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ABSTRACT
Given a group size𝑚 and a sensitive dataset 𝐷 , group privacy (GP)

releases information about 𝐷 (e.g., weights of a neural network

trained on 𝐷) with the guarantee that the adversary cannot infer

with high confidence whether the underlying data is 𝐷 or a neigh-

boring dataset 𝐷′
that differs from 𝐷 by𝑚 records. GP generalizes

the well-established notion of differential privacy (DP) for protect-

ing individuals’ privacy; in particular, when 𝑚 = 1, GP reduces

to DP. Compared to DP, GP is capable of protecting the sensitive

aggregate information of a group of up to𝑚 individuals, e.g., the

average annual income among members of a yacht club. Despite its

longstanding presence in the research literature and its promising

applications, GP is often treated as an afterthought, with most ap-

proaches first developing a differential privacy (DP) mechanism and

then using a generic conversion to adapt it for GP, treating the DP

solution as a black box. As we point out in the paper, this method-

ology is suboptimal when the underlying DP solution involves

subsampling, e.g., in the classic DP-SGD method for training deep

learning models. In this case, the DP-to-GP conversion is overly

pessimistic in its analysis, leading to high error and low utility in

the published results under GP.

Motivated by this, we propose a novel analysis framework that

provides tight privacy accounting for subsampled GP mechanisms.

Instead of converting a black-box DPmechanism to GP, our solution

carefully analyzes and utilizes the inherent randomness in subsam-

pled mechanisms, leading to a substantially improved bound on the

privacy loss with respect to GP. The proposed solution applies to a

wide variety of foundational mechanisms with subsampling. Exten-

sive experiments with real datasets demonstrate that compared to

the baseline convert-from-blackbox-DP approach, our GP mecha-

nisms achieve noise reductions of over an order of magnitude in

several practical settings, including deep neural network training.
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1 INTRODUCTION
With the rapid advances of machine learning techniques, data pri-

vacy has become a growing concern, and simple measures often

fail to provide adequate protection to prevent leakage of sensitive

information [25, 45]. Differential privacy (DP) [19, 20] is a strong

and rigorous standard for ensuring individuals’ privacy, which has

gained adoption in industry [4, 14, 22] and widespread interest in

academia [1, 7, 8, 15, 17, 32, 36, 39, 60]. In many practical scenarios,

however, safeguarding only individual-level information may be

insufficient, as aggregates over a group of individuals can also be

highly sensitive [26, 27, 30, 31, 38, 47]. For instance, the income

distribution of a bank’s private banking customers can be a critical

business secret. To tackle this issue, one natural approach is to

extend the notion of DP to group privacy (GP), which protects the

aggregate information of a group of individuals.

Specifically, a randomized algorithm A satisfies GP with group

size𝑚 if, for any pair of neighbor datasets 𝐷 and 𝐷′
differing by

𝑚 records, the output distributions of A(𝐷) and A(𝐷′) are guar-
anteed to be indistinguishable in an information-theoretic sense,

measured by specific privacy parameters, elaborated later in Sec-

tion 2. In the special case that𝑚 = 1, this reduces to the classic DP

definition. Note that the privacy guarantee in GP indicates that no

group of𝑚 records can have a significant impact on A’s output

distribution; hence, the larger the group size𝑚, the stronger the

guarantee. A foundational approach for achieving GP (which in-

cludes its special case DP) is to perturb the exact (i.e., non-private)

result by injecting a calibrated amount of random noise [16]. In-

tuitively, a larger group size𝑚, which corresponds to a stronger

privacy guarantee, requires a higher amount of injected random

noise to satisfy GP, leading to lower result utility.

Since DP is a hot research topic, many well-optimized solutions

are available for enforcing DP in various problem settings. To satisfy

the more general GP requirement, a common approach (e.g., [42]) is

to convert an existing DP mechanism through a generic conversion

procedure. Intuitively, since DP is a special case of GP with𝑚 = 1,

we can obtain a GP-compliant mechanism by scaling the noise

injected by DP by a factor that depends on the value of𝑚. Note that

here, the conversion algorithm is generic, meaning that it treats

the underlying DP mechanism as a black box without considering

the unique properties of the problem or the DP solution.

In this paper, we focus on the problem of releasing analysis

results under GP, where the analysis involves random subsampling,
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Figure 1: High-level idea: the existing solution converts a
black-box DP mechanism, while our approach conducts a
direct, white-box-style privacy analysis.

as follows. Given an input dataset 𝐷 and an analysis algorithm

F , each record in 𝐷 is randomly selected into a subset 𝑆 with a

probability of𝑞 (0 < 𝑞 < 1); after that, the analysis result is obtained

by performing F on the subset 𝑆 instead of the entire dataset 𝐷 .

A notable example of subsampled analysis is stochastic gradient

descent (SGD), which is commonly used to train large-scalemachine

learning models such as neural networks. It has been shown that for

such applications, the amount of noise required to satisfy DP can

be significantly reduced through sophisticated privacy accounting

methods that exploit properties of subsampling [1, 5, 43, 51, 61],

e.g., in the classic DP-SGD algorithm [1] for deep learning with DP.

The intuition is that subsampling already provides a certain level

of privacy protection, in the sense that as long as an individual

record is not included in the sample set 𝑆 , no information about this

record is leaked even in the exact result F (𝑆). This inherent privacy
protection is amplified as the sampling rate 𝑞 becomes lower.

Main observation. To enforce GP with a given group size𝑚 on

subsampled analysis results, a baseline approach would be to take

the corresponding DP mechanism and apply the above-mentioned

generic conversion, by scaling the random noise by a factor deter-

mined by𝑚. The problem with this approach is that the generic

conversion, clarified in Section 2.2, treats the underlying DP mech-

anism as a black box and, thus, fails to utilize the inherent ran-

domness introduced by subsampling, leading to suboptimal result

utility. To illustrate, consider two neighbor datasets 𝐷 and 𝐷′
that

differ by𝑚 records, and a subsampling analysis that selects each

record with probability 𝑞. Let 𝑆 and 𝑆 ′ be the sample sets obtained

from 𝐷 and 𝐷′
, respectively; for simplicity, let’s consider the case

that the same random seed is used to obtain both 𝑆 and 𝑆 ′. Then,
intuitively, 𝑆 and 𝑆 ′ should differ by 𝑞𝑚 records in expectation,

rather than𝑚, which has a vanishingly low probability of 𝑞𝑚 ≪ 1.

To be more precise, the number of different records between 𝑆

and 𝑆 ′ follows the binomial distribution 𝐵(𝑚,𝑞), with mean 𝑞𝑚 and

variance 𝑞(1−𝑞)𝑚. When 𝑞 is sufficiently low, e.g., 𝑞 = 𝑂 (1/𝑚), the
variance of 𝐵(𝑚,𝑞) becomes a constant, in which case the number

of different records between 𝑆 and 𝑆 ′ is tightly concentrated around
its mean value 𝑞𝑚. This hints that we might be able to achieve GP

by scaling the noise injected by DP by a factor that depends on 𝑞𝑚,

which is significantly smaller than𝑚 as in the baseline approach.

Our contributions. In this paper, we establish a refined group

privacy bound for subsampled mechanisms through a more so-

phisticated and precise privacy analysis. Our analysis follows the

framework of Rényi group privacy (RGP) [42], which enables more

accurate privacy guarantees for subsampled and iterative mech-

anisms such as DP-SGD [1]. Further, an RGP mechanism can be

transformed to satisfy traditional notions of GP, as elaborated in

Section 2.1. Unlike existingmethods that simply convert a black-box

DP mechanism, our approach is subsampling-aware, which directly

analyzes the Rényi divergence between the output distributions of

the subsampled analysis on pairs of datasets that differ by𝑚 records,

as illustrated in Figure 1. This direct, white-box-style analysis of-

fers several advantages for tightening up the RGP guarantee: (i) it

accounts for specific algorithmic characteristics, such as the shape

of the output distribution; (ii) it harnesses the inherent randomness

in subsampled mechanisms for amplifying the privacy guarantee;

and (iii) it significantly reduces the impact of worst-case scenarios

on group privacy guarantees. These properties help significantly

enhance our RGP guarantee for subsampled mechanisms.

Through rigorous theoretical analysis, we prove that our bound,

in general, offers a substantially improved RGP guarantee compared

to previous methods for the subsampled mechanisms. For instance,

in the case of the subsampled Gaussian mechanism [43], a core

component in many widely-used privacy-preserving algorithms,

including DP-SGD and its adaptations [2, 7, 26, 56, 61], our bound

leads to noise reduction by a multiplicative factor of approximately

𝑂 (𝑚0.58) compared to existing methods, where𝑚 is the group size.

Further, we prove the tightness of our general RGP bound for sub-

sampled mechanisms. Specifically, we first establish an analytical

lower bound of RGP guarantee for subsampled mechanisms by con-

structing a carefully crafted pair of neighboring datasets. Then, we

show that our proposed RGP analysis asymptotically matches this

lower bound, thereby justifying the tightness of our RGP bound.

Besides asymptotic improvements, the proposed RGP analysis

framework has practical implications across various applications,

in the sense that concrete instantiations of our RGP bound can be

employed to derive significantly improved RGP guarantees for var-

ious privacy-preserving algorithms. Specifically, we present exact,

closed-form RGP bounds for several widely-used mechanisms, in-

cluding the subsampled Gaussian, Laplace, Skellam (which is often

used to enforce DP in secure federated learning [2, 7]), and Ran-

domized Response (commonly used in local DP [22]) mechanisms.

A result that might be of independent interest is that our analysis

for the subsampled Laplace mechanism is not only a significant

improvement for the RGP guarantee but for the popular Rényi

differential privacy (RDP) definition as well. Specifically, for the

𝑑-dimensional Laplace mechanism, existing RDP methods, to our

knowledge, all involve privacy composition, which accumulates pri-

vacy costs in each dimension. In other words, this approach incurs

a multiplicative factor of Ω(𝑑) in the privacy cost, which is prohib-

itively high when 𝑑 is large. To tackle this issue, we formulate the

task of deriving a privacy guarantee for the 𝑑-dimensional Laplace

mechanism as a constrained optimization problem, and demon-

strate that this problem can be simplified to a more manageable

one-dimensional scenario, thereby avoiding the composition.

