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ABSTRACT
Conflict-free replicated data types (CRDTs) are highly available

and performant data replication solutions for distributed applica-

tions. However, their eventual consistency guarantees are often

insufficient for ensuring application correctness, especially in the

presence of Byzantine failures. Naively applying traditional consen-

sus and Byzantine fault tolerance (BFT) protocols to CRDT updates

for stronger guarantees, while intuitive, negates the performance

benefits of CRDTs.

We introduce a novel programming model called reliable CRDTs
that expands CRDTs with additional guarantees: users can query

strongly or eventually consistent values, enforce a total order among

selected operations, and define data-type level invariants while re-

maining operational in the presence of Byzantine failures. Reliable

CRDTs enable the use of CRDTs in scenarios where strong consis-

tency is needed while maintaining their performance advantages.

We present an implementation of reliable CRDTs named Janus. It
enhances CRDTs with the aforementioned features by functioning

as a middleware that facilitates CRDT communication and asyn-

chronously runs a BFT consensus protocol. Our evaluation demon-

strates that Janus achieves 21× higher throughput than naively

applying state-of-the-art BFT protocols such as HotStuff achieves,

and it remains responsive even under heavy loads.
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1 INTRODUCTION
Conflict-free replicated data types (CRDTs) are abstract data types
(ADTs) that are designed to replicate across multiple nodes with

eventual consistency guarantees [40]. Users simply execute ADT

interface operations on one CRDT replica, and other replicas even-

tually converge to the same state, as long as they receive the same
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set of updates, regardless of the order in which the updates are ap-

plied. CRDTs offer developers an easy-to-use replication solution

through well-defined semantics and eliminate the need for manual

conflict resolution, introducing an efficient programming model for

replication in distributed applications.

Because they are eventually consistent, CRDTs are fast and highly

available by allowing temporary divergent states to exist. Replicas

can update their local states immediately upon receiving updates

and propagate the changes asynchronously [8]. However, this also

means that CRDTs may not meet the correctness requirements of

many distributed applications because of the existence of intermit-

tent divergent states [15, 38]. We identify three scenarios where

CRDT guarantees are insufficient.

First, applications cannot determine whether CRDT replicas have

reached a stable state. This is because one replica cannot detect

whether an update has been delivered to all replicas or to verify the

freshness of a value, as eventual consistency does not guarantee a

bounded delivery time [8]. If an application needs to perform op-

erations that depend on prior operations or a specific state, it must

perform additional consistency checks to ensure that the previous

operations have been successfully executed on all replicas. For ex-
ample, in a distributed banking database, if one replica performs a

transfer transaction (a withdrawal followed by a deposit), it must

first ensure that thewithdrawal operation is successful onall replicas
before performing the deposit operation [13].

Second, it is difficult to implement correctness checks for CRDT

values, such as maintaining invariants, because of the concurrent

operations [11, 30]. In the banking example, two concurrent with-

drawals on two replicas of the same bank account may cause the

balance to fall below the minimum balance limit, even if neither

operation violates the invariant when executed individually.

Above all, CRDTs cannot operate in the presence of Byzantine
failures [29]. These are arbitrary failures that a distributed system
may experience, such as attacks, software bugs, or hardware mal-

functions. Faulty participants can disseminate conflicting CRDT

messages to different replicas that indefinitely prevent them from

converging [51]. For example, a Byzantine replica can mislead some

replicas into believing that a deposit has occurred while simultane-

ously convincing others that there is a withdrawal.

These problems are typically addressed via strongly consistent

storage,whichenforces a linear order of operations across all replicas

following the ACID transaction model [19, 25]. However, these solu-

tions require costly and time-consuming coordination among repli-

cas, such as consensus, which significantly impacts the system’s per-

formance [14]. Thus, in this paper, we propose a novel programming

model called reliable CRDT that enhances CRDTs with on-demand
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strong consistency, selective ordering of updates, data-type level invari-
ants, and the ability to tolerate Byzantine failures. Our solution en-
ables the utilization of CRDTs in scenarios where strong consistency

was previously required and expands the scope of existing CRDT-

based applications without the need to employ ACID transactions.

With on-demand strong consistency, users can either retrieve a

stable value that is guaranteed to be identical across all correct repli-
cas or retrieve a prospective value that is eventually consistent. The
selective ordering of updates enables users to designate certain up-
dates as safe and ensures that they are executed in a total order

across all correct replicas. Applications can declare data-type level
invariants as data value constraints. Finally, reliable CRDTs tolerate
Byzantine failures by preventing conflicting updates from violating

the guarantees mentioned above.

Reliable CRDTs offer a flexible toolkit for developers to utilize

CRDTs in distributed applications. Stronger guarantees can be em-

ployed to meet application-level correctness requirements when

necessary without customized consistency protocols. For example, a

distributed database can use reliable CRDTs as the replicated storage

layer to support CRDT objects and provide atomicity properties as

needed.

We implement reliable CRDTs via a middleware system named

Janus that handles the communication among CRDT replicas. It

uses an underlying consensus protocol operating asynchronously to
ensure that all correct replicas observe the same set of valid updates

(neither conflicting nor invariant breaking). If updates are found to

be invalid after the consensus process, they are reversed through the
mechanism of reversible CRDTs [33] during the audit process. We

incorporate a novel directed acyclic graph (DAG)-based BFT consen-

sus protocol [47] because it offers high throughput, asynchronously

ordering of updates, and a method of recording the causal update

history, which is not possible with traditional BFT protocols.

WeevaluateJanusby incorporatingaCRDT-baseddistributedkey-
value database with Janus as a proof of concept. The performance

results are comparedwith thoseofplainCRDTsand implementations

that apply BFT consensus protocols directly to CRDT updates.

The remainder of this paper is organized as follows: Section 2 dis-

cusses the background information. Section 3 provides an overview

and identifies the applications of reliable CRDTs. Section 4 intro-

duces the properties of reliable CRDTs. Section 5 presents the design

of Janus. Section 6 presents the performance evaluation. Finally,

Section 7 discusses related work.

2 BACKGROUND
In this section, we introduce CRDTs and DAG-based BFT protocols,

as they are essential for understanding our design.

2.1 Conflict-Free Replicated Data Types
First proposed by Shapiro et al. [36, 40], CRDTs replicate through

deterministic interface operations and predefined concurrency se-
mantics, thus avoiding the need for application-specific reconcilia-
tion mechanisms. A CRDT represents a state (the data structure to
be replicated), and the interface provides a set of operations. Oper-

ations with side effects (which change the state of the data structure)
are referred to as updates, and meaningful values can be retrieved

through query operations without side effects.

When an update is executed on a replica of a CRDT instance,

it changes the local state of the replica immediately, and then it

is propagated asynchronously to other replicas. CRDTs adhere to

strong eventual consistency (SEC), which ensures that updates are

eventually delivered to all correct replicas, and the replicas that have

received the same updates have equivalent states. This implies that

the convergence of two replicas can be determined by comparing

the updates that have been delivered to them.

There are two main methods for propagating updates that enable

CRDTs to achieve SEC: state-based (CvRDT) and operation-based
(CmRDT) data types. CvRDTs synchronize by sending the entire

state, or the delta of the state change [5], of a replica and thenmerge
the received stateswith a commutativemerge function. This function

ensures the same end state regardless of the order in which opera-

tions are executed. For example, a CRDT counter may use a vector

of integers as the state, and merging a new state involves taking the

elementwise maximum, similar to a vector clock.

CmRDTs propagate the content of each update and execute the

same updates on other replicas with the same causal order [28],

which requires the operations to be commutative and the propa-

gation of updates to be reliable. For example, a counter may use

the addition and subtraction of integers as updates, with receiving

replicas performing the same operations to obtain the same result.

TheprimarycharacteristicofCRDTs is that the logicbehindupdat-

ing a value is embedded at the data type level through the semantics

of CRDTs, enabling fire-and-forget updates, which contrasts with

traditional eventually consistent or transactional systems. In these

systems, updating data requires a read-modify-write transaction

on the data store, necessitating consistency protocols to either rec-

oncile conflicting states or to ensure that all replicas perform this

transaction in the same order [8].

