduc/TEAM-topo-evo-tra�c-forecasting.

∗: Equal contributions, #: Corresponding author
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 2 ISSN 2150-8097.
doi:10.14778/3705829.3705844

1 2

34

(a) Historical city.

1

4 3

2

(b) Historical RN.

1

6

7

5

8

2

34

STOP

(c) Current city.

1

5 6

4 38

7 2

(d) Current RN.

Figure 1: Example of a city and its corresponding evolving RN.

1 INTRODUCTION

Transportation has recently experienced substantial development,

owing to technological advancements. One of the main develop-

ments is the widespread di�usion of sensor-equipped devices, re-

sulting in the massive production of transportation data. This infor-

mation further supports inexpensive and e�ective transportation

management solutions [29]. For example, proximity sensors or

speeding cameras are installed on di�erent roads and intersections

to continuously collect tra�c information such as tra�c �ow and

speed. The result is the availability of large amounts of time-ordered

tra�c observations, known as tra�c time series.

Tra�c forecasting fueled by tra�c data, is a core element of

many applications in intelligent transportation and plays an impor-

tant role in spatio-temporal data mining. Forecasted information

(e.g., tra�c �ow and tra�c speed), which o�ers insight into the

dynamic characteristics of the underlying tra�c network, can con-

tribute to, e.g., alarms for hotspots [31], route planning [19], and

route recommendation [56]. To capture complex spatio-temporal

dynamics, many deep learning based methods have recently been

proposed and show promising results on challenge datasets due to

their ability to learn non-linear dynamics [35, 59]. These methods

are often built on Graph Neural Networks (GNNs) [16, 32] and Tem-

poral Neural Networks (TCNs) [24, 50] to capture spatial and the

temporal information, respectively. Although achieving competi-

tive performance, these methods face two challenges.

265

https://www.acm.org/publications/policies/artifact-review-and-badging-current

First, tra�c forecasting is a long-term task, where tra�c behav-

iors can change over time due to changes in the graph structure of

road networks (RNs). For example, RNs that represent cities often

expand to support growing populations caused by urbanization.

This results in new nodes and edges being added to existing RNs.

Meanwhile, old roads and regions can become obsolete, leading

to the elimination of nodes and edges from existing RNs. Also, in

some countries, roads are frequently blocked, and directions are

frequently changed depending on the day of the week. Observa-

tions such as these motivate solutions to the problem of tra�c

forecasting for RNs with evolving topology.

Fig. 1 shows an example of a city and its evolving RN. However,

existing forecasting proposals only work on static RNs [35, 59,

60] and thus do not accommodate real-world scenarios. A trivial

solution is to re-initialize a new model and re-train it on the new

RN data whenever the RN has evolved. However, this imposes

challenges to both storage and computation because of high data

processing and model training overheads, particularly when RNs

grow. Another way of accommodating evolving RNs is to train a

model on historical regions and then transfer the learned knowledge

to a new model, which is further trained on data from updated RN

parts. However, the direct use of transferred models faces two

limitations. (i) The historical and new temporal data of a node

may not exhibit similar patterns because tra�c data evolves and

exhibits the data shift characteristics [5, 55]. Transferred models

cannot learn inconsistent patterns between the historical and the

new data, thus exhibiting substandard performance. Also, when the

topology of an RN changes, tra�c behaviors corresponding to the

new topology deviate from the previous behaviors. Here, spatial

dependencies captured by transferred models may no longer be

appropriate. (ii) Useful information, such as stable patterns that are

captured by the transferred models, may be forgotten after being

transferred, rather than being consolidated [9]. Models that forget

stable patterns may experience substandard performance.

Second, we observe that tra�c forecasting models can achieve

impressive accuracy due to the practice of �tting onmassive datasets.

However, in practical scenarios, the cost of constructing and main-

taining a forecasting model is high. As mentioned above, a natural

consideration is to transfer the knowledge and only require model

training on updated regions. However, the data for the evolution of

RNs, which is used to transfer the previous model, is substantially

smaller than that used for a re-initialized model. An e�ective model

is then required to incrementally capture dynamic and complex

spatio-temporal correlations given a small-scale dataset. However,

recent studies [21, 47, 54] focus on building forecasting models

with high accuracy, overlooking the ability to learn e�ectively to

model complex and non-linear spatio-temporal dependencies with

small-scale data.

We propose a Topological Evolution-aware Framework (TEAM)

for tra�c forecasting to solve the above two problems. To tackle the

�rst problem, we propose a continual learning module that adopts

the rehearsal-based continual learning mechanism. This module

works as a bu�er and stores a limited number of historical data

samples. The module is then integrated into the tra�c forecasting

framework, where it provides stored samples to enforce forecasting

model rehearsal when new data is similar to historical data. By

rehearsing, the historical knowledge is consolidated, and the model

can mitigate forgetting. In case the new data is di�erent from the

historical data (i.e., exhibits distribution shift [20]), the historical

knowledge is no longer useful, and thus rehearsal is unnecessary.

To measure the di�erence between historical and new data, we

transform the historical and new data into two histograms and

use the Wasserstein metric to compute their similarity. A limited

number of historical data samples of several historical graph nodes

that have high similarity (i.e., the most stable nodes) are selected

and stored in the bu�er. In addition, those that have the lowest

similarity (i.e., the most changing nodes) are selected for update

with the new data. A new adjacency matrix is constructed from

the most stable nodes, the most changing nodes, and the newly

added nodes. Finally, data in the bu�er and evolved data of the new

adjacency matrix serve as the input for training the transferred

model. The constructed adjacency matrix is signi�cantly smaller

than the adjacency matrix of the entire RN. Thus, the complexity

of the model training is reduced substantially.

To overcome the second issue, we propose a model, called Convo-

lution Attention for Spatio-Temporal (CAST), that uses a hybrid

architecture that combines convolution and attention modules for

both spatial and temporal computations. Existing studies [15, 52]

show that combining convolution and attention allows a model

to learn faster and to converge more easily so that the model can

work well on small-scale datasets. Hybridizing convolution and

attention also enables a model to better model dynamic and non-

linear spatial-temporal correlations. Further, convolution focuses on

local patterns such as seasonalities, variations w.r.t. the temporal

aspect, and closed-neighbor-nodes w.r.t. the spatial aspect [42].

In contrast, attention focuses on global patterns such as trends

w.r.t. the temporal aspect and far-neighbor-nodes w.r.t. the spatial

aspect [12]. By combining convolution and attention, we aim to

obtain a model that exploits both local and global patterns to yield

better accuracy.

To the best of our knowledge, this is the �rst study to enable

tra�c forecasting for evolving RNs. We make four contributions.

First, we formulate the problem of tra�c forecasting in evolving

RNs. Second, we propose CAST, a framework for tra�c forecast-

ing, where the main model can learn e�ectively on small-scale

data using a hybrid architecture. Third, we propose a continual

learning module that enables the forecasting model to e�ectively

learn on evolving RNs. Then, we integrate the module into CAST

to form TEAM. Fourth, we report on extensive empirical studies

that o�er insight into pertinent design properties of the proposed

framework and o�er evidence that the proposed framework is able

to outperform the state-of-the-art approaches w.r.t. accuracy and

runtime.

The rest of the paper is organized as follows. Section 2 describes

the preliminaries and formalizes the problem. Section 3 presents the

methodology. Section 4 describes the experimental study and the

results. Section 5 discusses related work, and Section 6 concludes

the paper.

2 PRELIMINARIES

2.1 Tra�c Forecasting

Consider an RN modeled as a graph ă = (Ē , ā), where Ē is a �-

nite set of |Ē | = Ċ vertices and ā is a set of edges, and let ă be

266

represented by an adjacency matrix A. Assume corresponding data

for all vertices over Č historical time steps X = ïXĐ−Č+1, . . . ,XĐ ð.

The data at time step Đ is denoted as XĐ ∈ R
Ċ×Ă , where Ă is the

number of tra�c signal features. The goal of tra�c forecasting is to

build a model that works as a function ĜĂ (.) that learns from Č pre-

vious steps of data X to forecast data for Ą future steps of data X̂ =

ïX̂Đ+1, . . . , X̂Đ+Ą ð s.t. ïXĐ−Č+1, . . . ,XĐ ð
ĜĂ (.)
↦−−−−→ ïX̂Đ+1, . . . , X̂Đ+Ą ð

2.2 Graph Evolution

The evolution of graph over time is conceptually represented by a

series of graphs ïă1,ă2, . . . ,ăč ð, so thatăÿ
= (Ē ÿ , āÿ) represents

the snapshot of the graph at period ÿ . A period is a generic term.We

can �exibly de�ne the length of a period to a day, a week, a month,

a quarter, a year, or any other length. Since ïă1,ă2, . . . ,ăč ð repre-

sent snapshots of a speci�c graph, we have thatăÿ
= ăÿ−1 +� ă

ÿ .

Here, �ă
ÿ
= (�Ē

ÿ ,� āÿ) is the incremental data that captures the

change (i.e., the di�erence) w.r.t. edges and nodes (either addition

or removal) between the graph ăÿ and the previous graph ăÿ−1.

More speci�cally, �ă
ÿ encompasses added and removed nodes,

added and removed edges, and all existing nodes incident on the

added and removed edges. Fig. 2 exempli�es ăÿ−1, ăÿ , and the

evolved part �ă
ÿ .

Figure 2: Evolution fromăÿ−1 toăÿ . The blue oval regions highlight

the evolved parts. Red nodes and edges denote added nodes and edges,

respectively. Blue nodes and edges denote removed nodes and edges,

respectively.

2.3 Problem Statement

Assume a long-term RN modeled as a sequence of graph snapshots

ïă1,ă2, . . . ,ăč ð, where each ăÿ
= ăÿ−1 +� ăÿ represents the

evolution of the RN from period ÿ − 1 to period ÿ due to many

reasons such as the expansion or shrinkage of a region, newly-built

roads, and discontinued roads.

For each �ă
ÿ , Č corresponding historical time steps �X

ÿ
=

ï�X
ÿ
Đ−Č+1

, . . . ,� Xÿ
Đ
ð are given. We aim to build a framework that

works as a function series ïĜ 1
Ă
(.), Ĝ 2

Ă
(.), . . . , Ĝ

č

Ă
(.)ð, where each

Ĝ ÿ
Ă
(·) is transferred from Ĝ ÿ−1

Ă
(·) and learns from the data from the

Č previous steps of the evolved parts in �X
ÿ to forecast data for Ą

steps into the future for the entire RN in X̂ÿ
= ïX̂Đ+1, . . . , X̂Đ+Ą ð

as show in Eq. 1.

ïXÿ
Đ −Č+1

, . . . ,Xÿ
Đ
ð

Ĝ ÿ
Ă
(.)

↦−−−−→ ïX̂
ÿ
Đ+1, . . . , X̂

ÿ
Đ+Ą ð, if ÿ = 1

ï�X
ÿ
Ī−Č+1

, . . . ,� Xÿ
Đ
ð

Ĝ ÿ
Ă
(.)