Finally, we conduct a thorough comparison of the proposed GP

bound with existing methods through numerical experiments. The
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results demonstrate a significant improvement of our method over

existing ones, typically by over an order of magnitude in terms of

injected error scale. Our results also validate the tightness of our

RGP bound, which closely matches the theoretical lower bound

under a wide range of configurations. In addition, we apply our

results to enforcing GP on SGD for deep neural network train-

ing, using the MNIST, Fashion-MNIST, and CIFAR-10 benchmark

datasets. The results show that compared to existing methods, our

solution consistently achieves considerably higher model utility

across different group sizes and privacy parameter settings.

2 PRELIMINARIES
2.1 Group Privacy
First, we formally define the notion of neighbor datasets, which is

a major building block of the GP guarantee, as follows.

Definition 2.1 (𝑚-neighboring datasets). Two datasets 𝐷 and 𝐷′

are𝑚-neighboring datasets if and only if they differ by𝑚 records.

In the above definition, parameter𝑚 is referred to as the group
size. When𝑚 is clear from the context, we simply call 𝐷 and 𝐷′

neighbor databases. Note that there are two cases that 𝐷 and 𝐷′

differ by𝑚-records: (i) 𝐷′
can be obtained by adding or removing𝑚

records from𝐷 , which is referred to as the unbounded definition [18,
29], and (ii) 𝐷′

can be obtained by replacing𝑚 existing records in

𝐷 , which is called the bounded definition [20, 29]. Accordingly, GP

defined using the bounded (resp., unbounded) definition of neighbor

databases is referred to as bounded (resp, unbounded) GP.

Next we present the classic definition of GP, as follows.

Definition 2.2 ((𝑚, 𝜖, 𝛿)-Group Privacy [21, 49]). A randomized
algorithm A satisfies (𝑚, 𝜖, 𝛿)-DP if, for any two 𝑚-neighboring
datasets𝐷,𝐷′, and for any subset of possible outputs O ⊆ 𝑅𝑎𝑛𝑔𝑒 (A),
it holds that

Pr [A (𝐷) ∈ O] ≤ 𝑒𝜖 Pr
[
A

(
𝐷′) ∈ O

]
+ 𝛿. (1)

A notable special case is that when𝑚 = 1, (𝑚, 𝜖, 𝛿)-GP reduces to
(𝜖, 𝛿)-differential privacy [19, 20]. The parameters 𝜖 and 𝛿 control

the trade-off between privacy and utility. Smaller values of 𝜖 and 𝛿

result in more similar output distributions of A on the neighbor

datasets 𝐷 and 𝐷′
, thereby providing stronger privacy protection.

Meanwhile, as mentioned in Section 1, the group size𝑚 also affects

the GP guarantee: a larger𝑚 prevents leakage of information (both

individual and aggregate) derived from a larger group of individuals,

which corresponds to a stronger guarantee, and vice versa.

Note that by definition, only a randomized algorithm can satisfy

GP. Given a deterministic algorithm F , we can ensure GP by inject-

ing random noise to F ’s output [16], where the noise magnitude

scales inversely with the privacy parameters 𝜖 and 𝛿 , and at the

same time positively correlated with the group size𝑚 [20].

Rényi group privacy (RGP) [42]. RGP is an alternative notion

of group privacy that measures the indistinguishability between

outputs of a randomized algorithm A using Rényi divergence [44].

RGP is particularly effective in accurately tracking cumulative pri-

vacy costs in iterative and subsampledmechanisms, due to its strong

privacy composition property [42, 43], explained shortly. For this

reason, the Rényi differential privacy (which is a special case of

RGP with group size𝑚 = 1) plays a pivotal role in the analyses of

the DP-SGD algorithm [1, 43] as well as its variants [2, 7, 26, 56, 61].

Formally, Rényi divergence and RGP are defined as follows.

Definition 2.3 (Rényi Divergence [44, 50]). Given two probability
distributions 𝑃 and 𝑄 that are defined on the same probability space
Z, let 𝑃 (𝑧) and 𝑄 (𝑧) denote the densities of 𝑃 and 𝑄 at 𝑧 ∈ Z. The
Rényi divergence of a finite order 𝛼 > 1 is

𝐷𝛼 (𝑃 ∥𝑄) =
1

𝛼 − 1

logE𝑧∼𝑄

[(
𝑃 (𝑧)
𝑄 (𝑧)

)𝛼 ]
. (2)

Definition 2.4 ((𝑚,𝛼, 𝜏)-Rényi Group Privacy [42]). A randomized
algorithm A is said to satisfy (𝑚,𝛼, 𝜏)-Rényi group privacy (RGP), if
for any pair of𝑚-neighboring datasets 𝐷 and 𝐷′, we have

𝐷𝛼 (A(𝐷)∥A(𝐷′)) ≤ 𝜏,

where 𝐷𝛼 (·∥·) is the Rényi divergence of order 𝛼 .

When the group size 𝑚 = 1, the (𝑚,𝛼, 𝜏)-RGP is referred to

as (𝛼, 𝜏)-Rényi differential privacy (RDP). The following lemma

presents the sequential composition property of RGP. As mentioned

above, this property is particularly useful for iterative mechanism

design (e.g., in DP-SGD [1] and its variants), in which privacy cost

accumulates across the iterations.

Lemma 2.1 (Sequential Composition of RGP [42]). LetM1 : D ↦→
R1 and M2 : R1 × D ↦→ R2 be two randomized mechanisms
with independent source of randomness that satisfy (𝑚,𝛼, 𝜏1) and
(𝑚,𝛼, 𝜏2)-RGP, respectively. Then the combination of these two mech-
anisms, defined by M1,2 (𝐷) := (M1 (𝐷),M2 (M1 (𝐷), 𝐷)), satisfies
(𝑚,𝛼, 𝜏1 + 𝜏2)-RGP.

Finally, an (𝑚,𝛼, 𝜏)-RGP can be converted into an (𝑚, 𝜖, 𝛿)-GP
guarantee for any 𝛿 ∈ (0, 1) through the following lemma:

Lemma 2.2 (From RGP to GP [6, 12]). If a randomized algorithm
A satisfies (𝑚,𝛼, 𝜏)-RGP, then for all 𝛿 ∈ (0, 1), the algorithm A
also satisfies (𝑚, 𝜖, 𝛿)-GP, where

𝜖 = 𝜏 + log(1/𝛿) + (𝛼 − 1) log(1 − 1/𝛼) − log𝛼

𝛼 − 1

.

In practice, given a 𝛿 and an𝑚, we determine the final (𝑚, 𝜖, 𝛿)-
group privacy guarantee by minimizing 𝜖 over 𝛼 using Lemma 2.2.

Typically, 𝛼 ranges from 2 to 100, as commonly seen in production-

ready libraries such as TensorFlow Privacy
1
, Opacus

2
, and autodp

3
.

2.2 From RDP to RGP
We now introduce the existing general methodology for converting

RDP guarantees to RGP guarantees.

Lemma 2.3 (From RDP to RGP [42]). Let 𝑐 ∈ N be an arbitrary
positive integer. If A satisfies (𝛼, 𝜏)-RDP and 𝛼 ≥ 2

𝑐+1, then

𝐷𝛼/2𝑐 (𝐷 ∥𝐷′) ≤ 3
𝑐𝜏,

for all pairs of 2𝑐 -neighboring datasets 𝐷 and 𝐷′.

Accordingly, to convert a (𝛼 , 𝜏)-RDP to RGP with a given group

size𝑚, we can first find 𝑐 ∈ N such that 2
𝑐 ≥ 𝑚, and then scale

down 𝛼 to obtain 𝛼 ′ = 𝛼
2
𝑐 , and at the same time scale up 𝜏 to

1
https://github.com/tensorflow/privacy

2
https://github.com/pytorch/opacus

3
https://github.com/yuxiangw/autodp
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𝜏 ′ = 3
𝑐𝜏 , to obtain the corresponding (𝑚, 𝛼 ′, 𝜏 ′)-RGP guarantee.

Observe that since the above lemma is only applicable for 𝑐 ∈ N,
the conversion needs to increase𝑚 to the next power of two. Since

𝜏 is scaled up by a factor of 3
𝑐
which is approximately𝑚1.58

(since

log(3)
log(2) ≈ 1.58), this leads to a rather conservative bound on privacy

cost, and, thus, high error scale required to satisfy RGP. As we shall

elaborate in Sections 3 and 4, our results can derive (𝑚,𝛼, 𝜏)-RGP
guarantees for any𝑚 ∈ N, overcoming this issue.

Lastly, wemention that references [21, 49] in which GP is defined

also include a basic DP-to-GP conversion method that transforms

a (𝜖′, 𝛿 ′)-DP guarantee to (𝑚, 𝜖, 𝛿)-GP, where 𝜖 = 𝑚𝜖′ and 𝛿 =

𝑒𝑚𝜖′−1
𝑒𝜖

′−1 𝛿 ′. Note that as 𝜖′ grows, 𝛿 approaches 𝑒𝑚𝛿 ′, which can

become excessively large even with a moderate group size𝑚, e.g.,

64. In practice, it is often required that 𝛿 is no more than 𝑜 (1/𝑛)
where 𝑛 is the number of records in the underlying dataset, since

otherwise, one can release the exact value of a random record while

still satisfying GP. Further, as mentioned before, the (𝑚, 𝜖, 𝛿)-GP
definition does not have the nice composition properties of RGP (i.e.,

Lemma 2.1) and, thus, is not easy to use for iterative algorithms such

as SGD. Hence, this paper focuses on the RGP definition [42] and

the corresponding RDP-to-RGP conversion rule described above.

2.3 Subsampled Mechanism
Let 𝐷 be a dataset and let A be a randomized algorithm. We adopt

the definition of the subsampled mechanism used in the DP-SGD

algorithm [1, 43], as follows.

Definition 2.5 (Subsampled Mechanism). Given an input dataset
𝐷 , the subsampled mechanism constructs a subset 𝑆 ⊆ 𝐷 by including
each record 𝑥 ∈ 𝐷 into 𝑆 independently with a fixed probability of
𝑞 ∈ (0, 1). A is then performed on 𝑆 to produce the privatized output.
Formally, this is defined as:

M(𝐷) ≜ (A ◦ Subsample) (𝐷) = A(Subsample(𝐷)),

where Subsample(𝐷) denotes the subsampling procedure that con-
structs the subset 𝑆 from 𝐷 .