This distinction leads to a unique programming model when

CRDTs are used: Because updating a CRDT object does not require

a preceding read, querying a CRDT is useful only when the value is
immediately consumed by the application context. From a user’s per-

spective, the effect of an update on the later queried value is the only
factor that determines whether an update is successful. The effect

canbeviewedas thedelta between the local values ona replica before
and after the update is applied [33]. For example, incrementing a

counter by 5means that the delta is +5. If the delta is 0, the update
can be considered nonexistent.

2.2 DAG-based BFT Consensus Protocols
Janus utilizes an underlying BFT consensus protocol to achieve the

aforementioned guarantees.We choose aDAG-based BFT consensus

protocol because it enables replicas to concurrently propose and

broadcast messages by decoupling message propagation and order-

ing logic [47], which allows us to piggyback CRDT updates onto

the DAG’s message propagation mechanism. In contrast, traditional

BFT consensus protocols often require a leader replica to determine

the order of messages first, followed by replicas collectively voting

to reach an agreement, which prevents the preemptive propagation

of CRDT updates. In a DAG BFT protocol, replicas construct DAGs

based on the causal delivery order of the messages, and the total

order of the messages is determined independently by individual

replicas traversing the DAG.
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DAG-based BFT protocols include Hashgraph [10], Aleph [21],

and, more recently, DAG-Rider [24], Narwhal & Tusk [20], and Bull-

shark [41]. In recent protocols such as DAG-Rider and Narwhal &

Tusk, each replicamaintains a copy of theDAGof blocks ofmessages,

as illustrated in Figure 1.

The blocks are organized into rounds. At each round, a replica

generates a block and reliably broadcasts the block to other replicas

asynchronously [17]. Once a replica receives 2𝑓 + 1 blocks from

other replicas in a round, it advances to a new round and constructs

a new block that contains the latest messages and references to the

blocks in the previous round. Referencing blocks would support the
referenced blocks, as it indicates that the referenced blocks have

been observed by the replica. Different replicas may view different

variations of the DAG at a given moment, but the reliable broadcast

protocol guarantees that all replicas eventually see the same DAG.

Next, replicas commit blocks to persist the agreed-uponmessages;

this occurs every few rounds (which constitutes awave). The commit

process is triggered independently on each replica once the wave is

reached. At each wave, the replicas independently select a common

leader block among the blocks that are received in the first round

of the wave by using a perfect random coin (a random variable that

allows the replicas to independently retrieve the same random value

at the same wave) [18]. The leader block must also be supported by

at least 2𝑓 +1 successor blocks from the second round; otherwise,

no block is committed in the wave. Then, the blocks leading up to

the leader are committed by deterministically converting the causal

ordering of the blocks to a global total order.

Figure 1 shows an example operation ofNarwhal&Tusk. The con-

sensus process uses three rounds for eachwave, with the third round

of a wave and the first round of the subsequent wave being over-

lapped to reduce latency. Block 𝐿1 is the leader of wave𝑤−1 (from
round 𝑟−4 to 𝑟−2), and the red blocks are the predecessor blocks that
are committed when 𝐿1 is committed. Block 𝐿2 is the leader of wave

𝑤 (fromround𝑟−2 to𝑟 ),withblueprecedingblocks;𝐿3hasgreenpre-
ceding blocks. All colored blocks are committed at thewavewhen𝐿3

is selected as the leader.Note that𝐿1 is not committed until𝐿2 is com-

mitted because it does not have at least 2𝑓 +1 supports in round 𝑟−3
and must wait for a path connecting it to the next committed leader.

This process is conducted based on the local copy of the DAG of each

replica; thus, no additional communication overhead is introduced.

In Janus, concurrent block propagation allows for the prompt dis-

semination of CRDTmessages. The greater latency of committing

individual messages caused by batching multiple rounds of updates

in the DAG BFT protocol is mitigated by the fact that CRDT updates

are preemptively executed without waiting for consensus, as CRDT

state convergence does not rely on the order of updates. The DAG

also stores the updates as a causal log, which is useful for reversing

invalid updates.

3 RELIABLE CRDTOVERVIEW

Strongly consistent solutions, such as transactional databases, are

still preferred bymany distributed applications, despite the availabil-

ity and performance advantages of eventual consistency. Therefore,

our fundamental design philosophy is to enable applications to use

CRDTs as the primarymethod of replication in scenarios where only
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Figure 1: Example of a Narwhal DAG & Tusk consensus instance
from the perspective of one replica at round 𝑟

strong consistency can meet application-level correctness require-

ments. Our approach offers stronger guarantees and requires no

alteration of the programming model of CRDT data operations, as

discussed in Section 2, whilemaintaining their performance benefits.

We define data operations as the interactions of CRDT instances,

including updates and queries. The application-level correctness re-
quirement is the set of guarantees that the CRDT object must uphold

to ensure the application’s correctness. An application-level trans-
action is a series of data operations that the application defines to

achieve its functionality when the correctness requirement is met.

Reliable CRDTs add on-demand strong consistency to CRDTvalues

and enforce selective ordering for operations by enhancing existing
underlying CRDTs with new operations with additional guaran-

tees and Byzantine fault tolerance. The original CRDT operations

are still accessible, and their behaviors are unchanged and remain

compatible:

(1) Queries can either retrieve strongly consistent stable values or
eventually consistent prospective values from a CRDT instance.

(2) Updates can be designated safe, and safe updates are executed
in a total order across all replicas.

(3) Users can define one or more data-type-level invariants that the
CRDT instance honors.

(4) These guarantees hold even in the presence of conflicting up-

dates caused by Byzantine failures.

Before presenting examples to illustrate how our solution enables

the use of CRDTs in various scenarios, we categorize three different

ways in which applications may perform CRDT data operations: 1

retrieving a CRDT’s value without subsequent action; 2 updating

a CRDT’s state without dependency while not breaking invariants;

and 3 conducting operations with dependency in application-level
transactions, requiring mutually exclusive access to an object, or

potentially breaking invariants.

Banking Database. In this example, we focus on the consistency

and safety guarantees provided by reliable CRDTs. In addition, repli-

cas in the system may be subject to Byzantine failures, which can

occur even for internally hosted applications [43]. We consider a

replicated banking database whereby clients can check balances,

deposit, withdraw, and transfer money. These operations can be

conducted on any replica, and each account has an overdraft limit as

an application-level correctness requirement, which is implemented

as a data-type level invariant. Although a plain CRDT counter can
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ensure that the final balance converges, it cannot guarantee that

concurrent withdrawals do not violate the overdraft limit. Faulty

replicas can also send conflicting updates to different replicas, caus-

ing divergence, such as one replica believing that an account is

overdrawnwhile another one does not. By using reliable CRDTs, the

correctness of these operations can be guaranteed without the use

of a transactional model.

Assuming that a client wishes to simply check the latest account

balance immediately after depositing money, the “check balance”

operation is of type- 1 . Stale or intermediate values are acceptable

here since there is no critical follow-up operation. Reliable CRDTs

offer the use of a prospective value for type- 1 operations by re-

turning the latest value without the need to wait for convergence.

The latest balance can be retrieved (as long as the update has been

received on the replica), even if the deposit may need to be settled

and will only be available for use later (after a consensus agreement

has been reached on the balance).

Depositing is a type- 2 operation. There is no causal dependency

between this data operation andpreviousupdates thatwere executed

on theCRDTinstance (i.e., theorderingof theseupdatesdoesnotmat-

ter), and it cannot ever break the overdraft limit. These types of oper-

ations are also called invariant-confluence (I-confluence) operations;
they do not break the invariants of the application and can be exe-

cuted concurrently [7, 35]. Since plainCRDToperations are designed

to be I-confluent, these operations can be executed preemptively.

Withdrawal, however, is a potentially invariant-breaking oper-

ation and can be categorized as type- 3 . Therefore, the stable ac-

count balance must be checked to ensure that there are sufficient

funds. Then, a safe update must be performed to ensure that no two

concurrent withdrawals violate the application-level correctness

requirement.

Transferringmoney fromoneaccount to another is anapplication-
level transaction that requires twodependent operations:withdrawal
from one account and depositing into another account, so it is also

type- 3 . Safe updates must be used to ensure that the withdrawal

is successful before the deposit is made because they are dependent

updates that must be executed in a specific order. The application

determines the behavior of subsequent dependent updates based on

the status of the first operation. This transaction can also be opti-

mized to enable the deposit to be conducted concurrently without

waiting for thewithdrawal to succeed if there is a predefinedmethod

for undoing the deposit if the withdrawal fails.

