
Can Graph Reordering Speed Up Graph Neural Network
Training? An Experimental Study

Nikolai Merkel
Technical University of Munich

nikolai.merkel@tum.de

Pierre Toussing
Technical University of Munich

pierre.toussing@tum.de

Ruben Mayer
University of Bayreuth

ruben.mayer@uni-bayreuth.de

Hans-Arno Jacobsen
University of Toronto

jacobsen@eecg.toronto.edu

ABSTRACT
Graph neural networks (GNNs) are a type of neural network capa-
ble of learning on graph-structured data. However, training GNNs
on large-scale graphs is challenging due to iterative aggregations of
high-dimensional features from neighboring vertices within sparse
graph structures combined with neural network operations. The
sparsity of graphs frequently results in suboptimal memory access
patterns and longer training time. Graph reordering is an optimiza-
tion strategy aiming to improve the graph data layout. It has shown
to be effective to speed up graph analytics workloads, but its effect
on the performance of GNN training has not been investigated yet.
The generalization of reordering to GNN performance is nontrivial,
as multiple aspects must be considered: GNN hyper-parameters
such as the number of layers, the number of hidden dimensions, and
the feature size used in the GNN model, neural network operations,
large intermediate vertex states, and GPU acceleration.

In our work, we close this gap by performing an empirical evalua-
tion of 12 reordering strategies in two state-of-the-art GNN systems,
PyTorch Geometric and Deep Graph Library. Our results show that
graph reordering is effective in reducing training time for CPU-
and GPU-based training, respectively. Further, we find that GNN
hyper-parameters influence the effectiveness of reordering, that
reordering metrics play an important role in selecting a reordering
strategy, that lightweight reordering performs better for GPU-based
than for CPU-based training, and that invested reordering time can
in many cases be amortized.

PVLDB Reference Format:
Nikolai Merkel, Pierre Toussing, Ruben Mayer, and Hans-Arno Jacobsen.
Can Graph Reordering Speed Up Graph Neural Network Training? An
Experimental Study. PVLDB, 18(2): 293 - 307, 2025.
doi:10.14778/3705829.3705846

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/gnn-benchmark/reordering.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 2 ISSN 2150-8097.
doi:10.14778/3705829.3705846

1 INTRODUCTION
Graph neural networks (GNNs) have recently emerged as a promis-
ing deep learning-based approach to learn on graph-structured data.
GNNs show great success in different domains such as knowledge
graphs [50], recommender systems [64], and natural language pro-
cessing [61]. In GNN training, vertex representations are iteratively
learned by aggregating features of the vertices’ immediate neigh-
bors followed by neural network transformations. Through this
process, vertex representations are iteratively refined and capture
both vertex and graph structure information which can be used for
down-stream tasks.

Despite the great success of GNNs, the training process is re-
source-intensive. GNNs operate not only on the graph structure
itself but also on high-dimensional feature vectors attached to ver-
tices. Large intermediate representations are computed for the ver-
tices in each layer leading to large memory overheads. Further, neu-
ral network operations are performed for each vertex; Therefore,
GNNs are often trained on GPUs. Different GNN hyper-parameters
such as the number of layers, the number of hidden dimensions,
or the feature size influence the training time. Therefore, GNN
training differs from traditional graph processing applications such
as Breadth-first-search, Connected Components, Shortest Paths,
and K-cores which perform lightweight computations, are typically
short-running, only lead to small vertex states, are performed on the
graph structure only, often exhibit dynamic computational patterns,
and are commonly executed on CPUs.

Graph reordering is a technique to optimize the graph’s data
layout in a way that vertices that are frequently accessed together
are stored close to each other in memory to improve locality. It
has been shown that traditional graph processing can benefit from
graph reordering [2]. Given that GNN training is often performed
on scarce and expensive GPUs, reducing training time through
graph reordering can lead to cost savings.

Recently, DGI [63], a framework for easy and efficient GNN
model evaluation has been proposed which also benefits from graph
reordering. However, it is not known if graph reordering is effec-
tive for GNN training. It is unclear how GNN-specific parameters
and GPU-accelerated training influence the effectiveness of graph
reordering. Further, it has not been investigated yet if graph re-
ordering quality metrics can be used for graph reordering strategy
selection, and if invested graph reordering time can be amortized.
To close this research gap, we perform an extensive experimental
study to investigate how effective graph reordering is in speeding

293

https://doi.org/10.14778/3705829.3705846
https://github.com/gnn-benchmark/reordering
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3705829.3705846
https://www.acm.org/publications/policies/artifact-review-and-badging-current

up GNN training on CPUs and GPUs. The main contributions of
our work are:

(1) We perform extensive evaluations with 12 graph reordering
strategies, two predominant GNN systems, different GNN models
and GNN hyper-parameters, and 10 real-world graphs. In our exper-
iments, we perform both GPU-based and CPU-based training. Based
on our experiments, we find that graph reordering is an effective op-
timization to reduce GNN training time. A high-quality reordering
strategy such as Rabbit results in speedups of up to 2.19x (average
1.25x) for CPU-based training and up to 2.43x (average 1.33x) for
GPU-based training. We also investigate the effectiveness of graph
reordering when sampling is applied. Rabbit achieves speedups
of up to 3.68x (average 1.62x) for CPU-based training and up to
3.22x (average 1.57x) for GPU-based training.

(2) Graph reordering is a pre-processing task that is performed
prior to GNN training. In our experiments, we investigate if invested
graph reordering time can be amortized. We show that for CPU-
based training, graph reordering time can be amortized by faster
training. For GPU-based training, we find that costs can be saved
due to reduced training time on monetary expensive GPUs, as the
graph reordering can be performed on cheaper CPU machines.

(3) We study the relationship between graph reordering quality
metrics and training speedup. We find that the metrics average gap
profile and average graph bandwidth can be used in many cases to
select a graph reordering that leads to a large speedup. However,
we also find that graph reordering quality metrics are no perfect
predictors for GNN speedup indicating that new metrics may be
needed to better formalize a graph reordering goal.

Our paper is organized as follows. First, we introduce graph
neural network training and graph reordering in Section 2. In Sec-
tion 3, we describe the methodology of our experimental compari-
son. Then, we analyze our results for both systems in Section 4.1
and summarize our main findings in Section 5. We discuss related
work in Section 6. Finally, we conclude our paper in Section 7.

2 BACKGROUND
Let 𝐺 = (𝑉 , 𝐸) be a directed graph consisting of a set of vertices
𝑉 and a set of edges 𝐸 = 𝑉 × 𝑉 . The out-neighbors of vertex 𝑣

are defined as 𝑛+ (𝑣) = {𝑢 | (𝑣,𝑢) ∈ 𝐸}, the in-neighbors as 𝑛− (𝑣) =
{𝑢 | (𝑢, 𝑣) ∈ 𝐸}, and all neighbors of 𝑣 as 𝑛(𝑣) = 𝑛+ (𝑣) ∪ 𝑛− (𝑣). The
in- and out-degrees of vertex 𝑣 are defined as 𝑑𝑒𝑔+ (𝑣) = |𝑛+ (𝑣) |
and 𝑑𝑒𝑔− (𝑣) = |𝑛− (𝑣) |, respectively. The mean degree 𝑑𝑒𝑔(𝐺) of𝐺
is defined as 2 · |𝐸 |

|𝑉 | .

2.1 Graph Neural Network Training
Graph Neural Networks (GNNs) are a specialized category of neural
networks tailored to graph-structured data, leveraging the connec-
tions inherent in such data. In GNN training, vertex representations
are iteratively learned as follows: Initially, each vertex 𝑣 is charac-
terized by its feature vector ℎ (0)𝑣 . Then, in each subsequent GNN
layer, for each vertex 𝑣 , the learned representations of its neighbors
𝑛(𝑣) are aggregated to 𝑎

(𝑘)
𝑣 = AGG (𝑘) ({ℎ (𝑘−1)𝑢 |𝑢 ∈ 𝑁 (𝑣)}) and

the vertex representation is updated to ℎ (𝑘)𝑣 = UP (𝑘) (𝑎 (𝑘)𝑣 , ℎ
(𝑘−1)
𝑣)

by applying an update function UP based on the aggregation 𝑎
(𝑘)
𝑣

and its previous representation ℎ (𝑘−1)𝑣 in layer 𝑘 − 1. This process

Select Graph
Reordering Strategy Reorder Graph Graph Processing

(e.g. GNN Training)

1 2 3

Figure 1: Graph Processing Pipeline.

0

2

1

3

4

6

5

7

V0 V1

V2 V3

D0 D1 D2 D3 D4 D5 D6 D7

V4 V5

V6 V7

Vertex Data (e.g., features)

(a) High locality.

D0 D4 D5 D3 D7 D2 D6 D1
Vertex Data (e.g., features)

0

5

7

3

1

6

2

4

V0 V1

V2 V3

V4 V5

V6 V7

(b) Low locality.

Figure 2: Two different orderings of the same graph.

is permutation invariant, meaning the outcome of the learning does
not depend on the order of the nodes in the input graph.

2.2 Graph Reordering
Graph reordering is a pre-processing step in a graph processing
pipeline (see. Figure 1). Graph reordering improves memory access
locality in graph processing systems by locating vertices that are
accessed frequently together close to each other in memory [2]. In
graph data structures such as compressed sparse row or adjacency
matrices, the ID of a vertex is used as a key, e.g., into an array.
Therefore, the ID of a vertex influences its position in memory, and
vertices with close IDs (small difference between the IDs) are also
stored close to each other in memory.

The goal of graph reordering is to relabel the vertices of a graph
in a way that vertices that are accessed together get close IDs and
therefore are stored in consecutive memory. This optimization only
changes the data layout but does not influence the graph structure
or the processing result. For example, consider the graphs in Fig-
ure 2. The figure shows two different orderings of the same graph.
The numbers in the cycles represent the ID of the vertices. For
example, vertex 𝑣1 has ID 1 in the left graph (see Figure 2a) and
ID 7 in the right graph (see Figure 2b). The ID of vertex 𝑣𝑖 defines
the position of its data 𝐷𝑖 in the vertex data array (represented
above the graph) in which feature vectors or hidden representa-
tions of vertices are stored. The graph has two dense clusters 𝑐1
(colored blue) and 𝑐2 (colored green). Vertices in a cluster share
many neighbors while there is only one edge between the clus-
ters. In the left ordering of the graph (see Figure 2a), vertices of
the same cluster have consecutive IDs, and their data is therefore
consecutively stored in memory. In contrast, in the right ordering
of the graph (see Figure 2b), the vertices of a cluster are not labeled
consecutively, therefore, their data is spread across the vertex data
array. In GNN training, for vertex 𝑣0 the states 𝐷1, 𝐷2 and 𝐷3 of its
neighbors 𝑛(𝑣0) = {𝑣1, 𝑣2, 𝑣3} need to be aggregated, which are in
consecutive memory in the left ordering (see blue colored vertex
data in Figure 2a) but spread across memory in the right ordering
(see blue colored vertex data in Figure 2b). Hence, aggregating the
neighbors’ data in the first ordering has higher access locality than
in the second ordering.