The output distribution ofM is essentially a mixture distribu-

tion, where the distributions of A(𝑆) for all 𝑆 ⊆ 𝐷 are the mixed

components, and their corresponding mixture weights are the prob-

abilities of 𝑆 being sampled. In other words, the distribution of

M(𝐷) can be expressed as:

M(𝐷) ∼
∑︁
𝑆⊆𝐷

𝑝𝑆A(𝑆),

where 𝑝𝑆 denotes the probability of constructing the subset 𝑆 ⊆ 𝐷 .

Note that in the literature, different mechanisms may use different

subsampling procedures. For instance, in DPIS [53], each record is

selected into the sample set 𝑆 based on a probability computed based

on an importance measure of the record. Another approach [51]

involves uniformly sampling a subset from all possible subsets

of a predetermined set size. In this paper, we focus on the most

widely-used subsampling procedure, which samples each record

independently with a constant probability 𝑞. This scheme is used in

DP-SGD [1] as well as several of its variants [2, 7, 26, 56, 61]. The

analysis of group privacy guarantees on other types of subsampled

mechanisms will be considered in future work.

3 MAIN RESULTS
This section presents themain results of the paper: a refined, generic

privacy cost upper bound for subsampled mechanisms under RGP.

This is essentially a subsampling-aware privacy accounting frame-

work, whose concrete instantiations for specific subsampling mech-

anisms are presented later in Section 4. The key insight that we

utilize for deriving the refined RGP bound is that the subsampling

procedure amplifies group privacy. More detailed explanations of

this insight behind our analysis are provided in Appendix A of the

full version [28].

In what follows, we first introduce this generic RGP bound for

subsampled mechanisms in Section 3.1 and derive its corresponding

proof in Section 3.2. Then, in Section 3.3, we prove the tightness of

our RGP bound.

3.1 General RGP Bound
The following theorem presents our general upper bound on the

privacy cost under RGP for subsampled mechanisms.

Theorem 3.1 (RGP upper bound of Subsampled Mechanisms). Let
M := A ◦ Subsample be a subsampled mechanism with a sampling
rate𝑞 ∈ (0, 1). IfA satisfies (𝑘, 𝛼, 𝜏∗

𝑘
(𝛼))-bounded (resp. unbounded)

RGP for 𝑘 ∈ {0, 1, . . . ,𝑚}, then M satisfies (𝑚,𝛼, 𝜏𝑚 (𝛼))-bounded
(resp. unbounded) RGP, where

𝜏𝑚 (𝛼) = 1

𝛼 − 1

log

(
𝑚∑︁
𝑘=0

(
𝑚

𝑘

)
(1 − 𝑞)𝑚−𝑘𝑞𝑘 exp

(
(𝛼 − 1)𝜏∗

𝑘
(𝛼)

))
.

The above theorem generally applies to all subsampled mecha-

nisms with a constant sampling rate. To apply this upper bound

to determine the exact RGP guarantee of a specific subsampled

mechanismM = A◦Subsample, a practitioner needs to determine

the RGP guarantee 𝜏∗
𝑘
(𝛼) ofA for each group size 𝑘 ∈ {0, 1, . . . ,𝑚}.

In practice, the algorithm A is often derived from well-studied DP

mechanisms, such as the Gaussian mechanism. Hence, we can usu-

ally bypass the existing RDP-to-RGP conversion method (Lemma

2.3), which is rather conservative as explained in Section 2.2, and

directly derive a tight group privacy guarantee using properties of

these well-studied mechanisms, elaborated in Section 4.

3.2 Proof of Our General RGP Bound
The proof of Theorem 3.1 is established by deriving upper bounds

for both 𝐷𝛼 (M(𝐷)∥M(𝐷′)) and 𝐷𝛼 (M(𝐷′)∥M(𝐷)), where 𝐷

and 𝐷′
are a pair of𝑚-neighboring datasets. In what follows, we

first establish the upper bound of the unbounded RGP guarantee for

M, and then derive the upper bound of the bounded RGP guarantee.

Ensuring unbounded RGP. Assume thatA satisfies (𝑘, 𝛼, 𝜏∗
𝑘
(𝛼))-

unbounded RGP for each 𝑘 ∈ {0, 1, . . . ,𝑚}. Without loss of gen-

erality, consider 𝐷 and 𝐷′
as a pair of unbounded𝑚-neighboring

datasets such that 𝐷 ⊂ 𝐷′
, with |𝐷 | = 𝑛 and |𝐷′ \𝐷 | =𝑚. Let B :=

{𝐵 | 𝐵 ⊆ 𝐷} denote the power set of 𝐷 , and J := {𝐽 | 𝐽 ⊆ 𝐷′ \ 𝐷}
represent the power set of 𝐷′ \ 𝐷 . Let 𝑝𝐵 denote the probability

that 𝐵 is the outcome of the subsampling process Subsample(𝐷).
Since the Subsample procedure places each record into the subset

𝐵 independently with a constant probability 𝑞, the values of 𝑝𝐵 are

identical for both M(𝐷) and M(𝐷′). Similarly, denote by 𝑝 𝐽 the

probability that 𝐽 is subsampled by M(𝐷′) from 𝐷′ \ 𝐷 . Then, the
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output distributions of M(𝐷) and M(𝐷′) can be expressed as

M(𝐷) ∼
∑︁
𝐵∈B

𝑝𝐵A(𝐵) and M(𝐷′) ∼
∑︁
𝐵∈B

𝑝𝐵

∑︁
𝐽 ∈J

𝑝 𝐽 A(𝐵 ∪ 𝐽 ).

To establish the RGP guarantee for M, we seek to upper bound

𝐷𝛼 (M(𝐷)∥M(𝐷′)) and 𝐷𝛼 (M(𝐷′)∥M(𝐷)) simultaneously. Be-

ginning with the term 𝐷𝛼 (M(𝐷′)∥M(𝐷)), we have

𝐷𝛼 (M(𝐷′)∥M(𝐷)) =𝐷𝛼
©«
∑︁
𝐵∈B

𝑝𝐵

∑︁
𝐽 ∈J

𝑝 𝐽 A(𝐵 ∪ 𝐽 )

 ∑︁
𝐵∈B

𝑝𝐵A(𝐵)ª®¬
≤ sup

𝐵

𝐷𝛼
©«
∑︁
𝐽 ∈J

𝑝 𝐽 A(𝐵 ∪ 𝐽 )

A(𝐵)ª®¬, (3)

where the inequality follows from the joint quasi-convexity of Rényi

divergence (see Corollary B.1 in the full version [28]).

Define𝐵 := argmax𝐵∈B 𝐷𝛼

(∑
𝐽 ∈J 𝑝 𝐽 A(𝐵 ∪ 𝐽 )

A(𝐵)
)
. Denote

by 𝝁 𝐽 and 𝝁0 the probability density functions (pdfs) of A(𝐵 ∪ 𝐽 )
and A(𝐵), respectively. Then by (3), we can further simplify the

upper bound of 𝐷𝛼 (M(𝐷′)∥M(𝐷)) as follows:

𝐷𝛼

(
M(𝐷′)

M(𝐷)
)
≤ 𝐷𝛼

©«
∑︁
𝐽 ∈J

𝑝 𝐽 𝝁 𝐽

𝝁0ª®¬. (4)

The upper bound of the term𝐷𝛼 (M(𝐷)∥M(𝐷′)) is derived sim-

ilarly. Let 𝐵′ := argmax𝐵∈B 𝐷𝛼

(
A(𝐵)

∑
𝐽 ∈J 𝑝 𝐽 A(𝐵 ∪ 𝐽 )

)
and

denote by 𝝁′
𝐽
and 𝝁′

0
the pdfs ofA(𝐵′ ∪ 𝐽 ) andA(𝐵′), respectively.

It then holds that

𝐷𝛼

(
M(𝐷)

M(𝐷′)
)
≤ 𝐷𝛼

©«𝝁′0
 ∑︁
𝐽 ∈J

𝑝 𝐽 𝝁
′
𝐽

ª®¬. (5)

Let 𝐴𝛼 and 𝐴′
𝛼 denote the right hand side (RHS) of (4) and

(5), respectively. The subsampled mechanism M then satisfies

(𝑚,𝛼,max{𝐴𝛼 , 𝐴
′
𝛼 })-unbounded RGP. We proceed by establishing

an upper bound for max{𝐴𝛼 , 𝐴
′
𝛼 }. For the term 𝐴𝛼 , we have

𝐴𝛼 =
1

𝛼 − 1

logE𝑧∼𝝁0

[(∑
𝐽 ∈J 𝑝 𝐽 𝝁 𝐽 (𝑧)

𝝁0 (𝑧)

)𝛼 ]
=

1

𝛼 − 1

log

∫
Z

(∑
𝐽 ∈J 𝑝 𝐽 𝝁 𝐽 (𝑧)

)𝛼
𝝁0 (𝑧)𝛼−1

d𝑧

≤ 1

𝛼 − 1

log
©«
∑︁
𝐽 ∈J

𝑝 𝐽

∫
Z

𝝁 𝐽 (𝑧)𝛼

𝝁0 (𝑧)𝛼−1
d𝑧

ª®¬
=

1

𝛼 − 1

log
©«
∑︁
𝐽 ∈J

𝑝 𝐽 exp
(
(𝛼 − 1)𝐷𝛼 (𝝁 𝐽 ∥𝝁0)

)ª®¬, (6)

where the inequality follows from the convexity of the function

𝑓 (𝑥) = 𝑥𝛼 for all 𝛼 > 1, and the last equality is derived from the

definition of Rényi divergence.

