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ABSTRACT
As graphs are being used increasingly in various industries, a new
standard of SQL (called SQL:2023) has incorporated SQL with Prop-
erty Graph Queries (SQL/PGQ) as a core feature. While some ap-
proaches process graph queries within RDBMSs using graph view
definition or materialized graph view, their performance is not good
enough for interactive SQL/PGQ queries in terms of response time,
throughput, and graph size. To address this problem, we propose a
novel system design named Chimera, which features a dual-store
architecture and a unified query planning called Traversal-Join(TJ).
This design treats the topologies of a graph as first-class citizens
rather than secondary elements overcoming the graph size limi-
tations of the materialized graph view approach. It also generates
an efficient, unified query plan that performs traversal and join
in a mixed way, significantly enhancing both response time and
throughput. Implemented on the open-source RDBMS, PostgreSQL,
our extensive experiments with the LDBC SNB benchmark and
microbenchmark show that Chimera significantly outperforms the
existing approaches and GRDBMSs.
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1 INTRODUCTION
As graphs are increasingly utilized across various fields including
social network services, finance, e-commerce, web, and biology,
the importance of graph DBMSs for storing and efficiently pro-
cessing graph queries is growing. The recent announcement of
SQL:2023 [31] has placed a spotlight on graph query processing
within RDBMSs. The key feature of this new standard is process-
ing SQL with Property Graph Queries (SQL/PGQ) [15]. A property
graph typically includes properties associated with each vertex and
edge, making it more complex than a simple graph. Despite this
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complexity, property graphs are increasingly utilized due to their
high expressive power. In this paper, we use the term topologies
to refer to the vertices and edges of a graph, distinguishing these
structural components from their associated properties.

Even before the new standard had been announced, there were
already various research efforts focused on extracting property
graphs from RDBMSs, managing them within RDBMSs, and pro-
cessing queries using graph query languages such as Gremlin [4]
and Cypher [48] within RDBMSs. The extraction methods [3, 32,
37, 52, 71] usually provide a graph view definition interface that
allows users to define the relationship, such as FK-PK [32, 37] and
join relationship [3, 52, 71], used to extract graphs from tables. The
managing methods usually store a graph as relational tables with
the schema designed for the graph [10, 20, 50, 62, 64, 68], or as
read-optimized in-memory graph data structures that can be used
with a graph processing engine [3, 30, 33, 51, 52, 70, 71]. The query-
ing methods usually process a graph query using a pure relational
engine by translating it into a SQL query [10, 20, 50, 62, 64, 68],
using an external graph processing framework [3, 52], or using its
own graph engine [30, 33, 51, 70, 71]. These extensive efforts have
culminated in the release of the new SQL/PGQ standard, presenting
a significant challenge [22, 65, 70]: how to evolve an RDBMS into a
Graph-Relational DBMS (shortly, GRDBMS) that efficiently supports
SQL/PGQ.

SQL/PGQ consists of a graph view definition language, which
is used to define graph views on relational tables, and a graph pat-
tern matching language, which is used to process graph queries
on top of the graph views. We emphasize interactive queries, com-
monly utilized in various graph applications [65]. Examples include
neighborhood queries in social networks that provide personal-
ized trending feeds to users [17]; subgraph queries in finance that
detect fraud patterns such as cycles and bipartite structures in
ongoing transactions [54, 67]; and search queries in e-commerce
that identify products matching user preferences using the tech-
niques like random walks, content-based, and collaborative filter-
ing [58, 59]. These interactive queries involve more complex op-
erations compared to traditional relational OLTP workloads but
require real-time responses by accessing specific parts of a graph
with the latest information [5, 18]. Typically, a graph pattern match-
ing query involves both graph traversal on topologies, referred
to as topology operations, and filtering on properties, referred to
property operations [15, 21]. Although only a few GRDBMSs sup-
port SQL/PGQ, they are primarily divided into two approaches:
Graph Table (GT) [10, 50, 62, 64, 68] and Materialized Graph View
(MGV) [30, 33, 51, 70].

The GT approach stores both the topologies and properties of
a graph in relational tables and additionally stores the graph’s
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metadata, namely the graph view definition. This approach does
not necessitate changes to the storage and query processing layer
of RDBMSs. For query processing, GT translates a graph query
into the corresponding SQL query using the metadata. These SQL
queries are then executed using standard relational operators such
as join, even if the original graph query involves both property and
topology operations. This approach allows the translated queries
to benefit from the advanced optimization capabilities of relational
query optimizers. However, a significant drawback is the necessity
for costly joins between vertex and edge tables for each topology
operation. Consequently, this approach often experiences perfor-
mance degradation, particularly for queries that involve topology
operations and require rapid response and high throughput [33, 72].

The MGV approach stores a graph in relational tables similar
to the GT approach but additionally extracts the topologies from
these tables as a read-optimized graph data structure known as a
materialized graph view. Thus, it requires a bunch of additional
layers to process topology operations on the graph data structure.
While it offers advantages such as fast processing of topology op-
erations similar to native GDBMSs, making it useful for queries
like BFS/DFS and triangle counting, it also has the following three
disadvantages:
• Limited Graph Size: The materialized graph view is typically
managed as an in-memory graph data structure, imposing limits
on the size of the graph that can be processed [30, 33, 51, 70].
• Data Recency: It is challenging to obtain the most up-to-date
data solely from the materialized graph view since the view is
derived from underlying tables [30, 33, 70]. Few methods like
DuckPGQ [70] generate views dynamically, but this process can
introduce significant delays, especially for interactive queries.
• Inefficient Query Processing: MGV requires separate query
processing layers for topologies and properties, which can result
in inefficient query plans for the queries involving both topology
and property operations (hybrid queries) [30, 33, 70].
To address the challenges outlined above, we propose a novel sys-

tem design named Chimera that extends an RDBMS into a GRDBMS
capable of efficiently supporting SQL/PGQ. Unlike MGV that treats
graph topologies as secondary objects extracted from relational
tables, Chimera treats topologies as first-class citizens within its
architecture. It adopts a dual-store architecture comprising sepa-
rate stores for graph topologies (called graph store) and properties
(called relational store). Each store has its own data format, ac-
cess methods, and low-level query operators. Chimera maintains
pointers from the graph store to the relational store, facilitating
rapid identification of the properties of a specific vertex or edge. By
storing topologies in a disk-based store rather than in main mem-
ory, it eliminates constraints on graph size imposed by memory
capacity. Moreover, it employs a shared transaction manager for
both stores, ensuring immediate and rigorous updates to graphs
defined by SQL/PGQ — outperforming the MGV approach in terms
of data recency and responsiveness. Although Chimera has sepa-
rated stores for topologies and properties, it has a unified query
processing layer rather than separated stacks of query processing
layers for them. In general, designing a unified query processing
and optimization framework for disparate stores with distinct data
models poses significant challenges. To overcome this challenge,
we propose a novel operator called𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙-𝐽𝑜𝑖𝑛(𝑇 𝐽 ) that relaxes

the closedness of the algebraic operator within the relational model
by allowing it to take both topologies and properties as operands.
This operator is capable of performing traversal, join, or mapping
between topologies and properties based on the operands involved.
By leveraging the TJ operator, Chimera can formulate a unified
query plan, referred to as the TJ plan for any given SQL/PGQ query.
Since each plan has different costs depending on the order of oper-
ators including the TJ operator, we propose a new cost model that
specifically considers the TJ operator and an optimization method
based on the model. This allows Chimera to generate more effi-
cient query plans compared to the MGV approach, particularly for
hybrid queries. To demonstrate the effectiveness of the proposed
approach, we implemented Chimera by introducing new access
methods, traversal operators, and the TJ operator, while extending
the capabilities of the existing query planner, optimizer, and parser
within the open-source relational DBMS PostgreSQL [27].

Our major contributions can be summarized as follows:
•We propose a novel system design named Chimera that extends
an RDBMS to a GRDBMS supporting SQL/PGQ.
•We propose a dual-store architecture consisting of separate graph
and relational stores, along with their access methods.
•Wepropose a new query operator, the Traversal-Join (TJ) operator,
capable of handling both topologies and properties as operands.
•We propose a unified cost-based query optimization method tai-
lored for hybrid queries of topology and property operations.
• Through extensive experiments, we demonstrate Chimera signifi-
cantly outperforms existing GRDBMSs in terms of response time,
throughput, and graph size for interactive SQL/PGQ queries.
The rest of this paper is organized as follows. Section 2 introduces

SQL/PGQ and the GT and MGV approaches. Section 3 presents
dual store of Chimera. Section 4 and 5 present the TJ operator and
query optimization, respectively. Section 6 presents the results of
the evaluation. Finally, we mention related work in Section 7 and
conclude this paper in Section 8.

2 PRELIMINARIES
2.1 SQL/PGQ
2.1.1 Graph view definition language The graph view defini-
tion language defines graphs to be viewed from an RDB. A single
definition query contains the declaration of a single property graph
including its name, its vertex tables, and its edge tables, as shown
in Figure 1. The vertex tables specify the vertices, their labels, and
their properties from the a set of base tables in the RDB. For exam-
ple, Figure 1(a) defines a graph named snb, which specifies three
types of vertices of the labels, User, Post, and Comment, from the
base tables of UserT, PostT, and CommentT. The edge tables specify
the edges, their labels, and their properties using a set of src and
dst column pairs from the base tables in the RDB. For example,
Figure 1(a) specifies two types of edges of the labels, Likes and
Replyof, using the set of column pairs, ⟨UserT(id), PostT(id)⟩ and
⟨CommentT(id), PostT(id)⟩. Figure 1(b) shows an example graph de-
fined by Figure 1(a) from a tiny RDB like the LDBC Social Network
Benchmark (SNB) dataset 1 [18].