2.2.1 Graph Reordering Metrics. Different graph reordering met-
rics exist that describe reordering quality [5]. Let 𝜋 : 𝑉 → 𝑉

be a bijection mapping vertices to their IDs. The gap between
two vertices 𝑢, 𝑣 ∈ 𝑉 is defined as 𝜉𝜋 (𝑢, 𝑣) = |𝜋 (𝑢) − 𝜋 (𝑣) |. The
larger the gap between two vertices, the more distant they are

294

from each other. The vertex bandwidth for a vertex 𝑣 ∈ 𝑉 is de-
fined as 𝛽𝑣 (𝐺, 𝜋) = max{𝜉𝜋 (𝑣,𝑢) |∀𝑢 ∈ 𝑛(𝑣)}, meaning it is de-
fined by the ID of 𝑣 and the ID of its most distant neighbor. In
the following, three quality metrics (lower values are better) are
defined: The average gap profile for graph𝐺 is defined as 𝜉 (𝐺, 𝜋) =
1
|𝐸 |

∑︁
𝑢,𝑣∈𝐸 𝜉𝜋 (𝑢, 𝑣). The graph bandwidth of graph 𝐺 is defined

as:𝛽 (𝐺, 𝜋) = max{𝜉𝜋 (𝑣,𝑢) |∀(𝑣,𝑢) ∈ 𝐸}. The average graph band-
width of graph 𝐺 is defined as: ˆ︁𝛽 (𝐺, 𝜋) = 1

|𝑉 |
∑︁

𝑣∈𝑉 𝛽𝑣 (𝐺, 𝜋).

Table 1: Graph reordering strategies used in our study.
Reordering Category Reordering Strategies
GAP-based MINLA

Degree- and Hub-based Degree Sort, Hub Sort, Hub Cluster,
SlashBurn

Window-based Gorder
Partition-based Rabbit, LDG, Metis
Fill-reducing-based RCM, DFS, BFS

2.2.2 Graph Reordering Strategies. Graph reordering is a vibrant
research field and many different graph reordering strategies exist
[2, 5, 11, 29, 47, 58, 69]. According to Barik et al [5], graph re-
ordering strategies can be categorized into the following categories:
(1) Degree- and Hub-based graph reordering approaches mainly
use the degree information of vertices for reordering. (2) Partition-
based approaches divide the vertex set into partitions with the
goal of minimizing the number of edges between partitions and
balancing the number of vertices per partition. This category also
includes community detection and graph clustering approaches,
that detect densely connected clusters in graphs. Then, the reorder-
ing is performed based on the partitions or clusters, e.g., vertices of
the same partition or cluster get consecutive IDs. (3) Window-based
approaches slide a window over the vertices and maximize a score
for the window. (4) GAP-based approaches minimize the average
gap profile. (5) Fill-reducing-based approaches reorder a matrix
in a way that the number of non-zero elements in the factorized
matrix is minimized.

In the following, we introduce for each category graph reorder-
ing strategies. An overview can be found in Table 1.

Rabbit:Rabbit order is a lightweight community detection-based
graph reordering strategy. Many real-world graphs have a com-
munity structure consisting of densely connected vertices that are
accessed together in the processing. Rabbit order exploits this prop-
erty of real-world graphs for reordering [2].

MINLA: The Minimum Linear Arrangement Problem (MINLA)
[47] is a combinatorial optimization problem with the goal of mini-
mizing the average graph bandwidth (as introduced in Section 2.2.1).

SlashBurn: SlashBurn iteratively identifies and removes hubs
from the graph to create many small disconnected components. The
goal is to bring the adjacency matrix to block-diagonal form [29].

Gorder: Gorder [58] is window-based graph reordering strat-
egy. Let 𝑆𝑠 (𝑢, 𝑣) = |𝑛− (𝑢) ∩ 𝑛− (𝑣) | be the number of common
in-neighbors of vertices 𝑢 and 𝑣 , and let 𝑆𝑛 (𝑢, 𝑣) be the number of
times 𝑢 and 𝑣 are connected by an edge which can be either 0, 1
or 2, and let𝑤 be the window size. Gorder maximizes the "Gscore"
which is defined as

∑︁
0<𝜋 (𝑣)−𝜋 (𝑢)≤𝑤 (𝑆𝑛 (𝑢, 𝑣) + 𝑆𝑠 (𝑢, 𝑣)).

Degree Sort: Degree Sort is a lightweight approach where the
vertices of the graph are sorted by degree and are consecutively
labeled in that order [3].

Hub Sort: Similar to Degree Sort, in Hub Sort, vertices with a
degree larger than a given threshold (Hub vertices) are sorted by
degree and placed next to each other [69].

Hub Clustering: Similar to Hub Sort with the difference that
hub vertices are not sorted but still placed next to each other in
their original relative order [3].

RCM: Reverse-Cuthill-McKee (RCM) is a breadth-first-search
(BFS) based approach. Different from BFS, vertices are sorted by
degree before being added to the queue. The goal of RCM is to
reduce the graph bandwidth [11].

DFS: The graph is traversed with depth-first search, and the
vertices are labeled in the order in which they are visited.

BFS: The graph is traversed with breadth-first search, and the
vertices are labeled in the order in which they are visited.

LDG: Linear Deterministic Greedy (LDG) [53] is a score-based
streaming vertex partitioner. Vertices are streamed one after the
other along with their neighbors and are assigned to partitions on
the fly based on a score. A vertex 𝑣 is assigned to partition 𝑖 for
which the highest score 𝑠 (𝑖) = |𝑃𝑖 ∩ 𝑛(𝑣) | · (1 − |𝑃𝑖 |

𝐶
) is achieved.

𝑃𝑖 is the set of vertices already assigned to partition 𝑖 and 𝐶 is a
capacity limit per partition, e.g.,𝐶 =

|𝑉 |
𝑘

with 𝑘 being the number of
partitions. In the first part of the equation, partitions are preferred
to which neighbors of 𝑣 are already assigned, while the second part
ensures balancing so that partitions are of similar size.

Metis: Metis is an in-memory vertex partitioner. It uses a multi-
level technique consisting of three phases [24]. First, the graph is
coarsened, and thereby the size of the graph is reduced. Then, the
coarsened graph is partitioned. Finally, the partitioning is projected
back to the original graph and refined.

3 EXPERIMENTAL METHODOLOGY
We want to answer the following research questions:

Q1 Is graph reordering effective in reducing training time?
Q2 How do GNN parameters such as number of layers, number

of hidden dimensions, and feature size influence the effec-
tiveness of graph reordering for GNN training?

Q3 Howdoes the effectiveness of graph reordering vary across
different hardware configurations, including CPU-based
training and GPU architectures?

Q4 Can invested graph reordering time be amortized by faster
GNN training?

Q5 Are existing graph reordering quality metrics good indi-
cators for GNN training speedup, and can they be used to
select a graph reordering strategy?

Q6 Do inherent graph characteristics, such as community
structure and density, influence the effectiveness of graph
reordering?

Q7 Is graph reordering effective when sampling is applied?
In the following, we introduce our experimental setup to answer

the research questions by describing which GNN systems, graph
reordering strategies, GNNmodels, GNN parameters, infrastructure
(GPU or CPU), and datasets we selected for our study, and which
metrics we measured.

295

Systems: We perform experiments with the predominant GNN
systems Deep Graph Library (DGL) [56] and PyTorch Geomet-
ric (PyG) [12]. Both systems are commonly used for GNN train-
ing and have large user communities1, indicating that optimiz-
ing both systems with graph reordering is useful to a large user
base. Further, both systems provide highly optimized CPU- and
GPU-based training.

Reordering Strategies: We selected all 12 graph reordering
strategies from five different categories which were introduced in
Section 2.2 (see Table 1 for an overview). This selection covers at
least one representative of each category. For graph reordering with
Metis, we observed that the number of partitions can influence the
effectiveness, therefore, we selected different numbers of partitions
𝑘 ∈ {16, 128, 1024, 8192, 65536}, and treated each configuration as a
different reordering metis-16, metis-128, metis-1024, metis-8192, and
metis-65536. Therefore, we create in total 16 different reorderings
per graph. Our common baseline is random graph reordering.

GNN architectures:We selected two representative GNN ar-
chitectures, GAT [54] and GCN [25] which are commonly used
[12, 56]. For both GNN models, the hyperparameters number of
hidden dimensions and number of layers need to be configured. Our
literature review indicates that the number of hidden dimensions
typically ranges between 16 and 256. Regarding the number of
layers, we find that most GNNs are designed with 2 layers as the
default, followed by 3 layers, and only in rare instances, 4 layers
[13, 17, 22, 30, 56, 60, 63, 72]. We also observe that the number of
hidden dimensions is usually smaller than the feature size. Accord-
ingly, we selected the number of hidden dimensions as 16, 32, 64,
and 256, and the number of layers as 2, 3, and 4, to encompass the
range of commonly used parameters.

Datasets: We selected graphs from different categories to inves-
tigate whether the graph reordering effectiveness depends on the
graph type. Table 2 reports the graphs along with the number of
vertices and edges, the mean degree, and the average local cluster-
ing coefficient2. In order to investigate the influence of the number
of features on the graph reordering effectiveness, we set the feature
size for all graphs to three different values 16, 64 and 512.

Metrics:We selected different graph reordering metrics (average
gap profile, graph bandwidth and average graph bandwidth) intro-
duced in Section 2 to compare graph reordering strategies against
each other, to investigate their relationship with GNN training
speedup, and to explore their utility for graph reordering selection.
Further, we measure graph reordering time and GNN training time.

Infrastructure: We use different hardware setups to inves-
tigate the effectiveness of graph reordering for CPU- and GPU-
based training. For GPU-based training, we use a machine with
256 GB main memory, 64 cores, and a Nvidia RTX 8000 GPU with
48 GB of VRAM. For CPU-based GNN training, we use a machine
with 164 GB main memory and 8 cores. This machine is also used
for graph reordering.

1DGL and PyG have 12.4k and 18.9k stars on GitHub, respectively. Further, DGL and
PyG are forked 2.9k and 3.4k times on GitHub, respectively.
2Let 𝑡 (𝑣) be the number of triangles connected to vertex 𝑣, and 𝑡𝑟 (𝑣) = 0.5 ·𝑑𝑒𝑔 (𝑣) ·
(𝑑𝑒𝑔 (𝑣) − 1) be the number of triplets connected to 𝑣. According to [41], the local
clustering coefficient of vertex 𝑣 is defined as 𝑐 (𝑣) =

𝑡 (𝑣)
𝑡𝑟 (𝑣) and the average local

clustering of graph G as𝐶 (𝐺) = 1
|𝑉 | ·

∑︁
𝑣∈𝑉 𝑐 (𝑣) .

Table 2: Used graphs along with the number of vertices |𝑉 |,
number of edges |𝐸 |, mean degree (MD) and average local
clustering coefficient (LCC).

Graph |V| |E| MD LCC
web-BerkStan [27] 0.69M 6.65M 19.41 0.63
soc-pokec[27] 1.63M 22.30M 27.32 0.12
dimacs9-USA [26] 23.95M 28.85M 2.41 0.02
livejournal[27] 4.00M 34.68M 17.35 0.35
reddit [15] 0.23M 57.31M 491.99 0.58
products [7, 19] 2.40M 61.86M 51.54 0.44
wikipedia [26] 3.60M 77.58M 43.06 0.25
orkut [27] 3.07M 117.19M 76.28 0.17

degsor
t
hubsor

t
slashbu

rnldg
hubclu

sterminla rcm dfs gorder bfsmetis-16metis-12
8

metis-10
24rabbitmetis-81

92
metis-65

536

1.0

1.5

Sp
ee

du
p

(a) Speedup distribution. Mean represented as dashed line.

ldg
slashburnHubSortDegSort

HubClusterminla
metis-16

metis-128rcm bfs dfs
metis-1024rabbit

metis-8192gorder
metis-65536

0

20

40
Re

du
ce

d
Ca

ch
e

 M
iss

es
 in

 %
6.51

13.55 15.83 16.05 17.27 20.64 22.29
28.73 32.64 32.99 34.17 35.84 37.75 38.59 38.98 39.44

(b) Reduction of cache misses in percent (CPU).

ldg
slashburnDegSortHubSort

HubClusterminla
metis-16 dfs bfs rcm

metis-128gorder
metis-1024rabbit

metis-8192
metis-65536

0

25

50

Re
du

ce
d

Ca
ch

e
 M

iss
es

 in
 %

31.51 34.42 35.1 35.69 36.19 43.44 45.77 50.84 51.17 51.44 51.7 55.68 56.57 57.72 57.84 58.46

(c) Reduction of cache misses in percent (GPU).