VotingSystem. This example illustrates thedirect impact ofByzan-

tine failure on the correctness of the system.We consider a voting

system that uses a replicated counter to store thenumberof votes and

allows voters frommultiple voting sites to cast ballots concurrently

by incrementing the counter. The system should ensure that each

participant can vote for only one candidate. There is no invariant

in this case, but a Byzantine replica can double-cast votes to two

correct replicas, resulting in the vote count being inconsistent and

invalid for the application.

Here, casting a vote is a type- 2 operation since it does not depend

on any previous state or operation. Viewing the vote count before

voting closes is I-confluent since it does not require any subsequent

actions. However, viewing the vote count after voting closes is a

type- 3 operation since even if no data operations are performed,

the application has a dependent subsequent action, which is to deter-

mine the winner with an application-level correctness requirement

that all voting stations see the number of votes. Thus, the stable

value must be read to ensure that the final vote count is correct.

4 RELIABLE CRDTDESIGN
4.1 SystemModel and Notation
We consider a distributed system that consists of fully connected

nodes and communicates by passingmessages. The network is asyn-

chronous but reliable, whichmeans that messages are not lost, dupli-

cated, or reordered. This can be accomplished via reliable communi-

cation protocols, such as TCP. However, messages may experience

arbitrary delays.

Faulty nodes may exhibit arbitrary Byzantine behavior with at

most 𝑓 faulty nodes, and the total number of nodes is at least 3𝑓 +1
for the BFT protocol to function. The system is permissioned [6],

where the nodes in the system are fully known to one another. Each

node is identified by the public key of a private–public key pair via

modern cryptographic signature algorithms, such as ECDSA [16].

All of the messages are signed with private keys.

A node stores one replica, denoted as R, for each CRDT instance

in the system. The state of one CRDT instance is denoted as 𝑐 , and

a replica R= [𝑐1,𝑐2,...,𝑐𝑛] is a linear sequence of states starting from
an initial state to a state after 𝑛 updates are executed. Each state is

a set of updates (denoted as 𝑢) that the replica has received at the

given time, and the last state is 𝑐𝑛 = {𝑢1,𝑢2, ...,𝑢𝑛}. We say that an

update𝑢 is executed on replica R when𝑢 is included in the state of

R and yields a new state, i.e., 𝑐𝑘+1=𝑐𝑘∪{𝑢}.
According to the definition of CRDTs, the state of a replica is

monotonically increasing
1
; that is, 𝑐𝑥 ⊆𝑐𝑦 if 𝑥 <𝑦 ≤𝑛. Thus, for two

updates𝑢𝑖 and𝑢 𝑗 ,1≤ 𝑖, 𝑗 ≤𝑛,𝑢𝑖 happened-before𝑢 𝑗 if𝑢𝑖 is included in
the state of all replicas when𝑢 𝑗 is received, denoted as𝑢𝑖 ≺𝑢 𝑗 ; and
happened-after in the opposite case. Updates𝑢𝑖 and𝑢 𝑗 are concurrent
if neitherhappened-before norhappened-after the other. These defini-
tions constitute the causal relationships of theCRDTupdates [28, 40].

The value of a CRDT is denoted as𝑄 (𝑐), where𝑄 is a query func-

tion defined by the CRDT. If two states from two replicas 𝑐𝑖 and

𝑐 𝑗 ,1 ≤ 𝑖, 𝑗 ≤ 𝑛 have the same queried value, namely,𝑄 (𝑐𝑖 ) =𝑄 (𝑐 𝑗 ),
they are said to be equivalent. We define the effect of an update𝑢 as
the delta of the queried value before and after the update is executed,

denoted as 𝐸 (𝑢)=𝑄 (𝑐𝑖+1)−𝑄 (𝑐𝑖 ). If there are two updates such that
one update inverts the effect of the other, the states before and after

the updates can be considered equivalent.

The data type invariant I is defined as a set of𝑚 constraints

I = {𝑖𝑛𝑣1,𝑖𝑛𝑣2,...,𝑖𝑛𝑣𝑚}, where each constraint can be viewed as a

Boolean function 𝑖𝑛𝑣𝑖 (𝑐),1≤ 𝑖 ≤𝑚 that returns true if state 𝑐 satisfies

the constraint.

4.2 Definition of Reliable Operations
In this section, we formally define the operations and guarantees of

reliable CRDTs, including the behaviors of prospective and stable

values, the guarantees of safe updates, and the concept of conflicting

updates.

1
Although a monotonically increasing state is required only for state-based CRDTs,

all kinds of CRDTs are mathematically equivalent, and they can be constructed to have

the same structure [40].

352



𝑄𝑠𝑡𝑎𝑏𝑙𝑒 and𝑄𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 are functions that query stable and

prospective values, respectively. A prospective value is the state of

a replica that results from the updates that the replica has already

received, which is the same as querying a plain CRDT. However, it

may be inconsistent, stale, or invariant-breaking.

The stable value can be viewed as the history of stable states that
are consistent across all correct replicas, which is called the stable
history denoted as L. All stable states in the stable history satisfy

invariants and are guaranteed to be reached by all correct replicas

in the same order. Querying a stable value returns the stable history

of the corresponding replica.

Using the banking database as an example, an integer counter

CRDT is used to store account balances. Assuming that there are

two replicaswith sequences of statesR0= [5,3,4,2] andR1= [5,1,4,7]
and that the stable history is L = [5,4], then for both 𝑅0 and 𝑅1, a

stable query yields [5,4], whereas prospective queries may return

intermediate values such as 2 for R0 and 7 on R1.
Definition 1 (Stable History and Stable State). The stable

historyL is a subsequence of a CRDT replica R that always satisfies
the constraints I: ∀𝑐𝑖 ∈L= [𝑐1,𝑐2,...,𝑐𝑛],∀𝑖𝑛𝑣 𝑗 ∈I,𝑖𝑛𝑣 𝑗 (𝑐𝑖 )=𝑡𝑟𝑢𝑒 .

States in 𝐿 are called the stable states. Given a stable state 𝑐𝑘 inL
on one correct replica at index 𝑘 where 𝑘 ≤𝑛, and for the stable state
𝑐′
𝑘
on all other correct replicas𝑄 (𝑐𝑘 )=𝑄 (𝑐′𝑘 ).

Definition 2 (StableQuery). 𝑄𝑠𝑡𝑎𝑏𝑙𝑒 (R)=L

To ensure the freshness of the stable value returned from a replica,

a user can perform a quorum read [44] to gather the stable histories
from at least 𝑓 + 1 replicas. Since the stable values are consistent
among the correct replicas, the union of the stable histories can be

used to determine the latest stable value
2
.

The update operations behave identically to those of the under-

lying CRDTs. If an update is designated safe, denoted as𝑢𝑡 , it will be
returned to the caller as successful only after it has been successfully

included in the stable state; if it is successful, the stable state must

also be updated. In contrast, plain CRDT updates are considered

successful if they are executed locally. A safe updatemay never bring

an instance to an invariant-breaking state, and all safe updates on

the system are serializable.

For example, if the stable account balance is 5 at one point and

there are two concurrent safewithdrawals of 3 and 4 on both replicas,

the systemwill order the withdrawals on all replicas. Assuming that

−3 happened-before −4, the second withdrawal returns false only
after the first withdrawal returns successfully on all replicas.

Definition 3 (Safe Update). Safe updates are specially desig-
nated updates that are guaranteed to be executed in a total order across
all correct replicas. Let𝑢𝑡 ∈L be a safe update of one correct replica,
then forL′ of all correct replicas, ∃𝑐 ∈L′ such that𝑢𝑡 ∈𝑐 .

The Byzantine safety property prevents conflicting updates [51].
We assume that all updates originating from one correct node are

always propagated to all other nodes in the same linear order. If two

correct replicas receive updates from the same source and are at

the same “position” but have different content, they are conflicting

updates. Faulty replicas are the only cause of conflicting updates, as

our network assumptions disallowmessage reordering.

2
In practice, it is sufficient to gather only the latest stable values from 𝑓 +1 nodes.

Definition 4 (ConflictingUpdates). We consider three distinct
updates𝑢1,𝑢2, and𝑢3 from a correct replica R𝑓 that are delivered to
R𝑖 in the order of 𝑢1 ≺𝑢2 ≺𝑢3. If another correct replica R 𝑗 receives
𝑢1≺𝑢′

2
≺𝑢3, where𝑢1 (R𝑖 )=𝑢1 (R 𝑗 ) and𝑢3 (R𝑖 )=𝑢3 (R 𝑗 ), but𝑢′

2
≠𝑢2

(in terms of resulting in different states given the same initial state),
then𝑢2 and𝑢′

2
are conflicting updates.