↦−−−−→ ïX̂
ÿ
Đ+1, . . . , X̂

ÿ
Đ+Ą ð, if ÿ > 1

(1)

3 METHODOLOGY

3.1 Framework Overview

Preprocessing

Continual learning module

Transfer Transfer

Preprocessing Preprocessing

Main model
(CAST)

Main model
(CAST)

Main model
(CAST)

Figure 3: TEAM framework overview.

We show an overview of the proposed framework in Fig. 3. First,

the data is fed into the preprocessing component that uses a com-

mon preprocessing technique to reduce the di�erence in terms of

the magnitude between observations. An observation Xÿ
Ī ∈ X

ÿ

at each ăÿ is re-scaled by using the mean Ćÿ and standard devi-

ation Ăÿ of Xÿ as Xÿ
Ī =

(Xÿ
Ī − Ć

ÿ)

Ăÿ
. Next, the preprocessed data

ïX1
Đ−Č+1

, . . . ,X1
Đ
ð from the �rst period is fed into the main model,

which is covered in Section 3.2. The main model is fully trained

by the data from the �rst period. Next, the preprocessed data from

the following periods are fed into the continual learning module,

to be presented in Section 3.3. This module identi�es the most sta-

ble and most changing nodes as well as their incidental edges and

combines these with the evolved parts to produce the incremental

data ï�X
ÿ
Đ−Č+1

, . . . ,� Xÿ
Đ
ð, ÿ > 1 in the ÿ-th period for partially

training the main model. To do that, the trained model from the

previous period is transferred and takes the incremental data as

input. The incremental data is signi�cantly smaller than the full

data. Thus, training the model with incremental data is much faster.

In other words, the cost of training the models in the following

periods is substantially reduced. This procedure continues until the

last period č .

267

+
Temporal

Spatial

H1

Spatial
Convolution

Spatial
Attention

Temporal
Convolution

Temporal
Attention

ST
 b

lo
ck

 l

Input

Vl Yl

Forecast
Convolution

Backcast
Convolution

Xl

H2

H3

H4
H4 H4

(a) Block structure.

+++

ST
block 1

Input

ST
 s

ta
ck

 m

YmXm+1
~ ~

V1

V2

VL

X2

X3

XL

Y1

Y2

YL

X1

ST
block L

ST
block 2

(b) Stack structure.

ST
stack 1

Input

YM

X2
~

XM
~

~

X3
~

C
AS
T

ST
stack 2

ST
stack M

X̂

Y2
~

~
Y1

(c) CAST overview.

Figure 4: Main model (CAST).

3.2 Main Model

We propose a hybrid architecture [54] that combines attention

and convolution [15], namely Convolution Attention for Spatio-

Temporal tra�c forecasting (CAST) as shown in Fig. 4. Intuitively,

the convolution layers can be viewed as �lters that produce high-

level features to be fed into the attention module, which is treated as

an implicit memory, capable of storing a representation of complex

knowledge. By doing so, themodel can swiftly adapt to new patterns

using limited data as the RN evolves, while still preserving intricate

historical knowledge. Further, convolution focuses on local patterns

such as seasonalities, variations w.r.t. the temporal aspect, and

close-neighbor-nodes w.r.t. the spatial aspect. In contrast, attention

focuses on global patterns. By combining the two, we exploit both

local and global information to improve forecasting accuracy. CAST

consists of spatio-temporal stacks (Fig. 4c). Each such stack consists

of spatio-temporal blocks (Fig. 4b). Each block is a basic component

that performs spatial and temporal computation (Fig. 4a).

Spatio-temporal Block. A spatio-temporal (ST) block consists of

three components, including a spatial component to learn spatial

information, a temporal component to learn temporal informa-

tion, and a component to compute forecasting and backcasting

values. The spatial and temporal components combine convolu-

tion and attention layers with the constraint that the attention

layers must follow the convolution layers. This ordering allows

the model to converge faster (i.e., capture more high-level features

and then memorize these by only training on a small amount of

data) [15, 52]. Next, we describe the operation of the Ģ-th block in

detail. The �rst ST block is a special case and receives the graph

signal Xÿ
Ģ
≡ Xÿ , ÿ = 1 or Xÿ

Ģ
≡� X

ÿ , ÿ > 1 as input. The inputs

XĢ to the remaining ST blocks are the residual outputs from the

previous blocks. The input is �rst fed into the spatial component,

which performs spatial convolution and attention. For the spatial

convolution, we employ ChebnetII [23], which is an improved

version of ChebNet [16] that has more expressive capabilities than

GCN [32]. More speci�cally, the computation is de�ned as follows.

First, Laplacian matrices Lÿ and �L
ÿ are computed as shown in

Eq. 2.

Lÿ = Iÿ − Dÿ
− 1
2
AÿDÿ

− 1
2
, if ÿ = 1

�L
ÿ
=� Iÿ −� Dÿ

− 1
2

�A
ÿ

�D
ÿ
− 1
2 , if ÿ > 1

(2)

Here, Dÿ ∈ RĊÿ ×Ċÿ
and �D

ÿ ∈ R�Ċ
ÿ ×�Ċ

ÿ
are degree matrices,

Aÿ ∈ R
Ċÿ ×Ċÿ

and �A
ÿ ∈ R�Ċ

ÿ ×�Ċ
ÿ
are adjacency matrices,

and Iÿ ∈ R
Ċÿ ×Ċÿ

and �I
ÿ ∈ R�Ċ

ÿ ×�Ċ
ÿ
are identity matrices.

We follow existing studies to construct the adjacency matrices, i.e.,

generating Aÿ and �A
ÿ , using distances between entities [35]. We

thus compute the RN distances to construct Aÿ and �A
ÿ by using

a Gaussian kernel. The weight of the edge between sensors ğ and Ġ

is de�ned as follows.

Aÿ
ğ Ġ = exp −

dist (Ēğ ,ĒĠ)
2

Ă2
, if ÿ = 1

�A
ÿ
ğ Ġ = exp −

dist (�Ēğ ,�ĒĠ)
2

Ă2
, if ÿ > 1

(3)

Here, dist (Ēğ ,ĒĠ) and dist (�Ēğ ,�ĒĠ) are the distances between en-

tities ğ and Ġ , and Ă is the standard deviation of the distances. We

set Aÿ
ğ Ġ = 0 and �A

ÿ
ğ Ġ = 0 if they are below a threshold Ċ . Next, a

rescaled Laplacian matrix L̂ÿ ∈ R
Ċÿ ×Ċÿ

and �L̂
ÿ ∈ R�Ċ

ÿ ×�Ċ
ÿ

are computed as shown in Eq. 4.

L̂ÿ =

2Lÿ

ąÿģėĮ
− I, if ÿ = 1

�L̂
ÿ
=

2�L
ÿ

�ą
ÿ
ģėĮ

−� I, if ÿ > 1
(4)

Here, ąÿģėĮ and �ą
ÿ
ģėĮ are the maximum of eigenvalues of Lÿ

and �L
ÿ , respectively. For a graph signal with Ăin channels, Xÿ

Ģ
∈

R
Ċÿ ×Ăin×Č or �X

ÿ
Ģ
∈ R�Ċ

ÿ ×Ăin×Č , the output of the spatial con-

volution is computed as shown in Eq. 5.

H1 =

2

ċ + 1

ċ∑

ĥ=0

ċ∑

ħ=0

ĀħPĥ (� (ħ,ċ)) Pĥ

(
L̂
)
Xÿ
Ģ , if ÿ = 1

2

ċ + 1

ċ∑

ĥ=0

ċ∑

ħ=0

ĀħPĥ (� (ħ,ċ)) Pĥ

(
L̂
)

�

Xÿ
Ģ , if ÿ > 1

(5)

Here,Āħ ∈ R
Ăin×Ă1 is a learnableweightmatrix, � (ħ,ċ) = cosin

(
ÿ (ħ+ 1

2)

ċ+1

)
,

and Pĥ (·) is a Chebyshev function, which is de�ned as a recursive

function as follows.

Pĥ (Į) = 2Pĥ−1 (Į) + Pĥ−2 (Į)

P1 (Į) = Į

P0 (Į) = 1

(6)

The output of the spatial convolution H1 ∈ R
Ċÿ ×Ă1×Č , ÿ = 1

or ∈ R�Ċ
ÿ ×Ă1×Č , ÿ > 1 is then fed into the spatial attention. For

simplicity, we denoteH1 ∈ R
Ċÿ ×Ă1×Č , ÿ = 1 or ∈ R�Ċ

ÿ ×Ă1×Č , ÿ >

1 using the uni�ed notation H1 ∈ R
(Ċÿ | |�Ċ

ÿ)×Ă1×Č from now.

We employ Graph Attention Network (GAT) [51] for the spatial

attention. First, two matricesWĩkey ,Wĩquery ∈ R
(Ċÿ | |�Ċ

ÿ)×1×Č are

computed fromWℎ ∈ R
(Ċÿ | |�Ċ

ÿ)×Ă2×Č .

268

Wℎ = H1Wĩ ; Wĩkey = Wℎaĩkey ; Wĩquery = Wℎaĩquery (7)

Here,WB ∈ R
�1×�2 , aBkey ∈ R

�2×1, and aBquery ∈ R
�2×1 are learnable

parameters.

Then, a spatial attention matrix EB ∈ R
(#ÿ | |�#

ÿ)×(#ÿ | |�#
ÿ) is

constructed as shown in Eq. 8. The spatial attention matrix plays

the role of specifying the importance between all the nodes in the

RN.

Eĩ = Wĩkey
W¦ĩquery (8)

Anormalized spatial attentionmatrix E′B ∈ R
(#ÿ | |�#

ÿ)×(#ÿ | |�#
ÿ)

is computed from each element EBğ,Ġ as E
′
B =

exp(EBğ,Ġ)
∑#

9 exp(EBğ,Ġ)
.

Then, the output of spatial attentionH2 ∈ R
(#ÿ | |�#

ÿ)×�2×% is

computed as follows.

H2 = ReLU(E′ĩWℎ) (9)

Here, ReLU is the recti�ed linear unit activation function [40]. The

spatial attention shown in Eq. 9 can be stabilized by using the

multi-head mechanism [51], where multiple spatial attentions work

together in parallel.

H2 =

đ

ī=1
ReLU(E′īĩ Wī

ℎ
) (10)

Here,
 denotes the concatenation operator, đ is the number of

spatial attention heads, E′DB ∈ R
(#ÿ | |�#

ÿ)×(#ÿ | |�#
ÿ) is the ī-th

normalized spatial attention matrix, and WD
ℎ
∈ R(#

ÿ | |�#
ÿ)×

Ă2
đ
×% ,

whereWD
ℎ
= H1W

D is the weight matrix of the ī-th spatial atten-

tion heads.

The output of the spatial attention is also the output of the spa-

tial component, which is fed into the temporal component. In the

temporal component, the input is �rst fed into a TCN with Ģ layers.