Figure 3: Overview of the graph reordering strategies in terms
of speedup and cache misses. Larger values are better.

4 RESULTS
4.1 Overall Performance
In the following, we report the average speedups for a 2-layer GNN
with a medium feature size of 64. The number of hidden dimensions
is set to 16 as it is usually smaller than the feature size. Subsequently,
we will vary the hyper-parameters to investigate the effectiveness
of graph reordering under different configurations.

Figure 3a gives an overview of the average speedup for all graph
reordering strategies to indicate which speedups can be expected
on average from which strategy. We observe that the degree-based
approaches degsort, hubsort, slashburn, lead to speedups of 0.97x,
0.98x, and 0.99x, meaning on average they slow down the train-
ing. The partitioning-based approaches rabbit, metis-16, metis-128,
metis-1024, metis-8192, and metis-65536 are effective in reducing
GNN training time and lead to average speedups of 1.31x, 1.22x,
1.28x, 1.30x, 1.32x, and 1.33x, respectively, followed by bfs, gorder ,
dfs, rcm, minla, hubcluster , and ldg with speedups of 1.18x, 1.16x,
1.15x, 1.15x, 1.07x, and 1.03x, respectively. For Metis, we observe
that the more partitions are used, the larger the speedup, indicat-
ing that the number of partitions is an important parameter that
influences the effectiveness.

296

For two graphs, products and web-BerkStan, we measured cache
misses both on the CPU and GPU to investigate if the graph reorder-
ing strategies that lead to larger speedups also lead to fewer cache
misses. To count cache misses on the GPU, we identified the kernels
that are most influenced by graph reordering and profiled the cache
misses of these kernels. Both on the CPU and GPU, we observed
that better performing graph reordering strategies lead to fewer
cache misses, e.g., the best performing graph reordering strategy
metis-65536 reduced the number of cache misses by 39.44% and
58.46% on the CPU and GPU, respectively (see Figures 3b and 3c).

These results are plausible given the nature of GNN training.
During GNN training, vertices iteratively aggregate features and
hidden representations from neighboring vertices. Hence, vertices
that are frequently accessed together, such as those within the
same community, should have contiguous IDs to ensure locality in
memory. Partitioning-based approaches like Metis and rabbit are
specifically designed to identify communities, assigning similar IDs
to vertices within the same community. This results in improved
training speed and reduced cache misses. Other approaches, such as
bfs, dfs, or rcm, also yield decent results as they preserve some local-
ity by traversing the graph in a manner that inherently maintains
structure. However, degree-based approaches are less effective. For
instance, sorting vertices by degree and relabeling them in that
order fails to respect the community structure, resulting in a data
layout that does not reflect this structure. In Section 4.6, we compare
the reordering approaches based on quality metrics that indicate
data locality. Our findings show that partitioning-based approaches
indeed achieve much better reordering quality metrics compared
to degree-based approaches.

We conclude that graph reordering is an effective optimiza-
tion for reducing cache misses on both CPU and GPU, sig-
nificantly accelerating GNN training. Particularly, the par-
titioning-based approaches Metis and rabbit demonstrate
substantial potential.

4.2 Influence of GNN Parameters
In the following, we investigate how the GNN parameters hidden
dimension, number of layers, and feature size influence the effective-
ness of graph reordering for GNN training.

4.2.1 Number of hidden dimensions. In the following experiments,
we increase the number of hidden dimensions from 16 to 32, 64,
and 256. The number of layers is set to 2, and the feature size is
fixed at 256, considering that the number of hidden dimensions is
typically smaller than the feature size.

CPU: For CPU-based training, we observe for both PyG and
DGL that an increasing number of hidden dimensions reduces the
effectiveness of graph reordering in most cases. For example, rabbit
leads on average to speedups of 1.35x and 1.17x a for a hidden
dimension of 16 and 256, respectively (see Figure 4a). These results
seem plausible. The larger the number of hidden dimensions, the
larger the intermediate vertex representations. In order to compute
the representation of a vertex for the next layer, the representations
of its neighbors need to be accessed. However, the cache size is
limited and the larger the representations, the fewer fit into the
cache and graph reordering becomes less effective. To validate this
hypothesis, wemeasure the cachemiss rate for the graph reordering

strategies and observe that the graph reordering strategies become
indeed less effective in reducing cache misses if the number of hid-
den dimensions increases. For example, rabbit reduces the number
of cache misses by 36% and 31% on products for a hidden dimension
of 16 and 256, respectively (see Figure 7a).

GPU: For GPU-based training, we make similar observations.
However, we observe one exception for GCN in DGL, where graph
reordering is more effective in the face of a larger hidden dimen-
sion. Specifically, rabbit achieves an average speedup of 1.22x and
1.57x for a hidden dimension of 16 and 256, respectively (see Fig-
ure 4b). For GAT, the trends align with those observed in CPU-
based training (see Figure 4c). This phenomenon can be attributed
to GCN’s limited computational demands and its memory-bound
nature, where increasing the hidden dimensions necessitates fetch-
ing more data, exacerbating memory bandwidth limitations more
than computational overhead. Therefore, reordering becomes more
important with an increasing number of hidden dimensions in that
scenario. We conclude that in most cases graph reordering be-
comes less effective with an increasing number of hidden
dimensions, but that in GPU-based training of lightweight
GNN architectures, the opposite can be the case.

4.2.2 Feature size. In the following experiments, we increase the
feature size from 16 to 64 and 512. The number of hidden dimensions
is set to 16, ensuring it is not larger than the feature size. The number
of layers is fixed at 2.

CPU: For DGL, we observe in most cases, that the graph re-
ordering strategies that lead to a speedup, become less effective in
the phase of a larger feature size. For example, rabbit leads to an
average speedup of 1.33x and 1.24x for a feature size of 16 and 512,
respectively (see Figure 5a). For PyG, we also observe that a larger
feature size decreases the effectiveness of graph reordering.

Regarding the effectiveness in reducing cache misses, we observe
that the larger the feature size, the less effective are the graph
reordering strategies to reduce the cache misses. These results are
plausible, as the larger the feature size, the fewer features fit into the
cache and graph reordering becomes less important. For example,
rabbit reduces the number of cache misses by 60% and 32% for
feature sizes of 16 and 512, respectively (see Figure 7b).

GPU: For DGL, we observe for GCN, that the effectiveness of
graph reordering is decreasing with an increase in the feature size.
For example, rabbit, leads to average speedups of 1.35x and 1.17x
(see Figure 5b) for a feature size of 16 and 512, respectively. However,
when training a GAT, we observe that the effectiveness is not much
influenced by the feature size (see Figure 5c). Both observations
are plausible. The GAT model is much more computation-heavy
compared to GCN. Therefore, improving the locality for faster
feature loading is not effective.

We conclude that with an increasing feature size, the effec-
tiveness of graph reordering can decrease.

4.2.3 Number of layers. In the following experiments, we increase
the number of layers from 2 to 3 and 4. The feature size is set to a
medium value of 64, and the number of hidden dimensions is fixed
at 16, as it is typically smaller than the feature size.

CPU: For CPU-based training, we observe for both DGL and PyG
that the effectiveness of graph reordering is in most cases not much

297

bfs degsort dfs gorder hubcluster hubsort ldg metis-1024 metis-128 metis-16 metis-65536 metis-8192 minla rabbit rcm slashburn

1

2

Sp
ee

du
p 16 32 64 256

(a) CPU-based training.

bfs degsort dfs gorder hubcluster hubsort ldg metis-1024 metis-128 metis-16 metis-65536 metis-8192 minla rabbit rcm slashburn
1

2

Sp
ee

du
p 16 32 64 256

(b) GPU-based training (GCN).

bfs degsort dfs gorder hubcluster hubsort ldg metis-1024 metis-128 metis-16 metis-65536 metis-8192 minla rabbit rcm slashburn
1.0

1.2

1.4

Sp
ee

du
p 16 32 64 256

(c) GPU-based training (GAT).

Figure 4: Increasing the number of hidden dimensions from 16 to 32, 64, and to 256 in DGL.

bfs degsort dfs gorder hubcluster hubsort ldg metis-1024 metis-128 metis-16 metis-65536 metis-8192 minla rabbit rcm slashburn

0.5
1.0
1.5

Sp
ee

du
p 16 64 512

(a) CPU-based training.

bfs degsort dfs gorder hubcluster hubsort ldg metis-1024 metis-128 metis-16 metis-65536 metis-8192 minla rabbit rcm slashburn
1.00

1.25

1.50

Sp
ee

du
p 16 64 512

(b) GPU-based training (GCN).

bfs degsort dfs gorder hubcluster hubsort ldg metis-1024 metis-128 metis-16 metis-65536 metis-8192 minla rabbit rcm slashburn
1.0

1.5

Sp
ee

du
p 16 64 512

(c) GPU-based training (GAT).

Figure 5: Increasing the feature size from 16 to 64 and to 512 in DGL. Larger values are better.

bfs degsort dfs gorder hubcluster hubsort ldg metis-1024 metis-128 metis-16 metis-65536 metis-8192 minla rabbit rcm slashburn

1

2

Sp
ee

du
p 2 3 4

(a) CPU-based training.

bfs degsort dfs gorder hubcluster hubsort ldg metis-1024 metis-128 metis-16 metis-65536 metis-8192 minla rabbit rcm slashburn

1.00

1.25

1.50

Sp
ee

du
p 2 3 4

(b) GPU-based training.

Figure 6: Increasing the number of layers from 2 to 3 and to 4 in DGL. Larger values are better.

influenced by the number of layers (see Figure 6a). The effectiveness
can slightly increase or decrease, but there is no clear trend.

These results seem reasonable. In each layer, GNN computations
are performed and the speedup should be similar per layer, therefore,
stacking multiple layers on top of each other should not have much
influence on the effectiveness of graph reordering. We also observe

that the effectiveness in reducing cache misses on products is not
much dependent on the number of layers (see Figure 7c).

GPU: For GPU-based training, we make similar observations
(see Figure 6b).

We conclude that the number of layers has no clear influence
on the effectiveness of graph reordering.

298

metis-16 metis-128 metis-1024 metis-8192 metis-65536 rabbit
0

25 16
256

(a) Increasing the number of hidden dimensions from 16 to 256.

metis-16 metis-128 metis-1024 metis-8192 metis-65536 rabbit
0

50 16
512

(b) Increasing the feature size from 16 to 512.

metis-16 metis-128 metis-1024 metis-8192 metis-65536 rabbit
0

50 2
4

(c) Increasing the number of layers from 2 to 4.