Definition 5 (Byzantine Safety). No conflicting updates are
included in the stable history of any correct replica.

Finally, we must consider concurrently executed updates on the

prospective value because they may be conflicting or invariant-

breaking. Eventual validity is a safety guarantee for them to eventu-

ally converge to a valid state; that is, querying the CRDT for either

prospective values or stable values eventually yields the same result.

This also implies that any update that is conflicting or invariant-

breaking (an invalid update) will eventually be removed.

Definition 6 (Eventual Validity). For any correct replica R
of a CRDT instance, eventually, there is a state 𝑐 formed by a se-
quence of partially ordered updates 𝑐 = [𝑢1, 𝑢2, ... , 𝑢𝑛] such that
𝑄𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 (𝑐)=𝑙𝑎𝑡𝑒𝑠𝑡 (𝑄𝑠𝑡𝑎𝑏𝑙𝑒 (R)) where 𝑙𝑎𝑡𝑒𝑠𝑡 () returns the last
item in the stable history.

5 JANUS: RELIABLE CRDTMIDDLEWARE
5.1 Overview
Janus consists of three main components: CRDT instances, an un-

derlying consensus protocol, and an update auditor. Each replica

of a reliable CRDT instance has two state variables for stable and

prospective values, namely prospective and stable states, which are

identical to the CRDT’s data structure. The consensus protocol asyn-

chronously determines the set of valid updates and the order among

updates to uphold the aforementioned reliable CRDT guarantees. In

our implementation, the underlying consensus is a DAG BFT proto-

col because it offers both strong ordering and BFT capability while

serving as the mechanism for propagating prospective updates, as

discussed in Section 2. The DAG also serves as the log of the update

history for the auditing process. Although other consensus proto-

cols (or non-BFT consensus protocols if the network assumption

exhibits only crash failures) can be used here, a separate channel

for prospective update propagation and a method of tracking the

update history are needed, which is less efficient.

An overview of Janus’s workflow is shown in Figure 2. For sim-

plicity, we assume that there are no faulty clients, and replicas com-

municate in a peer-to-peer fashion. 1 A client executes a CRDT

update, and it is immediately reflected in the prospective state. 2

The executed updates are asynchronously submitted to theDAGBFT

protocol, and 3 theDAGis alsousedas theupdatepropagationchan-

nel byplacingCRDTupdates inDAGblocks. 4 WhenaDAGblock is

received from another replica, 5 the replica executes the CRDT up-

dates within the block on the prospective state. 6 When the consen-

sus process commits a set of updates, they undergo auditing to check
whether the updates are valid (i.e., not invariant-breaking), and 7

the updates are applied to the stable state. Additionally, the prospec-

tive state is reversed if there are rejected invalid updates. Finally, the

clients who issue the safe updates are notified upon completion.

Janus strives for a balance between the performance of theCRDTs

and the applicability of strong consistency. In contrast to traditional

consensus protocols, it allows the preemptive execution of updates
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Figure 3: A reliable CRDT counter under Janus

onprospective states. In the absence of failures, the SECproperties of

the CRDT enable prospective values to convergemuchmore quickly

than under strong consistency. In contrast to plain CRDTs, it offers

the ability to enforce strongly consistent guarantees while incurring

only a relatively small computational overhead.

5.2 Auditing Prospective States
It is possible for the preemptively executed updates on the prospec-

tive state to be invalid. To guarantee eventual validity, we introduce

the concept of auditing3, which retroactively undoes invalid updates
after consensus is conductedbygoing through theDAGandchecking

if any received update is not committed. This process is performed

independently on each replica at the time of a consensus commit.

We utilize the concept of compensation in reversible CRDTs [33] to
reverse invalid updates. As mentioned in Section 2.1, if the effect of

one update cancels out that of another update, the current state can

be considered equivalent to the previous state. Note that the effect

of compensation operations depends on the specific type, and must

be predefined based on the use case. For example, the compensa-

tion for the add operation in a CRDT counter can be defined as the

subtraction of the same value.

Figure 3 shows an example of how Janus enforces the invariant of
a nonnegative counter. In this figure, the 𝑖𝑛𝑐 () operation increases
the counter by an integer, and the 𝑑𝑒𝑐𝑠 () decreases the counter by
an integer and is designated safe; variable 𝑐𝑝 denotes the values of

the prospective state, and 𝑐𝑠 denotes the values of the stable state

at a specific time.

3
An analogy is that the tax department may collect taxes preemptively and then issue

tax refunds after calculating the tax.

Startingwith an initial value of 5 for two replicas
4
,R0 increments

by 1 and R1 increments by 3 concurrently. The prospective states

are immediately updated and yield values of 8 and 6, respectively,

but both stable states remain at 5. After the updates are propagated,

both prospective values are 9 (the stable state has not changed yet).

Next, both replicas conduct safe decrement operations:𝑢3 and𝑢4.

Although 𝑢3 and 𝑢4 do not break the invariant during their local

executions, the combined effect does, as the prospective states tem-

porarily become negative; therefore, one of the updates is not valid.

After the updates are ordered by consensus,𝑢4 is rejected, yielding

a final stable value of 4. The prospective state consequently reverses

the executed𝑢4.

5.3 JanusAlgorithm

Algorithm 1 JanusAlgorithm
1: Variables: 𝑠_𝑠𝑡𝑎𝑡𝑒 , 𝑝_𝑠𝑡𝑎𝑡𝑒 : CRDT state ⊲ Stable and prospective states
2: Variables:𝑑𝑎𝑔 ⊲ DAG BFT protocol instance
3: Variables: 𝑠𝑡𝑎𝑏𝑙𝑒_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ⊲ Append-only log of stable values
4: functionNewUpdate(𝑢 : Update, 𝑖𝑠_𝑠𝑎𝑓 𝑒 : Bool)

5: 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡←𝑝_𝑠𝑡𝑎𝑡𝑒.𝐸𝑥𝑒𝑐𝑢𝑡𝑒 (𝑢 ) ⊲ Local execution
6: if 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡 then
7: 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑟𝑒𝑠𝑢𝑙𝑡 :𝑎𝑤𝑎𝑖𝑡𝑎𝑏𝑙𝑒←𝑑𝑎𝑔.𝑃𝑟𝑜𝑝𝑜𝑠𝑒 (𝑢 ) ⊲ Asyn-

chronously send the update to the DAG instance
8: if 𝑖𝑠_𝑠𝑎𝑓 𝑒 and 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡 then
9: return await 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑟𝑒𝑠𝑢𝑙𝑡 ⊲ Caller can wait on the

consensus result
10: else
11: return 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡

12: functionOnAcceptingBlock ⊲ On new DAG block
13: 𝑏 :𝐵𝑙𝑜𝑐𝑘←𝑑𝑎𝑔.𝐺𝑒𝑡𝐿𝑎𝑡𝑒𝑠𝑡𝐵𝑙𝑜𝑐𝑘 ( )
14: for all𝑢 ∈𝑏.𝑢𝑝𝑑𝑎𝑡𝑒𝑠 do ⊲ Execute all updates in the block
15: 𝑝_𝑠𝑡𝑎𝑡𝑒.𝐸𝑥𝑒𝑐𝑢𝑡𝑒 (𝑢 )

16: functionOnCommit ⊲When the consensus commits updates
17: 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒←𝐴𝑢𝑑𝑖𝑡 ( )
18: 𝑝_𝑠𝑡𝑎𝑡𝑒.𝑅𝑒𝑣𝑒𝑟𝑠𝑒 (𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒 ) ;
19: 𝑠𝑡𝑎𝑏𝑙𝑒_ℎ𝑖𝑠𝑡𝑜𝑟𝑦.𝐴𝑝𝑝𝑒𝑛𝑑 (𝑠_𝑠𝑡𝑎𝑡𝑒 )
20: Send 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑟𝑒𝑠𝑢𝑙𝑡 to all waiting safe updates

The core design of Janus is presented in Algorithm 1, which fol-

lows the workflow in Figure 2. The variables 𝑠_𝑠𝑡𝑎𝑡𝑒 and 𝑝_𝑠𝑡𝑎𝑡𝑒

represent replicas for one ormoreCRDT instances.We only consider

a single CRDT instance here for simplicity.