Let J𝑘 := {𝐽 ∈ J | |𝐽 | = 𝑘}. Because A satisfies (𝑘, 𝛼, 𝜏∗
𝑘
(𝛼))-

unbounded RGP, it is established that 𝐷𝛼

(
𝝁 𝐽

𝝁0) ≤ 𝜏∗
𝑘
(𝛼) for all

𝐽 ∈ J𝑘 . Consequently, it follows that

(6) = 1

𝛼 − 1

log
©«
𝑚∑︁
𝑘=0

∑︁
𝐽 ∈J𝑘

𝑝 𝐽 exp
(
(𝛼 − 1)𝐷𝛼 (𝝁 𝐽 ∥𝝁0)

)ª®¬
≤ 1

𝛼 − 1

log

(
𝑚∑︁
𝑘=0

𝑝𝑘 exp

(
(𝛼 − 1)𝜏∗

𝑘
(𝛼)

))
, (7)

where 𝑝𝑘 :=
∑

𝐽 ∈J𝑘 𝑝 𝐽 .
We now proceed to upper bound the term 𝐴′

𝛼 . Because Rényi

divergence is convex in its second term (see Lemma B.2 in [28]),

we immediately obtain

𝐴′
𝛼 = 𝐷𝛼

©«𝝁′0
∑︁𝐽 𝑝 𝐽 𝝁

′
𝐽

ª®¬ ≤
∑︁
𝐽

𝑝 𝐽 𝐷𝛼

(
𝝁′
0

𝝁′𝐽 ) ≤
𝑚∑︁
𝑘=0

𝑝𝑘𝜏
∗
𝑘
(𝛼). (8)

Denote by 𝐴𝛼 and 𝐴′
𝛼 the RHS of (7) and (8), respectively. Given

the concavity of the logarithm function, we have

𝐴𝛼 =
1

𝛼 − 1

log

(
𝑚∑︁
𝑘=0

𝑝𝑘 exp

(
(𝛼 − 1)𝜏∗

𝑘
(𝛼)

))
≥ 1

𝛼 − 1

𝑚∑︁
𝑘=0

𝑝𝑘 log

(
exp

(
(𝛼 − 1)𝜏∗

𝑘
(𝛼)

))
=

𝑚∑︁
𝑘=0

𝑝𝑘𝜏
∗
𝑘
(𝛼) = 𝐴′

𝛼 .

Therefore, max{𝐴𝛼 , 𝐴
′
𝛼 } can be upper bounded as:

max{𝐴𝛼 , 𝐴
′
𝛼 } ≤ max{𝐴𝛼 , 𝐴

′
𝛼 }

= 𝐴𝛼 =
1

𝛼 − 1

log

(
𝑚∑︁
𝑘=0

𝑝𝑘 exp

(
(𝛼 − 1)𝜏∗

𝑘
(𝛼)

))
. (9)

Recall that in the underlying subsampledmechanism, each record

in 𝐷′ \ 𝐷 is randomly selected into the input subset independently

with a fixed probability 𝑞. Accordingly, the number of records in 𝐽

follows a binomial distribution with𝑚 trials and success probability

𝑞. Hence, we have

𝑝𝑘 =

(
𝑚

𝑘

)
(1 − 𝑞)𝑚−𝑘𝑞𝑘 . (10)

Substituting (10) into (9) yields the privacy guarantee with re-

spect to unbounded RGP.

Ensuring bounded RGP. We slightly abuse the notations and

let 𝐷 and 𝐷′
be a pair of 𝑚-bounded neighboring datasets with

|𝐷 | = |𝐷′ | = 𝑛. Without loss of generality, we assume that 𝐷 and

𝐷′
differ in the last 𝑚 records. Suppose A satisfies (𝑘, 𝛼, 𝜏∗

𝑘
(𝛼))-

bounded RGP for each 𝑘 ∈ {0, 1, . . . ,𝑚}. Define I := {𝐼 | 𝐼 ⊆
{1, 2, . . . , 𝑛}} as the power set of the indices {1, 2, . . . , 𝑛} and let

𝐷𝐼 := {𝒙𝑖 | 𝑖 ∈ 𝐼 , 𝒙𝑖 ∈ 𝐷} be the set of records in 𝐷 indexed by 𝐼 .

Denote by 𝑝𝐼 the probability that the subset 𝐷𝐼 is the outcome of

Subsample(𝐷). Consequently, the output distributions of M(𝐷)
and M(𝐷′) can be expressed as:

M(𝐷) ∼
∑︁
𝐼 ∈I

𝑝𝐼A(𝐷𝐼 ) and M(𝐷′) ∼
∑︁
𝐼 ∈I

𝑝𝐼A(𝐷′
𝐼 ).
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Let 𝝂𝐼 and 𝝂
′
𝐼
denote the pdfs of A(𝐷𝐼 ) and A(𝐷′

𝐼
). Then

𝐷𝛼 (M(𝐷)∥M(𝐷′)) = 1

𝛼 − 1

log

∫
Z

(∑
𝐼 ∈I 𝑝𝐼𝝂𝐼 (𝑧)

)𝛼(∑
𝐼 ∈I 𝑝𝐼𝝂

′
𝐼
(𝑧)

)𝛼−1 d𝑧
≤ 1

𝛼 − 1

log

(∑︁
𝐼 ∈I

𝑝𝐼

∫
Z

𝝂𝐼 (𝑧)𝛼
𝝂 ′
𝐼
(𝑧)𝛼−1

d𝑧

)
=

1

𝛼 − 1

log

(∑︁
𝐼 ∈I

𝑝𝐼 exp
(
(𝛼 − 1)𝐷𝛼 (𝝂𝐼 ∥𝝂 ′𝐼 )

))
,

where the inequality is due to a joint convexity argument (see

Lemma B.4 in [28]). Similarly, we have

𝐷𝛼 (M(𝐷′)∥M(𝐷)) ≤ 1

𝛼 − 1

log

(∑︁
𝐼 ∈I

𝑝𝐼 exp
(
(𝛼 − 1)𝐷𝛼 (𝝂 ′𝐼 ∥𝝂𝐼 )

))
.

LetI𝑘 := {𝐼 ∈ I | |𝐷𝐼 \𝐷′
𝐼
| = 𝑘} denote the set of 𝐼 such that𝐷𝐼 and

𝐷′
𝐼
differ by 𝑘 records, then we have

∑
𝐼 ∈I𝑘 𝑝𝐼 = 𝑝𝑘 . Since A sat-

isfies (𝑘, 𝛼, 𝜏∗
𝑘
(𝛼))-bounded RGP, both 𝐷𝛼 (𝝂 ′𝐼 ∥𝝂𝐼 ) and 𝐷𝛼 (𝝂𝐼 ∥𝝂 ′𝐼 )

are upper bounded by 𝜏∗
𝑘
(𝛼) for all 𝐼 ∈ I𝑘 . Therefore, it follows that

(𝛼 − 1) ·max

{
𝐷𝛼 (M(𝐷)∥M(𝐷′)), 𝐷𝛼 (M(𝐷′)∥M(𝐷))

}
≤ log

(
𝑚∑︁
𝑘=0

∑︁
𝐼 ∈I𝑘

𝑝𝐼 exp
(
(𝛼 − 1) ·max

{
𝐷𝛼 (𝝂𝐼 ∥𝝂 ′𝐼 ), 𝐷𝛼 (𝝂 ′𝐼 ∥𝝂𝐼 )

}))
≤ log

(
𝑚∑︁
𝑘=0

𝑝𝑘 exp

(
(𝛼 − 1)𝜏∗

𝑘
(𝛼)

))
,

thereby completing the proof for bounded group privacy after sub-

stituting the 𝑝𝑘 into (10).

Note that in the above analysis, we implicitly assume that the

probability density functions 𝝁𝑘 and 𝝂𝐼 are continuous for simplic-

ity. In discrete scenarios, one can readily confirm the validity of the

above result by substituting integrals with summations. Therefore,

Theorem 3.1 is applicable to both continuous and discrete scenarios.

3.3 Tightness of Our General RGP Bound
Next, we demonstrate that the RGP bound in Theorem 3.1 is as-

ymptotic optimal. Specifically, we first establish a lower bound for

the privacy cost of subsampled mechanisms under RGP, and then

show that the established lower bound and the upper bound in The-

orem 3.1 match up to an additive constant factor. This lower bound

is obtained by constructing a pair of binary and one-dimensional

𝑚-neighboring datasets 𝐷 and 𝐷′
, as follows:

𝐷 = {0, 0, . . . , 0} and 𝐷′ = 𝐷 ∪ {1, 1, . . . , 1︸     ︷︷     ︸
𝑚 records

}. (11)

Let A be a Gaussian mechanism that takes a binary dataset

as the input and output the sum of its records in a differentially

private manner, i.e., A(𝐷) = ∑
𝑥∈𝐷 𝑥 + N(0, 𝜎2), where N(0, 𝜎2)

denotes the Gaussian noise with mean 0 and variance 𝜎2. Define

M(·) := A ◦ Subsample(·) as a subsampled Gaussian mechanism

with a sampling rate 𝑞, and denote by 𝜇𝑘 the pdf of the distribution

N(𝑘, 𝜎2) for 𝑘 ∈ N, then we have M(𝐷) ∼ 𝜇0 and M(𝐷′) ∼∑𝑚
𝑘=0

𝑝𝑘𝜇𝑘 , where 𝑝𝑘 =
(𝑚
𝑘

)
(1 − 𝑞)𝑚−𝑘𝑞𝑘 .

Now suppose that A satisfies (𝑘, 𝛼, 𝜏∗
𝑘
(𝛼))-unbounded RGP and

M satisfies (𝑚,𝛼, 𝜏𝑚 (𝛼))-unbounded RGP. This immediately im-

plies that 𝜏𝑚 (𝛼) ≥ 𝐷𝛼 (M(𝐷′)∥M(𝐷)). Hence, we obtain:

𝜏𝑚 (𝛼) ≥ 1

𝛼 − 1

logE𝜇0

[(∑𝑚
𝑘=0

𝑝𝑘𝜇𝑘

𝜇0

)𝛼 ]
≥ 1

𝛼 − 1

logE𝜇0

[
𝑚∑︁
𝑘=0

𝑝𝛼
𝑘

(
𝜇𝑘

𝜇0

)𝛼 ]
=

1

𝛼 − 1

log

(
𝑚∑︁
𝑘=0

𝑝𝛼
𝑘
E𝜇0

[(
𝜇𝑘

𝜇0

)𝛼 ])
=

1

𝛼 − 1

log

(
𝑚∑︁
𝑘=0

𝑝𝛼
𝑘
exp

(
(𝛼 − 1)𝜏∗

𝑘
(𝛼)

))
, (12)

where the last equality holds because a direct calculation verifies

that E𝜇0 [(𝜇𝑘/𝜇0)𝛼 ] = 𝛼𝑘2/2𝜎2, which attains the RGP guarantee

of the Gaussian mechanism A (see Lemma 4.2). Define

Ξ+
𝛼,𝑚,𝑞 :=

𝑚∑︁
𝑘=0

(
𝑚

𝑘

)
(1 − 𝑞)𝑚−𝑘𝑞𝑘 exp

(
(𝛼 − 1)𝜏∗

𝑘
(𝛼)

)
,

Ξ−
𝛼,𝑚,𝑞 :=

𝑚∑︁
𝑘=0

((
𝑚

𝑘

)
(1 − 𝑞)𝑚−𝑘𝑞𝑘

)𝛼
exp

(
(𝛼 − 1)𝜏∗

𝑘
(𝛼)

)
,

then by Theorem 3.1 and (12), the upper and lower bounds of the

group privacy guarantee of M can be expressed as
1

𝛼−1 logΞ
+
𝛼,𝑚,𝑞

and
1

𝛼−1 logΞ
−
𝛼,𝑚,𝑞 , respectively.