Figure 7: Influence of increasing GNN parameters on cache
miss reduction. Larger values are better.

4.3 Influence of Graph Characteristics
In the following, we investigate how graph characteristics influence
the effectiveness of graph reordering for both CPU- and GPU-based
GNN training. To enable controlled experiments, we use different
graph generators to create synthetic graphs with different varying
properties: Specifically, we vary the mean degree and the local
clustering coefficient, both of which are well-known and impor-
tant metrics for describing graph datasets [41]. The mean degree
influences the density of the graph, while the clustering coefficient
indicates the presence of community structures.

Clustering Coefficient.We use the small-world model intro-
duced by Watts and Strogatz [57] as it can be used to generate
graphs with different clustering coefficients while keeping the num-
ber of edges and vertices constant. We create 6 graphs with clus-
tering coefficients of 0.09, 0.16, 0.25, 0.38, 0.53, and 0.73 (higher
numbers indicate a stronger community structure). Each graph con-
sists of 3 M vertices and 60M edges. We observe a strong correlation
(Pearson correlation coefficients and Spearman rank correlation
coefficients larger 0.91) between high clustering coefficients and
high speedups for both DGL and PyG for CPU- and GPU-based
training. This indicates that for graphs with a stronger community
structure, graph reordering is more effective in speeding up GNN
training. This result seems plausible because if a graph contains a
community structure, this locality can be exploited.

MeanDegree.Weuse the R-MAT [8]model and Barabási–Albert
preferential attachment [4] to generate graphs with different mean
degrees. For both generators, we set the number of vertices to 3 M
and create 6 graphs with mean degrees ranging from 10 to 120. We
observe that the mean degree does not correlate with the speedup
for both generators, indicating that the effectiveness of graph re-
ordering is independent of the mean degree. One possible reason
is that while the mean degree influences the overall graph density,
it does not significantly affect the locality or community structure
within the graph, which are more critical for the effectiveness of
reordering techniques.

We conclude that graph reordering is more effective for
graphs with stronger community structures.

dimacs9-USA livejournal orkut products reddit soc-pokec web-BerkStan wikipedia
0

1

2

Sp
ee

du
p

slashburn
minla

gorder
rcm

dfs
bfs

ldg
metis-16

metis-128
metis-1024

metis-8192
metis-65536

rabbit
hubcluster

hubsort degsort

(a) Speedups on CPU (DGL).

dimacs9-USA livejournal orkut products reddit soc-pokec web-BerkStan wikipedia
0

1

Sp
ee

du
p

(b) Speedups on GPU (DGL).

dimacs9-USA livejournal orkut products reddit soc-pokec web-BerkStan wikipedia
0.0

0.5

1.0

Sp
ee

du
p

(c) Speedups on CPU (PyG).

dimacs9-USA livejournal orkut products reddit soc-pokec web-BerkStan wikipedia
0

1

Sp
ee

du
p

(d) Speedups on GPU (PyG).

Figure 8: Comparison of speedups achieved for GPU- and
CPU-based training with DGL and PyG.

4.4 Influence of Infastructure
In the following, we investigate the effectiveness of graph reorder-
ing on different GPUs in DGL. In addition, to the NVIDIA RTX
8000 GPU (Turin architecture, 48 GB memory, 672 GB/s mem-
ory bandwidth, 16.3 TFLOPS peak), we use the NVIDIA Titan
X GPU (Maxwell architecture, 12 GB memory, 337 GB/s mem-
ory bandwidth, 6.7 TFLOPS peak) representing an older archi-
tecture, and an NVIDIA Orin (Ampere architecture, 48 GB mem-
ory, 205 GB/s memory bandwidth, 5.3 TFLOPS peak) representing
a newer architecture.

We observe that graph reordering is effective for all GPUs lead-
ing to average speedups of 1.13x, 1.17x, and 1.22x for Titan X,
RTX 8000, and Orin, respectively. When employing an advanced
reordering strategy such as rabbit, even higher average speedups
of 1.19x, 1.27x, and 1.33x are achieved on the Titan X, RTX 8000,
and Orin, respectively.

These results are plausible given that GNN training is memory-
bottlenecked, making data layout improvements particularly ben-
eficial. One possible explanation for the varying effectiveness of
graph reordering across different GPUs could be the ratio of peak
FLOPS to memory bandwidth: We observed that for all three GPUs,
the higher the ratio of FLOPS per memory bandwidth, the more
beneficial the graph reordering.

We conclude that graph reordering is effective across dif-
ferent GPUs and is especially beneficial when the ratio of
computational performance to memory bandwidth is high.

4.5 GPU vs. CPU-based Training
In the following, we analyze how the effectiveness of graph re-
ordering is influenced by the infrastructure (GPU and CPU). Due
to limited GPU memory, it was not possible to run all experiments
on the GPU (GPU memory is only 48 GB while the CPU server had
164 GB of memory). Therefore, we exclude experiments that did
not run on both the CPU and GPU from the following discussion.

DGL:We report our results for CPU- and GPU-based training in
Figures 8a and 8b, respectively. We observe for the graph dimacs9-
USA that there is not much difference in terms of speedup for the
different graph reordering strategies when comparing training on

299

dimacs9-USA livejournal orkut products reddit soc-pokec web-BerkStan wikipedia

101

103

Re
or

de
rin

g
tim

e
 (s

ec
on

ds
)

slashburn
minla

gorder
rcm

dfs
bfs

ldg
metis-16

metis-128
metis-1024

metis-8192
metis-65536

rabbit
degsort

hubcluster
hubsort

random

(a) Graph reordering time (lower is better).

dimacs9-USA livejournal orkut products reddit soc-pokec web-BerkStan wikipedia

105

107

Av
er

ag
e

GA
P

 p
ro

fil
e

(b) Average gap profile (lower is better).

dimacs9-USA livejournal orkut products reddit soc-pokec web-BerkStan wikipedia

105

107

Av
er

ag
e

Gr
ap

h
 B

an
dw

ith

(c) Average graph bandwidth (lower is better).

dimacs9-USA livejournal orkut products reddit soc-pokec web-BerkStan wikipedia

105

107

Gr
ap

h
Ba

nd
wi

dt
h

(d) Graph bandwidth (lower is better).

Figure 9: Reordering times and different reordering metrics.

the CPU versus training on the GPU. For dimacs9-USA, the largest
difference is observed for slashburn, leading to a speedup of 1.08x
on the CPU and a higher speedup of 1.15x on the GPU. On the re-
maining graphs, we observe that some strategies (mainly slashburn,
minla, hubcluster , hubsort, degsort, rcm, and dfs) lead to slowdowns
(speedups smaller 1x) for CPU-based training. However, on the
GPU, these strategies perform much better and lead nearly in all
cases to speedups. On average the speedup of graph reordering for
GPU-based training is 1.28 times the speedup of CPU-based training.
Interestingly, even some of the lightweight strategies can lead to
speedups close to heavyweight graph reordering with Metis when
training on the GPU. For example, dfs leads to speedups of 1.25x,
1.25x, 1.20x, 1.13x, and 1.18x on dimacs9-USA, livejournal, reddit,
web-BerkStan, and wikipedia which is not much worse compared
to metis-65536 leading to 1.24x, 1.30x, 1.30x, 1.12x, and 1.27x.

PyG: Figures 8c and 8d show our results for CPU- and GPU-
based training, respectively. Similar to DGL, we observe that graph
reordering is more effective for GPU-based training than for CPU-
based training. Also similar to DGL, for GPU-based training all
graph reordering strategies lead to speedups compared to CPU-
based training where some led to slowdowns. The average speedup
on the GPU is 1.17 times the speedup of CPU-based training. It can
also be seen that even lightweight strategies lead to good speedups
on the GPU. For example, dfs leads to a speedup of 1.67x, 1.38x, 1.47x,
1.61x, 1.14x, 1.16x, 1.02x, and 1.44x on the graphs dimacs9-USA,
livejournal, orkut, products, reddit, soc-pokec, web-BerkStan, and
wikipedia, respectively. This is close to metis-65536 with speedups
of 1.67x, 1.48x, 1.66x, 1.83x, 1.17x, 1.43x, 1.06x, and 1.54x.

The results seem plausible. Due to the high computational per-
formance of GPUs, they are more memory bottlenecked compared
to CPUs, making data layout improvements more beneficial.

We conclude that both in DGL and PyG, graph reordering is
more effective for GPU training. Further, we find that for both
systems lightweight graph reordering methods can lead to
good results for GPU-based training, which was not the case
for CPU-based training.

4.6 Graph Reordering Quality Metrics
In the following, we analyze how different graph reordering metrics
correlate with GNN training speedup. We compute the graph re-
ordering metrics average gap profile, graph bandwidth, and average
graph bandwidth introduced in Section 2 for each combination of
graph and reordering strategy and normalize it with random re-
ordering. Then, we compute the Pearson correlation coefficient and
the Spearman rank correlation coefficient between the normalized
reordering metrics and training speedup. Table 3 reports the results.

Table 3: Correlation between reordering metrics and training
speedup measured with Pearson correlation coefficient (PC)
and Spearman rank correlation coefficient (SC) and achieved
speedup for selecting the best reordering strategy (Opt.), se-
lecting the ordering strategy based on quality metrics (Qua.),
and randomly selecting a reordering strategy (Ran.).
Metric Sys. PC SC Opt. Qua. Ran.
Avg. gap prof. DGL 0.58 0.63 1.39 1.21 1.10
Avg. gap prof. PyG 0.56 0.64 1.31 1.24 1.19
Avg. graph bdw. DGL 0.61 0.64 1.39 1.21 1.10
Avg. graph bdw. PyG 0.58 0.64 1.31 1.25 1.19
Graph bdw. DGL 0.11 0.30 1.39 1.10 1.10
Graph bdw. PyG 0.13 0.29 1.31 1.22 1.19

We observe for both DGL and PyG, that the average graph band-
width leads to a Pearson correlation coefficient of 0.61 and 0.58,
respectively, which is slightly higher than the average gap profile
for which coefficients of 0.58 and 0.56 are achieved, respectively.
In terms of Spearman rank correlation coefficient, for DGL, aver-
age graph bandwidth leads to a better coefficient of 0.64 compared
to a coefficient of 0.63 for average gap profile. For PyG, for both
average gap profile and average graph bandwidth a coefficient of
0.64 is achieved. This means both average gap profile and aver-
age graph bandwidth correlate with the speedup. In contrast, the
quality metric graph bandwidth leads to a low Pearson correlation
coefficient smaller 0.13 and a low Spearman rank correlation co-
efficient smaller 0.30. We also observe that the values for graph
bandwidth are very similar across the various graph reordering
strategies, however, as reported above, different orderings lead to
different speedups. Therefore, graph bandwidth does not seem to
be an expressive graph reordering metric.

In Figure 10, we plot the average graph bandwidth normalized
with random reordering (lower is better) against speedup for the
graphs wikipedia and soc-pokec for CPU and GPU-based training
using both systems PyG and DGL on the GCNmodel. In many cases,
a small average graph bandwidth value also leads to larger speedups,
both for GPU and CPU training, indicating that minimizing the
reordering metric is beneficial (see top left in Figures 10a-10d). How-
ever, there are also exceptions. For example, for the graphwikipedia,
we observe that CPU training with gorder leads to high speedups
on DGL and PyG comparable to Metis, although the average graph
bandwidth of gorder is higher (worse). For the graph soc-pokec,
metis-16 leads to the best (lowest) average graph bandwidth, but in
both DGL and PyG other graph reorderings lead to larger speedups
on CPU and GPU. We make similar observations for GAT.