We use dilated causal convolution for TCN. Dilated causal convo-

lution works by convoluting Ē attribute vectors from þ di�erent

timestamps, where the attribute vectors to be convoluted are Ě

timestamps apart. At di�erent layers, þ is often the same, while Ě

may be di�erent. The temporal convolution is de�ned as follows.

H3 = H2 ★Ī WĪ1 =

Ă3∑

Ă3=1

þ∑

Ę=1

W[1, �3] » H2Ī−Ě×(Ę−1)
[�3], (11)

where, ★C represents a convolutional operator at timestamp Ī , » is

Hadamard product (i.e., element-wise multiplication), andWC1 ∈

R
�×�3 is the convolution �lter. We compute Eq. 11 with a number

of �lters in the �lter bankWC1 .

The output of temporal convolution,H3 ∈ R
(#ÿ | |�#

ÿ)×�3×% , is

fed into temporal attention. The temporal attention can be viewed

as the importance score between all timestamps. First, the temporal

attention matrix EC ∈ R
%×% is computed as follows.

EC = WC2Ă ((H
¦
3 WCkey)WC3 (WCqueryH3) + bC) (12)

Here, WC2 , bC ∈ R
%×% , WCkey ∈ R

�3×�4 , WC3 ∈ R
�4 , and WCquery ∈

R
�3 are learnable weight matrices, and bC is the bias. A normal-

ized temporal attention matrix E′C ∈ R
%×% is computed from each

element ECğ,Ġ as E
′
C =

exp(ECğ,Ġ)
∑%

9 exp(ECğ,Ġ)
.

Then, the output of temporal attentionH4 ∈ R
(#ÿ | |�#

ÿ)×�4×%

is computed asH4 = H3E
′
C . The output of temporal attentionH4

is then conducted as a residual connection asH4 = H4 + X
c
;
.

Then the output of the residual connection is synchronously

fed into the forecast and the backcast convolution to produce

Y; ∈ R
(#ÿ

�
#ÿ)×?×� and V; ∈ R

(#ÿ | |�#
ÿ)×�ğĤ×% , which are the

forecast and the backcast of block Ģ , respectively.

YĢ = H4 ★Wforecast + bforecast; VĢ = H4 ★Wbackcast + bbackcast (13)

Here, ★ indicates 2D convolution operator; Wforecast ∈ R
�4×? and

bforecast ∈ R
? are the learnable weight matrix and bias vector

of the forecast convolution component, where Ħ is the number

of output feature; and Wbackcast ∈ R
�4×�ğĤ and bbackcast ∈ R

�ğĤ

are the learnable weight matrix and bias vector of the backcast

convolution component.

Spatio-temporal Stack. An ST stack is the upper level of an ST

block. More speci�cally, an ST stack consists of a sequence of Ĉ

ST blocks that connect sequentially in a novel doubly residual

structure (see Fig. 4c). This structure has two residual branches,

one for the forecast of all the ST blocks in an ST stack and one

for the backcast output of the previous ST block. The backcast

output can be interpreted as the portion of the information that

is not needed for the forecast job of the following ST blocks [43],

making it easier for the following blocks to process the signal.

The forecast output summarizes the �nal prediction of ST blocks,

providing an implicit ensemble architecture, which demonstrates

better performance compared to single models [4, 30]. Next, we

describe the operation of theģ-th ST stack in detail. As described

before, the output of the Ģ-th block in a stack isY; andV; , as shown

in Eq. 13. Then, V; is used for computing the input of the next

block, Xc
;+1
∈ R(#

ÿ | |�#
ÿ)×�in×% as Xc

;+1
= Xc

;
−V; .

The output of the last ST block in an ST stack (i.e., X!+1) is also

the residual for the next ST stack X̃<+1, i.e., X̃<+1 ≡ X!+1. The

forecast residual Ỹ< ∈ R
(#ÿ | |�#

ÿ)×?×� is computed by summing

the forecast output of all ST blocks in the ST stack as Ỹ< =

!∑

;=1

Y; .

CAST Model. The entire CAST model consist of ĉ ST stacks As

described before, theģ-th ST stack produces two outputs, Ỹ< and

X̃< . The �rst output is the stack forecasting Ỹ8 ∈ R
(#ÿ | |�#

ÿ)×?×� ,

which contributes to the model forecast. The second output is the

stack residual X̃< ∈ R
(#ÿ | |�#

ÿ)×�ğĤ×% , which is fed to the next

stack. The global forecast X̂ ∈ R(#
ÿ | |�#

ÿ)×?×� is the �nal output

269

of the model, which is computed by aggregating the forecasts of all

the stacks as X̂ =

1

ĉ

"∑

<=1

Ỹ< .

3.3 Continual Learning Module

The continual learning module is responsible for leveraging old

knowledge, helping to reduce the training complexity caused by the

evolution of RNs. First, we note that the motivation for reducing

the complexity is to exploit the knowledge of the model trained on

the historical RNs. With this knowledge, the model does not need

to be trained on the entire RN subsequently. Rather, the model only

needs to be trained on evolved parts. To achieve this, we propose

two strategies. (i) The model does not need to be trained on the

data of nodes, whose tra�c patterns do not change much after

an evolution. The model only uses a little data of these strongly

unchanged nodes for consolidating the knowledge that is learned

from previous periods. (ii) Themodel has to be trained on the data of

nodes whose tra�c patterns are a�ected strongly by an evolution

of the RN. The learned spatio-temporal representations of such

nodes are no longer useful, so the new data from these nodes is

used for updating the model. We proceed to introduce the continual

learning module that adopts the proposed strategies. The core step

is to select the nodes that are used for training. After the evolution

of the RN, the continual learning module �rst picks all newly added

and removed nodes. Assuming those old nodes close to added and

removed nodes are strongly a�ected, themodule also includes nodes

adjacent to newly added and removed nodes. Simultaneously, the

continual module addresses the impact of newly added and removed

edges by selecting nodes adjacent to newly added and removed

edges. The selected nodes and their edges are used for constructing

the updated part �ă . Then, the module identi�es the most stable

old nodes, which are used to revise the historical knowledge as an

alternative to training on the entire RN. The most stable nodes are

stored in a consolidation memory bu�er B2 , and this bu�er is used

to revise the model. The stability of a node is determined by the

change in the data histogram on that node before and after the graph

evolves. Speci�cally, we use the data from the last ă timestamps of

period ÿ−1 and of period ÿ to produce the histogram at period ÿ−1

(denoted as Hc−1) and at period ÿ (denoted as Hc), respectively.

After obtaining Hc−1 and Hc , we use the Earth mover’s distance

(EMD) to measure the stability of a node as shown in Eq. 14.

EMD(Hÿ−1,Hÿ) = min
Qg0

|Hÿ−1 |∑

ğ

|Hÿ |∑

Ġ

Qğ,Ġ ∥H
ÿ−1
ğ − Hÿ

Ġ ∥ (14)

Here, Q ∈ R |H
ÿ−1 |× |Hÿ | is the optimal transport plan matrix where

∑

8
Q8, 9 =

1
|Hÿ |

and
∑

9
Q8, 9 =

1
|Hÿ−1 |

. Intuitively, EMD is de�ned by

a minimal transportation “cost” to convert histogram Hc−1 into

histogram Hc . In simple terms, Hc−1 and Hc can be seen as rep-

resentations of tra�c �ow distributions before and after an RN

evolution, and the EMD is capable of quantifying the di�erence

between these two distributions, even if there are signi�cant shifts

in the distributions (e.g., a highway is constructed nearby, which

may lead to substantial tra�c �ow changes). The nodes with the

lowest EMD are stable and can be used as rehearsal nodes for the

Algorithm 1: Training procedure

Input :model 5 ÿ−1
Ă

trained on�ÿ−1, data Xÿ of�ÿ , data Xÿ−1

of�ÿ−1, period g , consolidation bu�er size | Bę | , update

bu�er size | Bī |

Output :model 5 ÿ
Ă
.

1 EMD_list = []; Bī = [], Bę = [];

2 ��
ÿ ← �ÿ −�ÿ−1;

3 for each node i ∈ + ÿ−1 do

4 Eÿ−1 ← Select last g timestamps from Xÿ−1,ğ ;

5 Eÿ ← Select last g timestamps from Xÿ,ğ ;

6 Hÿ−1 ← Build histogram for Eÿ−1;

7 Hÿ ← Build histogram for Eÿ ;

8 div← EMD(Hÿ−1,Hÿ) ;

9 EMD_list← EMD_list ∪ (div);

10 sort(EMD_list);

11 Select | Bę | nodes has lowest EMD and store to Bę ;

12 Select | Bī | nodes has highest EMD and store to Bī ;

13 5 ÿ
Ă
← training 5 ÿ−1

Ă
with Bę , Bī , and ��

ÿ

tra�c prediction model. The continual learning module selects the

nodes with the lowest EMD and saves these most stable nodes in

a consolidation memory bu�er B2 . Further, after evolving, there

are unstable nodes (i.e., the patterns of these nodes have changed

considerably). If the model keeps the old and now inaccurate space-

time correlations of these nodes from the historical RN to conduct

forecasting, the model’s performance will decrease signi�cantly.

Therefore, it is necessary to select unstable nodes so that the model

is forced to re-learn these nodes with new data. Similar to select-

ing the stable nodes with the lowest EMD, the continual learning

module selects the nodes with the highest EMD and saves these

unstable nodes in an update memory bu�er BD , thereby treating

these old nodes as newly added nodes.

We proceed to introduce Algorithm 1 that describes the train-

ing process that incorporates both the consolidation of historical

knowledge and the update of signi�cantly altered nodes. Algo-

rithm 1 takes the model Ĝ c−1
\

trained on ăc−1, the data Xc of

ăc , the data Xc−1 of ăc−1, the number of bins Ă , the number of

timestamps ă , the consolidation bu�er size |B2 |, and the update

bu�er size |BD | as the input to produce the model Ĝ c
\
. First, the

EMD_list and the two bu�ers, B2 and BD , are initialized (line 1).

Next, the algorithm constructs the graph from the evolved part

of RN, denoted as �ă
c , to update the model (line 2). Then, the

historical and current data of each node in the historical RN ăc−1

are used to compute two data histograms (lines 3–7). The EMD is

then computed based on the two obtained histograms (line 8). The

divergence result is added to the EMD_list (line 9). After that, the

EMD_list is sorted (line 10). Next, the consolidation bu�er B2 is

�lled with the nodes that have the lowest EMD, and the update

bu�er BD is �lled with the nodes that have the highest EMD (lines

11–12). Finally, the model for period ÿ , i.e., Ĝ c
\
, is produced by train-

ing the model for period ÿ − 1, i.e., Ĝ c−1
\

, on the data of evolved

nodes and the bu�er (line 13).