We proceed to compare the terms Ξ+
𝛼,𝑚,𝑞 and Ξ−

𝛼,𝑚,𝑞 . Note that

𝑚∑︁
𝑘=0

((
𝑚

𝑘

)
(1 − 𝑞)𝑚−𝑘𝑞𝑘

)𝛼
≥
((
𝑚

0

)
(1 − 𝑞)𝑚𝑞0

)𝛼
=(1 − 𝑞)𝑚𝛼 ≥ 1 − 𝑞𝑚𝛼, (13)

where the last inequality follows from the Bernoulli’s inequality.

Define 𝑐𝛼 := max{(𝛼 − 1)𝜏∗
𝑘
(𝛼)}𝑚

𝑘=0
. With an appropriate setting

for the injected noise to satisfy group privacy (e.g., 𝜎 = Θ(𝑚) in
Gaussian mechanisms, elaborate later in Section 4.1), 𝑐𝛼 becomes a

constant depending solely on 𝛼 . Thus, we derive:

Ξ+
𝛼,𝑚,𝑞 − Ξ−

𝛼,𝑚,𝑞 =

𝑚∑︁
𝑘=0

(
𝑝𝑘 − 𝑝𝛼

𝑘

)
𝑒 ( (𝛼−1)𝜏

∗
𝑘
(𝛼 ) )

≤ 𝑒𝑐𝛼

(
𝑚∑︁
𝑘=0

𝑝𝑘 −
𝑚∑︁
𝑘=0

𝑝𝛼
𝑘

)
= 𝑒𝑐𝛼

(
1 −

𝑚∑︁
𝑘=0

𝑝𝛼
𝑘

)
≤ 𝑒𝑐𝛼𝑞𝑚𝛼,

where the last inequality follows from (13). By applying the mean

value theorem to the logarithm function, we can verify that the

upper and lower bounds, i.e.,
1

𝛼−1 logΞ
+
𝛼,𝑚,𝑞 and

1

𝛼−1 logΞ
−
𝛼,𝑚,𝑞 ,

match up to an additive factor 𝑂 (𝑒𝑐𝛼𝑞𝑚𝛼). Setting 𝑞𝑚 = 𝑂 (1) and
treating terms influenced by 𝛼 as constants implies that the upper

and lower bounds match up to an additive constant factor, implying

the asymptotic tightness of our bound.

Remark. As we show soon in Section 4.1, the RGP upper and lower

bounds discussed above for the DP-SGD algorithm match up to an

additive factor of 𝑂 (𝛼𝑒𝛼2 ), provided that the noise scale 𝜎 = Θ(𝑚)
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and 𝑞𝑚 = 𝑂 (1). Further, although the above description uses the

subsampled Gaussian mechanism as an example, the analysis of

the lower bound can be adapted for other mechanisms, which is

detailed in Appendix D of the full version [28].

While asymptotic results provide valuable insights on the op-

timality of our general RGP bound, for practical applications, we

also need concrete bounds for calibrating the noise levels. In the

next section, we further derive closed-form group privacy bounds

for a range of widely-used subsampled mechanisms.

4 APPLICATIONS
This section presents closed-form group privacy bounds for various

privacy-preserving subsampled mechanisms. In what follows, we

denote by 𝑓 the algorithm intended for privatization under RGP.

We first present a lemma which is instrumental in deriving tight

RGP bounds for non-subsampled mechanisms, i.e., the term 𝜏∗
𝑘
(𝛼)

in Theorem 3.1. This lemma serves as a useful tool for deriving

closed-form RGP guarantees for subsampled Gaussian, Laplace, and

Skellam mechanisms, detailed in the following subsections.

Lemma 4.1. Let 𝑓 : D ↦→ R𝑑 be a function that maps a dataset
to a 𝑑-dimensional vector and let ∥ · ∥ be an arbitrary norm. If
∥ 𝑓 (𝐷) − 𝑓 (�̂�)∥ ≤ 𝐶 holds for any pair of bounded (resp. unbounded)
1-neighboring datasets 𝐷 and �̂� that differ by one record, then for all
𝑘 ∈ N, it holds that ∥ 𝑓 (𝐷) − 𝑓 (𝐷′)∥ ≤ 𝑘𝐶 for any pair of bounded
(resp. unbounded) 𝑘-neighboring datasets 𝐷 and 𝐷′.

Proof. The lemma is established by applying the triangle in-

equality of norms and the principle of mathematical induction. □

4.1 Subsampled Gaussian Mechanism
We now establish the closed-form RGP bound for the subsampled

Gaussian mechanism, which is a fundamental component in many

popular privacy-preserving applications, most notably DP-SGD [1].

Let 𝑓 : D ↦→ R𝑑 denote the algorithm for which ∥ 𝑓 (𝐷) − 𝑓 (�̂�)∥2 ≤
𝐶 holds for all pairs of datasets differing by one record. The Gaussian

mechanism that privatizes the algorithm 𝑓 is defined as follows:

A(𝐷) = 𝑓 (𝐷) + N (0,𝐶2𝜎2I𝑑 ),
where N(0,𝐶2𝜎2I𝑑 ) represents the spherical 𝑑-dimensional Gauss-

ian noise with per-coordinate variance 𝐶2𝜎2.

For any pair of 𝑘-neighboring dataset 𝐷 and 𝐷′
, the Rényi diver-

gence between A(𝐷) and A(𝐷′) can be upper bounded as:

𝐷𝛼

(
N

(
𝑓 (𝐷),𝐶2𝜎2I𝑑

)N (
𝑓 (𝐷′),𝐶2𝜎2I𝑑

))
(a)
= 𝐷𝛼

(
N

(
𝑓 (𝐷) − 𝑓 (𝐷′),𝐶2𝜎2I𝑑

)N (
0,𝐶2𝜎2I𝑑

))
(b)
≤ sup

∥v∥2≤𝑘𝐶
𝐷𝛼

(
N(v,𝐶2𝜎2I𝑑 )

N(0,𝐶2𝜎2I𝑑 )
)

(c)
= sup

∥v∥2≤𝑘𝐶

𝑑∑︁
𝑖=1

𝐷𝛼

(
N(v[𝑖],𝐶2𝜎2)

N(0,𝐶2𝜎2)
)

(d)
= sup

∥v∥2≤𝑘𝐶

𝑑∑︁
𝑖=1

𝛼v[𝑖]2
2𝐶2𝜎2

= sup

∥v∥2≤𝑘𝐶

𝛼 ∥v∥2
2

2𝐶2𝜎2
=
𝛼𝑘2

2𝜎2
, (14)

where (a) follows from the invariance of Rényi divergence under

invertible transformations, which is a variation of the more general

data processing inequality [50]; (b) is derived from Lemma 4.1; (c)

follows from the additivity of Rényi divergence (see Lemma B.3 in

[28]); (d) follows from the closed-form Rényi divergence between

Gaussian distributions (see Lemma B.5 in [28]). Here, v[𝑖] denotes
the 𝑖-th element of vector v. It is worth noting that the upper bound

in (14), i.e., 𝛼𝑘2/2𝜎2, can be attained by specific 𝑓 and 𝐷 , affirming

the tightness of our analysis.

Accordingly, we establish the RGP guarantee for the Gaussian

mechanism as follows:

Lemma 4.2. Let A be a Gaussian mechanism defined as above, it
holds that A satisfies (𝑘, 𝛼, 𝜏 = 𝛼𝑘2

2𝜎2
)-RGP for all 𝑘 ∈ N.

Comparing the above result with the generic RDP-to-RGP con-

version in Lemma 2.3, observe that the former applies to any group

size, whereas the latter is limited to the case where the group size

is a power of two, i.e., 2
𝑐
for 𝑐 ∈ N. Further, Lemma 4.2 above

leads to the same value of 𝛼 in both the RDP (i.e., by setting 𝑘 = 1)

and RGP (𝑘 > 1), where as in Lemma 2.3, the converted RGP uses

a lower 𝛼 ′ = 𝛼
2
𝑐 . If, in Lemma 4.2, we also aim to satisfy RGP

with this smaller 𝛼 ′, with 𝑘 = 2
𝑐
, we would have 𝜏 = 𝛼 ′𝑘2

2𝜎2
= 𝛼𝑘

2𝜎2
,

which grows linearly with the group size 𝑘 , rather than with 𝑘1.58

as discussed in Section 2.2. Hence, the above lemma provides a

more refined privacy analysis compared to the naive RDP-to-RGP

conversion approach.

Next, we extend our refined, closed-form privacy cost analysis

to the subsampled Gaussian mechanism. Combining Lemma 4.2

with Theorem 3.1, we arrive at the following theorem.

Theorem 4.1. Let M := A ◦ Subsample denote the subsampled
Gaussian mechanism with sampling rate 𝑞 ∈ (0, 1), where A is the
Gaussian mechanism defined above. Then,M satisfies (𝑚,𝛼, 𝜏𝑚 (𝛼))-
RGP, with

𝜏𝑚 (𝛼) = 1

𝛼 − 1

log

(
𝑚∑︁
𝑘=0

(
𝑚

𝑘

)
(1 − 𝑞)𝑚−𝑘𝑞𝑘 exp

(
(𝛼 − 1)𝛼𝑘2

2𝜎2

))
.