300

0.6 0.7 0.8 0.9 1.0
Normalized Average Bandwidth

0.50

1.00

Sp
ee

du
p

metis-8192
metis-1024
metis-16
metis-128
rabbit
metis-65536
minla
dfs
bfs

slashburn
rcm
gorder
hubcluster
hubsort
ldg
degsort
GPU
CPU

(a) Wiki graph (DGL).

0.6 0.7 0.8 0.9 1.0
Normalized Average Bandwidth

1.00

1.20

1.40

Sp
ee

du
p

(b) Wiki graph (PyG).

0.6 0.7 0.8 0.9 1.0
Normalized Average Bandwidth

0.60

0.80

1.00

1.20

Sp
ee

du
p

(c) Soc-Poket graph (DGL).

0.6 0.7 0.8 0.9 1.0
Normalized Average Bandwidth

1.00

1.20

Sp
ee

du
p

(d) Soc-Poket graph (PyG).
Figure 10: Average graph bandwidth normalized with random reordering versus speedup. The markers represent the graph
reordering strategy, and the color of the markers indicates whether the training was performed on the GPU or CPU.

While it is plausible that in most cases a good reordering quality
as measured by standard reordering metrics indicates high effec-
tiveness, there are notable limitations. For instance, consider the
metric average gap profile. Suppose we have two edges, 𝑒1 = (𝑣1, 𝑣2)
and 𝑒2 = (𝑣3, 𝑣4), and the degree of all four vertices is 1. Now, let’s
examine two different reorderings: (1) 𝑣1, 𝑣2, 𝑣3, and 𝑣4 have IDs
1K, 100K, 900K, and 990K, respectively. (2) 𝑣1, 𝑣2, 𝑣3, and 𝑣4 have
IDs 1K, 900K, 100K, and 990K, respectively. This means reordering
(2) only differs from reordering (1) by switching the IDs of 𝑣2 and
𝑣3. The gap for both edges would be 180K and 1780K for the first
and second reordering, respectively. Thus, the second reordering
appears much worse compared to the first one. However, in the first
reordering, the connected vertices are already far apart in memory,
leading to cache misses. Consequently, both reorderings might be
equally suboptimal, but the metric shows a much worse score for
the second one. This suggests that once the gap between two ver-
tices exceeds a certain threshold, the exact distance may no longer
significantly impact performance, and the absolute value of the
metric may no longer be representative. Similar problems occur in
the other reordering metrics.

We conclude that the graph reorderingmetrics average graph
bandwidth and average gap profile correlate with GNN train-
ing speedup while graph bandwidth does not. However, there
are exceptions indicating that the graph reordering met-
rics are not perfect, and more descriptive metrics may need
to be developed.

4.7 Graph Reordering Selection
In the following, we investigate if the graph reordering metrics
average gap profile, graph bandwidth, and average graph bandwidth
can be used to select a graph reordering strategy. For each graph, we
select the graph reordering strategy that leads to the best reordering
according to the quality metrics. This selection is independent of
the GNN parameters and only depends on the graph. We compare
this selection with the optimal selection, meaning we assume to
already know for each scenario which graph reordering strategy
performs best. The optimal selection is dependent on the GNN
parameters, e.g., for a given graph not always the same graph
reordering strategy is best. Random selection means that for each
scenario a graph reordering strategy is selected randomly.

For both DGL and PyG, we find that using any one of the graph
reordering metrics is at least as good as a random selection (see Ta-
ble 3). For DGL, if the selection is based on average gap profile,
average graph bandwidth, and graph bandwidth, we achieve aver-
age speedups of 1.21x, 1.21x, and 1.1x which is between a random
selection (1.10x) and the optimal selection (1.39x). For PyG, if the

selection is based on average gap profile, average graph bandwidth,
and graph bandwidth, we achieve average speedups of 1.24x, 1.25x,
and 1.22x which are also between a random selection (1.19x) and
the optimal selection (1.31x). For both DGL and PyG, average graph
bandwidth leads to the best selections, consistent with the results
from Section 4.6, which also highlights the limitations of the current
reordering metrics. Therefore, we anticipate that more descriptive
metrics will enhance reordering selection.

We conclude that using the graph reordering metric average
gap profile for graph reordering strategy selection outper-
forms a random selection, but there is still room for improve-
ment to select the optimal strategy.

4.8 Graph Reordering Time Amortization
Graph reordering is a pre-processing step that is invested to mini-
mize graph processing time. In the following, we investigate after
how many training epochs the graph reordering time can be amor-
tized. We highlight, that training is often performed for hundreds
of epochs, and often a hyper-parameter search is performed leading
to even more training epochs. As mentioned in Section 4.5, some
graph reordering strategies can lead to slowdowns and therefore
amortization is not possible. In the following, we only consider
scenarios in which graph reordering leads to speedups.

CPU: We observe that in many cases graph reordering is amor-
tized in far less than 100 epochs for both GAT and GCN. For ex-
ample in DGL, metis-1024 amortizes in 4.0, 22.6, 4.5, 21.6, 3.7, and
11.1 epochs for the graphs dimacs9-USA, livejournal, products, soc-
pokec, web-BerkStan, and wikipedia when training a GAT and in
21.0, 77.9, 29.2, 128.4, 416.2, and 61.0 epochs when training a GCN
(see Figures 11a and 11b). Rabbit amortizes even faster in 0.8, 4.3,
0.4, 2.7, 0.6, and 1.6 epochs for the graphs dimacs9-USA, livejournal,
products, soc-pokec, web-BerkStan, and wikipedia when training a
GAT and in 3.5, 12.2, 2.9, 16.7, 10.3, and 6.6 epochs when training a
GCN, respectively (see Figure 11b). In general training a GAT takes
more time and graph reordering time can be amortized faster.

GPU:We also observe that graph reordering amortizes faster for
GAT than for GCN. In general, GPU-based training is much faster
than CPU-based training and graph reordering can take more time
than training. For example in DGL metis-1024 amortizes only after
188 and 4155 epochs when training a GAT and a GCN on dimacs9-
USA, respectively (see Figures 11c and 11d). However, it is worth
noting that rabbit amortizes in 39.8, 55.8, 81.1, 37.0, 159.7, 80.9, 49.4,
and 75.7 epochs on the graphs dimacs9-USA, livejournal, orkut, prod-
ucts, reddit, soc-pokec, web-BerkStan, and wikipedia, respectively,
when training a GAT (see Figure 11c). This means that even for GPU-
based training graph reordering can be amortized. However, even

301

dimacs9-USA livejournal orkut products reddit soc-pokec web-BerkStan wikipedia

102

Ep

oc
hs

slashburn
minla

gorder
hubcluster

hubsort
degsort

rcm
dfs

bfs
ldg

metis-16
metis-128

metis-1024
metis-8192

metis-65536
rabbit

(a) GAT on DGL (CPU).

dimacs9-USA livejournal orkut products reddit soc-pokec web-BerkStan wikipedia

102

Ep

oc
hs

(b) GCN on DGL (CPU).

dimacs9-USA livejournal orkut products reddit soc-pokec web-BerkStan wikipedia

102

104

Ep

oc
hs

(c) GAT on DGL (GPU).

dimacs9-USA livejournal orkut products reddit soc-pokec web-BerkStan wikipedia

103

105

Ep

oc
hs

(d) GCN on DGL (GPU).

Figure 11: Number of training epochs until amortization. Lower values are better.

more important, graph reordering can be performed on a cheap
CPU server and the training can be performed on a more expensive
GPU afterwards. Therefore, we suggest pre-processing graphs on a
CPU server to save costs when training on a GPU server.

We conclude that for CPU-based training graph reorder-
ing time can be amortized in many cases. For GPU-based
training, the training time can not always be amortized, how-
ever, pre-processing on a CPU can still save GPU costs in the
training process.

4.9 Sampling
We also investigate the effectiveness of graph reordering when
neighborhood sampling is applied. In addition to the eight graphs
in Table 2, we added two large-scale graphs, twitter [26] and pa-
pers100 from the Open Graph Benchmark (OGB) [19], with 1.5
billion edges and 1.6 billion edges, respectively. For both graphs,
full graph training is infeasible on a GPU due to memory limita-
tions, necessitating the use of neighborhood sampling. Neighbor-
hood sampling requires setting the fanout parameters, denoted as
(𝑙1, 𝑙2, ..., 𝑙𝑛), where 𝑙𝑖 represents the number of neighbors to sample
in the 𝑖𝑡ℎ layer. For our experiments, we use commonly employed
fanout parameters: (25, 10) for 2-layer experiments [13, 16, 65], and
a fanout of (15, 10, 5) for 3-layer experiments [23, 60, 65, 72]. The
batch size is set to 1024. For both DGL and PyG, we use the GCN
model for CPU- and GPU-based training on a server with 512 GB
main memory and a NVIDIA A40 GPU with 48 GB device memory.

For PyG, we observe that graph reordering leads to significant
speedups which are shown in Figures 12a and 12b for CPU- and
GPU-based training, respectively. When training on a CPU, ef-
fective reordering strategies such as rabbit and metis-65536 yield

ldg
slashbu

rnhubsor
t
degsor

t
hubclu

sterminla rcm dfs bfs gordermetis-16metis-12
8rabbitmetis-81

92
metis-10

24
metis-65

536
1

2

Sp
ee

du
p

(a) CPU-based training.

ldg
slashbu

rnhubsor
t
degsor

t minla
hubclu

ster dfs bfs metis-16 rcm gordermetis-12
8rabbitmetis-10

24
metis-81

92
metis-65

536
1

2

Sp
ee

du
p

(b) GPU-based training.

Figure 12: Speedup distribution for sampling-based training.

average speedups of 1.68x and 1.80x, and maximum speedups of
3.35x and 3.82x, respectively. For GPU-based training, rabbit and
metis-65536 achieve average speedups of 1.59x and 1.69x, and maxi-
mum speedups of 2.84x and 3.30x, respectively.

In the following, we investigate how the fanout influences the
effectiveness of graph reordering. We experiment with three differ-
ent fanout configurations: We use a low fanout of (5, 5) and (5, 5, 5),
a medium fanout of (10, 10) and (10, 10, 10), and a high fanout of
(15, 15) and (15, 15, 15), for 2-layer and 3-layer GNNs, respectively.
Figure 13 shows the average speedup for all combinations of fanout
and number of layers for CPU and GPU-based training, respectively.
We observe that graph reordering is more effective in the face of
higher fanouts: On the CPU, the speedup increases from 1.17x to
1.26x for a 2-layer GNN and from 1.38x to 1.62x for a 3-layer GNN
as the fanout increases from low to high. On the GPU, the speedup
increases from 1.24x to 1.26x for a 2-layer GNN and from 1.39x to
1.62x for a 3-layer GNN. Further, we observe that if the number

302

low medium high
Fanout

1.0

1.5

Sp
ee

du
p

#Layers=2 #Layers=3

low medium high
Fanout

1.0

1.5

Sp
ee

du
p

#Layers=2 #Layers=3

Figure 13: Speedup versus fanout. CPU (left) and GPU (right).

of layers increases, graph reordering becomes more effective: For
instance, on the CPU, the speedup for a low fanout increases from
1.17x to 1.38x when increasing the number of layers from two to
three, and for a high fanout, it increases from 1.27x to 1.66x. This is
plausible as larger fanouts and more layers result in more sampling
and feature fetching, making graph reordering more beneficial.