1LDBC SNB is the de-facto standard graph query benchmark, and the Person label has
been replaced with User for convenience of query plan representation
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2.1.2 Graph pattern matching language The Graph pattern
matching language (GPML) performs graph pattern matching on
a graph defined by the graph view definition language above. In
SQL/PGQ, GPML can be inserted into the FROM clause of SQL as
a sub-language using the keyword GRAPH_TABLE. GPML is ex-
tended from Conjunctive Regular Path Queries (CRPQ) [12], which
includes Conjunctive Query (CQ) and Regular Path Query (RPQ).
We focus on the former in this paper because typical interactive
queries such as neighborhood, subgraph, and search queries men-
tioned in Section 1 belong to CQs.

GPML consists of MATCH-WHERE-COLUMNS clauses, where
the MATCH clause declares the topological patterns to be traversed
in the graph, which are expressed using ASCII-art, the WHERE
clause declares the filtering conditions and the COLUMNS clause
declares the schema of the output table for the patterns traversed.

CREATE PROPERTY GRAPH snb
VERTEX TABLES (

UserT PROPERTIES (name) LABEL User
PostT PROPERTIES (content, creationDate) LABEL Post
CommentT PROPERTIES (content) LABEL Comment

) EDGE TABLES (
LikeT SOURCE KEY (src) REFERENCES UserT(id)

DESTINATION KEY (dst) REFERENCES PostT(id)
LABEL Likes

ReplyofT SOURCE KEY (src) REFERENCES CommentT(id)
DESTINATION KEY (dst) REFERENCES PostT(id)
LABEL Replyof

);

(a) Example of graph view definition language

ID:3 ID:4 ID:5

name: James name:Hana

content:
Amazing

content:…
crea�onDate: 12-19T02:20

content:…
crea�onDate: 12-19T02:30

ID:2ID:1

User

Post

Likes

Replyof

Comment

dstsrcID
311
322
423

nameID
James1
Hana2

crea�onDatecontentID
12-19T02:20…3
12-19T02:30…4

LikesTUserT PostT

dstsrcID
544

ReplyofT

contentID
Amazing5

CommentT

(b) Example of graph view definition

Figure 1: Example of graph view in SQL/PGQ.

Figure 2 shows an example GPML query that recommends to the
user whose ID is 1 (shortly, User 1), a set of posts that were created at
a similar time to the posts that the user liked. It is a kind of content-
based recommendation [39]. In Figure 2, the first expression in
MATCH declares a pattern of User and Post(p1) connected by Likes
where User ID is 1, and the second expression in MATCH declares
a pattern of Post(p2) and Comment connected by Replyof, and the
next WHERE clause declares a filtering condition between p1 and
p2 where the difference in their creation time is less than 1 hour.

The COLUMNS clause declares the posts(p2) with their comments
as output. For Figure 1(b), this GPML query returns { (ID:4, ID:5) },
and thus, the whole SELECT-FROM query returns { (4, 1) }.

SELECT recommends.p2, count(recommends.c)
FROM GRAPH_TABLE (snb,

MATCH (u:User WHERE u.ID = 1)-[l:Likes]->(p1:Post),
(p2:Post)<-[r:ReplyOf]-(c:Comment)

WHERE p2.creationDate - p1.creationDate < 1h
COLUMNS (p2.ID, c.ID) recommends

);

Figure 2: An example GPML query.

2.2 Graph Table (GT) approach
The GT approach creates a graph virtually without changing the
storage and query processing layer of RDBMSs. Examples of this
approach include SQL Server graph extension [64] and Agens-
graph [10]. This approach has a strong point that it can easily
optimize a hybrid query, since a plan contains only relational oper-
ators. It performs joins for traversals, where the join keys are the
ID column of a base vertex table (e.g., ID of UserT in Figure 1(b))
and the src (or dst) column of a base edge table (e.g., src of LikeT in
Figure 1(b)). Figure 3(a) shows the join graph of the GPML query in
Figure 2, and Figure 3(b) shows an example query plan generated
from the join graph. In the figures, the topology operations are Op
1 ((u:User)-[l:Likes]), Op 2 ([l:Likes]->(p1:Post)), Op 4 ((p2:Post)<-
[r:ReplyOf]), and Op 5 ([r:ReplyOf]-(c:Comment)), and the property
operation is Op 3 (p2.creationDate - p1.creationDate < 1h).

(a) Example of join graph

U

L

P1 P2

C

R

Op 1
(U.ID = L.src)

Op 2
(L.dst = P1.ID)

Op 3
P2.crea�onDate– P1.crea�onDate < 1h

Op 5
(C.ID =R.dst)

Op 4
(R.src= P2.ID)

⋈

Op 1
(23)

Op 2
(23)

⋈

⋈

⋈

⋈

U
ID: 1 L

P1

P2

R

C
Op 3

(255K)

Op 4
(899K)

Op 5
(899K)

(99M)

(58M)

(58M)

(108M)

(b) Example of query plan

topologyOp

property Op

topology Op

Figure 3: Example of a query plan in the GT approach.

In the GT approach, indexed nested loop (INL) and hash joins are
commonly used for a traversal, and each join-based traversal incurs
a large overhead since it requires searching an index or scanning
the entire vertex/edge tables to find adjacent vertices/edges. For
example, an INL join for Op 1 in Figure 3 performs an index seek
on the src column of LikesT to find adjacent edges to User 1 and
so incurs the overhead of O(log|𝐸|). Instead, a hash join for Op 1
performs a hash lookup on LikesT after building a hash table on
User 1 and so incurs the overhead of O(|𝐸|). Similarly, INL and
hash joins for Op 2 incur the overhead of O(log|𝑉 |) and O(|𝑉 |),
respectively.

2.3 Materialized Graph View (MGV) approach
The MGV approach stores the topologies extracted from the tables
as a materialized graph view. Examples of this approach include
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DuckPGQ [70], GRFusion [30], and GrainDB [33]. They have the
three disadvantages as described in Section 1. We explain the third
disadvantage in more detail, i.e., inefficient query plans from sepa-
rated stacks of processing layers for topologies and properties.

DuckPGQ [70] constructs a read-optimized graph data structure,
but generates a query plan that consists of only relational operators
like the GT approach (hereafter called the GT plan) for a CQ. It
only utilizes the graph structure for a specific RPQ called bulk path-
finding to accelerate it. GrainDB [33] basically generates a GT plan,
but improves it by replacing a hash join in the plan with so-called
S-join [33] that utilizes the graph structure (hereafter called the
S-join plan). GRFusion [30] splits a GPML query into two parts:
the one requiring topology operations such as traversal (⊙) and
the other one requiring property operations such as joins (⊲⊳). It
generates a sub-plan for each part and binds two sub-plans using a
binding join (hereafter called the B-join plan).

3 DUAL STORE OF CHIMERA
3.1 Model and Architecture
In this section, we present the model and architecture of Chimera
to solve the issues raised in the GT and MGV approaches. Chimera
has a dual-store architecture of relational store for properties and
graph store for topologies. Different from MGV, our graph store is
not a read-optimized in-memory graph structure, which is more
suitable for OLAP, but an updatable disk-based one, which is more
suitable for OLTP. In addition, to avoid two drawbacks of MGV, the
delayed update of the graph view and the binding overhead in the
last step, Chimera connects both stores by maintaining pointers
between vertex/edge in the graph store and the corresponding
tuples in the relational store. We define the graph model of Chimera
in Definition 3.1.

Definition 3.1. Graph model of Chimera
A graph G in Chimera is defined as 𝐺 = (𝑉 , 𝐸,Ψ, Σ, 𝐿(·), 𝐵(·)).

• 𝑉 and 𝐸 are sets of vertices and edges, respectively
• Ψ is a set of tuples in the vertex tables
• Σ is a set of tuples in the edge tables
• 𝐿(·) is a labeling function that takes a vertex or an edge as input
and returns its label as output
• 𝐵(·) is a bijective function that takes a vertex or an edge as input
and returns a corresponding tuple as output

𝑉 , 𝐸, 𝐿(·), and 𝐵(·) are stored in the graph store, while Ψ and Σ
are stored in the relational store. 𝐵(·) can be implemented as either
a pointer from the graph store to relational store or a pointer from
the relational store to graph store. We choose the former in this
paper because the latter may cause a large change in the relational
store for storing pointers. The pointers can be either logical or
physical, where we choose the former for flexibility in update.

Figure 4 compares the architectures of MGV and Chimera. We
omit the GT approach since it only adds a parser for SQL/PGQ and
stores metadata for graph views, making it relatively simple. MGV
has a stack of layers for graph query processing which is separated
from the RDBMS. In contrast, Chimera has a common transaction
manager and query processing layers for two separated stores.

∎ : Newly developed ∎ : Extended from RDBMS ∎ : Same as RDBMS

(a) MGV approach

Graph store
(𝑉,𝐸, 𝐿,𝐵)

Rela�onal
store (Ψ,Ξ)

SQL/PGQ parser

Query operators

Traverse -Join operator

Rela�onal
operator

Query processing engine

Hybrid query planner

Storage engine

Transac�on manager

Traversal
operator

Table access
method

Graph access
method

(b) Chimera

Rela�onal store

SQL/PGQ parser

Query operators

Query processing engine

Storage engine

Transac�on manager

Traversal
operator

In-memory
graph

structure
Table access

method

Rela�onal
operator

Rela�onal
query planner

Figure 4: Comparison of architectures.