The following theorem shows that with respect to the subsam-

pled Gaussian mechanism, the above result achieves an asymptoti-

cally improved privacy guarantee compared to baseline solution of

RDP-to-RGP conversion through Lemma 2.3.

Theorem 4.2. Consider a subsampled Gaussian mechanism M
with a sampling rate 𝑞 ∈ (0, 1) and variance 𝜎2. Let 𝛼 > 1 be any
integer. We denote by (𝑚,𝛼, 𝜏 ′𝑚 (𝛼)) and (𝑚,𝛼, 𝜏𝑚 (𝛼)) the unbounded
RGP guarantees of M derived using Lemma 2.3 and Theorem 4.1,
respectively. If 𝜎 = Θ(𝑚) and 𝑞𝑚 > 1, our bound 𝜏𝑚 (𝛼) saves a
multiplicative factor of Θ(𝑚log

2
1.5) compared to 𝜏 ′𝑚 (𝛼).

Proof sketch. The complete proof is deferred to Appendix C.1

of the full version [28]. Here we present the proof sketch as follows.

Both the RGP bounds derived by the baseline solution and our

solution can be expressed in a binomial expression-like form that

includes exponential terms. These terms are rather complicated

to compare directly. To address this challenge, we approximate

these exponential terms using polynomials via Taylor’s theorem.

This approximation allows the RGP bounds to be asymptotically

expressed as the summation of high moments of binomial distribu-

tions, yielding simpler and clearer bounds. Accordingly, we derive

asymptotic improvements based on these refined bounds. □
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Remark. The above theorem indicates that our RGP bound signifi-

cantly enhances the privacy guarantee for the DP-SGD algorithm,

on the condition that 𝜎 = Θ(𝑚) and 𝑞𝑚 > 1. Note that these two

conditions align with the conditions in the remark toward the end

of Section 3.3, signifying that our bound is provably tight for DP-

SGD while saving a Θ(𝑚log
2
1.5) ≈ Θ(𝑚0.58) multiplicative factor

4

in terms of RGP guarantee compared to the baseline method.

4.2 Subsampled Laplace Mechanism
The Laplace mechanism [20] is among the most widely used mech-

anisms for achieving DP in numerous practical applications [8,

17, 21, 39, 58]. Let 𝑓 : D ↦→ R𝑑 denote the algorithm for which

∥ 𝑓 (𝐷)− 𝑓 (�̂�)∥1 ≤ 𝐶 is satisfied for all pairs of neighboring datasets

that differ by one record. The Laplace mechanism is defined as

A(𝐷) = 𝑓 (𝐷) + Lap(0,𝐶𝑏I𝑑 ),

where Lap(0,𝐶𝑏I𝑑 ) denotes the 𝑑-dimensional Laplace noise with

per-coordinate scale factor𝐶𝑏, i.e., each coordinate is independently

drawn from the one-dimensional Laplace distribution Lap(0,𝐶𝑏).
We can upper bound the Rényi divergence between A(𝐷) and

A(𝐷′) for any pair of 𝑘-neighboring datasets 𝐷 and 𝐷′
as follows:

𝐷𝛼 (Lap(𝑓 (𝐷),𝐶𝑏I𝑑 )∥Lap(𝑓 (𝐷′),𝐶𝑏I𝑑 ))
(a)
= 𝐷𝛼

(
Lap(𝑓 (𝐷) − 𝑓 (𝐷′),𝐶𝑏I𝑑 )

Lap(0,𝐶𝑏I𝑑 ))
(b)
≤ sup

∥v∥1≤𝑘𝐶

𝑑∑︁
𝑖=1

𝐷𝛼 (Lap(v[𝑖],𝐶𝑏)∥Lap(0,𝐶𝑏))

(c)
= sup

∥v∥1≤𝑘𝐶

1

𝛼 − 1

𝑑∑︁
𝑖=1

log

{
𝛼

2𝛼 − 1

exp

(
(𝛼 − 1)v[𝑖]

𝐶𝑏

)
+ 𝛼 − 1

2𝛼 − 1

exp

(
−𝛼v[𝑖]
𝐶𝑏

)}
, (15)

where (a) follows from the invariance of Rényi divergence under

invertible transformations; (b) follows from Lemma 4.1 and the ad-

ditivity of Rényi divergence (see Lemma B.3 in the full version [28]);

(c) follows from the closed-form Rényi divergence between Laplace

distributions (see Lemma B.6 in [28]).

The subsequent task is to derive a closed-form upper bound

of (15). Unlike the Gaussian mechanism, the expression in (15)

is rather complicated, and thus identifying its maximum is not

straightforward. To address this, we formulate the following con-

strained optimization problem, which is equivalent to determining

the maximum of (15):

maximize{𝑥𝑖 }

𝑑∑︁
𝑖=1

log

{
𝛼

2𝛼 − 1

exp

(
(𝛼 − 1)𝑥𝑖

𝐶𝑏

)
+ 𝛼 − 1

2𝛼 − 1

exp

(−𝛼𝑥𝑖
𝐶𝑏

)}
4
Based on our analysis in Appendix C.1 of the full version [28], we can derive that

when the Gaussian variance satisfies 𝜎 = Θ(𝑚) , our RGP guarantee is upper bounded

by 𝛼𝑞2/2 as𝑚 becomes large, while the baseline RGP guarantee is lower bounded by

𝑚log
2
1.5𝛼𝑞2/4 ≈𝑚0.58𝛼𝑞2/4. Therefore, a more accurate bound on the improvement

is𝑚0.58/2. In Theorem 4.2, we use the big-oh notation to demonstrate the asymptotic

improvement of our result, simplifying the expression by ignoring constant factors.

subject to

𝑑∑︁
𝑖=1

|𝑥𝑖 | ≤ 𝑘𝐶. (16)

Next, we introduce the following lemmas, which are crucial tools

for solving the above constraint optimization problem.

Lemma 4.3. The function 𝑓 (𝑥) = log

(
𝑐1𝑒

𝛽1𝑥 + 𝑐2𝑒−𝛽2𝑥
)
is convex

for 𝑐1, 𝑐2, 𝛽1, 𝛽2 ∈ (0,∞).

Proof. See Appendix C.2 of the full version [28]. □

Lemma 4.4 (Bauer’s Maximum Principle [9]). A maximum of a
convex function over a closed and bounded convex set is achieved at
an extreme point.

We are now ready to solve the optimization problem (15). Note

that for all 𝛼 > 1, we have
𝛼

2𝛼−1 > 0,
𝛼−1
2𝛼−1 > 0,

𝛼−1
𝐶𝑏

> 0, and

𝛼
𝐶𝑏

> 0. Thus, by Lemma 4.3, the objective function of (16) is
convex. Moreover, the domain of this objective function is a con-

vex polyhedron (an 𝐿1-ball), with vertices constituting its extreme

points. Consequently, by Lemma 4.4, the maximum of (15) is at-
tained at v = 𝑘𝐶 · e for some vector e in the standard basis. Denote

by e𝑖 the 𝑖-th element of the vector e, then we have

(15) ≤ 1

𝛼 − 1

𝑑∑︁
𝑖=1

log

{
𝛼

2𝛼 − 1

exp

(
(𝛼 − 1)𝑘𝐶e𝑖

𝐶𝑏

)
+ 𝛼 − 1

2𝛼 − 1

exp

(
−𝛼𝑘𝐶e𝑖
𝐶𝑏

)}
=

1

𝛼 − 1

log

{
𝛼

2𝛼 − 1

exp

(
(𝛼 − 1)𝑘

𝑏

)
+ 𝛼 − 1

2𝛼 − 1

exp

(
−𝛼𝑘
𝑏

)}
.

(17)

Substituting (17) into Theorem 3.1 establishes the following group

privacy guarantee for the subsampled Laplace mechanism:

Theorem 4.3. LetM := A ◦ Subsample be a subsampled Laplace
mechanism with sampling rate 𝑞 ∈ (0, 1), where A is the Laplace
mechanism defined above. Then,M satisfies (𝑚,𝛼, 𝜏𝑚 (𝛼))-RGP, where

𝜏𝑚 (𝛼) = 1

𝛼 − 1

log

(
𝑚∑︁
𝑘=0

(
𝑚

𝑘

)
(1 − 𝑞)𝑚−𝑘𝑞𝑘ΦLap

𝑘
(𝛼)

)
,

with

Φ
Lap
𝑘

(𝛼) = 𝛼

2𝛼 − 1

exp

(
(𝛼 − 1)𝑘

𝑏

)
+ 𝛼 − 1

2𝛼 − 1

exp

(
−𝛼𝑘
𝑏

)
.

Remark. The above result is not only interesting for RGP, but

also for the RDP setting. Before this work, the best known RDP

guarantee to our knowledge for 𝑑-dimensional Laplace mechanism

(i.e., Theorem 11 in [13]) accumulates privacy cost across all 𝑑-

dimensions, i.e., by applying privacy composition 𝑑 times, which

incurs a multiplicative factor of 𝑑 . In contrast, our analysis reduces

the problem to a simpler, one-dimensional case by carefully ex-

amining the conditions leading to the worst-case scenario. This

approach allows us to derive a privacy guarantee without using

composition, thus achieving a significant improvement.

Meanwhile, it is also important to note that the fact that our

analysis bypasses privacy composition does not imply a violation

of the well-established Ω(
√
𝑑) error bound of A from [16]. The

329



Laplace noise is proportional to the 𝐿1 norm of the output, and thus,

the error associated with the Laplace mechanism still (implicitly)

depends on the output dimension 𝑑 .

4.3 Subsampled Skellam Mechanism
The Skellam mechanism [2, 7] applies discrete noise following a

symmetric Skellam distribution to achieve DP. This mechanism is

particularly useful in federated learning frameworks operating with

multi-party computation (MPC) protocols [10, 54, 59], since these

protocols use modular arithmetic as the fundamental cryptographic

primitive [57], hence limiting their computation in finite fields. As a

result, common mechanisms that typically inject real-valued noise,

including the Gaussian and the Laplace mechanisms discussed

in previous subsections, are inherently incompatible with these

protocols. We refer interested readers to [2, 7] for more details.