We further analyze which phase of the GNN training benefits
from the speedup. GNN training with neighborhood sampling con-
sists of two phases which are iteratively repeated: (1) sample a mini
batch from the input graph and extract necessary features (data
loading phase) and (2) perform the training on the sample (training
phase). For CPU-based training, we find that for a low fanout, 41%
of the speedup is achieved in the data loading phase and 59% in
the training phase, while for a high fanout, 61% of the speedup is
achieved in the data loading phase and 39% in the training phase.
For GPU-based training, these figures are 88% and 12% for low
fanout, and 99% and 1% for high fanout, respectively.

For DGL, we observe average speedups of 1.05x and 1.00x for
CPU and GPU-based training, respectively, indicating that graph
reordering is not effective to speed up GNN training in DGL when
neighbor sampling is applied. We attribute this phenomenon to
differences in the data loading implementation in DGL, which does
not benefit from locality in graph ordering.

Additionally, we assess whether graph reordering time can be
amortized in PyG. For CPU-based training, rabbit amortizes in
0.17, 0.20, 0.33, 0.35. 0.39. 0.57, 0.84, 1.23, 3.20, and 6.1 epochs on
the graphs products, livejournal, soc-pokec, wikipedia, orkut, web-
BerkStan, dimacs9-USA, reddit, papers100, and twitter , respectively.
For GPU-based training, rabbit amortizes in 0.92, 0.95, 1.21, 1.75,
1.85, 2.20, 3.67, 4.36, 6.65, and 9.87 epochs on the graphs products,
dimacs9-USA, livejournal, web-BerkStan, wikipedia, orkut, soc-pokec,
twitter , papers100, and reddit, respectively. Therefore, graph reorder-
ing can be amortized for both CPU and GPU-based training, making
it a practical optimization. Furthermore, graph reordering can be
performed on a cost-effective CPU server, reducing the monetary
cost of expensive GPU training time.

We conclude that graph reordering is effective in PyG when
sampling is applied, but not inDGL. Moreover, graph reorder-
ing is more effective with higher fanouts or an increased
number of layers. Lastly, graph reordering time can be amor-
tized for both CPU- and GPU-based training, highlighting
its practicality as an optimization technique.

5 LESSONS LEARNED
In the following, we summarize our main findings and relate them
to the research questions introduced in Section 3.

Graph reordering can reduce GNN training time (Q1). Our
experiments show that graph reordering is an effective optimiza-
tion to reduce training time leading to speedups of up to 2.19x

(average 1.25x) and to 2.43x (average 1.33x) for CPU- and GPU-
based training, respectively, when applying Rabbit. We observe
large differences between the graph reordering strategies, however,
in most cases the partition-based approaches Metis and rabbit lead
to the largest speedups.

GNN-specific parameters can influence the effectiveness
of graph reordering (Q2). For both CPU- and GPU-based train-
ing, we find that an increasing number of hidden dimensions and
an increasing feature size can decrease the effectiveness of graph
reordering while the number of layers has only little influence.

Graph reordering is effective across different hardware
configurations (Q3). We find that graph reordering can speed
up GNN training on a CPU and GPU. For both DGL and PyG, the
achieved speedups on GPUs are larger than for CPU-based training.
We observe that mostly the degree-based approaches can lead to
a slowdown for CPU-based training, while they lead to speedups
when training on a GPU. Further, we find that graph reordering is
effective on different GPUs, and that especially if the GPU’s ratio of
computation performance tomemory bandwidth is high, reordering
is more beneficial.

Graph reordering time can be amortized (Q4). We find that
graph reordering time can be amortized in many cases when train-
ing on a CPU. We observed that amortization is dependent on the
GNN model architecture, e.g., GAT epoch times are higher than
GCN epoch times, and therefore, amortization can be achieved
faster. However, when training on a GPU, it depends on the model
if graph reordering time can be amortized by faster training. Still,
we suggest applying graph reordering when training on a GPU as
the graph reordering can be performed on a cheap CPU machine,
and monetary expensive training time on the GPU can be reduced.

Graph reordering quality metrics can be used for graph
reordering selection (Q5).We find a correlation between graph
reordering quality metrics and training speedup. Further, our ex-
periments show that selecting a graph reordering strategy based
on graph reordering quality metrics is much better than randomly
selecting a strategy. However, there is room for improvement indi-
cating that better graph reordering metrics need to be developed.
As it is not straightforward to select the best reordering strat-
egy for a given scenario, we see building an automatic, machine
learning-based selector as a promising research direction. Such an
approach has been successfully applied to graph partitioner selec-
tion for distributed graph processing [39]. For practitioners, we
make the following recommendation: (1) For GPU-based training,
we recommend performing the graph reordering on a cost-effective
CPU machine to save monetary costs when training on the GPU.
Metis should be selected if the pre-processing machine has suffi-
cient memory, otherwise rabbit should be selected as it is much
more light-weight in terms of memory and reordering time but
still leads to good speedups. (2) For CPU-based training, we rec-
ommend applying rabbit for its quick amortization. However, if a
hyper-parameter search is performed or a more expensive model
such as GAT is trained, Metis should be applied. (3) For sampling-
based training in PyG (CPU and GPU), we suggest applying Metis
if enough memory is available, otherwise rabbit should be used.

Graph properties can influence the effectiveness of graph
reordering (Q6).We find that graph reordering is more effective

303

for graphs with a stronger community structure, while the graph
density has a lower impact.

Graph reordering can be effective if sampling is applied
(Q7). In PyG, graph reordering significantly speeds up GNN train-
ing, particularly by accelerating the data loading phase (sampling
and feature loading). The high-quality strategy Rabbit achieves
speedups of up to 3.68x (average 1.62x) for CPU-based training
and up to 3.22x (average 1.57x) for GPU-based training. Graph
reordering is more effective with higher fanouts and more lay-
ers, and reordering time can be amortized faster compared to full
graph training.

6 RELATEDWORK
Graph reordering to optimize graph analytics. Graph reorder-
ing is a vibrant research area [2, 11, 29, 58] and different graph
reordering strategies exist. It was shown that graph reordering
can speed up graph analytics such as Breadth-first-search, Short-
est Paths, or K-cores, but graph reordering time often can not be
amortized by faster analytics.

In our work, we investigate graph reordering for GNN training
which has unique characteristics such as high-dimensional inter-
mediate states which are iteratively aggregated, high-dimensional
feature vectors, neural network operations, and is executed for hun-
dreds of epochs. Further, GNN training is often performed on GPUs
to accelerate computationally-extensive neural network operations.
Our extensive evaluation of 12 different reordering strategies shows
the importance of graph reordering for both CPU- and GPU-based
GNN training. Further, we investigate graph reordering metrics and
their relationship with training speedup to understand if a maxi-
mization of the metrics is beneficial to achieve training speedups.
In addition, we investigate if quality metrics can be used for the
selection of graph reordering strategies.

Graph neural network systems. The recent success of GNNs
led to many systems [12, 13, 30–33, 38, 46, 56, 59, 70, 72, 74] tailored
to the specific needs of GNNs, however, it has not been investigated
in which scenarios GNN systems can benefit from graph reordering.

In our work, we selected the two predominant systems DGL
and PyG which are widely used and have large user communities.
For both systems, we find that graph reordering is an effective
optimization to speed up the training process on CPUs and GPUs.

We anticipate that graph reordering is also beneficial for other
systems: Many systems such as DistDGL [72], GraphStorm [73],
PaGraph [30], P3 [13], DistGNN [38], BGL [33], GNNLab [60], and
DiskGNN [32] are built on top of DGL or Salient [23] which is
built on top of PyG, and therefore, these systems may also benefit
from graph reordering. Further, many research papers [20, 30, 59]
mention that poor data locality is a significant challenge for efficient
GNN training. Graph reordering directly addresses this issue and
therefore may be effective also in other systems.

Optimizations to speed up GNNs. A recent study on GNN ac-
celeration [35] identifies three graph-level optimizations: (1) graph
partitioning, (2) graph sparsification, and (3) graph sampling. Below,
we relate graph reordering to these optimizations.

(1) Graph partitioning Graph partitioning [18, 36, 37, 42, 45,
48, 68] is a pre-processing step for distributed graph processing
systems with the goal to maximize locality on the machines of a

compute cluster by assigning densely connected subgraphs (parti-
tions) to machines. Thereby, communication between machines is
minimized as vertices that are processed together are on the same
machine. This optimization is similar to graph reordering where
vertices that are frequently accessed together are stored close by in
the memory. Different experimental studies [1, 14, 43, 55] investi-
gated the effectiveness of graph partitioning for distributed graph
analytics and showed that high-quality partitioning can speed up
distributed graph processing. It was also shown that selecting a
graph partitioning algorithm is challenging and that a machine
learning-based selection works best [39]. In a recent experimental
study [40], the effectiveness of graph partitioning was investigated
for distributed GNN training and showed that GNN training time
can be decreased by high-quality graph partitioning.

In our work, we investigate graph reordering as a related pre-
processing step that optimizes the graph data layout to speed up
GNN training on a single machine. Further, we find that the graph
partitioning-based reordering approaches Metis and rabbit can also
be used for graph reordering, and are effective in reducing GNN
training time by improving the data locality. Similar to machine
learning-based partitioner selection proposed in [39], we see apply-
ing such an approach to graph reordering selection as a promising
research direction.

(2) Graph Sparsification. Graph sparsification reduces the
graph size by dropping edges, thus decreasing memory footprint
and speeding up graph processing [51]. It has been used to speed up
graph processing [6, 21] and has also been applied to GNN training
to reduce computation time and memory requirements [28, 52].
Graph sparsification can also improve the prediction performance
of GNNs [49, 62, 71].

Graph sparsification and graph reordering are orthogonal opti-
mizations. Reordering can still be applied to enhance data locality
even after sparsification.

(3) Graph Sampling. Graph sampling reduces computational
complexity and memory footprint by sampling a subset of nodes
or edges for training, thus improving the efficiency and scalabil-
ity of GNN training. According to a recent study [34], numerous
graph sampling approaches exist that can be categorized into node-
wise sampling [16, 44], layer-wise sampling [9, 75], subgraph-based
sampling [10, 66], and heterogenous sampling [67].

Our study reveals that graph reordering can also accelerate
sampling-based GNN training in PyG, primarily by reducing data
loading time.

7 CONCLUSIONS
In our work, we investigate the effectiveness of graph reordering
to reduce GNN training time. We find that graph reordering is an
effective optimization to decrease training time for both CPU and
GPU-based training. Our experiments show that the effectiveness
is influenced by GNN parameters and that the graph reordering
time can be amortized. Further, we find that graph reordering met-
rics correlate with training speedup, and can be used for graph
reordering selection. However, graph reordering metrics are not
perfect predictors for speedup indicating that new graph reordering
metrics may need to be developed.