3.2 Storage format
The graph store of Chimera consists of a set of vertex records and
edge records, which is similar to a native graph DBMS. Figure 5(a)
shows the storage format of vertex and edge records. A vertex
record has a vertex ID, a label, and pointers to the first out/in
edges. Here, if the total number of labels of its out-edges is N, it
contains the N first pointers to quickly find the first edge of a
specific label. Similarly, it contains the M first pointers for its in-
edges. An edge record has an edge ID, a label, pointers to the source
and destination vertices, and pointers to the next out/in edges, like
in an adjacency list. Each vertex/edge record has a pointer to the
corresponding tuple in the relational store for 𝐵(·) and a header for
transaction management, which will be explained in Section 3.5.
To ensure the uniqueness of vertex/edge IDs, we employ a system
counter (e.g., auto_increment). This counter is distinct from the
one used for the primary key (PK), typically resulting in a different
vertex/edge ID from the PK of the original tuple. For simplicity,
however, the same ID is used for both the vertex/edge ID and the
PK in Figure 5. Additionally, for pointers depicted as dotted arrows
in Figure 5(c), we use logical addresses consisting of a page number
and a page offset. These logical addresses enable flexible recycling
of vertex/edge IDs, for example when updates occur. The buffer
manager translates these logical addresses to physical addresses
when accessing the pointers.

Figure 5(b) shows the example of pointers between vertex records
and edge records for Figure 1(b), while Figure 5(c) the example
of pointers between the graph store and the relational store. We
show two kinds of pointers separately for an easy explanation. In
Figure 5(b), User vertex records have a single out-edge pointer (i.e.,
N = 1 and M = 0), while Post vertex records have up to two in-edge
pointers (i.e., N = 0 andM = 2). The Likes edge 3 has a next out-edge
pointer to the Likes edge 2 (denoted as &L(2)), which indicates
vertex 2 has two out-edges in Figure 1(b). In Figure 5(c), each vertex
record has a label (e.g., User) for 𝐿(·) and a pointer (e.g., &UT(1))
to the corresponding tuple in the relational store for 𝐵(·). In this
figure, there is no tuples for edges because the edges in Figure 1(b)
have no properties.

3.3 Read access method
In this section, we present the read access methods of Chimera
for the graph store of (𝑉 , 𝐸, 𝐿(·), 𝐵(·)) and the relational store of
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(a) Vertex and edge record format
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&R(4)Comment5
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(b) Example of pointers between vertex and edge records (in the graph store)

(c) Example of pointers from the graph store to the rela�onal store

Figure 5: Storage format of Chimera.
(Ψ, Σ). The following summarizes basic scan access methods using
labels. Since Chimera stores vertex and edge records separately for
each label, it can find the set of records for a given label without
scanning all records.
• scanVertex: read vertex records with a label x
input = 𝑥 ; output = {𝑝 ∈ 𝑉 | 𝐿(𝑝) = x}
• scanEdge: read edge records with a label y
input = 𝑦 ; output = {𝑞 ∈ 𝐸 | 𝐿(𝑞) = y}

The following summarizes the access methods to find the adjacent
edges (or vertices) for a given vertex (or edge) by iterating over the
stored edge (or vertex) pointers.
• getAdjEdges: read a set of out-edges (denoted as 𝛿 =→) or a
set of in-edges (denoted as 𝛿 =←) with a label y of a vertex p
input = (𝑝, 𝛿,𝑦) ;

output =

{
{𝑞 ∈ 𝐸 | 𝑝 = 𝑞.𝑠𝑟𝑐 ∧ 𝐿(𝑞) = y} if 𝛿 =→
{𝑞 ∈ 𝐸 | 𝑝 = 𝑞.𝑑𝑠𝑡 ∧ 𝐿(𝑞) = y} if 𝛿 =←

• getAdjVertex: read a dst-vertex (denoted as 𝛿 = →) or a src-
vertex (denoted as 𝛿 =←) with a label x from an edge q
input = (𝑞, 𝛿, 𝑥) ;

output =

{
{𝑝 ∈ 𝑉 | 𝑝 = 𝑞.𝑑𝑠𝑡 ∧ 𝐿(𝑝) = 𝑥} if 𝛿 =→
{𝑝 ∈ 𝑉 | 𝑝 = 𝑞.𝑠𝑟𝑐 ∧ 𝐿(𝑝) = 𝑥} if 𝛿 =←

3.4 Write access method
In this section, we present the write access methods of Chimera.
We present only the write access methods for insertion here and
omit the remaining methods due to lack of space.

• insertVertex: insert a vertex record 𝑝 of the label 𝑥
• insertEdge: insert an edge record 𝑞 of the label 𝑦
• insertTuple: insert a tuple 𝑟 to the table 𝑧
input = (𝑟, 𝑧) ; output = the tuple address of 𝑟
For a vertex having properties, both insertTuple and insertVertex

must be executed together. Similarly, for an edge having properties,
both insertTuple and insertEdge must be executed together. To
ensure the atomicity, Chimera executes both insertions within the
same transaction block. Both insertions are WAL logged [25] and
so if a system fails after only insertTuple is executed, the system
undoes the insertion for the uncommitted transaction through the
stored log. Figure 6(a) shows an example of inserting a User vertex
named Alex, which executes insertTuple(Alex, UserT) first to get the
address of the tuple, &UT(6), creates a vertex object, and executes
insertVertex using the vertex.

For insertEdge, there are usually three possible insertion po-
sitions in the adjacency list: the front, the middle, and the end.
Chimera inserts it at the front for fast insertion, which requires
updating the first out- or in-edge pointer of the src or dst vertex
record. Thus, Chimera acquires a lock on the src or dst vertex to
prevent concurrent reads on the vertex. Figure 6(b) shows an exam-
ple of inserting a Likes edge from User 6 to Post 4, which consists
of five steps as in the figure. In this example, Likes edge does not
have a property, but if it did, the insertTuple would be performed
first as in Figure 6(a) in Figure 6(b) in the same transaction block.

&UT(1)&L(1)User1

&UT(2)&L(3)User2

&UT(6)User6

User vertex records

name
James
Hana
Alex

UserT table

&UT(1)&L(1)User1

&UT(2)&L(3)User2

&UT(6)User6

&PT(3)&L(2)Post3

&PT(4)&R(4)&L(3)Post4

User vertex records

Post vertex records

&P(3)&U(1)Likes1

&L(1)&P(3)&U(2)Likes2

&L(2)&P(4)&U(2)Likes3

&L(3)&P(4)&U(6)Likes4

Likes edge records

Begin

&UT(6)= insertTuple(Alex);
v = Vertex(6, User, &UT(6));
insertVertex(v, User);

Commit

(a) Example of inser�ng a User vertex with the name “Alex”

(b) Example of inser�ng a Likes edge from User 6 to Post 4

&L(4)

&L(4)

2) read current first out/in-edge ptr

4) update first out/in-edge ptr

1) locking src/dst vertex records

3) insert new edge record

5) unlocking src/dst vertex records

Figure 6: Example of inserting a vertex and an edge.

3.5 Concurrency control
The isolation level of the concurrency control of Chimera is read
committed [8], which is also the default and common one across
many commercial DBMSs, including PostgreSQL [27], Oracle [49],
and SQL server [44]. To ensure the read committed, wemust prevent
the dirty read [2] in which an uncommitted transaction’s write is
read by another concurrent transaction.

For doing this, we add a field of the transaction ID that inserts
a record (called insert-tid) to the header of each vertex and edge
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record. Then, any transaction to write the record updates the insert-
tid field with its ID, which indicates the the lifetime of the record
is after the insert-tid. Similarly, an transaction to read the record
checks the visibility of the record based on the lifetime. Algorithm 1
presents the pseudocode of the visibility checking for insertion.
There are only two cases in which a record is visible: when the
insert transaction is committed and the read transaction’s ID is
after the record’s lifetime (Line 5), and when the insert transaction
is running and the read transaction is the insert transaction itself
(Line 8). Otherwise, it is invisible. Similarly, we can add the delete-tid
field to the header and check the visibility, but omit the details.

Algorithm 1: Record visibility checking
1 Function isVisible(record, read-tid):
2 insert-txn← getTransaction(record.insert-tid);
3 switch getStatus(insert-txn) do
4 case COMMIT do
5 if insert-tid < read-tid then
6 return true;
7 case RUNNING do
8 if insert-tid = read-tid then
9 return true;

10 return false;

4 TRAVERSAL-JOIN OF CHIMERA
4.1 Mapping operators
Due to the dual store, a query plan of Chimera needs to handle
both the graph store and the relational store. Thus, each binary
operator in the query plan performs one of the following three
actions: (1) traversal taking its operands only from the graph store,
(2) join taking its operands only from the relational store, and (3)
mapping taking its operands from both stores. Among them, the
mapping operator is defined based on 𝐵(·) and plays a role as
a bridge between the graph and relational store. There are two
mapping operators depending on the direction of mapping: graph
to relational (G2R) and relational to graph (R2G). We define them
in Definitions 4.1 and 4.2.