Let Sk(𝑧, 𝜇) denote the one-dimensional symmetric Skellam dis-

tribution with mean 𝑧 ∈ Z and variance 2𝜇. Denote by 𝑓 : D ↦→ Z𝑑

the algorithm that maps an input dataset to an integer-valued vec-

tor such that ∥ 𝑓 (𝐷) − 𝑓 (�̂�)∥1 ≤ 𝐶 for pair of datasets 𝐷 and �̂� that

differ by one record. The Skellam mechanism is defined as follows:

A(𝐷) = 𝑓 (𝐷) + Sk(0,𝐶2𝜇I𝑑 ),

where Sk(0,𝐶2𝜇I𝑑 ) denotes the multi-dimensional Skellam distribu-

tion with each coordinate distributed independently as Sk(0,𝐶2𝜇).
The Rényi divergence 𝐷𝛼 (A(𝐷)∥A(𝐷′)) for any pair of 𝑘-

neighboring datasets 𝐷 and 𝐷′
can be bounded as:

𝐷𝛼 (Sk(𝑓 (𝐷),𝐶2𝜇I𝑑 )∥Sk(𝑓 (𝐷′),𝐶2𝜇I𝑑 ))
(a)
= 𝐷𝛼 (Sk(𝑓 (𝐷) − 𝑓 (𝐷′),𝐶2𝜇I𝑑 )∥Sk(0,𝐶2𝜇I𝑑 ))

(b)
≤ sup

∥v∥1≤𝑘𝐶

𝑑∑︁
𝑖=1

(
𝛼v[𝑖]2
2𝐶2𝜇

+min

{
(2𝛼 − 1)v[𝑖]2 + 6|v[𝑖] |

4𝐶4𝜇2
,
3|v[𝑖] |
2𝐶2𝜇

})
(c)
≤ sup

∥v∥1≤𝑘𝐶

(
𝛼 ∥v∥2

2

2𝐶2𝜇
+min

{
(2𝛼 − 1)∥v∥2

2
+ 6∥v∥1

4𝐶4𝜇2
,
3∥v∥1
2𝐶2𝜇

})
(d)
≤ 𝛼𝑘2

2𝜇
+min

{
(2𝛼 − 1)𝑘2𝐶 + 6𝑘

4𝐶3𝜇2
,
3𝑘

2𝐶𝜇

}
, (18)

where (a) follows from the invariance of Rényi divergence under

invertible transformations; (b) is derived using Lemma 4.1, the

closed-form Rényi divergence between symmetric Skellam distribu-

tions (see Lemma B.7 in [28]), and the additivity of Rényi divergence

(see Lemma B.3 in [28]); (c) follows from the definitions of 𝐿1 and

𝐿2 norms; (d) follows from the fact that ∥v∥1 ≤ 𝐶 implies ∥v∥2 ≤ 𝐶 .

Combining (18) with Theorem 3.1 leads to the following group

privacy guarantee for subsampled Skellam mechanisms:

Theorem 4.4. Let M be the subsampled Skellam mechanism as
defined above. M then satisfies (𝑚,𝛼, 𝜏𝑚 (𝛼))-RGP, where

𝜏𝑚 (𝛼) = 1

𝛼 − 1

log

(
𝑚∑︁
𝑘=0

(
𝑚

𝑘

)
(1 − 𝑞)𝑚−𝑘𝑞𝑘 exp

(
(𝛼 − 1)ΦSk

𝑘
(𝛼)

))
,

with

ΦSk
𝑘
(𝛼) = 𝛼𝑘2

2𝜇
+min

{
(2𝛼 − 1)𝑘2𝐶 + 6𝑘

4𝐶3𝜇2
,
3𝑘

2𝐶𝜇

}
.

4.4 Subsampled Randomized Response
The randomized response (RR) mechanism [52] allow for the collec-

tion of statistical information about sensitive datasets while ensur-

ing a DP guarantee. Given a predicate function 𝑓 : D ↦→ {0, 1}, the
randomized response mechanism A that privatizes 𝑓 with privacy

parameter 𝑝 ∈ (0.5, 1) is defined as follows:

A(𝐷) =
{
𝑓 (𝐷), w.p. 𝑝

1 − 𝑓 (𝐷), w.p. 1 − 𝑝.
(19)

Note that the RR mechanism provides a local DP guarantee [22],

ensuring that the outputs of RR mechanisms are indistinguishable

for any pair of datasets that differ by any number of records. There-

fore, the RR mechanism satisfies (𝑚,𝛼, 𝜏∗
1
(𝛼))-RGP for any𝑚 ∈ N.

According to Lemma B.8 in the full version [28], it holds that

𝜏∗
1
(𝛼) = 1

𝛼 − 1

log

(
𝑝𝛼

(1 − 𝑝)𝛼−1
+ (1 − 𝑝)𝛼

𝑝𝛼−1

)
. (20)

In addition, a direct calculation yields 𝜏∗
0
(𝛼) = 0. Consequently,

we can establish the following group privacy guarantee for the

subsampled RR mechanism:

Theorem 4.5. The subsampled RR mechanism with sampling rate 𝑞
and privacy parameter 𝑝 satisfies (𝑚,𝛼, 𝜏𝑚 (𝛼))-group RDP, where

𝜏𝑚 (𝛼) = 1

𝛼 − 1

log

(
(1 − 𝑞)𝑚 +

(
1 − (1 − 𝑞)𝑚

)
· ΦRR (𝛼)

)
,

where

ΦRR (𝛼) = 𝑝𝛼

(1 − 𝑝)𝛼−1
+ (1 − 𝑝)𝛼

𝑝𝛼−1
.

The following lemma shows that our group privacy bound for

the RR mechanism achieves a provable improvement over naive

bound 𝜏∗
1
(𝛼) defined in Eq. (20).

Lemma 4.5. For the RR mechanism, it holds that lim𝑚→∞ 𝜏𝑚 (𝛼) =
𝜏∗
1
(𝛼). In addition, we have 𝜏𝑚 (𝛼) < 𝜏∗

1
(𝛼) for all𝑚 ∈ N.

Proof. See Appendix C.3 of the full version [28]. □

5 EXPERIMENTS
This section presents comparative experiments between our pro-

posed RGP bound and the existing method with generic DP-to-

GP conversion. We start by comparing the required noise levels

for achieving a given (𝑚,𝛼, 𝜏)-RGP guarantee through different

RGP bounds in Section 5.1. Then, we evaluate the practicability

of our RGP solution using the DP-SGD algorithm for neural net-

work model training in Section 5.2. Specifically, the RGP bounds

examined in our experiments are listed as follows:

(1) The baseline method, which is derived by first obtaining the

RDP guarantee of the subsampled mechanism according to

the RDP bound in [61], then converting the RDP guarantee

to the RGP guarantee using Lemma 2.3.

(2) Our closed-form RGP bounds in Section 4.

In addition, to demonstrate the tightness of our RGP bounds, we

compare the noise levels required by our bounds with the noise

levels calibrated by the analytical lower bounds across different

subsampled mechanisms. The details of the analytical lower bounds

can be found in Appendix D of the full version [28].
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Figure 2: Varying the group size𝑚.
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Figure 3: Varying the privacy parameter 𝜏 .

Note that the closed-form RGP guarantees in Section 4 apply to

both unbounded and bounded RGP notions. From the perspective

of algorithmic implementation, ensuring unbounded (or bounded)

RGP necessitates bounding the difference ∥ 𝑓 (𝐷) − 𝑓 (�̂�)∥ for all
pairs of unbounded (or bounded) neighbor datasets 𝐷 and �̂� by a

constant 𝐶 . In light of this, we specify the value of 𝐶 but do not

differentiate between unbounded and bounded cases. The compar-

ative results between unbounded and bounded RGP bounds are

identical in the experiments.

5.1 Comparison of Noise Levels
In this subsection, we conduct a numerical comparison of RGP

bounds across different configurations of the Gaussian, Laplace,

Skellam, and RR mechanisms. Specifically, for a given (𝑚,𝛼, 𝜏)-RGP
guarantee, we calibrate the required noise parameters (𝜎 for Gauss-

ian, 𝑏 for Laplace, 𝜇 for Skellam, and 𝑝 for the RR mechanism) to

achieve this guarantee through our proposed analysis, the baseline

solution, and the theoretical lower bound. In the experiments, we

set the norm bound𝐶 to 1 for the Skellam mechanism; for Gaussian

and Laplace mechanisms, the norm bound is not specified as it is

canceled out in the final expression of the RGP guarantee.

Varying the group size𝑚. We first vary the group size from 16 to

256 while keeping other parameters fixed, and then compare the

required noise levels derived from our analysis, the baseline method,

and the theoretical lower bound. Specifically, we fix the privacy

guarantee to (𝑚,𝛼 = 4, 𝜏 = 1)-RGP, which can be converted to

(𝑚, 𝜖 = 4.1, 𝛿 = 10
−5)-GP via Lemma 2.2. The results are depicted

in Figure 2. Details on the sampling rate 𝑞, and the number of

iterations 𝑇 are provided in each subfigure. Note that in the RR

mechanism, a lower 𝑝 value indicates larger noise. Therefore, we

compare the value of 1 − 𝑝 for the RR mechanism to facilitate a

better comparison of noise levels.

Our main observations from the experimental results are three-

fold: (i) for Gaussian, Laplace, and Skellam mechanisms, our bound

is not only tight but also clearly superior to the baseline; (ii) as

𝑚 increases, the gap between our bound and the baseline method

grows for the Gaussian mechanism, aligning with the theoretical

insights from Theorem 4.2; (iii) for the RR mechanism, while our

bound consistently outperforms the baseline, there is a gap between

our bound and the theoretical lower bound at small group sizes,

suggesting room for further improvement in RGP guarantees.

Varying the privacy parameter 𝜏 . We vary the RGP privacy

parameter 𝜏 by {0.25, 0.5, 1, 2, 4} and calibrate the noise levels to

achieve (𝑚,𝛼 = 4, 𝜏)-RGP guarantee. These RGP guarantees can be

converted (i.e., using Lemma 2.2) to (𝜖, 𝛿 = 10
−5)-GP guarantees,

with the corresponding 𝜖 values being 3.4, 3.6, 4.1, 5.2, and 7.1, re-

spectively. The experimental results are presented in Figure 3. From

these results, we observe that the required noise levels calibrated by

our bounds are consistently and significantly smaller than those re-

quired by the baseline method. Furthermore, for Gaussian, Laplace,

and Skellammechanisms, our privacy analysis results tightly match

the corresponding theoretical lower bounds.