Whenever an update is executed on a replica, it is immediately

applied to the prospective state and submitted to the DAG instance

(Line 4:𝑁𝑒𝑤𝑈𝑝𝑑𝑎𝑡𝑒 ()). If the update is annotated as safe, the replica
waits until consensus is reached before responding to the client.

Otherwise, the result is immediately returned after the update is

executed locally.

Updates are then propagated through the DAG blocks. When a

replica receives a block from another replica in a round, it immedi-

ately executes all updates within the blocks on the prospective states

(Line 12:𝑂𝑛𝐴𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔𝐵𝑙𝑜𝑐𝑘 ()). We do not explicitly present the pro-

cess of block generation here since it is part of the DAG algorithm.

4
We assume that the total number of replicas is sufficient for meeting the 3𝑓 + 1
requirement.
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Figure 4: Ordering CRDT updates in committed DAG blocks

When the consensus process decides to commit in Line 16 in

the𝑂𝑛𝐶𝑜𝑚𝑚𝑖𝑡 () function, the replica calls 𝐴𝑢𝑑𝑖𝑡 () (Line 1) in Al-

gorithm 2 to determine whether some updates need to be reversed.

During the audit process, the replica reverses these updates on the

prospective state while updating the stable state.

The audit process can be viewed as part of the commit process. Au-

diting starts by ordering the received updates (Line 9:𝑂𝑟𝑑𝑒𝑟 ())when
the consensus process delivers a series of causally related blocks con-

taining sets of updates. The idea is to replay the update executions on

the stable statewith the samecausal orderingwhen theyare executed

on the prospective state so that any application-defined dependen-

cies are preserved (the dependent updates must be causally ordered).

To maintain the causal dependencies of the executed updates

whenorderingupdates,webundle regular I-confluentupdateswithin

a block into update groups because they can be considered concur-
rent. Then, we traverse the updates in a breadth-first manner from

the earliest round in the wave and move in a round-robin fashion,

as shown in Figure 4 where the safe updates are marked in red, and

the orange boxes represent update groups. The order of execution

is shown with red arrows. This process is deterministic, so replicas

generate the same ordering independently.

Then, updates are executed and checked against invariants to

determine if they need to be reversed on the prospective state. If

an update violates an invariant, it is added to the 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒 list.

The 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒 list also includes the updates that are invalidated by

consensus, such as conflicting updates from faulty replicas, which

are identified by checking the updates that are not committed by

the consensus process. Finally, these updates are reversed on the

prospective state. Note that the compensation operations are con-

ducted independently on each replica. They can be viewed as the

complement set of the stable state in all updates on a replica, and

reversing them equates the prospective state to the stable state.

With state-based CRDTs, we implement an optimization method

called state compaction that combines updates of the same CRDT

instance in a batch into one state as the update message for prop-

agation to reduce the message size. This can be done because later

states implicitly encapsulate all previous states when the state is

disseminated [40].

5.4 Correctness
In this section, we show that Janus upholds the guarantees of reli-
able CRDTs. Many safety preconditions are already satisfied by the

consensus protocol (agreement, validity, and termination) [47] and

the SEC guarantees of CRDTs [40], so we do not explicitly prove

them here.

Lemma 1. During the execution of the𝑂𝑛𝐶𝑜𝑚𝑚𝑖𝑡 () function, the
same set of updates is processed on all correct replicas.

According to the agreement property of the underlying consensus

protocol, the same set of blocks is used for all correct replicas in each

Algorithm 2Order and Audit
1: functionAudit

2: 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒 :𝐿𝑖𝑠𝑡

3: while𝑢:𝑂𝑟𝑑𝑒𝑟 ( ) .𝐷𝑒𝑞𝑢𝑒𝑢𝑒 ( ) do
4: 𝑟𝑒𝑠𝑢𝑙𝑡←𝑠_𝑠𝑡𝑎𝑡𝑒.𝑇𝑟𝑦𝐸𝑥𝑒𝑐𝑢𝑡𝑒 (𝑢,𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝐶ℎ𝑒𝑐𝑘 ( ) ) ; ⊲ Exe-

cute on the stable state; if this breaks the invariant, return false
and leave the state unchanged

5: if !𝑟𝑒𝑠𝑢𝑙𝑡 then
6: 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒.𝐴𝑑𝑑 (𝑢 )
7: 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒.𝐴𝑑𝑑 (∀𝑢 ∈𝑑𝑎𝑔.𝑢𝑛𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑏𝑙𝑜𝑐𝑘𝑠 ) ⊲ Uncommit-

ted blocks due to faulty replicas or retransmission
8: return 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒

9: functionOrder

10: 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑜𝑟𝑑𝑒𝑟 : Queue

11: for 𝑖 ∈ 0..𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑟𝑜𝑢𝑛𝑑𝑠_𝑡𝑜_𝑐𝑜𝑚𝑚𝑖𝑡 do ⊲ Traverse from the
earliest updates while following the causal order

12: loop
13: 𝑗←0

14: 𝑏: Block←𝑑𝑎𝑔.𝑏𝑙𝑜𝑐𝑘𝑠_𝑡𝑜_𝑐𝑜𝑚𝑚𝑖𝑡 [𝑖 ] [ 𝑗 ]
15: while ¬𝑏.𝑢𝑝𝑑𝑎𝑡𝑒𝑠.𝐸𝑚𝑝𝑡𝑦 ( ) do
16: 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑜𝑟𝑑𝑒𝑟 .𝐸𝑛𝑞𝑢𝑒𝑢𝑒 (𝑏.𝑢𝑝𝑑𝑎𝑡𝑒𝑠.𝑃𝑜𝑝 ( ) )
17: if 𝑏.𝑢𝑝𝑑𝑎𝑡𝑒𝑠.𝑖𝑠_𝑠𝑎𝑓 𝑒 then
18: 𝑗++ if 𝑑𝑎𝑔.𝑏𝑙𝑜𝑐𝑘𝑠_𝑡𝑜_𝑐𝑜𝑚𝑚𝑖𝑡 [ 𝑗+1]≠𝑛𝑢𝑙𝑙 else

𝑗 =0

19: return 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑜𝑟𝑑𝑒𝑟 ;

wave. Each block must contain the same set of updates (messages)

because they cannot be forged since all the messages are signed;

thus, the same set of updates must be performed on all the correct

replicas, as this property follows directly from the DAG consensus

protocol [20].

Theorem 1. Querying 𝑠𝑡𝑎𝑏𝑙𝑒_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 in Janus satisfies the prop-
erties of the stable history specified in Definition 1.

Proof. The 𝑠𝑡𝑎𝑏𝑙𝑒_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 consists of a series of states 𝑠_𝑠𝑡𝑎𝑡𝑒 ,

which are added to every commit in Line 18 of Algorithm 1.

Each 𝑠_𝑠𝑡𝑎𝑡𝑒 is obtained by applying the same set of updates. If the

same set of updates is committed on all correct replicas, by Lemma 1

and the strong convergence property ofCRDTs, the equivalent𝑠_𝑠𝑡𝑎𝑡𝑒
must be generated for all correct replicas at each commit, resulting

in a consistent 𝑠𝑡𝑎𝑏𝑙𝑒_ℎ𝑖𝑠𝑡𝑜𝑟𝑦.

Since every update executed on 𝑠_𝑠𝑡𝑎𝑡𝑒 is checked against the

invariants in Line 4 ofAlgorithm2, 𝑠_𝑠𝑡𝑎𝑡𝑒must satisfy all the invari-

ants. Therefore, 𝑠𝑡𝑎𝑏𝑙𝑒_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 satisfies the stable history properties

in Definition 1. □

Theorem 2. If 𝑖𝑠_𝑠𝑎𝑓 𝑒 is set to true for an update, then this update
satisfies the properties of safe updates of Definition 3.

Proof. In Line 9 of Algorithm 1, if the 𝑖𝑠_𝑠𝑎𝑓 𝑒 argument is set

to true for an update, it will not return an execution result until the

update is committed by the consensus process. If the execution is

successful, it must be included in the stable states, and by Theorem 1,

it must be included in the stable histories of all correct replicas.