In summary, the continual learning module aims to capture

updates and adapt to evolving RN data, hence avoiding complete

re-training. The continual learning module only a�ects the training

270

runtime and does not a�ect the real-time forecasting capability of

tra�c forecasting models. The forecasting runtime depends on the

inference time of tra�c forecasting models. After being updated

and adapted, a model can forecast in real-time.

3.4 Objective Function

To train the proposed framework, we use the Huber loss [25] as

the main objective function. This loss has demonstrated better

results [14] for regression tasks than the traditional mean square

error, especially when the training data contains noise and outliers

that the Huber loss is less sensitive to. The main objective function

is de�ned as follows.

Lmain =

1

2

(
X̂ − X

)2
, if

���X̂ − X
��� f X

X

(���X̂ − X
��� −

1

2
X

)
, otherwise

(15)

In addition, to better support the rehearsal algorithm that was

described in the previous section, we apply the elastic weight con-

solidation method to the training procedure. This method measures

the importance of each parameter Ă8 in the parameter set Ă . This

allows us to estimate which parameters are the important ones for

forecasting in the historical RN. Then, we can skip updating these

parameters and focus on updating the less important parameters.

By doing so, we achieve two bene�ts: (i) the model can reduce the

knowledge-forgetting problem and (ii) the model can increase the

ability to learn new knowledge. Elastic weight consolidation is a

regularization method, which is de�ned as the objective function

shown in Eq. 16.

Lregularization =

∑

ğ

Fğ (\
ÿ [8] − \ÿ−1 [8])2 (16)

Here, Ăc−1 [ğ] and Ăc [ğ] are the ğ-th parameter in the parameters

set Ăc−1 and Ăc , respectively. Next, F8 represents the importance

of the ğ-th parameter in parameter set Ăc−1 and is computed using

the Fisher information [46] as follows.

F =

1

|Xÿ−1 |

∑

Xÿ−1∈Xÿ−1

m\ÿ−1

mXÿ−1

m\ÿ−1
¦

mXÿ−1
(17)

Here,
ĉĂc−1

ĉXc−1
is the partial �rst-order derivative of Ăc−1 with re-

spect to Xc−1. Finally, the overall objective function of the frame-

work is the sum of the main objective function and the regulariza-

tion.

Loverall = Lmain + _Lregularization, (18)

where ą is the hyperparameter to control the magnitude of the

regularization.

3.5 Complexity Analysis

If a tra�c forecasting model does not involve any recursive com-

putation, most of its runtime is spent by the GNNs. To simplify the

complexity term of the proposed framework, we consider the com-

putational complexity mostly based on the number of nodes Ċc

of an RN ăc . We conduct a comparison between ordinary spatial

embedding components, dynamic graph embedding methods, and

our framework. When ÿ = 1, the computational complexity is

O((Ċc)2) for each approach. When an RN evolves, i.e., ÿ > 1, the

need for a fully observed topological structure to extract spatial

Table 1: Details of PEMS03-Evolve. +| · | and −| · | denote the number

of added elements and removed elements, respectively.

Month Apr May Jun Jul Aug Sep Oct
|+ | 655 715 768 822 834 850 871
|� | 1,577 1,929 2,316 2,536 2,594 2,691 2,788
+|�+ | N/A 60 53 54 12 16 21
+|�� | N/A 352 387 220 58 97 97
−|�+ | N/A 26 14 7 16 25 25
−|�� | N/A 143 78 34 81 143 178

No. observations 8,856 8,856 8,856 8,856 8,856 8,856 8,856

Table 2: Details of PEMS04-Evolve. +| · | and −| · | denote the number

of added elements and removed elements, respectively.

Month Apr May Jun Jul Aug Sep Oct
|+ | 180 198 213 225 235 243 248
|� | 308 400 469 535 583 614 623
+|�+ | N/A 18 15 12 10 8 5
+|�� | N/A 92 69 66 48 31 9
−|�+ | N/A 10 9 4 15 14 12
−|�� | N/A 36 30 24 72 66 60

No. observations 8,905 8,905 8,905 8,905 8,905 8,905 8,905

information becomes evident. Ordinary spatial embedding compo-

nents require a re-initialization and a full training process with the

data of all nodes in ăc , which increases the computational cost to

O((Ċc)2). Likewise, the computational cost of dynamic graph em-

bedding methods is also O((Ċc)2) since these have to train with

the entire RN. However, dynamic graph embedding approaches

o�er a distinct advantage at tra�c prediction due to their ability to

model the evolution of the RN. In contrast, our proposed model’s

complexity is signi�cantly lower, at O((�Ċ
c + |B2 ∪ BD |)

2). Note

that �Ċ
c j Ċc , so that O((�Ċ

c + |B2 ∪ BD |)
2) j O((Ċc)2),

where the total size of the bu�ers |B2 ∪ BD | can be predetermined

according to the speci�cations of the training system. As a result,

the framework exhibits lower complexity than the other proposals

when the network evolves (i.e. the framework only requires train-

ing on newly added nodes and selected old nodes), making it highly

suitable for handling continuously evolving topologies.

4 EXPERIMENTS

4.1 Experimental Settings

Datasets. We experiment with two datasets: PEMS03-Evolve and

PEMS04-Evolve that are collected in seven periods. For simplicity,

we consider periods ÿ with a duration of a month. Obviously, if we

change the duration, e.g., to quarters, the proposal is not a�ected.

Every month, a new RN is created by adding and removing nodes

and edges to and from the RN of the previous month. The data is

collected from metropolitan areas of California by California Trans-

portation Agencies Performance Measurement System (PEMS)1.

Details of the datasets are provided in Tables 1 and 2. Every 5

minutes, a time series observation is generated, representing the

average tra�c �ow without revealing any personally identi�able

information such as vehicle identity. Following existing studies,

we split all datasets with a ratio 60%:20%:20% into training sets,

validation sets, and testing sets, respectively.

Forecasting Se�ing. We design two scenarios to evaluate the ac-

curacy and the runtime of the proposed framework. In the �rst

scenario, we evaluate CAST. CAST is �rst trained by using the data

of the �rst period. Then, CAST is reinitialized and fully trained every

period by using the data of all nodes for that period. Also, all the

1http://pems.dot.ca.gov/

271

(a) April (b) May (c) June (d) July (e) August (f) September (g) October

Figure 5: PEMS03-Evolve RN visualizations. Red nodes denote added nodes and blue nodes denote removed nodes, respectively.

(a) April (b) May (c) June (d) July (e) August (f) September (g) October

Figure 6: PEMS04-Evolve RN visualizations. Red nodes denote added nodes and blue nodes denote removed nodes, respectively.

other baselines are evaluated in this setting. We report the accuracy

of the framework for the last period and the runtime for the whole

training procedure. The �rst scenario mimics the trivial solution of

training a tra�c forecasting model each time an RN evolves.

In the second scenario, we evaluate TEAM, which is �rst trained by

using the data of the �rst period. Then, the framework is transferred

and partially trained every following period by using only the data

of newly updated nodes and the data in the bu�er, i.e., employing

the continual learning module. We also report the accuracy of

the framework for the last period and the runtime for the whole

training procedure. Intuitively, the last period is the most di�cult

setting because the topology of the last period is the most di�erent

from that of the �rst period. By evaluating the accuracy of the

model in the last period, we aim to evaluate the model in the most

challenging setting. If the model performs well here, it can also

perform well in intermediate periods. We follow existing studies for

the setting of forecasting horizon [35, 59, 60]. Given the previous

Č = 12 time steps (i.e., 1 hour), we aim to forecast the next ć = 12

time steps (i.e., 1 hour).

Baselines. We compare our framework with the following base-

lines: (1) HA [26]: a smoothing method, which forecasts the fu-

ture values by averaging historical values; (2) VAR [22]: an auto-

regressive method, which assumes the data follow a prede�ned

function; (3) SVR [6]: a kernel-based method, which maps tempo-

ral data into a latent space and uses support vectors for forecast-

ing; (4) GRU [11]: a pure RNN model, which can capture long-term

dependencies using gate mechanism; (5) DCRNN [35]: a sequence-

to-sequence architecture, which uses GCNs to model spatial infor-

mation and RNN to model temporal information; (6) STGCN [59]:

a sandwich architecture, which encloses GCNs with 1DCNNs; (7)

GWN [54]: a causal CNN based method, which uses GCNs to model

spatial information and dilated causal CNNs to model temporal in-

formation; (8) MSTGCN [21]: a state-of-the-art method, which in-

corporates multi-view mechanism into GCNs. (9) ASTGCN [21]: a

state-of-the-art method, which uses attentions and GCNs for model

temporal and spatial information, respectively; (10) STSGCN [47]:

an advanced approach that utilizes localized a spatial-temporal

subgraph module to capture the spatial-temporal correlation simul-

taneously. (11) EvolveGCN [44]: a state-of-the-art dynamic graph

embedding method that employs RNNs and GCNs to capture change

between graph snapshots; (12) DyRep [49]: a state-of-the-art dy-

namic graph embedding method that models the local and global

topological evolution; (13) GMAN [60]: a tra�c forecasting frame-

work using multiple graph attention networks to model spatio-

temporal dynamics; (14) EnhanceNet [13]: a plugin that integrates

to RNNs and GCNs to capture correlation among di�erent entities;

(15) ST-WA [14]: a framework that considers location-speci�c and

time-varyingmodel parameters to capture complex spatio-temporal

dynamics; (16) D2STGNN [45]: a framework that captures the di�u-

sion and inherent tra�c information separately; (17) PDFormer [27]:

a model that captures both short-range and long-range dynamic

spatial dependencies; (18) TrafficStream [8]: a method to e�-

ciently support tra�c forecasting on expandable RNs. To adapt

EvolveGCN and DyRep to tra�c forecasting, we add a 1DCNN layer

on top of both methods to produce the forecasting results. Most

of the baselines are applicable only to the �rst scenario whereas

TrafficStream is also applicable to the second scenario.

Evaluation Metrics. We use three metrics including Mean Absolute

Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute

Percentage Error (MAPE) [35] between forecasted time series and

ground truth to measure the accuracy. We also report the average

runtime for each epoch and the total runtime.

Hyperparameter Se�ings. We train the framework using the Adam

optimizer with a learning rate of 0.001 and a batch size of 64. The

total number of epochs is set to 200, and we use early stopping with

a patience of 15. The regularization factor ą (see Eq. 18) is set to

0.0001.We tune the other hyperparameters by random search on the

validation data as follows. We consider di�erent hyperparameter

settings and report the best result on the validation data for all

methods. Speci�cally, we de�ne a range for each hyperparameter.

We then use a random search with 100 random combinations to

explore the hyperparameter space and identify a hyperparameter

setting that gives the best result on the validation data among all the

explored hyperparameter settings. We then report this best result

and use this hyperparameter setting as the default setting. Next,

we study the sensitivity of di�erent hyperparameters. To do so, we

vary a chosen hyperparameter in its range while �xing the other

hyperparameters to their default settings. We proceed to provide

the ranges for the hyperparameters.