We also compare the RGP bounds by varying the sampling rate

and the number of iterations. The experimental results are reported

in Appendix F of the full version [28].

Summary of results. All above experimental results validate that

our RGP bound is consistently tight across a wide range of mecha-

nism configurations. Furthermore, these results show over an order

of magnitude improvement of our privacy bound compared to the
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baseline solution, which enables data privacy practitioners to de-

velop practical mechanisms that offer meaningful RGP guarantees

while preserving desirable utility levels. In addition, results of the

lower bound indicate that ensuring RGP inevitably requires the

injection of noise proportional to the group size, which can signifi-

cantly impair the utility of the mechanism. Therefore, an interesting

direction for future research is to explore new methods to relax

and redefine the notion of group privacy, which can help design

privacy-preserving mechanisms that offer a more favorable balance

between group privacy protection and result utility.

5.2 Evaluations on DP-SGD
In this subsection, we conduct experiments on model training via

the DP-SGD algorithm [1] with different privacy guarantees to

validate the practicability and superiority of our RGP bound. It

is important to note that the DP-SGD algorithm essentially oper-

ates as a type of subsampled Gaussian mechanism [43]. Therefore,

given specific privacy parameters, we can calibrate the required

Gaussian noise variance based on our closed-form RGP bounds

for subsampled Gaussian mechanisms, as presented in Theorem

4.1. Our experiments involve comparisons between two different

implementations of the DP-SGD algorithm: one implementation

calibrates the noise to achieve group privacy according to Theorem

4.1, and the other calibrates noise based on the baseline solution.

Note that DP-SGD offers (𝑚, 𝜖, 𝛿)-unbounded GP guarantees [1].

For consistency, we also focus on the (𝑚, 𝜖, 𝛿)-unbounded GP in

the following experiments.

Setup. We conduct experiments on three benchmark image classi-

fication datasets: MNIST [34], Fashion-MNIST [55], and CIFAR-10

[33]. Note that in many practical scenarios, image classification

tasks require formal group privacy guarantees. For example, it is

necessary to prevent the inference of gender or race ratios within

a specific group in human face datasets [38]. Similarly, it is essen-

tial to safeguard information about genetic diseases within groups,

such as families, in medical image datasets.

Following the state-of-the-art differentially private learning solu-

tion [48], we use logistic regression (LR) and convolutional neural

networks (CNN) paired with Scattering Networks (SN) in our exper-

iments. We defer the details of the experimental setup to Appendix

E. In all experiments, we fix the privacy parameter 𝛿 to 10
−5
.

To achieve an (𝑚, 𝜖, 𝛿 = 10
−5)-GP guarantee, we employ a binary

searchmethod to determine the required Gaussian noise scale 𝜎 . For

each noise scale 𝜎 , we initially obtain (𝑚,𝛼, 𝜏)-RGP guarantees for

each𝛼 in the set {2, 3, . . . , 100} based on our closed-formRGP bound

for subsampled Gaussian mechanism in Theorem 4.1. Subsequently,

we calculate the corresponding privacy parameters 𝜖 for each 𝛼

by Lemma 2.2. The minimum 𝜖 identified in this process is then

selected as the GP guarantee.

Varying the group size 𝑚. In this experiment, we set the

group privacy parameter 𝜖 to 4 and vary the group size 𝑚 by

{8, 16, 24, 32, 40, 48, 56, 64} to show the impact of different group

sizes on the model utility. It is important to note that the baseline

solution in Lemma 2.3 can only ensure RGP for group sizes that are

powers of two. Therefore, we vary the group size𝑚 to {8, 16, 32, 64}
for the baseline solution.
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Figure 4: DP-SGD with (𝑚, 4, 10−5)-GP guarantee.

Figure 4 presents the model test accuracy under different group

sizes. We observe that for small group sizes, e.g., 𝑚 ≤ 16, our

solution performs similarly to the baseline solution. However, for

larger group sizes such as𝑚 ≥ 32, our solution consistently and

significantly outperforms the baseline solution, while maintaining

a desirable model utility. In addition, for all experimental results

except for CNN on the CIFAR-10 dataset, we see that the model

accuracy gap between our solution and the baseline grows as𝑚

increases, confirming our theoretical insights from Theorem 4.2

and aligning with the numerical results in Figure 2(a). For the

experimental result of CNN on CIFAR-10 in Figure 4(f), with a

smaller group size, e.g., when 𝑚 ≤ 16, the model accuracy gap

between the proposed and the baseline solutions grows with 𝑚.

When𝑚 is relatively large (e.g., over 32), however, the gap no longer

expands since the noise levels calibrated by the baseline solution

become too large for the deep CNN model to converge, leading to

model accuracy close to random guessing (i.e., ≈ 10%).

Varying the privacy parameter 𝜖. Figure 5 reports the model

test accuracy for a fixed group size of 𝑚 = 32 across different

privacy parameters 𝜖 . We observe that our solution consistently

and significantly outperforms the baseline solution for all settings

of 𝜖 . Specifically, while achieving the same level of group privacy

guarantee, our solution dramatically reduces the noise injected

into the model weights compared to the baseline method, thus

producing models with higher utility, which are more suitable for

their target real-world applications.

6 RELATEDWORK
As a natural extension of DP, the notion of group privacy provides

formal protection for the aggregate information of a group of in-

dividuals and has been widely recognized and explored in recent

332



Baseline Ours

2 3 4 5 6 7 8
²

76
80
84
88
92
96

Te
st

 A
cc

. (
%

)

(a) MNIST (LR)

2 3 4 5 6 7 8
²

48
64
80
96

Te
st

 A
cc

. (
%

)

(b) MNIST (CNN)

2 3 4 5 6 7 8
²

68
72
76
80
84

Te
st

 A
cc

. (
%

)

(c) Fashion-MNIST (LR)

2 3 4 5 6 7 8
²

40
50
60
70
80

Te
st

 A
cc

. (
%

)

(d) Fashion-MNIST (CNN)

2 3 4 5 6 7 8
²

20
30
40
50

Te
st

 A
cc

. (
%

)

(e) CIFAR-10 (LR)

2 3 4 5 6 7 8
²

10

20

30

40

Te
st

 A
cc

. (
%

)

(f) CIFAR-10 (CNN)

Figure 5: DP-SGD with (32, 𝜖, 10−5)-GP guarantee.

years [21, 41, 47, 49]. Previous studies [21, 42, 49] have developed

general methodologies to convert DP guarantees to GP guarantees.

Nonetheless, as explained in Sections 1 and 2.2, these methods treat

DP mechanisms as black boxes to ensure general applicability, re-

sulting in overly conservative results. This limitation has been a

driving motivation behind this paper.

We note that a concurrent work [46] also studies RGP bounds for

subsampled mechanisms. The main differences between our work

and this concurrent study are as follows. First, the RGP bound in

[46] involves integrals on a rather complicated function, in which

both the numerator and denominator are higher powers of the

PDFs of mixture distributions. The number of mixture components

— and thus the complexity of the integral function — increases

with the group size, leading to numerical instability and inaccura-

cies for large groups. In contrast, our work provides closed-form

RGP bounds that can be efficiently computed with numerical tools.

Second, the RGP bound in [46] requires non-trivial andmechanism-
specific theoretical privacy analysis for each mechanism. This com-

plexity makes it challenging to apply to mechanisms with intricate

noise distributions, such as the Skellam mechanism. On the con-

trary, our bound is concise, requiring only the derivation of RGP

guarantees for the corresponding non-subsampled mechanism. As

a result, it can be easily applied to derive closed-form RGP bounds

for various subsampled mechanisms, as demonstrated in Section 4.

Finally, we established analytical lower bounds to empirically verify

the tightness of our bounds and provided experimental evaluations

on logistic regression and deep neural networks using benchmark

datasets, demonstrating the practical significance of our contribu-

tions. In contrast, the concurrent workmainly focuses on theoretical

analysis and does not provide any empirical evaluations.

In addition to group privacy, there have been several studies on

the protection of user-level privacy in recent years. Particularly,

user-level DP [3, 11, 23, 24, 35, 37, 40] has garnered considerable

attention. Various practical algorithms ensuring user-level DP have

been proposed in [3, 23, 40]. Meanwhile, some studies [11, 24, 37]

primarily focus on the theoretical aspects. Notable among these

are recent works [11, 24], which have delved into methods of con-

verting DP guarantees into user-level DP guarantees. It is crucial to

note, however, that these studies rely on asymptotic analysis with

additional assumptions, such as i.i.d. distribution of data records.

Consequently, while these works contribute valuable theoretical in-

sights, they fall short of providing precise, closed-form privacy guar-

antees that are essential for designing practical privacy-preserving

mechanisms. Furthermore, while user-level DP does offer a degree

of group-level privacy, its definition is fundamentally distinct from

that of group privacy. Specifically, user-level DP assumes that data

is collected from various users, each holding𝑚 records [23, 24, 37].

Under this paradigm, user-level DP offers theoretical privacy pro-

tections for records associated with any specific user. In contrast,

group privacy safeguards information about any group of𝑚 records,

thereby inherently encompassing and extending beyond the scope

of user-level DP. Therefore, group privacy is more general than

user-level DP, and thus algorithms satisfying user-level DP (such

as those in [35, 40]) may not ensure group privacy.

7 CONCLUSION
In this paper, we present a tight general RGP bound applicable to

subsampled mechanisms, based on which we derive precise and

closed-form group privacy guarantees for a variety of prevalent

privacy-preserving mechanisms, including subsampled Gaussian,

Laplace, Skellam, and Randomized Response. For the 𝑑-dimensional

Laplace mechanism within the RDP framework, our refined anal-

ysis yields a significantly tighter RDP bound, which offers a mul-

tiplicative factor saving of 𝑑 and may be of independent interest.

Experimental results demonstrate both the tightness and a substan-

tial improvement of our bound over existing RGP guarantees. To

the best of our knowledge, this is the first work that presents tight

and closed-form RGP guarantees for subsampled mechanisms.

Regarding future work, we plan to further refine the RGP bound

for subsampled Randomized Response mechanisms, and to derive

closed-form RGP guarantees for other types of subsampled mech-

anisms such as DPIS [53], in which each record has a different

probability of being included in the sample set.
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