Since the commit process orders all the updates deterministically,

the set of safe updates must be totally ordered. Therefore, the safe

updates satisfy the properties of safe updates in Definition 3. □
Theorem 3. Janus satisfies Byzantine safety in Definition 5.
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Proof. Weshow this by proving that no conflicting updates from

Definition 4 is included in the 𝑠𝑡𝑎𝑏𝑙𝑒_ℎ𝑖𝑠𝑡𝑜𝑟𝑦.

We assume that there is a conflicting update that executes on two

correct replicas at the sameposition in the linear order of updates but

yields two stable states, namely, 𝑠𝑖 and 𝑠
′
𝑖
. According to Theorem 1,

the stable states for all correct replicas must be equivalent. However,

according to SEC, if the conflicting updates have different contents,

the stable states must be different. Therefore, conflicting updates

cannot be included in the stable history by contradiction. □
Lemma 2. The 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒 set on a correct replica captures all up-

dates that are not executed on 𝑠_𝑠𝑡𝑎𝑡𝑒 .

Proof. Since all updates are submitted to a DAG block or re-

ceived from a block, an update must be either committed or rejected

by the consensus process. If an update is committed andnot executed

on 𝑠_𝑠𝑡𝑎𝑡𝑒 , then it must be added to the 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒 set in Line 6 of

Algorithm 2.

If the block is not committed, it is never executed on 𝑠_𝑠𝑡𝑎𝑡𝑒 and

added to the 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒 set in Line 7. Therefore, the 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒 set

captures all updates that are not executed on the 𝑠_𝑠𝑡𝑎𝑡𝑒 . □

Theorem 4. Janus satisfies the properties of eventual validity with
𝑠_𝑠𝑡𝑎𝑡𝑒 and 𝑝_𝑠𝑡𝑎𝑡𝑒 .

Proof. The 𝑝_𝑠𝑡𝑎𝑡𝑒 executes all received updates that either

come from the user or are received by a DAG block, and they are

the same for all correct replicas according to Lemma 1. Assum-

ing that all of the updates are delivered eventually, by Lemma 2,

𝑠_𝑠𝑡𝑎𝑡𝑒∪𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒 =𝑝_𝑠𝑡𝑎𝑡𝑒 .
The consistency properties provided by reversible CRDTs can

undo all effects from updates in 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒 [33]. Therefore, 𝑠_𝑠𝑡𝑎𝑡𝑒

will eventually be equivalent to 𝑝_𝑠𝑡𝑎𝑡𝑒 because

𝐸 (∑︁𝑝_𝑠𝑡𝑎𝑡𝑒) − 𝐸 (∑︁ 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒) = 𝐸 (∑︁𝑠_𝑠𝑡𝑎𝑡𝑒) according to the

properties of the compensation operations. □

5.5 Complexity Analysis
The complexity of Janus is determined primarily by the underly-

ing BFT protocol (which affects the messaging complexity) and the

CRDT operations (which affect the message size) since they are

responsible for communicating and updating the data objects. For

Narwhal & Tusk, the messaging complexity given𝑚 nodes and 𝑛

updates is𝑂 ( |𝑛 |𝑚3
log𝑚) [20, 47].

Our algorithms impact theprocesses of applying receivedupdates,

ordering, and auditing updates. Since there are two copies of a CRDT

instance, namely, prospective and stable states, the time complexity

of applying 𝑛 updates in the worst-case (assuming that all updates

are applied to both states) is𝑂 (2𝑛)=𝑂 (𝑛), see Line 14 of Algorithm 1

and Line 3 of Algorithm 2.

For ordering updates, theworst-case complexity is𝑂 (𝑛), sincewe
are only ordering all the updates that are received in Line 14 of Algo-

rithm 3 (there can be at most 𝑛 updates in the received DAG blocks)

and the best-case complexity is𝑂 (1) if there is nothing committed

to order. For reversing invalid updates, the worst-case complexity

is𝑂 (𝑛), because only at most 𝑛 originally executed updates need to

be reversed and the best-case complexity is𝑂 (1) if there is nothing
to reverse.

6 EVALUATION
In this section, we evaluate a proof-of-concept implementation of

Janus. It functions as a distributed key–value database server in

which each key–value pair is a CRDT object using an open-source

CRDT library in C# [2], and the Janusmiddleware that contains a C#

port of the core DAG algorithm described in Narwhal & Tusk [20].

The existing implementation of Narwhal is not used because

comparing CRDTs and the DAG algorithm with the same code

base allows us to better investigate the performance characteris-

tics of our algorithm. Furthermore, Narwhal was developed as part

of the Sui blockchain written in Rust that only supports blockchain

transactions[3], which is not compatible with a CRDT library.

6.1 Experimental Setup
Wedeploya Janus clusteronUbuntu22.04VMsrunning .Net 8,which

is hosted on the Compute Canada cloud. Each VM has two 2.4 GHz

Intel Xeon vCPUs (Broadwell) and 15 GB of RAM, and are intercon-

nected by a high-speed LANwith less than 1𝑚𝑠 latency and 3Gbps

bandwidth. Each VM hosts one server node, and the benchmark

clients run on a separate VM but in the same cloud region.

We evaluate Janus using microbenchmarks with synthetic work-

loads and a demo implementation of the banking database applica-

tion according to the example in Section 5 for a realistic evaluation.

6.2 Microbenchmarks
We use synthetic workloads because common database benchmarks,

such as TPC-C and YCSB do not directly support CRDTs. Our work-

load consists of a series of randomly generated updates (safe and

regular) and read requests.

Two common state-based CRDTs are used for evaluation: PN-

Counter and OR-Set [39]. PN-Counter is an integer counter that can

add or subtract integers. Its value is represented by the difference

between the sums of two cluster-size-length vectors (positive and

negative). Updating the counter involves adding to the value in the

positive vector (for addition) or the negative vector (for subtraction)

at the source replica’s index. Propagating updates requires sending

both vectors, and merging involves an elementwise max operation

on each vector against the incoming vectors.Wemeasure an average

size of 380 bytes for PN-Counter’s synchronization messages.

OR-Set is a more complex CRDTwhose state consists of two sets:

an added set and a removed set. When an element is added, it is asso-

ciatedwith aunique tag and added to the added set.Whenan element

is removed, the tag of the observed element is added to the removed

set. Only elements with tags in the added set and not in the removed

set are considered visible. Propagating updates requires sending

both sets, andmerging involves taking the union of the received sets.

The average message size is 2.4𝐾𝐵 in our experiments
5
.

We compare our results against two baseline approaches, plain

CRDTs where messages are directly disseminated among nodes and

applying BFT consensus protocols on all CRDTmessages. For the

latter, we select two protocols: a traditional partially synchronous

BFT protocol HotStuff [45] with the message size set to 380 bytes

and 2.4 KB to mimic conducting consensus on all CRDTmessages

via HotStuff, and our implementation of Narwhal & Tusk using our

5
Due to memory constraints of the VMs, each OR-Set instance is deleted after reaching

50 elements for most of the experiments, and then a new instance is created.

356



KVDB by passing all updates to the consensus protocol before they

are executed.

Metrics and Parameters. The experiments are conducted by ini-

tializing multiple client threads that continuously send requests to

the servers. Each client thread sends a new request only after re-

ceiving a response to the previous request. The two main metrics

are the overall throughput in operations per second (𝑜𝑝𝑠/𝑠), which
represents the total number of processed operations from clients

measured on the servers (excluding any reverse operations), and the

end-to-end latency in milliseconds (ms) measured on the clients.

We adjust the following workload parameters in different ex-

periments: The safe update ratio is the percentage of safe updates
out of all update operations. The access pattern is the ratio of read
operations to all update operations. The operations are uniformly

distributed among all the objects. Note that all reads are prospective

since reading either stable or prospective values involves accessing

only the local states, resulting in the same performance impact. The

batch size, denoted as𝑏, is the number of CRDTupdates grouped into

a single client message that is supplied to the consensus. The state

compaction optimizationmethodmentioned in Section 5.3 is applied

during batching. The sending rate refers to the target throughput for
the clients to send requests. We also vary the number of objects and
number of nodes in the cluster.

Overall Performance. Figure 5 shows the latency of operations

when the systems are under different loads (as indicated by the

throughput) for different batch sizes𝑏; greater loads are represented

by increasing the sending rate of the clients. The experimental runs

are configuredwith a balanced (50% update/50% read) access pattern,

with 50% safe updates, 100 objects, and 4 nodes.