For the proposed framework, we vary the number of ST blocks

Ĉ, the number of ST stacks ĉ , and the number of head đ in the

multi-head attention among 1, 2, 3, 4, and 5. We vary the number

of convolution �lters among 16, 32, 64, 128, and 256. We vary the

consolidation bu�er size |B2 | and update bu�er size |BD | among 5%,

10%, 15%, 20%, 25%, and 30% of the number of nodes Ċc . For all the

methods that involve RNN (i.e., GRU, DCRNN, and EvolveGCN), we

vary the number of the hidden units among 16, 32, 64, 128, and 256,

and the number of hidden layers among 1, 2, 3, 4, and 5. For all the

methods that involve CNN (i.e., STGCN, GWN, MSTGCN, and ASTGCN),

272

Table 3: Overall accuracy and runtime, PEMS03-Evolve.

Scenario Model
15 mins 30 mins 60 mins Runtime (seconds)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE Total Average

1st

HA 17.25 31.55 25.67 17.14 31.34 25.67 17.19 31.49 25.43 89.91 -
VAR 17.65 28.41 23.48 18.49 29.28 23.63 20.93 33.03 26.00 502.81 -
SVR 15.04 24.37 17.98 16.21 26.10 21.23 19.51 32.36 25.68 N/A N/A
GRU 13.49 23.04 18.83 14.58 25.07 20.58 17.34 29.02 24.92 6316.75 16.21
DCRNN 11.97 18.57 19.82 14.77 34.09 22.93 17.28 29.50 24.13 231162.3 426.45
STGCN 12.41 20.34 16.89 14.43 23.63 20.69 17.58 28.63 25.71 22848.19 54.60
STSGCN 13.15 21.09 17.35 13.48 22.05 17.84 14.62 24.02 19.54 63687.41 163.05
GWN 13.10 21.67 17.17 14.02 23.45 18.86 16.14 26.50 21.14 42294.72 96.77
MSTGCN 13.67 21.73 19.73 14.55 23.65 20.59 16.84 27.34 24.98 29075.06 61.87
ASTGCN 13.28 21.66 20.64 14.67 23.60 21.73 16.78 27.29 24.82 37941.11 63.66
EvolveGCN 14.41 23.56 20.01 15.73 25.94 21.98 18.48 30.98 25.83 34936.41 48.51
DyRep 13.65 22.26 21.48 15.11 23.61 21.79 17.22 27.21 24.89 39486.63 110.59
GMAN 18.13 29.40 24.42 20.73 30.82 24.79 23.16 31.99 26.28 158859.4 229.33
EnhanceNet 12.47 21.54 18.98 13.42 22.19 20.60 15.04 24.72 22.33 67431.15 94.45
ST-WA 12.57 20.89 20.05 13.70 23.21 23.82 14.45 23.85 24.75 95898.2 248.31
D2STGNN 14.47 24.06 19.52 16.23 26.79 21.89 17.24 29.72 27.02 85794.14 205.08
PDFormer 12.49 20.43 17.47 13.26 21.90 18.75 14.28 23.22 19.83 331641.3 736.85
CAST (ours) 12.16 20.28 17.85 13.09 21.63 18.63 14.17 22.91 19.14 27341.47 61.08

2nd TrafficStream 13.74 22.86 21.44 15.21 25.00 20.92 17.72 29.40 22.41 6974.98 36.12
TEAM (ours) 12.82 21.37 17.98 13.57 22.89 18.95 15.16 25.69 21.88 6574.24 33.55

Table 4: Overall accuracy and runtime, PEMS04-Evolve.

Scenario Model
15 mins 30 mins 60 mins Runtime (seconds)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE Total Average

1st

HA 2.21 4.75 4.79 2.21 4.75 4.79 2.21 4.75 4.79 57.45 -
VAR 1.96 3.79 3.82 2.62 4.58 4.98 2.90 5.07 5.66 206.72 -
SVR 1.79 3.45 3.48 2.08 4.35 4.48 2.57 5.67 5.45 N/A N/A
GRU 4.33 6.47 9.51 5.60 6.61 9.89 6.45 7.36 9.49 1784.52 8.61
DCRNN 1.51 2.92 2.87 1.78 3.76 3.41 2.42 4.47 4.19 66014.6 119.30
STGCN 2.79 5.06 5.89 2.86 5.17 4.96 3.15 5.54 6.75 6160.2 14.76
STSGCN 2.86 5.87 6.55 2.99 6.16 6.95 3.25 6.69 7.68 29596.6 70.44
GWN 1.37 2.90 2.74 1.71 3.89 3.56 2.07 4.58 4.43 12025.85 26.43
MSTGCN 1.54 3.06 3.05 2.01 4.12 4.23 2.69 5.36 5.95 8436.25 18.64
ASTGCN 1.64 3.49 3.53 1.98 4.20 4.27 2.37 4.98 5.45 10818.8 23.86
EvolveGCN 1.50 2.88 3.17 1.75 3.56 3.75 2.12 4.52 4.67 9183.63 15.92
DyRep 1.52 3.01 3.13 1.84 3.81 3.67 2.14 4.51 4.74 13239.52 32.23
GMAN 2.28 4.40 4.80 2.96 5.83 6.52 2.97 5.85 6.60 47048.81 67.31
EnhanceNet 1.40 2.87 2.80 1.75 3.90 3.75 2.12 4.74 4.70 16859.54 24.08
ST-WA 1.61 3.45 3.44 1.83 4.11 4.02 2.11 4.66 4.63 26777.4 78.68
D2STGNN 1.53 3.13 3.20 2.10 4.61 4.78 2.61 6.04 6.43 22540.51 64.43
PDFormer 1.30 2.62 2.53 1.57 3.26 3.17 1.97 4.22 4.22 113412.2 233.33
CAST (ours) 1.28 2.50 2.51 1.57 3.20 3.19 1.96 4.10 4.14 7962.96 17.82

2nd TrafficStream 1.68 2.99 3.68 2.15 3.93 4.35 2.66 4.76 5.56 2250.41 10.24
TEAM (ours) 1.37 2.66 2.61 1.60 3.29 3.31 2.05 4.21 4.25 2007.21 9.11

Table 5: Ablation study, PEMS04-Evolve.

15 mins 30 mins 60 mins
Model

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
TEAM-CONV 1.49 2.74 2.92 1.71 3.39 3.47 2.07 4.28 4.45
TEAM-ATT 1.83 3.06 3.17 1.93 3.74 3.98 2.28 4.92 5.25
TEAM-SWAP 1.50 2.93 3.42 1.79 3.64 4.16 2.17 4.59 5.29
TEAM-BACK 1.53 2.98 3.40 1.78 3.62 4.06 2.19 4.52 5.13
TEAM-RES 1.56 2.73 2.92 1.81 3.43 3.56 2.14 4.34 4.45
TEAM-CONT 4.71 8.71 11.45 4.74 8.79 11.57 4.94 8.87 11.64
TEAM 1.37 2.66 2.61 1.60 3.29 3.31 2.05 4.21 4.25

Table 6: Number of evolved nodes vs. runtime, TEAM, PEMS04-Evolve.

#Evolved
nodes

#Training
nodes

Prep. runtime
(seconds)

Total runtime
(seconds)

Avg. runtime
(seconds)

13 24 1.7 134.8 6.74
16 36 1.7 144.2 7.21
19 45 1.8 157.4 7.87
22 51 1.9 159.6 7.98
25 63 1.9 163.4 8.17
28 70 2.1 166.8 8.34

we vary the number of convolution �lters among 16, 32, 64, 128,

and 256, and the number of hidden layers among 1, 2, 3, 4, and 5.

For all methods, we vary the number of GCN �lters among 16, 32,

64, 128, and 256.

4.2 Experimental Results

Main Results. Tables 3 and 4 show the overall accuracy and runtime

of the proposed framework and the baselines. In the �rst scenario,

CAST achieves the best accuracy on both datasets. The only excep-

tion is that CAST is behind DCRNN in the short-term setting (i.e., 15

mins) on PEMS03-Evolve. In terms of runtime, CAST is e�cient

and only is behind GRU and STGCN. The accuracy of PDFormer

is also high, and it is the runner-up on both datasets. However,

PDFormer is very ine�cient: it is the slowest baseline and is 12x

slower than CAST. In the second scenario, TEAM can maintain good

accuracy on PEMS03-Evolve. Further, on PEMS04-Evolve, TEAM

is strongly competitive in terms of accuracy. Considering runtime,

TEAM exhibits very good e�ciency, especially in the continual set-

ting. TrafficStream also exhibits very good e�ciency. However,

its accuracy is well below that of TEAM. On both datasets, TEAM is

only slower than GRU, which does not perform any spatial compu-

tation. In summary, the result indicates that CAST can outperform

the baselines w.r.t. accuracy in the �rst scenario and that TEAM out-

perform the baselines w.r.t. runtime while maintaining competitive

accuracy in the second scenario.

Ablation Study. We study the e�ect of each component in the

proposed framework by removing the convolution (denoted as

TEAM-CONV), removing the attention (denoted as TEAM-ATT), swap-

ping the convolution and the attention position, i.e., the input is fed

into the convolution �rst, then the output of the convolution is fed

to the attention (denoted as TEAM-SWAP), removing the backcast

convolution (denoted as TEAM-BACK), removing the stack residual,

i.e., the output of the entire model only is the output of the last

273

Table 7: Accuracy during immediate periods, PEMS04-Evolve.

Scenario Model Metric Apr May Jun Jul Aug Sep Oct

1st

EnhanceNet
MAE 1.33 1.38 1.48 1.51 1.64 1.68 1.76
RMSE 2.72 2.79 2.83 2.92 2.95 3.18 3.84
MAPE 2.58 2.67 2.61 2.64 2.88 3.26 3.75

CAST
MAE 1.31 1.34 1.46 1.47 1.56 1.59 1.60
RMSE 2.68 2.66 2.81 3.01 3.09 3.27 3.27
MAPE 2.49 2.51 2.97 2.91 3.22 3.29 3.28

2nd

TrafficStream
MAE 1.56 1.66 1.67 1.75 1.76 1.92 2.16
RMSE 3.24 3.31 3.39 3.44 3.74 3.75 3.89
MAPE 3.19 3.27 3.46 3.51 3.63 3.94 4.53

TEAM
MAE 1.31 1.45 1.52 1.54 1.60 1.67 1.67
RMSE 2.68 2.81 3.04 3.28 3.27 3.36 3.38
MAPE 2.49 2.87 2.98 3.33 3.57 3.36 3.39

Table 8: Accuracy for stable and unstable nodes, PEMS04-Evolve.