Definition 4.1. G2R mapping operator
The G2R mapping operator ⊲ takes ⟨(𝑉1, 𝐸1),𝑇1⟩ as input, performs
the one of the following operations depending on the the value of
(𝑉1, 𝐸1), and returns its result tuples 𝑇2.
Case 1 (𝑉1 ≠ ∅, 𝐸1 = ∅) : mapping from 𝑉1 to 𝑇2 ⊆ 𝑇1 such that
𝑇2 = { 𝐵(𝑣) | 𝑣 ∈ 𝑉1 ∧ 𝐵(𝑣) ∈ 𝑇1 } (denoted as 𝑉1 ⊲𝑇1)
Case 2 (𝑉1 = ∅, 𝐸1 ≠ ∅) : mapping from 𝐸1 to 𝑇2 ⊆ 𝑇1 such that
𝑇2 = { 𝐵(𝑒) | 𝑒 ∈ 𝐸1 ∧ 𝐵(𝑒) ∈ 𝑇1 } (denoted as 𝐸1 ⊲𝑇1)

Definition 4.2. R2G mapping operator
The R2G mapping operator ⊳ takes ⟨(𝑉1, 𝐸1),𝑇1⟩ as input, performs
the one of the following operations depending on the the value of
(𝑉1, 𝐸1), and returns its result vertices and edges (𝑉2, 𝐸2).
Case 1 (𝑉1 ≠ ∅, 𝐸1 = ∅) : mapping from 𝑇1 to 𝑉2 ⊆ 𝑉1 such that
(𝑉2, 𝐸2) = ({𝐵−1 (𝑡) | 𝑡 ∈ 𝑇1 ∧𝐵−1 (𝑡) ∈ 𝑉1}, 𝐸1) (denoted as𝑉1 ⊳𝑇1)
Case 2 (𝑉1 = ∅, 𝐸1 ≠ ∅) : mapping from 𝑇1 to 𝐸2 ⊆ 𝐸1 such that
(𝑉2, 𝐸2) = (𝑉1, {𝐵−1 (𝑡) | 𝑡 ∈ 𝑇1 ∧𝐵−1 (𝑡) ∈ 𝐸1}) (denoted as 𝐸1 ⊳𝑇1)

In G2R and R2G mapping, (𝑉1, 𝐸1) is the result of read access
methods such as scanVertex, scanEdge, getAdjEdges, and getAd-
jVertex, explained in Section 3.3. scanVertex returns only a set of
vertices, and scanEdge returns only a set of edges. getAdjEdges
returns only a set of edges, and getAdjVertex returns only a set
of vertices, by performing a single-step traversal [57]. Therefore,
we can define the mapping operators only for two cases: (𝑉1 ≠ ∅,
𝐸1 = ∅) or (𝑉1 = ∅, 𝐸1 ≠ ∅).

In G2R mapping, since 𝐵(·) can be directly implemented through
the pointer from graph to relational store (i.e., property-tuple-ptr
in Figure 5(a)), we omit the algorithm for G2R mapping. In R2G
mapping, there is no pointer from relational to graph store. Thus,
instead of obtaining 𝐵−1 (𝑡) from 𝑡 ∈ 𝑇1, we obtain 𝑣 ∈ 𝑉1 (or 𝑒 ∈ 𝐸1)
that satisfies the condition 𝐵(𝑣) = 𝑡 (or 𝐵(𝑒) = 𝑡 ). In other words,
it can be treated like a 𝜃 -join with 𝐵(𝑣) = 𝑡 (or 𝐵(𝑒) = 𝑡 ) as 𝜃 .
Although various algorithms can be used for R2G mapping, we just
present a basic algorithm using nested-loop join in Algorithm 2.
Case 1 of R2G mapping is handled by comparing 𝑣 .property-tuple-
ptr with &t (address of a tuple 𝑡 ) corresponding to 𝐵(𝑣) = 𝑡 (Line 2).
Meanwhile, we can also improve R2G like G2R by storing and
managing a pointer to 𝐵−1.

Algorithm 2: R2G mapping operator
Input: (𝑉1, 𝐸1), 𝑇1 /* left, right operand */

1 forall 𝑣 ∈ 𝑉1, 𝑡 ∈ 𝑇1 do
2 if 𝑣 .property-tuple-ptr = &𝑡 then
3 𝑉2, 𝐸2← 𝑉2 ∪ { 𝑣 }, 𝐸1;
4 forall 𝑒 ∈ 𝐸1, 𝑡 ∈ 𝑇1 do
5 if 𝑒 .property-tuple-ptr = &𝑡 then
6 𝑉2, 𝐸2← 𝑉1, 𝐸2 ∪ { 𝑒 };
7 emit(𝑉2, 𝐸2);

4.2 Traversal-Join operator
Based on the mapping operators, we can define a unified operator
for both traversal and join. We call this the Traversal-Join(TJ) oper-
ator. It performs traversal, join, or mapping in the same framework
and so the query processing layers can generate, optimize, and
execute a query plan like there is only a single store. We define it
in Definition 4.3.

Definition 4.3. Traversal-Join operator
The Traversal-Join (TJ) operator ⊗ is a binary operator that takes
𝐻1,𝐻2 as input, performs one of the following four cases depending
on the combination of operands (𝐻1, 𝐻2).
Case 1 (𝐻1⊙𝛿𝐻2) : 𝛿-direction traversal, if𝐻1= (𝑉1,𝐸1),𝐻2= (𝑉2,𝐸2)
Case 2 (𝐻1 ⊲⊳𝜃 𝐻2) : 𝜃 -join, if 𝐻1 = 𝑇1, 𝐻2 = 𝑇2
Case 3 (𝐻1 ⊲ 𝐻2) : G2R mapping, if 𝐻1 = (𝑉1, 𝐸1), 𝐻2 = 𝑇1
Case 4 (𝐻1 ⊳ 𝐻2) : R2G mapping, if 𝐻1 = 𝑇1, 𝐻2 = (𝑉1, 𝐸1)

Chimera generates a query plan contains TJ operators for a
SQL/PGQ query involving both topology and property operations.
Then, it performs a unified query optimization by determining the
optimal order of TJ operators based on a cost model (more detail in
Section 5). Figure 7(b) shows an example of a query plan in Chimera
for the query in Figure 2. In the figure, Ops 1, 2, 6, and 7 are Case 1
(i.e., traversal) of TJ operator, Op 4 is Case 2 (i.e., join) TJ operator,
Op 3 is Case 3 (i.e., G2R mapping), and Op 5 is Case 4 (i.e., R2G

284



mapping). Figure 7(b) is generated from Figure 7(a), and we explain
the details of the TJ plan generation in Section 5.1.

U L

Op 1
(23) ⊗→

topologyOp

P1

Op 2
(23) ⊗→

Op 3
(23)

⊗⊳

Op 4
(255K)

⊗𝜽 P2

Op 5
(255K)

⊗⊲ R

Op 6
(899K)

⊗← C
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P1
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(b) Example of query plan(a) Example of traversal -join graph
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(58M)
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Figure 7: Example of a query plan in Chimera.
Algorithm 3 represents the pseudocode of the TJ operator, which

is based on the volcanomodel [23], commonly used inmany RDBMSs.
It calls the next() function of the child operator, performs one of the
four cases of operations, and feeds the result to the parent operator
through the emit() function. For example, Op 1 in Figure 7(b) takes
𝑉1 = { U1 } as the left operand and 𝐸2 = { L1, L2, L3 } as the right
operand as input. It performs traversal from a User vertex to Likes
edge (Line 5) and emits 𝐸3 = { L1 } as output (Line 9). In this case, the
right operand of Op 1 is the scanEdge(Likes) without any filtering
conditions, and so the intersection process in Line 8 can be omitted
because 𝐸𝑎𝑑 𝑗 (i.e., { L1 }) obtained by traversal always belongs to
𝐸2 (i.e., { L1, L2, L3 }). The rest examples are shown in Table 1. In
Algorithm 3, the 𝜃 -join operator is represented using a nested-loop
join, but it can also be processed by using other join algorithms
such as hash join.

In Algorithm 3 and Table 1, we explain 𝛿-direction traversal takes
only a set of vertices or edges currently being visited (i.e., active
vertex or edge [66]) as operands, for simplicity. However, the actual
implementation of Chimera takes a set of paths for path patterns
in a SQL/PGQ query. For example, due to (p2:Post)<-[r:ReplyOf]-
(c:Comment) in a MATCH clause in Figure 2, Op 7 in Table 1
takes { (p2:P4)<-[r:R4] } as the left operand and { (c:C5) } as the right
operand as input, and emits { (p2:P4)<-[r:R4]-(c:C5) }. The GPML
query finally returns { (ID: 4, ID: 5) } taking { (p2:P4)<-[r:R4]-(c:C5) }
from Op 7 due to (p2.ID, c.ID) in a COLUMNS clause.

5 QUERY OPTIMIZATION OF CHIMERA
5.1 Plan generation
In this section, we present a plan generation method of a unified
query plan (called TJ plan) that consists of TJ operators. For the
generation, we extend the conventional join graph (e.g., Figure 3(a))
to the Traversal-Join (TJ) graph, which is defined in Definition 5.1.
Figure 7(a) shows an example of 𝐺𝑇 𝐽 for the query in Figure 2.
The vertices represent the labels and tables used in the query, and
the edges between the vertices represent the traversal, join, and
mapping operations.

Definition 5.1. Traversal-Join graph
Traversal-Join graph 𝐺𝑇 𝐽 is a mixed graph consisting of vertices
(𝐿𝑣, 𝐿𝑒 , 𝐿𝑡 ), directed edges (𝑂𝑇 ), and undirected edges (𝑂 𝐽 ,𝑂𝑀 ).