Each sample point is the mean of 5 runs with a fixed sending

rate, and the error bars represent one standard deviation in average

latency. HotStuff is evaluated by setting the message sizes to the

average sizes of the PN-Counter and OR-Set messages.

For PN-Counter, Janus has a peak throughput (indicating the

system’s capacity when saturated) of approximately 260,000𝑜𝑝𝑠/𝑠
at 𝑏=1,000, which is 1.5× the peak of Narwhal at 170,000𝑜𝑝𝑠/𝑠 and
21× the peak of HotStuff at only 12,000 𝑜𝑝𝑠/𝑠 . This demonstrates

the effectiveness of Janus over traditional protocols and non-CRDT
solutions. However, the peak throughput of Janus is only 0.65× the
peak throughput of plainCRDTs, showing the performance trade-off

of the reliable CRDT features. The latencies of HotStuff and plain

CRDTs aremuch lowerwhen the load is light, at approximately 30𝑚𝑠

and 3𝑚𝑠 , respectively, but the advantage quickly diminishes as the

load increases.

Increasing the batch size for Janus from 1 to 500 increases the peak

throughput by 2.3×. This shows the effectiveness of the state com-

paction optimization, but increasing it to 1,000 does not yield further

improvement. In addition, the batch size does not affect the perfor-

mance of Narwhal as much as that of Janus. The low-load latency
is also increased by 2.3× because of the time spent filling the batch.

ForOR-Set, both Janus andNarwhal have a reduced peak through-
put because of the much larger message size and more complex

merging process. Janus has a peak throughput of about 80,000𝑜𝑝𝑠/𝑠 .
The 5× increase in message size from PN-Counter to OR-Set results

in a 70% decrease in throughput. However, Janus is still 1.6× faster

than Narwhal and 11× faster than HotStuff at only 7,000𝑜𝑝𝑠/𝑠 , but
has only 0.4× the throughput of a plain OR-Set CRDT.

Number of Objects. Figure 6 illustrates the peak throughput of

the systems as the number of objects ranges from 10 to 5,000. The

experimental runs are configured with a balanced access pattern,

50% safe updates, 𝑏=500, and 4 nodes. For PN-Counter, there is no

significant performance variation based on the number of objects.

However, for OR-Set, the peak throughput decreases when the num-

ber of objects exceeds 2,000. This decline occurs because OR-Set is

a significantly more complex data structure than PN-Counter and

grows in size when new elements are added. The increase in object

count reduces the frequency of resetting OR-Set instances
5
and ex-

hausts the node’s memory, leading to frequent memory swapping

to the disk and reduced performance.

We do not expect the number of objects to have a significant effect

on the performance of Janus because it always operates on a single
object at a time and there is no difference from the perspective of

the systemwhen the number of objects changes.

Message Size. We evaluate the direct impact of the message size

using OR-Set by removing the 50-element-cap
5
for each OR-Set

instance in this specific experiment, shown in Figure 7. The exper-

imental runs are configured with a balanced access pattern, 𝑏=500,

50% safe updates, 100 objects, sending rate set to 1000 ops/s, and

4 nodes. We measure the end-to-end latency of safe updates on a

single client over a 60-second experiment, with the sending rate set

to 1,000 ops/s, resulting in a lightly loaded system. For PN-Counter

and OR-Set instances with the 50-element cap, the latency remains

stable around 100−200ms, as the states of the CRDTs do not grow

indefinitely, nor does the message size.

However, with uncapped OR-Set, we observe that the message

size increases significantly from 144 bytes to a staggering 196MB at

their largest, as each OR-Set instance contains over 4,000 elements

and causes the latency to rise substantially. Additionally, the latency

rises in a stepwise pattern after a certain point, likely due to the

longer time required to receive larger messages, resulting in many

updates being completed simultaneously, followed by a prolonged

wait for the next group of updates.

Latency of Operations. Figure 8 depicts the latency changes of

different operations when increasing the sending rate of the clients.

Wemeasure the mean, median, and 95
𝑡ℎ

and 99
𝑡ℎ

percentile laten-

cies for safe updates, regular updates, and reads. The experimental

runs are configuredwith a balanced access pattern, 50% safe updates,

𝑏=500, 100 objects and 4 nodes.

There is a large discrepancy between safe and regular operations

for both CRDTs, as expected, due to the slow consensus process.

There is only a negligible difference between regular operations

and reads in terms of latency because they are affected only by the

local computational efficiency. For both PN-Counter and OR-Set,

the latency of reading a value and conducting a local CRDT update

increases from a fewmilliseconds to approximately 100𝑚𝑠 . Safe up-

dates take more than 1,000𝑚𝑠 and their latencies increase to more

than 10 seconds when the system becomes saturated, which is still

much greater than even the outliers for regular operations.

This experiment shows that although the consensus process strug-

gles when the system is saturated, the system can still handle some
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Figure 5: Throughput vs. latency

Figure 6: Peak throughput vs.
number of objects

Figure 7: Latency of safe updates
time series

Figure 8: Latency of operations

Figure 9: Peak throughput vs. access patterns and safe update ratios

regular operations within a reasonable time frame, which can be

further proven by the increasing gap between the 95
𝑡ℎ

and 99
𝑡ℎ

percentiles and the average latency of regular operations. This is

because there are more outliers in terms of latency under a heavy

load, but half of the operations are still processed promptly, resulting

in a lowmedian latency.

Access Pattern and Safe Ratio. We vary the ratios of operation

types from read-heavy (25% update/75% read) to write-heavy (75%

update/25% read)accesspatterns.Then,wemeasure thepeakthrough-

put of each combination. The experimental runs are configuredwith

𝑏=500, 100 objects, and 4 nodes.

Figure 10: Scalability

As shown in Figure 9, the write-heavy workloads are more sen-

sitive to the ratio of safe updates than are the read-heavy workloads,

since only updates are affected by the consensus process. In addi-

tion, the decrease is more significant when the ratio of safe updates

increases from 30% to 50% and then from 50% to 70%. The trend is

similar for both PN-Counter and OR-Set.

Scalability. The scalability of the systems is shown in Figure 10.

We increase the number of replicas from4 to 16 andmeasure the peak
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Figure 11: Throughput vs. latency with faulty nodes

throughput and the average latency when the systems are lightly

loaded. The experimental runs are configuredwith a balanced access

pattern, 𝑏=500, 50% safe updates, and 100 objects.

For PN-Counter, the decrease in peak throughput is almost linear

with thenumber of nodes, ranging fromapproximately 240,000𝑜𝑝𝑠/𝑠
to 110,000𝑜𝑝𝑠/𝑠 . However, after 8 nodes, the rate of decline slows,
especially for Narwhal. This effect is more obvious with OR-Set,

where the peak throughput of both Janus and Narwhal decreases
by approximately 40% when the number of nodes increases from

4 to 8. However, the throughput barely changes when the num-

ber of nodes increases from 12 to 16. For HotStuff, the throughput

with PN-Counter sized messages decreases approximately 30% from

13,000𝑜𝑝𝑠/𝑠 to 9,000𝑜𝑝𝑠/𝑠 from 4 to 16 nodes. For OR-Set sized mes-

sages, the decrease is approximately 50%. The throughput scaling

of Janus is comparable to that of HotStuff.

The cluster size only marginally affects the latency for Janus. For
PN-Counter, the latency increases by approximately 150𝑚𝑠 when

moving from 4 to 16 nodes, and for OR-Set, the latency increases

by approximately 200𝑚𝑠 . This indicates that the communication

overhead is no longer the bottleneck of the system after a certain

number of nodes are reached. For HotStuff, the latency increases

from 20𝑚𝑠 to 60𝑚𝑠 for PN-Counter sizedmessages and from 30𝑚𝑠 to

85𝑚𝑠 for OR-Set sized messages. The advantage of HotStuff in terms

of latency shows the overhead in the DAG protocols once again.

Performance under Faults. The performance of the systems with

a total of 8 nodes under failure is demonstrated in Figure 11. The

experimental runs are configured with a balanced access pattern,

𝑏=500, 50% safe updates, and 100 PN-Counter objects.