Scenario Model Nodes Metric May Jun Jul Aug Sep Oct

1st

EnhanceNet

MAE 1.65 1.84 2.16 2.16 1.67 1.90
Stable RMSE 3.78 4.20 4.13 4.92 3.92 3.95

MAPE 3.51 4.08 4.42 5.57 3.93 3.83
MAE 1.37 2.14 1.71 1.17 1.34 1.49

Unstable RMSE 2.95 4.82 3.53 3.34 2.62 2.85
MAPE 2.29 2.34 2.94 2.25 2.95 3.62

CAST

MAE 0.34 0.28 1.08 0.19 1.01 1.36
Stable RMSE 2.25 1.18 2.89 1.03 1.94 2.85

MAPE 1.13 0.51 2.34 0.31 1.63 2.39
MAE 0.83 1.41 1.12 1.16 1.21 1.64

Unstable RMSE 1.61 3.00 2.32 2.09 3.46 3.31
MAPE 1.31 2.89 1.92 1.88 3.14 2.94

2nd

Traffic
Stream

MAE 1.41 1.31 1.66 1.37 1.79 2.01
Stable RMSE 2.44 3.05 3.63 2.16 3.11 4.17

MAPE 2.29 2.34 2.94 2.25 2.95 3.63
MAE 4.33 2.31 2.39 1.66 3.41 2.59

Unstable RMSE 9.79 4.73 5.34 2.98 6.72 4.98
MAPE 13.19 4.69 5.01 2.75 9.27 4.78

TEAM

MAE 0.82 0.84 1.29 0.99 0.91 0.85
Stable RMSE 1.61 1.84 2.44 2.11 2.94 1.14

MAPE 1.31 1.41 2.18 1.68 3.27 1.31
MAE 1.88 1.55 1.81 1.20 0.99 1.40

Unstable RMSE 4.32 3.21 3.44 2.13 1.98 2.84
MAPE 4.26 3.29 3.29 1.96 1.61 2.48

Table 9: E�ect of sampling strategy, PEMS04-Evolve.

Sampling
15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
Random 2.66 3.86 4.74 2.88 4.31 5.23 3.20 4.98 6.01
Random Walk 2.61 3.74 4.56 2.77 4.20 5.14 3.16 4.89 5.88
Degree 1.59 2.81 3.07 1.83 3.40 3.62 2.24 4.24 4.57
Closeness 1.89 3.10 3.59 2.25 3.66 4.06 2.85 4.65 5.15
Betweenness 1.98 3.11 3.65 2.30 3.74 4.13 2.92 4.69 5.22
PageRank 1.78 2.89 3.15 1.96 3.55 3.71 2.31 4.29 4.75
TEAM 1.37 2.66 2.61 1.60 3.29 3.31 2.05 4.21 4.25

Table 10: Accuracy and avg. runtime (s) vs. update frequencies,

PEMS04-Evolve.

Scenario Model Metric Day Week Month Quarter Year

1st

EnhanceNet

MAE 11.51 3.44 1.76 1.92 2.05
RMSE 15.28 6.35 3.84 4.07 4.17
MAPE 51.83 8.63 3.75 3.77 3.79
Avg. RT 4.23 10.66 24.08 75.47 305.07

CAST

MAE 11.41 2.86 1.60 1.79 1.95
RMSE 15.14 4.97 3.27 3.30 3.41
MAPE 51.56 7.17 3.28 3.46 3.60
Avg. RT 3.07 6.92 17.82 56.41 227.26

2nd

Traffic
Stream

MAE 11.72 3.16 2.16 2.21 2.38
RMSE 15.78 5.34 3.89 4.05 4.11
MAPE 55.13 8.61 4.53 4.66 4.79
Avg. RT 2.28 4.21 10.24 23.43 73.18

TEAM

MAE 10.19 2.82 1.67 1.85 1.99
RMSE 13.99 4.85 3.38 3.59 3.64
MAPE 47.45 6.72 3.39 3.44 3.69
Avg. RT 1.99 3.51 9.11 18.90 57.49

ST stack (denoted as TEAM-RES), and remove the continual module

(denoted as TEAM-CONT). All the variants perform in the second

scenario. We report �ndings on dataset PEMS04-Evolve only. The

results on PEMS03-Evolve show similar trends. Table 5 shows

the results w.r.t. MAE, RMSE, and MAPE. We do not include the

runtime in Table 5 because the runtime of TEAM variants are only

slightly di�erent from the entire framework. The results show that

TEAM-CONT performs poorly and becomes the worst variant. This

suggests that the continual learning module plays an important

role in the proposed framework to enable the ability to train TEAM

on evolved parts of RNs. Both TEAM-CONT and TEAM-ATT perform

worse than TEAM. This suggests that the combination of convolution

and attention improves the accuracy on incremental time series.

Next, TEAM-SWAP, TEAM-BACK, and TEAM-RES perform worse than

TEAM. This suggests that our doubly residual design and the pro-

posed architecture of TEAM are e�cient.

Empirical Complexity Study. Adding to the complexity analysis in

Section 3.5, we study the complexity empirically by considering

the e�ect of the number of evolved nodes on the training time. We

thus adjust the number of added and removed nodes and observe

the total training time. We set the updating and the consolidation

bu�er size to 10. We also report the preprocessing time of the

continual learning module (see lines 1–12 in Algorithm 1). The

results on PEMS04-Evolve are presented in Table 6. Similar trends

are observed onPEMS03-Evolve. The results show that the number

of trained nodes is roughly two to three times the number of evolved

nodes. Next, the training time is low compared to the baselines

(see Table 4). This is evidence of the e�ectiveness of the continual

learning module at reducing the training time by focusing only

on essential nodes. The results also show that the preprocessing

time of the continual learning module is low, indicating that the

additional overhead of the continual learning module is negligible.

Accuracy during Immediate Periods. In addition to reporting on

the accuracy for the last period as in Tables 3 and 4, we report

on the accuracy during immediate periods (i.e., accuracy across

all periods). We adopt the same two scenarios as for the main re-

sult. For brevity, we only report the average result across three

horizons of our proposal and EnhanceNet and TrafficStream

on PEMS04-Evolve. The results for the other baselines on both

PEMS03-Evolve and PEMS04-Evolve share the same character-

istics. The results in Table 7 show that CAST always outperforms

the EnhanceNet in the �rst scenario and that TEAM always out-

performs TrafficStream in the second scenario. TEAM is only

insigni�cantly behind EnhanceNet in May, June, July, and August,

and TEAM outperforms EnhanceNet in the �rst and the two last

months. This is because TEAM can learn from historical periods and

use the resulting knowledge to improve forecasting accuracy in

future periods.

Accuracy for Stable and Unstable Nodes. In addition to reporting on

the accuracy across all nodes as in Tables 3 and 4, we report on the

accuracy for only stable and unstable nodes. Speci�cally, we report

on the accuracy for nodes in the bu�ers |B2 | and |BD |. We again

adopt the two scenarios from the main results. We only report aver-

age results across three horizons of our proposal and EnhanceNet

and TrafficStream on PEMS04-Evolve. The results for the other

baselines on both datasets share the same characteristics. Table 8

shows that CAST outperforms EnhanceNet w.r.t. accuracy for both

stable and unstable nodes in the �rst scenario. Similarly, TEAM

outperforms TrafficStream w.r.t. accuracy for both stable and

unstable nodes in the second scenario. Moreover, TEAM outper-

forms CAST in the two last periods. This is because TEAM can learn

274

5 10 15 20 25 30
1.2

1.6

2.0

2.4

| Bę | (%)

M
A
E

15 mins 30 mins 60 mins

(a) MAE

5 10 15 20 25 30
2.0

3.0

4.0

5.0

| Bę | (%)

R
M
SE

(b) RMSE

5 10 15 20 25 30
2.5

3.5

4.5

5.5

| Bę | (%)

M
A
P
E

(c) MAPE

5 10 15 20 25 30
1.4

1.8

2.2

2.6

| Bę | (%)

R
u
n
ti
m
e
(1
03
s)

(d) Runtime (103B)

Figure 7: E�ect of | Bę |, PEMS04-Evolve.

5 10 15 20 25 30
1.2

1.6

2.0

2.4

| Bī | (%)

M
A
E

15 mins 30 mins 60 mins

(a) MAE

5 10 15 20 25 30
2.0

3.0

4.0

5.0

| Bī | (%)

R
M
SE

(b) RMSE

5 10 15 20 25 30
2.5

3.5

4.5

5.5

| Bī | (%)

M
A
P
E

(c)MAPE

5 10 15 20 25 30
1.4

1.8

2.2

2.6

| Bī | (%)

R
u
n
ti
m
e
(1
03
s)

(d) Runtime (103B)

Figure 8: E�ect of | Bī |, PEMS04-Evolve.

1 3 5 7 9 1113
1.0

1.8

2.6

3.4

g (30~B)

M
A
E

15 mins 30 mins 60 mins

(a) MAE

1 3 5 7 9 1113
2.4

3.6

4.8

6.0

g (30~B)

R
M
SE

(b) RMSE

1 3 5 7 9 1113
2.4

3.8

5.2

6.6

g (30~B)

M
A
P
E

(c) MAPE

1 3 5 7 9 1113
1.98

2.02

2.06

2.10

g (30~B)

R
u
n
ti
m
e
(1
03
B
)

(d) Runtime (103B)

Figure 9: E�ect of g , PEMS04-Evolve.

from historical periods and use the resulting knowledge to improve

forecasting accuracy in future periods.

E�ect of Sampling Strategy. In addition to reporting on the accuracy

using the proposed sampling strategy for B2 and BD (see Algo-

rithm 1), we report on the accuracy for other sampling strategies.

(1) We randomly select [34] |B2 | and |BD | nodes for B2 and BD ,

respectively; (2) We use random walks [34] to select |B2 | and |BD |

nodes for B2 and BD , respectively; (3) We use a degree matrix [3] to

select |B2 | nodes with highest degree and |BD | nodes with lowest

degree for B2 and BD , respectively; (4) We use the closeness cen-

trality metric [3] to select |B2 | nodes with highest centrality and

|BD | nodes with lowest centrality for B2 and BD , respectively; (5)

We use the betweenness centrality metric [3] to select |B2 | nodes

with highest centrality and |BD | nodes with lowest centrality for

B2 and BD , respectively; (6) We use PageRank [3] to select |B2 |

nodes with highest rank and |BD | nodes with lowest rank for B2
and BD , respectively. For brevity, we only report the result for the

last month on PEMS04-Evolve. The result on PEMS03-Evolve

shares the same characteristics. Table 9 shows that the random

sampling and random walk strategies perform the worst and that

the sampling strategies based on degree, centrality, and PageRank

perform better. This suggests that the latter three strategies can be

used to select stable and unstable nodes. Our proposal achieves the

best accuracy. This suggests that using temporal information (i.e.,

ă), as does our strategy, is important.

E�ect of Evolving Frequency. We study the e�ect of evolving fre-

quency ÿ . Thus, in addition to capturing the evolution of RNs every

month (i.e., ÿ = 1 month) as in the default setting, we capture the

evolution of RNs every day, every week, every quarter, and every

year. We synthesize evolved RNs by randomly adding and remov-

ing 10–15% of the nodes and 20–25% of the edges every period.