Algorithm 3: TJ operator (⊗)
Input: left, right /* left, right child operator */
Input: 𝛿, 𝜃 /* optional input */

1 𝐻1, 𝐻2← left.next(), right.next();
2 switch 𝐻1, 𝐻2 do
3 case (𝑉1, 𝐸1), (𝑉2, 𝐸2) do /* traversal operation */
4 forall 𝑣1 ∈ 𝑉1 do
5 𝐸𝑎𝑑 𝑗 ← 𝐸𝑎𝑑 𝑗 ∪ getAdjEdges(𝑣1, 𝛿 , 𝐸2.label);
6 forall 𝑒1 ∈ 𝐸1 do
7 𝑉𝑎𝑑 𝑗 ← 𝑉𝑎𝑑 𝑗 ∪ getAdjVertex(𝑒1, 𝛿 , 𝑉2.label);
8 𝑉3, 𝐸3← 𝑉𝑎𝑑 𝑗 ∩ 𝑉2, 𝐸𝑎𝑑 𝑗 ∩ 𝐸2;
9 emit(𝑉3, 𝐸3);

10 case 𝑇1,𝑇2 do /* join operation */
11 forall 𝑡1 ∈ 𝑇1, 𝑡2 ∈ 𝑇2 do
12 if 𝜃 (𝑡1, 𝑡2) = true then
13 𝑇3← 𝑇3 ∪ { (𝑡1 · 𝑡2) };
14 emit(𝑇3);
15 case (𝑉1, 𝐸1), 𝑇1 do /* G2R mapping operation */
16 𝑇2← G2Rmapping((𝑉1, 𝐸1),𝑇1);
17 emit(𝑇2);
18 case 𝑇1, (𝑉1, 𝐸1) do /* R2G mapping operation */
19 (𝑉2, 𝐸2) ← R2Gmapping((𝑉1, 𝐸1),𝑇1);
20 emit(𝑉2, 𝐸2);

Table 1: Example of input and output of TJ operators.

Op Left operand (𝐻1) Right operand (𝐻2) Output

1 𝑉1 = { U1 }, 𝐸1 = ∅ 𝑉2 = ∅, 𝐸2 = { L1, L2, L3 } 𝑉3 = ∅, 𝐸3 = { L1 }
2 𝑉1 = ∅, 𝐸1 = { L1 } 𝑉2 = { P3, P4 }, 𝐸2 = ∅ 𝑉3 = { P3 }, 𝐸3 = ∅
3 𝑉1 = { P3 }, 𝐸1 = ∅ 𝑇1 = { PT3, PT4 } 𝑇2 = { PT3 }
4 𝑇1 = { PT3 } 𝑇2 = { PT3, PT4 } 𝑇3 = { PT4 }
5 𝑇1 = { PT4 } 𝑉1 = { P3, P4 }, 𝐸1 = ∅ 𝑉2 = { P4 }, 𝐸2 = ∅
6 𝑉1 = { P4 }, 𝐸1 = ∅ 𝑉2 = ∅, 𝐸2 = { R4 } 𝑉3 = ∅, 𝐸3 ={ R4 }
7 𝑉1 = ∅, 𝐸1 ={ R4 } 𝑉2 = { C5 }, 𝐸2 = ∅ 𝑉3 = { C5 }, 𝐸3 = ∅

• 𝐿𝑣 and 𝐿𝑒 are the set of vertex and edge labels, respectively
• 𝐿𝑡 is a set of table names for the vertex and edge tables
• 𝑂𝑇 = {(𝑥, 𝛿,𝑦) | (𝑥 ∈ 𝐿𝑣 ∧ 𝑦 ∈ 𝐿𝑒 ) ∨ (𝑥 ∈ 𝐿𝑒 ∧ 𝑦 ∈ 𝐿𝑣)} is a set
of traversal operations in the 𝛿 direction between 𝑥 and 𝑦
• 𝑂 𝐽 = {(𝑥, 𝜃,𝑦) | 𝑥 ∈ 𝐿𝑡 ∧ 𝑦 ∈ 𝐿𝑡 } is a set of 𝜃 -join operations
• 𝑂𝑀 = {(𝑥,𝑦) | (𝑥 ∈ (𝐿𝑣∪𝐿𝑒 )∧𝑦 ∈ 𝐿𝑡 )∨(𝑥 ∈ 𝐿𝑡 ∧𝑦 ∈ (𝐿𝑣∪𝐿𝑒 ))}
is a set of mapping operations

Algorithm 4 represents the plan generation algorithm. It uses
a dynamic programming technique [46] by enumerating plans in
order of low to high degree. Here, the degree of a graph 𝐺 is the
number of vertices, which we denote by |𝐺 |. During the enumer-
ation process, the selected subplans are stored in PlanMap and
the calculated costs are stored in CostMap. First, we generate scan
plans for all vertex labels, edge labels, and tuple tables of degree 1
(Lines 3-5). Then, we set 𝑖 and 𝑗 , the degrees of the left and right
plans to be generated, by incrementing degree (Lines 6-8). Next,
we find all possible pairs of subgraphs (𝑆1, 𝑆2) of the 𝐺𝑇 𝐽 where
|𝑆1 | = 𝑖 , |𝑆2 | = 𝑗 , 𝑆1∩𝑆2 = ∅ (Line 9) and𝑂𝑝 = (𝑥,𝑦) connecting the
two subgraphs (Line 11). Then, we generate a TJ plan with 𝑆1 and
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𝑆2 as left and right plans (Lines 12-17). Finally, we select the best
plan based on the cost model compared to the previously generated
plans (Line 19). For example, the subplan for Op 1 in Figure 7(b) is
generated when deg = 2, 𝑖 = 1, 𝑗 = 1, and 𝑆1 = { U }, 𝑆2 = { L }, Op =
(U,→, L) are selected. Additional examples are shown in Table 2.
For simplicity, the examples focus on generating a left-deep plan,
although Algorithm 4 is also capable of generating bushy plans.

Algorithm 4: TJ plan generation
Input: 𝐺𝑇 𝐽 = (𝐿𝑣, 𝐿𝑒 , 𝐿𝑡 ,𝑂𝑇 ,𝑂 𝐽 ,𝑂𝑀 )

1 PlanMap /* storing subplanswhile bottom-up enumeration */

2 CostMap /* storing the calculated costs for each plan */

3 for 𝑙𝑣 ∈ 𝐿𝑣 do PlanMap[𝑙𝑣]← scanVertex(𝑙𝑣 );
4 for 𝑙𝑒 ∈ 𝐿𝑒 do PlanMap[𝑙𝑒 ]← scanEdge(𝑙𝑒 );
5 for 𝑙𝑡 ∈ 𝐿𝑡 do PlanMap[𝑙𝑡 ]← scanTable(𝑙𝑡 );
6 for 2 ≤ deg ≤ | 𝐺𝑇 𝐽 | do /* size of plan */
7 for 1 ≤ 𝑖 < deg do /* size of left plan */
8 𝑗 ← deg − 𝑖; /* size of right plan */

9 forall (𝑆1, 𝑆2) ⊂ 𝐺𝑇 𝐽 do /* subgraph pair 𝑆1, 𝑆2 */
10 Plan𝑆1 , Plan𝑆2 ← PlanMap[𝑆1], PlanMap[𝑆2];
11 switch 𝑂𝑝 = (𝑥 ∈ 𝑆1, 𝑦 ∈ 𝑆2) do
12 case 𝑂𝑝 ∈ 𝑂𝑇 do
13 Plannew← ⊗ (Plan𝑆1 , Plan𝑆2 , 𝑂𝑝.𝛿);
14 case 𝑂𝑝 ∈ 𝑂 𝐽 do
15 Plannew← ⊗ (Plan𝑆1 , Plan𝑆2 , 𝑂𝑝.𝜃 );
16 case 𝑂𝑝 ∈ 𝑂𝑀 do
17 Plannew← ⊗ (Plan𝑆1 , Plan𝑆2 );
18 Planold← PlanMap[𝑆1∪𝑆2];
19 PlanMap[𝑆1∪𝑆2]← selectBest(Plannew, Planold);
20 Function selectBest(𝑃new = ⊗(𝑃1, 𝑃2), 𝑃old):
21 𝐶𝑜𝑠𝑡𝑃1← CostMap[𝑃1];
22 𝐶𝑜𝑠𝑡𝑃2← CostMap[𝑃2];
23 CostMap[𝑃new] = calculateTJCost(𝐶𝑜𝑠𝑡𝑃1, 𝐶𝑜𝑠𝑡𝑃2);
24 return minCostPlan(𝑃new, 𝑃old);

Table 2: Example of TJ plan generation process.

deg S1 S2 op plan𝑆1∪𝑆2
2 { U } { L } (U,→, L) ⊗→
3 { U, L } { P1𝑉 } (L,→, P1𝑉 ) ⊗→
4 { U, L, P1𝑉 } { P1𝑇 } (P1𝑉 , P1𝑇 ) ⊗⊲
5 { U, L, P1𝑉 , P1𝑇 } { P2𝑇 } (P1𝑇 , 𝜃 , P2𝑇 ) ⊗𝜃
6 { U, L, P1𝑉 , P1𝑇 , P2𝑇 } { P2𝑉 } (P2𝑇 , P2𝑉 ) ⊗⊳
7 { U, L, P1𝑉 , P1𝑇 , P2𝑇 , P2𝑉 } { R } (P2𝑉 ,←, R) ⊗←
8 { U, L, P1𝑉 , P1𝑇 , P2𝑇 , P2𝑉 , R } { C } (R,←, C) ⊗←

5.2 Cost model
In this section, we present the cost model of the TJ operator. We con-
sider the disk I/O and CPU computation as the measure of the cost,
as in conventional disk-based DBMSs [7, 24, 38]. For buffer cache
effect, we utilize the base system’s disk I/O prediction function
𝑍 (·), which is based on a study [41] that predicts the buffer cache
effect for a more accurate cost calculation. Table 3 summarizes the
symbols used in our cost model.

Since the TJ operator operates in one of four cases, the cost of
the TJ operator is also one of 𝐶𝑜𝑠𝑡𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 , 𝐶𝑜𝑠𝑡 𝑗𝑜𝑖𝑛 , 𝐶𝑜𝑠𝑡𝐺2𝑅 , or
𝐶𝑜𝑠𝑡𝑅2𝐺 depending on the combination of operands. For simplicity,
we describe the cost under a nested-loop join and left-deep plan
only.