For crash failures, we terminate the processes of random Janus
nodes at the beginning of each experiment run, and the leader nodes

for HotStuff halfway through each run. The throughput of Janus im-

proves 50% from approximately 125,000𝑜𝑝𝑠/𝑠 to 190,000𝑜𝑝𝑠/𝑠 when
the number of crashed nodes increases from 0 to 2. This is because

crashed nodes do not send any messages, thus reducing the messag-

ingcomplexity. ForHotStuff, theperformancedecreases significantly

by approximately 60%with an already low initial throughput of ap-

proximately 13,000𝑜𝑝𝑠/𝑠 because stopping the leader introduces a
time-consuming view-change process, which is not a problem in

the DAG BFT protocols because there is no leader. However, if the

crashed node is not the leader, a similar performance improvement

can be expected [48].

(a) Throughput vs. request rate (b) Transactions latency

Figure 12: Banking database performance

Tomodel Byzantine failures,we set 50%of the updates propagated

by the faulty replicas to be invalid by not creating certificates for half

of the blocks. HotStuff is not considered here because replicas can-

not propose conflicting messages unless the leader is faulty, which

would have the same performance impact as a view change caused

by a crash failure. Conflicting updates and reverse operations are

not included in the throughput measurement.

The effects of Byzantine failures are shown in Figure 11 (right),

where the invalid updates are excluded from the throughput mea-

surement. The peak throughput for Janus decreases by around 20%,
from 190,000𝑜𝑝𝑠/𝑠 to 150,000𝑜𝑝𝑠/𝑠 . This performance degradation

is expected due to the increased number of updates that need to be

reversed. Narwhal’s performance is unchanged, as all updates are

agreed upon by the consensus before they are applied, so there are

no invalid updates requiring reversal. However, evenwith two faulty

replicas, Janus still outperforms pure Narwhal.

6.3 Banking Database Performance
We implement the banking database example as a distributed appli-

cation that utilizes Januswith 4 types of transactions: depositing,

withdrawing, transferring money, and checking balances. Each ac-

count is represented by a PN-Counter object with an invariant check

for nonnegative values.

The same setup from previous experiments is used, but a 50𝑚𝑠

delay and 10𝑚𝑠 jitter are added among theVMs byusing netem and tc
tools to emulate a geo-replicated cluster connected by aWANwithin

North America. The experiments are conducted on a 4–node cluster

with 100 accounts, a balanced workload with 50% balance checks,

and 50% update transactions where half of the update transactions

are withdrawals and the other half are transfers.

We also measure the performance for uniform and normally dis-

tributed access patterns on accounts. To induce concurrency, we

increase the number of transactions sent concurrently by each client

per second. Throughput ismeasured on the client side as the number

of completed transactions received by clients per second (TPS).

Figure 12 shows that the throughput of the system increases lin-

earlywith the concurrency ratewithout any significant performance

degradation. Only after 250,000 TPS does the trend slightly slow.

This is because the consensus process becomes extremely slowunder

a heavy load, and the system has the opportunity to process more

nonsafe updates and read requests. The reading and deposit latencies

increase by approximately 10×when the sending rate increases from
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40,000 to 160,000TPS,whereas the latency for transactions involving

safe updates increases by approximately 18×.
Inaddition, theuniformlydistributedaccesspatternyields slightly

better results than the normal distribution at a low sending rate. This

finding indicates that contested objects affect performance because

of lock contention. However, this effect becomes negligiblewhen the

load increases, as other factors overshadow the contention overhead.

6.4 Discussion
Our evaluations show that Janus has a significant advantage over
traditional BFT protocols by allowing the eager execution of oper-

ations. Furthermore, the preemptive execution of regular updates

and reads can reduce perceived latency and improve availability, as

these operations can be executed locally and respond to the client

promptly, even under heavy loads.

Message size and complexity within underlying CRDTs are the

main factors that affect performance, as demonstrated by the perfor-

mance difference between OR-Set and PN-Counter. Therefore, a fu-

turedirection foroptimizationcouldbe to further reduce themessage

size by using operation-based and delta-based CRDTs [5] or by using

consensus algorithms that are more efficient for larger payload sizes.

7 RELATEDWORK
Dynamically adjusting consistency levels for various application

requirements and network conditions is a common approach that

attempts to provide strong consistency without degrading perfor-

mance [8, 9, 31, 37]. There have also been efforts to combine different

consistency levels into one system [4]. For example, RedBlue con-

sistency [30] allows users to mark operations as red or blue. Red
operations are executed in a strongly consistent (serialized) manner,

and blue operations are executed in an eventually consistentmanner,

so the system can be both fast and consistent. Red updates are similar

to safe updates in our work. However, CRDTs consider states, not

only the order of operations; therefore, in our work, the ordering of

updates is not the goal but rather away toprovide stronger semantics

for CRDTs in our programming model.

Rationing consistency permits different consistency levels to co-

exist in the same system [27], but the granularity is at the level of data

objects instead of the whole system. The transactional application

protocol for inconsistent replication (TAPIR) [49] defines two kinds

of operations: inconsistent and consensus. In this scheme, replicas

execute inconsistent operations independently while using consen-

sus operations to determine a value that is agreed upon by all replicas

with fault tolerance. AntidoteDB [1, 32] is a distributed database

that offers APIs for users to choose which consistency level is most

appropriate based on the execution context. However, none of these

methods consider Byzantine failures.

Efforts have been made to combine different aspects of CRDTs

with strongly consistent systems, such as blockchains. These en-

deavors aim to either support features commonly found in strongly

consistent systems while preserving the performance advantages

of eventually consistent systems or to use CRDTs to address the

performance drawbacks of strong consistency [34]. For example,

OrderlessChain [35] replaces ordering in blockchains with CRDTs

that also allow for invariant checks. The Vegvisir blockchain [23]

uses a DAG chain instead of a linear chain, and branching chains

are merged via CRDTs. Both of these methods enable CRDT-based

applications to benefit from the additional safety guarantees offered

by blockchains, such as Byzantine fault tolerance and immutability,

while improving the performance of blockchains by allowing con-

current operations. However, neither provides new semantics for

CRDTs compared with those of reliable CRDTs.

TocombatByzantine failures inCRDTs, optimisticByzantine fault

tolerance [51] combines CRDTs with BFT consensus by requiring

all updates on a replica to be agreed upon via a BFT consensus pro-

tocol before they are propagated (while local execution is conducted

eagerly) through a checkpoint mechanism. This enables the replicas

to detect Byzantine failures and eliminate conflicting messages. The
same authors (2013, 2016) presented similar approaches for enhanc-

ing the CRDTs used in collaborative editing tools [52, 53]. However,

these works do not consider the possibility of eager execution on all

replicas and use traditional leader-based BFT, which may lead to a

reduction in performance.

Kleppmann (2022) [26] proposed a novel approach for addressing

Byzantine failures in peer-to-peer (P2P) CRDT systems where the

number of untrusted nodes is arbitrary. The focus is on providing a

reliable broadcast mechanism for P2P systems. This approach uses a

hashgraph (a DAG in which the vertices reference previous vertices

via cryptographic hashes) to ensure the causal order and integrity

of the updates. Barbosa et al. (2021) [12] and Jannes et al. (2022) [22]

suggested methods for combatting Byzantine failures in CRDTs by

ensuring the privacy and security of CRDT protocols; however, they

did not focus on the consistency of the CRDTs.

In addition to DAG-based protocols, several works on BFT con-

sensus endorse concurrency. For example, instead of using a totally

ordered BFT log as in traditional consensus, Basil [42] optimistically

handles concurrent operations on the server side and relies on clients

to ensure safety and maintain an illusion of serializability. Similar

concepts can be found in Pompe [50] and V-Guard [46], wheremulti-

ple consensus instances can occur at the same time. Although these

consensus protocols could also be applied as the underlying consen-

sus for Janus, the DAG BFT protocols align better with our design.

8 CONCLUSIONS
In this paper, we introduce the novel concept of reliable CRDTs,

which enhance eventually consistent CRDTs in a Byzantine envi-

ronment to obtain guarantees that are typically associated with

strongly consistent systems, such as strong ordering of operations

and invariant preservation. We discuss how reliable CRDTs can be

used to build fast and reliable distributed applications. Finally, we

present Janus, an implementation of a reliableCRDT system that out-

performs consensus-only solutions and demonstrates comparable

performance to plain CRDTs.

Future research directions based on this work include further

studies on the performance optimization of Janus and exploring the
broader applicability of reliable CRDTs. For instance, reliable CRDTs

could serve as a cost-effective method for enhancing reliability in

trusted environments, such as data centers, by using similar delayed

validation techniques.
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