We only report the average result across three horizons for the

last period (i.e., the 7-th day, 7-th week, the 7-th quarter, and the

7-th year) on PEMS04-Evolve. The results on PEMS03-Evolve

share similar characteristics. Table 10 shows that TEAM achieves

the best accuracy compared to the baselines when the RNs evolve

rapidly (ÿ f 1week). This is because TEAM can leverage knowledge

extracted from previous periods, mitigating the impact of limited

training samples (e.g., 288 samples for a day and 1440 samples for

a week) that reduce the performance of the other methods that

reinitialize and retrain for every period. When RNs evolve more

slowly, e.g, ÿ g 1month, the methods that are restricted to the �rst

scenario perform better than TEAM due to having su�cient training

samples, and CAST outperforms the other baselines w.r.t accuracy.

The results exhibit the e�ciency and accuracy of TEAM when learn-

ing with limited training samples and adapting to rapidly evolving

RNs.

E�ect of the Bu�er Size |B2 | and |BD |. We study the e�ect of the

consolidation bu�er size |B2 | and update bu�er size |BD |. In partic-

ular, we vary one of |B2 | and |BD | among 5%, 10%, 15%, 20%, 25%,

and 30%, while �xing the value at 15% for the other. Due to the

space limitation, we report on the e�ect of the consolidation bu�er

size |B2 | and update bu�er size |BD | on dataset PEMS04-Evolve

only. The results on PEMS03-Evolve show similar trends. Fig. 7

and Fig. 8 show the results w.r.t. MAE, RMSE, MAPE, and runtime

when varying |B2 | and |BD |, respectively. The proposed framework

achieves the best performance when |B2 | = |BD | = 15%, which is

the default value. When |B2 | < 15%, the framework lacks enough

historical data for rehearsal and almost trains only on the data of

newly added nodes and thus cannot exploit the continual module

for revisiting the learned knowledge, which yields sub-optimal per-

formance. When |B2 | > 15%, the framework exploits too much

historical knowledge from historical nodes and fails to learn the

information from newly added nodes, which also yields sub-optimal

performance. When |BD | < 15%, the model may not update nodes

that have di�erent patterns, thus preserving inaccurate knowledge,

causing substandard performance. When |BD | > 15%, the model

requires frequent updates to its knowledge, which may con�ict

with previously learned historical knowledge, leading to de�cient

outcomes. When |B2 | = |BD | = 15%, the best trade-o� is achieved.

E�ect of the Length of Sampling Period ă . We study the e�ect of

the length of sampling period ă in data histogram construction.

275

Speci�cally, we vary ă among 1, 3, 5, 7, 9, 11, and 13 days. Due

to the space limitation, we report on the e�ect of the length of

sampling period ă on dataset PEMS04-Evolve only. The results on

PEMS03-Evolve show similar trends. Fig. 9 shows the results w.r.t.

MAE, RMSE,MAPE, and runtime. The proposed framework achieves

the best performance when ă = 7 days, which is the default value.

When ă < 7 days, the constructed histogram does not have complete

observations of tra�c �ow patterns. Many temporal patterns, such

as the correlation between weekdays and weekends, are excluded

from the observations. In this case, EMD might not accurately

measure the consistency of existing nodes. When ă > 7 days, the

results are insigni�cantly improved while the bu�er size |B2 | has

to store a larger amount of historical data, which leads to increased

computational and storage costs.

5 RELATED WORK

Tra�c Forecasting. Capturing spatio-temporal dynamics is one

of the most essential aspects of tra�c forecasting models. Thus, a

variety of neural network based methods that build on GNNs [14]

and TCNs [13] have been proposed that aim to capture complex

spatio-temporal dynamics, thereby achieving competitive forecast-

ing performance. Yu et al. [59] propose a tra�c forecasting frame-

work that combines GCNs and 1DCNNs in a “sandwich" architecture.

Li et al. [35] propose a tra�c forecasting model using a sequence-

to-sequence architecture that combines GCNs and Recurrent Neural

Networks (RNNs). Wu et al. [54] combines GCNs with WaveNet [50],

which is an advanced 1DCNN. Attention mechanisms are also used

for modeling spatial and temporal information. Zheng et al. [60]

propose a framework that employs spatial attentions to model the

correlations among multiple time series in an RN and employs tem-

poral attentions to model the importance of each time step in a time

series. Razvan et al. [14] propose an attention-based framework that

encompasses location-speci�c and time-varying model parameters

to better capture complex spatio-temporadynamics. Jiang et al. [27]

model the time delay in spatial information propagation and use a

masking mechanism to model both short-range and long-range spa-

tial dependencies.Motivated bymeta-learning, MetaStore [37] and

MetaST [57] enable transfer of knowledge from a data-abundant

source city to a data-limited target city. Lanza et al. [33] propose a

framework that combines federated learning and continual learn-

ing to sequentially train a global tra�c forecasting model from the

tra�c signals of di�erent local nodes. However, existing studies

only work on static time series and �xed-topology RNs. The most

relevant study to ours is TrafficStream [8], which also employs a

subset of nodes of RNs to e�ciently capture tra�c signal. However,

TrafficStream can contend with only the expansion of RNs and

cannot work on evolved RNs, where RNs can expand, shrink, or

undergo topological updates. Further, TrafficStream does not

work well on small-scale data that is typically available for newly

expanded regions. In contrast, TEAM contends with these aspects

and works on evolved RNs. In particular, TEAM works well on

small-scale data due to its hybrid architecture. To the best of our

knowledge, TEAM is the �rst proposal to contend with incremental

time series and evolving RNs.

Dynamic Graph Embedding. Approaches exist that model dy-

namic graphs by capturing the progression of topology changing

over time [28]. DynGEM [18] exploits graph-autoencoders for incre-

mentally updating node embedding by initializing them based on

the previous step. DyRep [49] employs point processes to dynami-

cally model edge occurrences between changing nodes. Dynamic-

Triad [61] focuses on the speci�c structure of triads to model

how closed triads (three interconnected vertices) are formed from

open triads (three vertices not interconnected). HTNE [62] captures

dynamics by employing the Hawkes process and an attention mech-

anism to assess the impact of historical neighbors on the current

neighbors of a node. EvolveGCN [44] adopts GCNs to generate node

embeddings for each snapshot and utilizes RNNs to train the GCNs.

These approaches face the notable scalability issue that they must

fully train the models on the entire graph at every timestep. To the

best of our knowledge, our proposed framework is the �rst study

that considers e�ciency in model training.

Rehearsal-based Continual Learning. Rehearsal-based methods

avoid catastrophic forgetting in continual learning by replaying a

subset of old representative samples stored in a size-constrained

memory bu�er. Numerous studies propose algorithms to choose the

most representative samples for the bu�er [41]. Chaudhry et al. [7]

propose reservoir sampling that guarantees that each input sample

has the same probability of entering the bu�er. Lopez et al. [38]

propose a ring bu�er that allocates an equal-sized bu�er to each

class. Aljundi et al. [1] propose a gradient-based sampling algo-

rithm to reduce over�tting of the reservoir and the ring algorithms

by maximizing the diversity of samples in the bu�er. However,

rehearsal-based continual learning algorithms are only applied to

perform classi�cation tasks. To the best of our knowledge, our study

is the �rst to adapt rehearsal-based continual learning for tra�c

forecasting, a regression problem.

6 CONCLUSION AND FUTUREWORK

Wepresent Topological Evolution-aware Framework (TEAM), a frame-

work for solving tra�c forecasting in evolving RNs. For the core of

the framework, we propose a spatio-temporal model with a hybrid

architecture, namely Convolution Attention for Spatio-Temporal

(CAST), that combines convolution and attention to adapt better to

incremental time series. We propose a continual learning module

based on the rehearsal method and integrate the module into the

framework. The continual module works as a bu�er to store lim-

ited time series subsequences from the most stable and the most

unstable nodes. The model is then trained on the data of newly

added nodes and the data in the bu�er. Experimental studies show

that the framework is capable of outperforming strong baselines

and state-of-the-art methods. In future research, it is of interest

to study tra�c forecasting with only a limited amount of training

data [17, 39]. It is also of interest to attempt to further improve the

continual learning module, e.g., by identifying a better strategy for

selecting representative time series subsequences [58], by captur-

ing temporal information better [10, 48, 53], or by modeling the

continual learning using a generative model [2]. Further, it is of

interest to consider distributed model training [36].

ACKNOWLEDGMENTS

We thank Khanh-Toan Nguyen and Thin Nguyen fromA2I2, Deakin

University, Australia for fruitful discussions and technical help.

276

REFERENCES
[1] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. 2019. Gradient-

based Sample Selection for Online Continual Learning. In Conference on Neural
Information Processing Systems (NeurIPS). 11816–11825.

[2] Ali Ayub and Alan R. Wagner. 2021. EEC: Learning to Encode and Regenerate
Images for Continual Learning. In International Conference on Learning Repre-
sentations (ICLR). 1–16.

[3] Ulrik Brandes and Thomas Erlebach (Eds.). 2005. Network Analysis: Methodologi-
cal Foundations [outcome of a Dagstuhl seminar, 13-16 April 2004]. Lecture Notes
in Computer Science, Vol. 3418. Springer.

[4] David Campos, Tung Kieu, Chenjuan Guo, Feiteng Huang, Kai Zheng, Bin Yang,
and Christian S. Jensen. 2021. Unsupervised Time Series Outlier Detection with
Diversity-Driven Convolutional Ensembles. Proc. VLDB Endow. 15, 3 (2021),
611–623.

[5] David Campos, Bin Yang, Tung Kieu, Miao Zhang, Chenjuan Guo, and Chris-
tian S. Jensen. 2024. QCore: Data-E�cient, On-Device Continual Calibration for
Quantized Models. Proc. VLDB Endow. 17, 11 (2024), 2708–2721.

[6] Manoel Castro-Neto, Youngseon Jeong, Myong Kee Jeong, and Lee D. Han. 2009.
Online-SVR for short-term tra�c �ow prediction under typical and atypical
tra�c conditions. Expert Syst. Appl. 36, 3 (2009), 6164–6173.

[7] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elho-
seiny. 2019. E�cient Lifelong Learning with A-GEM. In International Conference
on Learning Representations (ICLR). 1–15.

[8] Xu Chen, Junshan Wang, and Kunqing Xie. 2021. Tra�cStream: A Streaming
Tra�c Flow Forecasting Framework Based on Graph Neural Networks and Con-
tinual Learning. In International Joint Conferences on Arti�cial Intelligence (IJCAI).
3620–3626.

[9] Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, and Jianmin Wang. 2019.
Catastrophic Forgetting Meets Negative Transfer: Batch Spectral Shrinkage for
Safe Transfer Learning. In Conference on Neural Information Processing Systems
(NeurIPS). 1906–1916.

[10] Yunyao Cheng, Chenjuan Guo, Bin Yang, Haomin Yu, Kai Zhao, and Christian S.
Jensen. 2024. A Memory Guided Transformer for Time Series Forecasting. Proc.
VLDB Endow. 18 (2024). Accepted.