304

REFERENCES
[1] ZainabAbbas, Vasiliki Kalavri, Paris Carbone, and Vladimir Vlassov. 2018. Stream-

ing Graph Partitioning: An Experimental Study. Proc. VLDB Endow. 11, 11 (July
2018), 14. https://doi.org/10.14778/3236187.3236208

[2] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and Sotetsu
Iwamura. 2016. Rabbit Order: Just-in-Time Parallel Reordering for Fast Graph
Analysis. In 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 22–31. https://doi.org/10.1109/IPDPS.2016.110

[3] Vignesh Balaji and Brandon Lucia. 2018. When is Graph Reordering an Optimiza-
tion? Studying the Effect of Lightweight Graph Reordering Across Applications
and Input Graphs. In 2018 IEEE International Symposium on Workload Character-
ization (IISWC). 203–214. https://doi.org/10.1109/IISWC.2018.8573478

[4] Albert-László Barabási and Réka Albert. 1999. Emergence of Scaling in Random
Networks. Science 286, 5439 (1999), 509–512. https://doi.org/10.1126/science.286.
5439.509 arXiv:https://www.science.org/doi/pdf/10.1126/science.286.5439.509

[5] Reet Barik, Marco Minutoli, Mahantesh Halappanavar, Nathan R. Tallent, and
Ananth Kalyanaraman. 2020. Vertex Reordering for Real-World Graphs andAppli-
cations: An Empirical Evaluation. In 2020 IEEE International Symposium on Work-
load Characterization (IISWC). 240–251. https://doi.org/10.1109/IISWC50251.
2020.00031

[6] Maciej Besta, Simon Weber, Lukas Gianinazzi, Robert Gerstenberger, Andrey
Ivanov, Yishai Oltchik, and Torsten Hoefler. 2019. Slim graph: practical lossy
graph compression for approximate graph processing, storage, and analytics.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Denver, Colorado) (SC ’19). Association for
Computing Machinery, New York, NY, USA, Article 35, 25 pages. https://doi.
org/10.1145/3295500.3356182

[7] K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. 2016.
The extreme classification repository: Multi-label datasets and code. http:
//manikvarma.org/downloads/XC/XMLRepository.html

[8] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 442–446.

[9] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In International Conference
on Learning Representations. https://openreview.net/forum?id=rytstxWAW

[10] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph
Convolutional Networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (Anchorage, AK, USA) (KDD
’19). Association for Computing Machinery, New York, NY, USA, 257–266. https:
//doi.org/10.1145/3292500.3330925

[11] E. Cuthill and J. McKee. 1969. Reducing the Bandwidth of Sparse Symmet-
ric Matrices. In Proceedings of the 1969 24th National Conference (ACM ’69).
Association for Computing Machinery, New York, NY, USA, 157–172. https:
//doi.org/10.1145/800195.805928

[12] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[13] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed Deep Graph
Learning at Scale. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21). USENIX Association, 551–568. https://www.usenix.
org/conference/osdi21/presentation/gandhi

[14] Gurbinder Gill, Roshan Dathathri, Loc Hoang, and Keshav Pingali. 2018. A Study
of Partitioning Policies for Graph Analytics on Large-Scale Distributed Platforms.
Proc. VLDB Endow. 12, 4 (Dec. 2018), 14. https://doi.org/10.14778/3297753.3297754

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[16] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
Curran Associates Inc., Red Hook, NY, USA, 1025–1035.

[17] Loc Hoang, Xuhao Chen, Hochan Lee, Roshan Dathathri, Gurbinder Gill, and
Keshav Pingali. 2021. Efficient Distribution for Deep Learning on Large Graphs.
InWorkshop on Graph Neural Networks and Systems. 1–9.

[18] Loc Hoang, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. 2021. CuSP:
A Customizable Streaming Edge Partitioner for Distributed Graph Analytics.
SIGOPS Oper. Syst. Rev. 55, 1 (jun 2021), 47–60. https://doi.org/10.1145/3469379.
3469385

[19] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[20] Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng Shen. 2021.
Understanding and bridging the gaps in current GNN performance optimizations.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (Virtual Event, Republic of Korea) (PPoPP ’21). Association
for Computing Machinery, New York, NY, USA, 119–132. https://doi.org/10.
1145/3437801.3441585

[21] Anand Padmanabha Iyer, Aurojit Panda, Shivaram Venkataraman, Mosharaf
Chowdhury, Aditya Akella, Scott Shenker, and Ion Stoica. 2018. Bridging the GAP:
towards approximate graph analytics. In Proceedings of the 1st ACM SIGMOD
Joint International Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA) (Houston, Texas) (GRADES-NDA
’18). Association for Computing Machinery, New York, NY, USA, Article 10,
5 pages. https://doi.org/10.1145/3210259.3210269

[22] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Improv-
ing the accuracy, scalability, and performance of graph neural networks with
roc. Proceedings of Machine Learning and Systems 2 (2020), 187–198.

[23] Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Iliopoulos, Tao
Schardl, Charles E. Leiserson, and Jie Chen. 2022. Accelerating Training and
Inference of Graph Neural Networks with Fast Sampling and Pipelining. In
Proceedings of Machine Learning and Systems, D. Marculescu, Y. Chi, and C. Wu
(Eds.), Vol. 4. 172–189. https://proceedings.mlsys.org/paper_files/paper/2022/
file/afacc5db3e0e85b446e6c7727cd7dca5-Paper.pdf

[24] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1
(1998), 359–392.

[25] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the 5th International Conference
on Learning Representations (Palais des Congrès Neptune, Toulon, France) (ICLR
’17). https://openreview.net/forum?id=SJU4ayYgl

[26] Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection. In Proceedings
of the 22nd International Conference on World Wide Web (Rio de Janeiro, Brazil)
(WWW ’13 Companion). Association for Computing Machinery, New York, NY,
USA, 1343–1350. https://doi.org/10.1145/2487788.2488173

[27] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[28] Dongyue Li, Tao Yang, Lun Du, Zhezhi He, and Li Jiang. 2021. AdaptiveGCN:
Efficient GCN Through Adaptively Sparsifying Graphs. In Proceedings of the 30th
ACM International Conference on Information & Knowledge Management (Virtual
Event, Queensland, Australia) (CIKM ’21). Association for Computing Machinery,
New York, NY, USA, 3206–3210. https://doi.org/10.1145/3459637.3482049

[29] Yongsub Lim, U Kang, and Christos Faloutsos. 2014. SlashBurn: Graph Compres-
sion andMining beyond Caveman Communities. IEEE Transactions on Knowledge
and Data Engineering 26, 12 (Dec 2014), 3077–3089. https://doi.org/10.1109/
TKDE.2014.2320716

[30] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020. PaGraph:
Scaling GNN training on large graphs via computation-aware caching. In Pro-
ceedings of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA)
(SoCC ’20). Association for Computing Machinery, New York, NY, USA, 401–415.
https://doi.org/10.1145/3419111.3421281

[31] Husong Liu, Shengliang Lu, Xinyu Chen, and Bingsheng He. 2020. G3: when
<u>g</u>raph neural networks meet parallel <u>g</u>raph processing systems
on <u>G</u>PUs. Proc. VLDB Endow. 13, 12 (aug 2020), 2813–2816. https:
//doi.org/10.14778/3415478.3415482

[32] Renjie Liu, Yichuan Wang, Xiao Yan, Zhenkun Cai, Minjie Wang, Haitian Jiang,
Bo Tang, and Jinyang Li. 2024. DiskGNN: Bridging I/O Efficiency and Model
Accuracy for Out-of-Core GNN Training. arXiv preprint arXiv:2405.05231 (2024).

[33] Tianfeng Liu, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He, Yanghua
Peng, Hongzheng Chen, Hongzhi Chen, and Chuanxiong Guo. 2023. BGL: GPU-
Efficient GNN Training by Optimizing Graph Data I/O and Preprocessing. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23).
USENIX Association, Boston, MA, 103–118. https://www.usenix.org/conference/
nsdi23/presentation/liu-tianfeng

[34] Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, and Dongrui Fan. 2022.
Sampling Methods for Efficient Training of Graph Convolutional Networks: A
Survey. IEEE/CAA Journal of Automatica Sinica 9, 2 (2022), 205–234. https:
//doi.org/10.1109/JAS.2021.1004311

[35] Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, Dongrui Fan, Shirui
Pan, and Yuan Xie. 2022. Survey on Graph Neural Network Acceleration: An
Algorithmic Perspective. In Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI-22, Lud De Raedt (Ed.). International
Joint Conferences on Artificial Intelligence Organization, 5521–5529. https:
//doi.org/10.24963/ijcai.2022/772 Survey Track.

[36] Ruben Mayer and Hans-Arno Jacobsen. 2021. Hybrid Edge Partitioner: Parti-
tioning Large Power-Law Graphs under Memory Constraints. In Proceedings of
the 2021 International Conference on Management of Data (Virtual Event, China)
(SIGMOD/PODS ’21). Association for Computing Machinery, New York, NY, USA,
14. https://doi.org/10.1145/3448016.3457300

[37] Ruben Mayer, Kamil Orujzade, and Hans-Arno Jacobsen. 2022. Out-of-Core Edge
Partitioning at Linear Run-Time. In 2022 IEEE 38th International Conference on
Data Engineering (ICDE). 2629–2642. https://doi.org/10.1109/ICDE53745.2022.
00242

305

https://doi.org/10.14778/3236187.3236208
https://doi.org/10.1109/IPDPS.2016.110
https://doi.org/10.1109/IISWC.2018.8573478
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.286.5439.509
https://doi.org/10.1109/IISWC50251.2020.00031
https://doi.org/10.1109/IISWC50251.2020.00031
https://doi.org/10.1145/3295500.3356182
https://doi.org/10.1145/3295500.3356182
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://openreview.net/forum?id=rytstxWAW
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/800195.805928
https://doi.org/10.1145/800195.805928
https://www.usenix.org/conference/osdi21/presentation/gandhi
https://www.usenix.org/conference/osdi21/presentation/gandhi
https://doi.org/10.14778/3297753.3297754
https://doi.org/10.1145/3469379.3469385
https://doi.org/10.1145/3469379.3469385
https://doi.org/10.1145/3437801.3441585
https://doi.org/10.1145/3437801.3441585
https://doi.org/10.1145/3210259.3210269
https://proceedings.mlsys.org/paper_files/paper/2022/file/afacc5db3e0e85b446e6c7727cd7dca5-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/afacc5db3e0e85b446e6c7727cd7dca5-Paper.pdf
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/2487788.2488173
http://snap.stanford.edu/data
https://doi.org/10.1145/3459637.3482049
https://doi.org/10.1109/TKDE.2014.2320716
https://doi.org/10.1109/TKDE.2014.2320716
https://doi.org/10.1145/3419111.3421281
https://doi.org/10.14778/3415478.3415482
https://doi.org/10.14778/3415478.3415482
https://www.usenix.org/conference/nsdi23/presentation/liu-tianfeng
https://www.usenix.org/conference/nsdi23/presentation/liu-tianfeng
https://doi.org/10.1109/JAS.2021.1004311
https://doi.org/10.1109/JAS.2021.1004311
https://doi.org/10.24963/ijcai.2022/772
https://doi.org/10.24963/ijcai.2022/772
https://doi.org/10.1145/3448016.3457300
https://doi.org/10.1109/ICDE53745.2022.00242
https://doi.org/10.1109/ICDE53745.2022.00242

[38] Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evange-
los Georganas, Alexander Heinecke, Dhiraj Kalamkar, Nesreen K. Ahmed, and
Sasikanth Avancha. 2021. DistGNN: Scalable Distributed Training for Large-Scale
Graph Neural Networks. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (St. Louis, Missouri)
(SC ’21). Association for Computing Machinery, New York, NY, USA, Article 76,
14 pages. https://doi.org/10.1145/3458817.3480856

[39] Nikolai Merkel, Ruben Mayer, Tawkir Ahmed Fakir, and Hans-Arno Jacobsen.
2023. Partitioner Selection with EASE to Optimize Distributed Graph Processing.
In 2023 IEEE 39th International Conference on Data Engineering (ICDE). 2400–2414.
https://doi.org/10.1109/ICDE55515.2023.00185

[40] Nikolai Merkel, Daniel Stoll, Ruben Mayer, and Hans-Arno Jacobsen. 2025. An
Experimental Comparison of Partitioning Strategies for Distributed Graph Neu-
ral Network Training. In Proceedings 28th International Conference on Extending
Database Technology, EDBT 2025, Barcelona, Spain, March 25-28, 2025. OpenPro-
ceedings.org, 171–184. https://doi.org/10.48786/EDBT.2025.14

[41] Mark EJ Newman. 2003. The structure and function of complex networks. SIAM
review 45, 2 (2003), 167–256.