Table 3: Summary of symbols for the cost model.

Type Symbol Description

Cost
Cost𝐿/𝑅 Cost of the left / right subplan
Cost𝐼/𝑂 Disk I/O cost
Cost𝑐𝑝𝑢 CPU computation cost

Function 𝑍 (·) I/O estimation function for data access

Statistics
𝑁𝐿 Number of outputs of the left plan
𝑁𝑅 Number of outputs of the right plan
𝑑 Avg. degree of a vertex in graph store

A single traversal is performed by getting 𝐸𝑎𝑑 𝑗 (or 𝑉𝑎𝑑 𝑗 ), the
adjacent edges (or vertices) to the left operand (Lines 4-7 in Algo-
rithm 3), and intersecting them with 𝐸2 (or 𝑉2), the set of edges (or
vertices) obtained from the right operand (Line 8 in Algorithm 3).
Thus, we can define the 𝐶𝑜𝑠𝑡𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 as in Eq. (1).

𝐶𝑜𝑠𝑡𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 = 𝐶𝑜𝑠𝑡𝑔𝑒𝑡𝐴𝑑 𝑗 +𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (1)
For 𝐶𝑜𝑠𝑡𝑔𝑒𝑡𝐴𝑑 𝑗 , the costs of 𝑉1 𝛿 𝐸2 (i.e., edge traversal) and

𝐸1 𝛿 𝑉2 (i.e., vertex traversal) are different. The former cost becomes
disk I/O of 𝑍 (𝑑) due to 𝑑 data access to get adjacent edges and 𝑑
CPU computations to union with 𝐸𝑎𝑑 𝑗 on average, for each vertex
from the left operand. Similarly, the latter cost becomes disk I/O
of 𝑍 (1) due to a single data access to get a src or dst vertex and a
single CPU computation to union with 𝑉𝑎𝑑 𝑗 , for each edge from
the left operand. Thus, we define the 𝐶𝑜𝑠𝑡𝑔𝑒𝑡𝐴𝑑 𝑗 as in Eq. (2).

𝐶𝑜𝑠𝑡𝑔𝑒𝑡𝐴𝑑 𝑗 =

{
𝐶𝑜𝑠𝑡𝐿+𝑁𝐿×(𝐶𝑜𝑠𝑡𝐼/𝑂×𝑍 (𝑑)+𝐶𝑜𝑠𝑡𝑐𝑝𝑢×𝑑) if 𝑉1 𝛿 𝐸2
𝐶𝑜𝑠𝑡𝐿+𝑁𝐿×(𝐶𝑜𝑠𝑡𝐼/𝑂×𝑍 (1)+𝐶𝑜𝑠𝑡𝑐𝑝𝑢 ) if 𝐸1 𝛿 𝑉2

(2)
For 𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 , the computation is min(|𝐸𝑎𝑑 𝑗 |, |𝐸2|) for edge

traversal, and min(|𝑉𝑎𝑑 𝑗 |, |𝑉2|)) for vertex traversal based on the
hash-based intersection algorithm [16]. In here, |𝐸𝑎𝑑 𝑗 | = 𝑁𝐿 × 𝑑
because there are 𝑑 adjacent edges for each vertex from the left
operand on average, |𝑉𝑎𝑑 𝑗 | = 𝑁𝐿 because there is a single src (or dst)
vertex for each edge from the left operand, and |𝐸2| = 𝑁𝑅 because 𝐸2
is obtained from the right operand. Thus, we define the𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡
as in Eq. (3). However, as mentioned in Section 4.2, if there are no
filtering conditions in the right operand, the intersection process
can be omitted, in which case 𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 = 0.

𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 =

{
𝐶𝑜𝑠𝑡𝑅+𝐶𝑜𝑠𝑡𝑐𝑝𝑢 ×𝑚𝑖𝑛(𝑁𝐿×𝑑, 𝑁𝑅) if 𝑉1 𝛿 𝐸2
𝐶𝑜𝑠𝑡𝑅+𝐶𝑜𝑠𝑡𝑐𝑝𝑢 ×𝑚𝑖𝑛(𝑁𝐿, 𝑁𝑅) if 𝐸1 𝛿 𝑉2

(3)

For 𝐶𝑜𝑠𝑡 𝑗𝑜𝑖𝑛 , there is a nested for-loop with a left operand as
outer and a right operand as inner, and a single CPU computation
for each pair of tuples, so we can define the 𝐶𝑜𝑠𝑡 𝑗𝑜𝑖𝑛 as Eq. (4).

𝐶𝑜𝑠𝑡 𝑗𝑜𝑖𝑛 = 𝐶𝑜𝑠𝑡𝐿 + 𝑁𝐿 ×𝐶𝑜𝑠𝑡𝑅 + 𝑁𝐿 × 𝑁𝑅 ×𝐶𝑜𝑠𝑡𝑐𝑝𝑢 (4)

For 𝐶𝑜𝑠𝑡𝑅2𝐺 , we use Eq. (4) because it is treated like a join as
described in Section 4.1. For 𝐶𝑜𝑠𝑡𝐺2𝑅 , it requires disk I/O of 𝑍 (1)
due to a single data access to find a property tuple and a single CPU
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computation to union with 𝑇2, for each vertex (or edge) from the
left operand. Thus, we define the 𝐶𝑜𝑠𝑡𝐺2𝑅 , as Eq. (5).

𝐶𝑜𝑠𝑡𝐺2𝑅 = 𝐶𝑜𝑠𝑡𝐿 + 𝑁𝐿 ×𝐶𝑜𝑠𝑡 𝐼/𝑂 × 𝑍 (1) (5)
In a query plan, there are other relational operators such as

selection and projection in addition to TJ operators. For them, we
utilize the optimization heuristics used in the query planner of the
base system (i.e., PostgreSQL) such as selection push-down and
projection push-down.

6 EXPERIMENTAL EVALUATION
In this section, we compare Chimera with the existing GT and
MGV-based systems in terms of response time (i.e., elapsed time)
and throughput for SQL/PGQ interactive queries using the LDBC
SNB benchmark. We also evaluate the characteristics of Chimera
using a microbenchmark and its storage overhead.
6.1 Experimental Setup
6.1.1 Datasets and queries For experiments, we use the de-facto
standard graph query benchmark LDBC SNB [18]. Its dataset con-
sists of 10 kinds of vertex labels and 17 kinds of edge labels, where
each label has up to 10 properties in the context of a social net-
work service. We use three scale factors: SF=30 (88.8M vertices
and 540.9M edges), SF=100 (282.6M vertices and 1.8B edges), and
SF=300 (817.3M vertices and 5.3B edges).

LDBC SNB supports both relational and graph data models, al-
lowing the evaluation of graph relational query languages such
as SQL/PGQ, T-SQL, and SQL + Cypher alongside the relational
query language SQL [1]. We used all twelve Interactive Complex
queries (IC1∼IC12) and seven Interactive Short queries (IS1∼IS7)
from the LDBC SNB benchmark, following the approach used in
the previous study [33]. IC are relatively complex queries, while IS
are relatively simple queries that have no property operations, and
in particular, IS4 is a single vertex scan with no topology operations.
All IC and IS queries involve mapping operations. We also use four
additional micro-benchmark queries (MICRO-1 ∼ 4) for the further
analysis of the queries containing property operations.

6.1.2 Systems compared To compare the three approaches, GT,
MGV, and Chimera, themselves, we prepared Chimera-GT and
Chimera-MGV by implementing the GT and MGV approaches on
top of Chimera, respectively, and compared themwith our proposed
Chimera-TJ. Chimera-GT generates GT plans, while Chimera-MGV
generates MGV plans, in particular, GRFusion’s B-Join plan ex-
plained in Section 2.3. We also compare Chimera-TJ with the exist-
ing GRDBMSs including SQL Server graph extension (SQL SG) [64],
Agensgraph (AG) [10], DuckPGQ [70], GrainDB [33]. We also com-
pared two RDBMSs, Umbra [47] and DuckDB [56], since the former
is well known to process graph workloads fast, and the latter is the
well-known base system of all major MGV-based GRDBMSs includ-
ing DuckPGQ and GrainDB. We excluded GRFusion [30] since it
fails in running the benchmark. Instead, we evaluate Chimera-MGV
that implements GRFusion’s method as above. Table 4 summarizes
the systems compared.

6.1.3 HW/SW environment We conduct all the experiments
on a server equipped with two 16-core 3.0GHz CPUs, 256GB of
memory, and two U.2 SSDs of 7.68 TB (RAID 0). In our environ-
ment, we set Cost𝐼/𝑂 and Cost𝑐𝑝𝑢 in the cost model to 1.0 and

Table 4: Systems compared.

Systems Architecture Plan
type

Query
language

Base
system

Umbra
RDBMS

GT plan
SQL

Umbra
DuckDB DuckDB
SQL SG

GT-based
GRDBMS

T-SQL SQL Server

Agensgraph SQL +
Cypher PostgreSQL

DuckPGQ MGV-based
GRDBMS

GT plan SQL/PGQ
DuckDB

GrainDB S-join plan SQL
Chimera-GT GT-based GT plan

SQL/PGQ PostgreSQLChimera-MGV MGV-based B-join plan
Chimera-TJ TJ-based TJ plan

0.01, as used in PostgreSQL [28]. In terms of S/W, we use Um-
bra 30b000783, DuckDB 0.8.1 [13], SQL Server 2019 [45], Agens-
graph 2.1.3 Community edition [9], DuckPGQ @7052baa [14], and
GrainDB @f82a52e [34]. We set the buffer size to be 1/4 of the
total RAM (i.e., 64GB), which is generally recommended [29]. In all
experiments, each query was executed using a single thread.