[11] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Model-
ing. arXiv preprint (2014). arXiv:1412.3555

[12] Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and
Shirui Pan. 2022. Triformer: Triangular, Variable-Speci�c Attentions for Long
Sequence Multivariate Time Series Forecasting. In International Joint Conference
on Arti�cial Intelligence (IJCAI). 1994–2001.

[13] Razvan-Gabriel Cirstea, Tung Kieu, Chenjuan Guo, Bin Yang, and Sinno Jialin
Pan. 2021. EnhanceNet: Plugin Neural Networks for Enhancing Correlated Time
Series Forecasting. In IEEE International Conference on Data Engineering (ICDE).
1739–1750.

[14] Razvan-Gabriel Cirstea, Bin Yang, Chenjuan Guo, Tung Kieu, and Shirui Pan.
2022. Towards Spatio- Temporal Aware Tra�c Time Series Forecasting. In IEEE
International Conference on Data Engineering (ICDE). 2900–2913.

[15] Zihang Dai, Hanxiao Liu, Quoc V. Le, and Mingxing Tan. 2021. CoAtNet: Mar-
rying Convolution and Attention for All Data Sizes. In Conference on Neural
Information Processing Systems (NeurIPS). 3965–3977.

[16] Michaël De�errard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
Conference on Neural Information Processing Systems (NeurIPS). 3837–3845.

[17] Begüm Demir, Francesca Bovolo, and Lorenzo Bruzzone. 2013. Classi�cation of
Time Series of Multispectral Images With Limited Training Data. IEEE Trans.
Image Process. 22, 8 (2013), 3219–3233.

[18] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2017. DynGEM: Deep
Embedding Method for Dynamic Graphs. In International Joint Conferences on
Arti�cial Intelligence (IJCAI) Workshop on Representation Learning for Graphs.
22–31.

[19] Chenjuan Guo, Ronghui Xu, Bin Yang, Ye Yuan, Tung Kieu, Yan Zhao, and Chris-
tian S. Jensen. 2024. E�cient stochastic routing in path-centric uncertain road
networks. Proc. VLDB Endow. 17, 11 (2024), 2893–2905.

[20] Lan-Zhe Guo, Zhi Zhou, and Yu-Feng Li. 2020. RECORD: Resource Constrained
Semi-Supervised Learning under Distribution Shift. In ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (SIGKDD). 1636–1644.

[21] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.
Attention Based Spatial-Temporal Graph Convolutional Networks for Tra�c
Flow Forecasting. In AAAI Conference on Arti�cial Intelligence (AAAI). 922–929.

[22] James D. Hamilton. 1994. Time Series Analysis. Vol. 2. Princeton University
Press.

[23] Mingguo He, Zhewei Wei, and Ji-Rong Wen. 2022. Convolutional Neu-
ral Networks on Graphs with Chebyshev Approximation, Revisited. CoRR
abs/2202.03580 (2022).

[24] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (1997), 1735–1780.

[25] Peter J. Huber. 1992. Robust Estimation of a Location Parameter. Springer New
York.

[26] Robin John Hyndman and George Athanasopoulos. 2018. Forecasting: Principles
and Practice (2nd ed.). OTexts, Australia.

[27] Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. 2023.
PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Tra�c Flow Prediction. In AAAI Conference on Arti�cial Intelligence (AAAI).
4365–4373.

[28] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. 2020. Representation Learning for Dynamic
Graphs: A Survey. J. Mach. Learn. Res. 21 (2020), 70:1–70:73.

[29] Tung Kieu, Bin Yang, Chenjuan Guo, and Christian S. Jensen. 2018. Distinguish-
ing Trajectories from Di�erent Drivers using Incompletely Labeled Trajectories.
In International Conference on Information and Knowledge Management (CIKM).
863–872.

[30] Tung Kieu, Bin Yang, Chenjuan Guo, and Christian S. Jensen. 2019. Outlier De-
tection for Time Series with Recurrent Autoencoder Ensembles. In International
Joint Conferences on Arti�cial Intelligence (IJCAI). 2725–2732.

[31] Tung Kieu, Bin Yang, and Christian S. Jensen. 2018. Outlier Detection for Mul-
tidimensional Time Series Using Deep Neural Networks. In IEEE International
Conference on Mobile Data Management (MDM). 125–134.

[32] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classi�cation with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR). 1–14.

[33] Chiara Lanza, Eduard Angelats, Marco Miozzo, and Paolo Dini. 2023. Urban
Tra�c Forecasting using Federated and Continual Learning. In Conference on
Cloud and Internet of Things (CIoT). 1–8.

[34] Jure Leskovec and Christos Faloutsos. 2006. Sampling from Large Graphs. In
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD).
631–636.

[35] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Di�usion Convolutional
Recurrent Neural Network: Data-Driven Tra�c Forecasting. In International
Conference on Learning Representations (ICLR). 1–16.

[36] Zhiyu Liang and Hongzhi Wang. 2022. FedTSC: A Secure Federated Learning
System for Interpretable Time Series Classi�cation. Proc. VLDB Endow. 15, 12
(2022), 3686–3689.

[37] Yan Liu, Bin Guo, Daqing Zhang, Djamal Zeghlache, Jingmin Chen, Sizhe Zhang,
Dan Zhou, Xinlei Shi, and Zhiwen Yu. 2021. MetaStore: A Task-adaptative Meta-
learning Model for Optimal Store Placement with Multi-city Knowledge Transfer.
ACM Trans. Intell. Syst. Technol. 12, 3 (2021), 28:1–28:23.

[38] David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient Episodic Memory
for Continual Learning. In Conference on Neural Information Processing Systems
(NeurIPS). 6467–6476.

[39] Hao Miao, Ziqiao Liu, Yan Zhao, Chenjuan Guo, Bin Yang, Kai Zheng, and Chris-
tian S. Jensen. 2024. Less is More: E�cient Time Series Dataset Condensation
via Two-fold Modal Matching. Proc. VLDB Endow. 18 (2024). Accepted.

[40] Vinod Nair and Geo�rey E. Hinton. 2010. Recti�ed Linear Units Improve Re-
stricted Boltzmann Machines. In International Conference on Machine Learning
(ICML). 807–814.

[41] Toan Nguyen, Duc Kieu, Bao Duong, Tung Kieu, Kien Do, Thin Nguyen, and
Bac Le. 2024. Class-incremental Learning with Causal Relational Replay. Expert
Syst. Appl. 250 (2024), 123901.

[42] Yuki Ono, Eduard Trulls, Pascal Fua, and Kwang Moo Yi. 2018. LF-Net: Learn-
ing Local Features from Images. In Conference on Neural Information Processing
Systems (NeurIPS). 6237–6247.

[43] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2020. N-
BEATS: Neural basis expansion analysis for interpretable time series forecasting.
In International Conference on Learning Representations (ICLR). 1–31.

[44] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
AAAI Conference on Arti�cial Intelligence (AAAI). 5363–5370.

[45] Zezhi Shao, Zhao Zhang, Wei Wei, Fei Wang, Yongjun Xu, Xin Cao, and Chris-
tian S. Jensen. 2022. Decoupled Dynamic Spatial-Temporal Graph Neural Net-
work for Tra�c Forecasting. Proc. VLDB Endow. 15, 11 (2022), 2733–2746.

[46] Alexander Soen and Ke Sun. 2021. On the Variance of the Fisher Information for
Deep Learning. In Conference on Neural Information Processing Systems (NeurIPS).
5708–5719.

[47] Chao Song, Youfang Lin, ShengnanGuo, andHuaiyuWan. 2020. Spatial-Temporal
Synchronous Graph Convolutional Networks: A New Framework for Spatial-
Temporal Network Data Forecasting. In AAAI Conference on Arti�cial Intelligence
(AAAI). 914–921.

[48] Jianwei Tang, Jiangxin Sun, Xiaotong Lin, Lifang Zhang, Wei-Shi Zheng, and
Jian-Fang Hu. 2023. Temporal Continual Learning with Prior Compensation
for Human Motion Prediction. In Conference on Neural Information Processing
Systems (NeurIPS). 1–13.

[49] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.
2019. DyRep: Learning Representations over Dynamic Graphs. In International

277

Conference on Learning Representations (ICLR). 1–25.
[50] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol

Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray
Kavukcuoglu. 2016. WaveNet: A Generative Model for Raw Audio. CoRR
abs/1609.03499 (2016).

[51] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations (ICLR). 1–12.

[52] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and
Lei Zhang. 2021. CvT: Introducing Convolutions to Vision Transformers. In
International Conference on Computer Vision (ICCV). 22–31.

[53] Xinle Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, and Christian S.
Jensen. 2023. AutoCTS+: Joint Neural Architecture and Hyperparameter Search
for Correlated Time Series Forecasting. Proc. ACM Manag. Data 1, 1 (2023),
97:1–97:26.

[54] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.
Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In International
Joint Conferences on Arti�cial Intelligence (IJCAI). 1907–1913.

[55] Cuie Yang, Yiu-Ming Cheung, Jinliang Ding, and Kay Chen Tan. 2022. Concept
Drift-Tolerant Transfer Learning in Dynamic Environments. IEEE Trans. Neural
Networks Learn. Syst. 33, 8 (2022), 3857–3871.

[56] Sean Bin Yang, Jilin Hu, Chenjuan Guo, Bin Yang, and Christian S. Jensen. 2023.
LightPath: Lightweight and Scalable Path Representation Learning. In KDD.
ACM, 2999–3010.

[57] Huaxiu Yao, Yiding Liu, YingWei, Xianfeng Tang, and Zhenhui Li. 2019. Learning
fromMultiple Cities: AMeta-Learning Approach for Spatial-Temporal Prediction.
In International World Wide Web Conference (WWW). 2181–2191.

[58] Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju Hwang. 2022. On-
line Coreset Selection for Rehearsal-based Continual Learning. In International
Conference on Learning Representations (ICLR). 1–15.

[59] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Con-
volutional Networks: A Deep Learning Framework for Tra�c Forecasting. In
International Joint Conferences on Arti�cial Intelligence (IJCAI). 3634–3640.

[60] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020. GMAN:
A Graph Multi-Attention Network for Tra�c Prediction. In AAAI Conference on
Arti�cial Intelligence (AAAI). 1234–1241.

[61] Le-kui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic
Network Embedding by Modeling Triadic Closure Process. In AAAI Conference
on Arti�cial Intelligence (AAAI). 571–578.

[62] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.
Embedding Temporal Network via Neighborhood Formation. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (SIGKDD). 2857–2866.

278

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Traffic Forecasting
	2.2 Graph Evolution
	2.3 Problem Statement

	3 Methodology
	3.1 Framework Overview
	3.2 Main Model
	3.3 Continual Learning Module
	3.4 Objective Function
	3.5 Complexity Analysis

	4 Experiments
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Related Work
	6 Conclusion and Future Work
	References