[42] Joel Nishimura and Johan Ugander. 2013. Restreaming Graph Partitioning:
Simple Versatile Algorithms for Advanced Balancing. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(Chicago, Illinois, USA) (KDD ’13). Association for Computing Machinery, New
York, NY, USA, 9. https://doi.org/10.1145/2487575.2487696

[43] Anil Pacaci and M. Tamer Özsu. 2019. Experimental Analysis of Stream-
ing Algorithms for Graph Partitioning. In Proceedings of the 2019 Interna-
tional Conference on Management of Data (Amsterdam, Netherlands) (SIG-
MOD ’19). Association for Computing Machinery, New York, NY, USA, 18.
https://doi.org/10.1145/3299869.3300076

[44] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,
and Jure Leskovec. 2020. PinnerSage: Multi-Modal User Embedding Framework
for Recommendations at Pinterest. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (Virtual Event,
CA, USA) (KDD ’20). Association for Computing Machinery, New York, NY, USA,
2311–2320. https://doi.org/10.1145/3394486.3403280

[45] Md Anwarul Kaium Patwary, Saurabh Garg, and Byeong Kang. 2019. Window-
Based Streaming Graph Partitioning Algorithm. In Proceedings of the Australasian
Computer Science Week Multiconference (Sydney, NSW, Australia) (ACSW 2019).
Association for Computing Machinery, New York, NY, USA, Article 51, 10 pages.
https://doi.org/10.1145/3290688.3290711

[46] Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong
Cao. 2022. Sancus: staleness-aware communication-avoiding full-graph decen-
tralized training in large-scale graph neural networks. Proc. VLDB Endow. 15, 9
(may 2022), 1937–1950. https://doi.org/10.14778/3538598.3538614

[47] Jordi Petit. 2004. Experiments on the Minimum Linear Arrangement Problem.
ACM J. Exp. Algorithmics 8, Article 2.3 (dec 2004), 33 pages. https://doi.org/10.
1145/996546.996554

[48] Fabio Petroni, Leonardo Querzoni, Khuzaima Daudjee, Shahin Kamali, and Gior-
gio Iacoboni. 2015. HDRF: Stream-Based Partitioning for Power-Law Graphs. In
Proceedings of the 24th ACM International on Conference on Information and Knowl-
edge Management (Melbourne, Australia) (CIKM ’15). Association for Computing
Machinery, New York, NY, USA, 10. https://doi.org/10.1145/2806416.2806424

[49] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:
Towards Deep Graph Convolutional Networks on Node Classification. In Inter-
national Conference on Learning Representations. https://openreview.net/forum?
id=Hkx1qkrKPr

[50] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web: 15th International Conference, ESWC 2018,
Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15. Springer, 593–607.

[51] Daniel A. Spielman and Nikhil Srivastava. 2008. Graph sparsification by effective
resistances. In Proceedings of the Fortieth Annual ACM Symposium on Theory
of Computing (Victoria, British Columbia, Canada) (STOC ’08). Association for
Computing Machinery, New York, NY, USA, 563–568. https://doi.org/10.1145/
1374376.1374456

[52] Rakshith S Srinivasa, Cao Xiao, Lucas Glass, Justin Romberg, and Jimeng Sun.
2020. Fast graph attention networks using effective resistance based graph
sparsification. arXiv preprint arXiv:2006.08796 (2020).

[53] Isabelle Stanton and Gabriel Kliot. 2012. Streaming Graph Partitioning for
Large Distributed Graphs. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Beijing, China) (KDD
’12). Association for Computing Machinery, New York, NY, USA, 1222–1230.
https://doi.org/10.1145/2339530.2339722

[54] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, Yoshua Bengio, et al. 2017. Graph attention networks. stat 1050, 20 (2017),
10–48550.

[55] Shiv Verma, Luke M. Leslie, Yosub Shin, and Indranil Gupta. 2017. An Experimen-
tal Comparison of Partitioning Strategies in Distributed Graph Processing. Proc.
VLDB Endow. 10, 5 (Jan. 2017), 12. https://doi.org/10.14778/3055540.3055543

[56] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

[57] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. nature 393, 6684 (1998), 440–442.

[58] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup Graph
Processing by Graph Ordering. In Proceedings of the 2016 International Con-
ference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 1813–1828.
https://doi.org/10.1145/2882903.2915220

[59] Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chenguang Zheng,
James Cheng, and Fan Yu. 2021. Seastar: vertex-centric programming for graph
neural networks. In Proceedings of the Sixteenth European Conference on Com-
puter Systems (Online Event, United Kingdom) (EuroSys ’21). Association for
Computing Machinery, New York, NY, USA, 359–375. https://doi.org/10.1145/
3447786.3456247

[60] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong Chen,
Wenyuan Yu, and Jingren Zhou. 2022. GNNLab: a factored system for sample-
based GNN training over GPUs. In Proceedings of the Seventeenth European
Conference on Computer Systems. 417–434.

[61] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph convolutional net-
works for text classification. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 33. 7370–7377.

[62] Yang Ye and Shihao Ji. 2023. Sparse Graph Attention Networks. IEEE Transactions
on Knowledge and Data Engineering 35, 1 (2023), 905–916. https://doi.org/10.
1109/TKDE.2021.3072345

[63] Peiqi Yin, Xiao Yan, Jinjing Zhou, Qiang Fu, Zhenkun Cai, James Cheng, Bo Tang,
and Minjie Wang. 2023. DGI: An Easy and Efficient Framework for GNN Model
Evaluation. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (Long Beach, CA, USA,) (KDD ’23). Association for
Computing Machinery, New York, NY, USA, 5439–5450. https://doi.org/10.1145/
3580305.3599805

[64] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[65] Hao Yuan, Yajiong Liu, Yanfeng Zhang, Xin Ai, Qiange Wang, Chaoyi Chen, Yu
Gu, and Ge Yu. 2024. Comprehensive Evaluation of GNN Training Systems: A
Data Management Perspective. Proc. VLDB Endow. 17, 6 (may 2024), 1241–1254.
https://doi.org/10.14778/3648160.3648167

[66] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and
Viktor K. Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive
Learning Method. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https:
//openreview.net/forum?id=BJe8pkHFwS

[67] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V.
Chawla. 2019. Heterogeneous Graph Neural Network. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(Anchorage, AK, USA) (KDD ’19). Association for Computing Machinery, New
York, NY, USA, 793–803. https://doi.org/10.1145/3292500.3330961

[68] Chenzi Zhang, Fan Wei, Qin Liu, Zhihao Gavin Tang, and Zhenguo Li. 2017.
Graph Edge Partitioning via Neighborhood Heuristic. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(Halifax, NS, Canada) (KDD ’17). Association for Computing Machinery, New
York, NY, USA, 10. https://doi.org/10.1145/3097983.3098033

[69] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe, and
Matei Zaharia. 2017. Making caches work for graph analytics. In 2017 IEEE
International Conference on Big Data (Big Data). 293–302. https://doi.org/10.
1109/BigData.2017.8257937

[70] Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu,
Changji Li, James Cheng, Hao Yang, and Shuai Zhang. 2022. ByteGNN: efficient
graph neural network training at large scale. Proceedings of the VLDB Endowment
15, 6 (2022), 1228–1242.

[71] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu,
Haifeng Chen, and Wei Wang. 2020. Robust Graph Representation Learning
via Neural Sparsification. In Proceedings of the 37th International Conference on
Machine Learning (Proceedings of Machine Learning Research), Hal Daumé III and
Aarti Singh (Eds.), Vol. 119. PMLR, 11458–11468. https://proceedings.mlr.press/
v119/zheng20d.html

[72] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. Distdgl: distributed graph neural
network training for billion-scale graphs. In 2020 IEEE/ACM 10th Workshop on
Irregular Applications: Architectures and Algorithms (IA3). IEEE, 36–44.

[73] Da Zheng, Xiang Song, Qi Zhu, Jian Zhang, Theodore Vasiloudis, Runjie Ma,
Houyu Zhang, Zichen Wang, Soji Adeshina, Israt Nisa, et al. 2024. GraphStorm:
all-in-one graph machine learning framework for industry applications. arXiv

306

https://doi.org/10.1145/3458817.3480856
https://doi.org/10.1109/ICDE55515.2023.00185
https://doi.org/10.48786/EDBT.2025.14
https://doi.org/10.1145/2487575.2487696
https://doi.org/10.1145/3299869.3300076
https://doi.org/10.1145/3394486.3403280
https://doi.org/10.1145/3290688.3290711
https://doi.org/10.14778/3538598.3538614
https://doi.org/10.1145/996546.996554
https://doi.org/10.1145/996546.996554
https://doi.org/10.1145/2806416.2806424
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=Hkx1qkrKPr
https://doi.org/10.1145/1374376.1374456
https://doi.org/10.1145/1374376.1374456
https://doi.org/10.1145/2339530.2339722
https://doi.org/10.14778/3055540.3055543
https://doi.org/10.1145/2882903.2915220
https://doi.org/10.1145/3447786.3456247
https://doi.org/10.1145/3447786.3456247
https://doi.org/10.1109/TKDE.2021.3072345
https://doi.org/10.1109/TKDE.2021.3072345
https://doi.org/10.1145/3580305.3599805
https://doi.org/10.1145/3580305.3599805
https://doi.org/10.14778/3648160.3648167
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=BJe8pkHFwS
https://doi.org/10.1145/3292500.3330961
https://doi.org/10.1145/3097983.3098033
https://doi.org/10.1109/BigData.2017.8257937
https://doi.org/10.1109/BigData.2017.8257937
https://proceedings.mlr.press/v119/zheng20d.html
https://proceedings.mlr.press/v119/zheng20d.html

preprint arXiv:2406.06022 (2024).
[74] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong

Li, and Jingren Zhou. 2019. AliGraph: a comprehensive graph neural network
platform. Proc. VLDB Endow. 12, 12 (aug 2019), 2094–2105. https://doi.org/10.

14778/3352063.3352127
[75] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.

2019. Layer-dependent importance sampling for training deep and large graph
convolutional networks. Curran Associates Inc., Red Hook, NY, USA.

307

https://doi.org/10.14778/3352063.3352127
https://doi.org/10.14778/3352063.3352127

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Neural Network Training
	2.2 Graph Reordering

	3 Experimental Methodology
	4 Results
	4.1 Overall Performance
	4.2 Influence of GNN Parameters
	4.3 Influence of Graph Characteristics
	4.4 Influence of Infastructure
	4.5 GPU vs. CPU-based Training
	4.6 Graph Reordering Quality Metrics
	4.7 Graph Reordering Selection
	4.8 Graph Reordering Time Amortization
	4.9 Sampling

	5 Lessons Learned
	6 Related Work
	7 Conclusions
	References