6.2 Comparison of response time
Table 5 and Table 6 shows the average elapsed time for LDBC SNB
queries. Due to lack of space, the experimental results for SF30 and
SF300 in the Table 6 only show the top four most time-consuming
queries. In the table, T.O. means time out (longer than 100,000
msec), W.A. means wrong answer (producing results that differ
from those of other systems), and O.O.M. means out-of-memory.
We note that Chimera-MGV and Chimera-TJ generate the same
plan and so show the same performance for the queries having no
property operations (e.g., IC7, IC8, and IC12). We also note that we
exclude view generation time for MGV-based systems.
6.2.1 Comparison among Chimera-GT / MGV / TJ

For most of IC queries, Chimera-TJ largely outperforms Chimera-
GT because the former handles traversal operations in a native man-
ner, while the latter does them using INL joins requiring the costs
of O(log|𝑉 |) and O(log|𝐸|) for finding adjacent vertices and edges, re-
spectively. On the other hand, some queries are simpler than other
IC queries since they only involve a small number of topology op-
erations. Thus, for such IC7, IC8, and IS queries, Chimera-GT is
slightly faster than Chimera-TJ because the latter has an additional
overhead of G2R mapping operations. However, the differences
in elapsed time (i.e., overhead of mapping) are almost negligible,
within 10 msec. We observe that Chimera-MGV performs similarly
to Chimera-TJ on IC7, IC8, and IC12, which involve only topology
operations and utilize native graph traversal. However, it exhibits
significantly slower performance on the other queries due to gener-
ating and executing an inefficient plan that binds results from two
separate sub-plans, as discussed in Section 2.3.
6.2.2 Comparison with the GT-based GRDBMSs

Chimera-TJ significantly outperforms Agensgraph and SQL SG
for IC queries. The average improvement for IC queries is up to
1785× compared to SQL SG in SF100. Since Agensgraph is based
on Postgres like Chimera, it shows almost the same performance
trend with Chimera-GT. But, Agensgraph is slightly slower than
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Table 5: Average elapsed time (msec) of queries for SF=100 (we exclude view generation time for MGV-based systems).

Systems
SF100

IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10 IC11 IC12 IS1 IS2 IS3 IS4 IS5 IS6 IS7

Umbra 176 5332 776 1375 1070 1388 6.1 4.0 6511 327 147 7181 1.6 4.9 4.0 0.6 3.5 3.9 4.1

DuckDB 160 29199 35173 19271 4359 18257 7153 9932 30826 616 87 44029 3.7 37979 60 0.1 786 4202 28565

DuckPGQ 164 29607 35674 19214 4722 18174 7274 9884 31426 626 82 44780 3.7 37998 64 0.1 786 4205 28635

GrainDB 47 558 2303 8330 T.O. 7964 W.A. 54836 W.A. W.A. 5.1 21375 1.3 352 118 0.2 53 158 176

GrainDB-MO 41 563 503 335 461 352 315 342 287 W.A. 12 755 1.3 346 7.1 0.2 0.8 160 188

SQL SG 4.5 48554 49629 24049 29770 4161 51255 98522 85639 26.9 4.2 59143 1.2 21384 268 0.8 0.1 135 21729

Agensgraph 5.0 427 727 441 960 502 16 22 609 162 3.9 2967 1.1 23 2.1 0.1 3.0 20 9.1

Chimera-GT 1.1 447 513 445 388 628 5.2 3.8 526 24 3.6 1191 0.2 4.3 0.5 0.1 0.1 1.7 1.0
Chimera-MGV 61 79707 T.O. 42826 19303 1045

5.3 9.2
T.O. 278 413

519 1.1 9.5 1.3 0.1 0.9 8.7 4.0
Chimera-TJ 4.0 219 413 169 202 274 279 24 3.0

Table 6:Average elapsed time (msec) for SF30 and SF300.

Systems
SF30 SF300

IC3 IC5 IC9 IC12 IC3 IC5 IC9 IC12

Umbra 329 725 635 3205 26247 15822 42167 96793

DuckDB 11108 1347 8647 13400 70224 T.O. T.O. T.O.

DuckPGQ 11175 1424 8862 13422 O.O.M.

GrainDB 1194 1110 W.A. 4219 O.O.M.

GrainDB-MO 267 194 W.A. 320 O.O.M.

SQL SG 2775 1135 6998 6997 T.O. 83542 T.O. T.O.

Agensgraph 453 292 336 891 752 1876 717 5222

Chimera-GT 431 294 218 891 752 1109 748 2113

Chimera-MGV T.O. 7202 33992
493

T.O. T.O. T.O.
1109

Chimera-TJ 325 189 204 577 528 310

Chimera-GT for some queries because it stores all properties as
json [26], regardless of column type, which introduces overhead
due to the conversion between JSON and literal values. SQL SG
uses a specialized join operator called batch mode adaptive join [43]
that scans the first batch of join input and selects a join algorithm
depending on input characteristics at runtime. However, it usually
chooses hash join, which is not suitable for interactive queries,
resulting in very slow performance. For most of IS queries, there
was no significant difference in elapsed time, but for IS2, IS3, and
IS7, SQL SG shows very slow performance due to using hash join.

6.2.3 Comparison with the MGV-based GRDBMSs
Despite being an MGV-based GRDBMS, DuckPGQ generates GT

plans [70], processing topology operations using hash joins from
its base system, DuckDB. Consequently, DuckPGQ exhibits slow
performance across all IC queries and some IS queries. GrainDB
demonstrates significant performance enhancements over the base
system, DuckDB, due to its use of S-join instead of hash join. How-
ever, GrainDB’s rule-based planning method, which substitutes
hash join with S-join, does not efficiently utilize generated views
in most queries. Therefore, we prepared an enhanced version of

GrainDB (denoted as GrainDB-MO) by manually injecting an op-
timal S-join plan that fully leverages materialized views and con-
ducted additional experiments with GrainDB-MO. The results show
that it performs much closer to Chimera-TJ, albeit with some over-
head from S-join compared to native graph traversal.

Meanwhile, as mentioned in Section 1, the MGV approach gener-
ates a materialized graph view in main memory at query processing
time on the fly and thus fails to process queries for a large dataset
like SF300. Table 7 shows the view generation time and size for
SF100. In terms of time, DuckPGQ is faster than GrainDB because
it can utilize multi-threads (32 threads) to generate views, but even
so, both systems take a long time to generate views. In terms of size,
DuckPGQ uses the array-based structure for views, while GrainDB
uses the hashmap-based structure. But, both require a large amount
of main memory and so result in out-of-memory during view gen-
eration for SF300. The above results show that the view generation
is one of the major bottlenecks of the MGV approach, in particular,
for interactive queries.

Table 7: View generation time and size (SF100).

Systems View
generation

Queries

IC2 IC4 IC8 IC12

GrainDB
(using 1 thread)

time (msec) 88,293 245,530 293,617 457,409
size (GByte) 14.76 80.06 41.64 83.09

DuckPGQ
(using 32 threads)

time (msec) 52,922 100,738 103,366 153,192
size (GByte) 38.81 48.47 49.65 51.92

6.2.4 Comparison with the RDBMSs
Both DuckDB and Umbra are popular columnar DBMSs that use

hash join as their main join operator [42]. DuckDB only uses hash
joins, which makes it very slow in IC, even on IS queries, not just IC.
Figure 8(a) shows the plan of Chimera-TJ for IS3, which processes
Op 1 ((u1:User WHERE u.ID = 1)-[k:Knows]) in a single traversal.
In contrast, DuckDB performs a hash lookup of the entire Knows
table, resulting in significantly slower performance. Meanwhile,
Umbra utilizes both hash join and INL join depending on a query.
For IS3, it chooses an INL join with a single loop, resulting in much
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faster performance than DuckDB. However, when the number of
loops in the INL join is large, as in the plan for IC12 in Figure 8(b),
Umbra chooses hash joins for Op 3, resulting in significantly slower
performance compared to Chimera-TJ, which performs native graph
traversals for Op 3.

(a) Plan for IS3 (b) Plan for IC12

U1 K

Op 1
(16) ⊗→ U2

Op 2
(16) ⊗→ HA

Op 3
(60K) ⊗← P

Op 4
(60K) ⊗←

ID: 1

…
.

2-hop more

U1 K

Op 1
(16) ⊗→ U2

Op 2
(16)

⊗→

Op 3
(16) ⊗⊳

U2

ID: 1

1-hop
traversal

Op

mapping
Op 4-hop

traversal Op

Figure 8: Query plans of Chimera-TJ for IS3 and IC12.

6.3 Comparison of throughput
Real workloads contain a mix of various queries such as IC, IS, and
IU. Thus, we measure the throughput by running a query mix [1, 18]
that executes eight read queries (IC2, IC4, IC8, IC12, IS1, IS3, IS4,
IS5) and four write queries (IU2, IU3, IU5, IU8) with a query-specific
schedule. We use the schedule defined by the LDBC SNB Interac-
tive benchmark [1]. We call this query mix a normal query mix. In
general, the throughput depends on two parameters [36]: (1) the
number of threads (# connection) and (2) the workload intensity.
LDBC SNB uses Time Compression Ratio (TCR) [1] to set the work-
load intensity, where a low TCR means a higher workload intensity.
The normal query mix uses the default value that # connection =
1 and TCR = 1. We evaluate an additional query mix that # con-
nection = 8 and TCR = 0.25 (denoted as hard query mix). We run
each query mix following the guidelines in the LDBC Interactive
benchmark [1] and evaluate throughput by measuring the number
of queries (IC, IS, IU) executed per second (ops/sec). Since the MGV
approach does not support transactional updates and thus cannot
perform a query mix, we compare only the throughput of RDBMSs,
the GT-based systems, and our Chimera. Table 8 shows the results
for the query mixes.
6.3.1 Result of normal query mix Chimera-TJ outperforms all
the other systems by quickly responding to every query. The im-
provement is up to 779× compared to SQL SG. All systems except
Chimera-TJ show the phenomenon of delayed execution, which
means the current queries are not processed on schedule because
the system is still processing the previous queries. In particular, SQL
SG in Table 8 shows very low throughput due to its long response
times in Table 5.
6.3.2 Result of hard query mix Compared to the normal query
mix, Umbra and SQL SG improve their throughputs due to the
increased number of connections, but still show very low perfor-
mance. In contrast, Agensgraph and Chimera-TJ show much higher
throughputs. Chimera-TJ already achieved almost the maximum
throughput for the normal querymix (about 54 ops/sec). Thus, when
we increased only # connection = 8 while maintaining TCR = 1, its
throughput was the same, i.e., 54 ops/sec (we omit the result). But,
when we increase the workload intensity as TCR = 0.25, it improves
the throughput by 4×, which is an ideal improvement. We note that
DuckDB is marked as N/A because its LDBC SNB implementation
does not support execution over multiple connections [63].

6.3.3 Result of only IU queries We evaluate the throughputs
of executing only IU queries, with no read queries, in the same
normal and hard settings. As shown in Table 8, all systems com-
pared process IU queries quickly, within 5msec or less, without
any delayed execution, thereby achieving the same ideal perfor-
mance. Additionally, we measured their average update times in
msec, where Chimera-TJ exhibits mid-level performance among
the systems compared.

Table 8: Throughput (ops/sec) for LDBC SNB query mix.

Query mix Umbra DuckDB SQL SG AG Chimera-TJ

normal (mix) 5.33 0.34 0.12 19.52 54.03
hard (mix) 32.04 N/A 0.29 169.64 215.94

normal (IU only) 18.67
hard (IU only) 74.68

avg update (msec) 3.4 1.0 4.1 1.2 2.5

We evaluate the detailed characteristics of query processing of
three approaches: GT, MGV, and TJ, on top of Chimera for two
types of synthetic queries: Type-1) queries involving only topol-
ogy operations (MICRO-1, MICRO-2), and Type-2) queries
involving both topology and property operations (MICRO-3,
MICRO-4). In Type-1, we examine the performance penalty of GT
due to join operations rather than native graph traversal, and in
Type-2, we examine the performance penalty of MGV due to ineffi-
cient query plans. All the queries are evaluated on LDBC SNB SF100.
Figure 9 shows the query template for the microbenchmark. For
example, MICRO-1 finds Comments for Posts that satisfy a ID condi-
tion. In general, the performance is affected by the cardinality2 [60]
and the selectivity3 [40]. In the query template, the cardinality is
determined by ?Label, which is either ReplyOf (n-1 relationship) or
Knows (n-n relationship). The selectivity is determined by ?topol-
ogy_parameter (denoted as 𝑠𝑡 ) and ?property_parameter (denoted as
𝑠𝑝 ). Chimera-GT-INL and Chimera-GT-Hash mean the results when
the query optimizer chooses INL join and hash join, respectively.

MATCH (src)-[e:?Label]->(dst)
WHERE src.ID < ?topology_parameter
AND src.creationDate < ?property_parameter
COLUMNS (dst);

Figure 9: GPML query template of microbench queries.
In Figure 10, Chimera-TJ / MGV outperform Chimera-GT-INL

for every 𝑠𝑡 selectivity. This result comes from that Chimera-TJ /
MGV have O(1) and O(𝑑) for finding adjacent vertices and edges,
respectively, but Chimera-GT-INL has O(log|𝑉 | + 1) and O(log|𝐸| +
𝑑), where 𝑑 is the number of adjacent edges. In terms of cardinal-
ity, the performance gap in MICRO-1 (2.9× on average) is larger
than in MICRO-2 (2.1× on average). It is because the n-1 relation-
ship of MICRO-1 makes 𝑑 smaller, leading to a larger gap between
O(log|𝐸| + 𝑑) and O(𝑑). Chimera-GT-Hash shows poor performance
consistently regardless of the selectivity because the costs of hash
lookup for finding adjacent vertices and edges are O(|𝑉 |) and O(|𝐸|),
respectively [6].

2cardinality is the number of relationships vertices can participate in, like n-1 and n-n
3selectivity is the ratio of records that satisfy the condition out of entire records
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(b) MICRO-2, 𝒔𝒕 (0.01% ~ 10%)(a) MICRO-1, 𝒔𝒕 (0.01% ~ 10%)

Chimera-GT-INLChimera-GT-Hash Chimera-TJ / MGV

Figure 10: Results of MICRO-1 (n-1) and 2 (n-n) (𝑠𝑝 = 100%).
In Figure 11, Chimera-TJ outperforms Chimera-MGV by orders

of magnitude. As explained in Section 2.3, the MGV approach sepa-
rates topology and property operations, and so topology operations
are performed as the selectivity is 100%. As a result, Chimera-MGV
shows a very poor performance regardless of selectivities. At the
low selectivities under 0.2%, Chimera-GT-INL is slightly faster than
Chimera-TJ about 0.1 seconds due to the overhead of the R2G
mapping operation, but at the other selectivities, Chimera-TJ out-
performs Chimera-GT-INL.

(b) MICRO-4, 𝒔𝒑 (0.01% ~ 10%)(a) MICRO-3, 𝒔𝒑 (0.01% ~ 10%)
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Figure 11: Results of MICRO-3 (n-1) and 4 (n-n) (𝑠𝑡 = 100%).

6.4 Storage overhead of Chimera
Figure 12 shows the storage overhead of the GT approach (Chimera-
GT), the MGV approach (DuckPGQ, GrainDB), and our approach
(Chimera-TJ). GT requires two types of indexes: (1) indexes on ID
column of vertex/edges tables; (2) indexes on src/dst columns of
edge tables. TJ requires only the former type of indexes, resulting
in lower storage overhead for indexes compared to GT. TJ does
require additional space for the graph store, but the substantial
performance improvements demonstrated in Sections 6.2 and 6.3
justify this investment. Furthermore, the graph store is disk-based,
mitigating concerns about this overhead. On the contrary, the size of
materialized graph view of MGV is comparable to that of the graph
store and resides in memory which can cause an out-of-memory
problem with a large dataset as shown in Figure 12(b). DuckPGQ
incurs less space overhead than GrainDB due to its utilization of
compression techniques [55] from the base system.

424

424

78

152

389Chimera-TJ

Chimera-GT

GrainDB

DuckPGQ

∎ Rela�onal store ∎ Graph store ∎ Index ∎Materialized graph view

(b) SF300 storage size (GB)(a) SF100 storage size (GB)

O.O.M.

144

144

101

59

25

52

130

148

94

Chimera-TJ

Chimera-GT

GrainDB

DuckPGQ

0 100 200 300 0 300 600 900

Figure 12: Storage overhead of Chimera-TJ.

7 RELATEDWORK
Many studies have explored extending RDBMSs for property graphs.
• Extraction methods: GraphBuilder [32], Table2Graph [37],

GraphGen [71], R2GSync [3], and Ringo [52] provide an interface
to define relationships to extract a property graph from tables.
• Managing methods: SQLGraph [62], Grail [19], SQL Server
graph extension [64], Agensgraph [10], and Oracle PGQL [50]
store graphs as tables with a specialized schema design. Thus,
they require data migration from the tables to the graphs. On
the other hand, IBM db2 graph [68] and Cytosm [61] avoid such
data migration by keeping the existing schema of tables and only
storing additional metadata for graphs. GrainDB [33, 35], GRFu-
sion [30], and DuckPGQ [70] stores graphs as read-optimized
graph data structure such as CSR. They cannot process a query
when the CSR generated does not fit in the main memory.
• Querying methods: SQLGraph [62], Grail [19], SQL Server
graph extension [64], Agensgraph [10], Oracle PGQL [50], IBM
db2 graph [68] and Cytosm [61] can process hybrid queries in-
volving topology and property operations in the GT approach.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we have proposed a novel method called Chimera
for extending an RDBMS to a GRDBMS that efficiently supports
interactive SQL/PGQ queries. It adopts a dual-store architecture
that manages both graph topologies and relational properties as
first-class citizens, enabling immediate update and efficient access
without graph size limitations. It also has the unified query operator
(i.e., TJ operator) that handles both topologies and properties to per-
form traversal, join, or mapping operations. We have implemented
Chimera atop an open-source RDBMS with significant effort, result-
ing in Chimera outperforming the state-of-the-art GRDBMSs by
up to 1,785× in terms of response time and by up to 779× in terms
of throughput, all achieved without encountering out-of-memory
issues in the LDBC SNB benchmark at SF300.

Native GDBMSs, while specifically optimized for graph traversal
and offering dedicated query languages like Cypher [48], Grem-
lin [4], andGSQL [69], face challenges such as a steep learning curve,
limited general-purpose use, and less mature ecosystems [53, 65].
RDBMSs, on the other hand, are widely adopted for their versatil-
ity, familiarity, and advanced features like security, concurrency,
and indexing, but struggle with graph query performance [11, 33].
Therefore, it is crucial to balance between leveraging specialized
capabilities and avoiding the pitfalls of reinventing the wheel when
designing a GRDBMS. The current version of Chimera successfully
improves the performance of graph queries while retaining many
features of RDBMSs, such as security, concurrency, and indexing,
thanks to its common layers. Nevertheless, aspects like fault tol-
erance and high availability may need to be reinvented within
Chimera’s graph store, which will be a focus of our future work.
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