
Themis: A GPU-accelerated RelationalQuery Execution Engine
Kijae Hong
POSTECH

kjhong@dblab.postech.ac.kr

Kyoungmin Kim
EPFL

kyoung-min.kim@epfl.ch

Young-Koo Lee
Kyunghee University
yklee@khu.ac.kr

Yang-Sae Moon
Kangwon National University

ysmoon@kangwon.ac.kr

Sourav S Bhowmick
Nanyang Technological University

assourav@ntu.edu.sg

Wook-Shin Han∗
GSAI, POSTECH

wshan@dblab.postech.ac.kr

ABSTRACT
GPU-accelerated relational query execution engines have paral-
lelized the execution of a pipeline, a sequence of operators. For the
parallelization, the engines evenly partition the tuples in a table that
will be scanned by the pipeline’s first operator (a scan), and each
thread executes the pipeline for the tuples in a partition. However,
this approach leads to load imbalances since an operator returns
a varying number of output tuples per input tuple, particularly
under non-uniform data distributions such as skewed join key val-
ues. The load imbalances are classified into intra- and inter-warp
load imbalances (intra-WLIs and inter-WLIs) since 1) threads are
grouped into warps and 2) every thread in a warp evaluates the
same operator for an input tuple concurrently following a single-
instruction-multiple-thread manner. In contrast, threads in different
warps can evaluate different operators concurrently. Although load
balancing techniques have been proposed, however, they fail to
solve the load imbalances on various workloads. In this paper, we
propose a query execution engine, Themis, named after the deity of
fairness, which symbolizes balanced workloads within our context.
Themis minimizes intra-WLIs and inter-WLIs across various work-
loads. First, Themis minimizes intra-WLIs by redistributing tuples
between the threads in a warp and making the threads evaluate
an operator only when all of them hold inputs. Second, Themis
mitigates the inter-WLIs by redistributing the tuples of warps with
heavy workloads to idle warps. To check whether a warp’s work-
load is heavy, we propose a method to approximate the sizes of
warps’ workloads. Based on these approximations, Themis adap-
tively adjusts the threshold for determining a warp’s workload as
heavy. In a recent benchmark JCC-H, which introduces skewed
join key distributions to TPC-H, Themis significantly alleviates the
inter-WLIs and intra-WLIs, outperforming the runner-up by up to
379x.

PVLDB Reference Format:
Kijae Hong, Kyoungmin Kim, Young-Koo Lee, Yang-Sae Moon, Sourav S
Bhowmick, and Wook-Shin Han. Themis: A GPU-accelerated Relational
Query Execution Engine. PVLDB, 18(2): 426-438, 2024.
doi:10.14778/3705829.3705856
PVLDB Artifact Availability:

∗Corresponding author
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 2 ISSN 2150-8097.
doi:10.14778/3705829.3705856

(a) Segmented query plan. (b) Pseudocode for the probe pipeline.

Figure 1: A plan for a query (Γ((𝑋 (𝐴, 𝐵)⋈︁𝑌 (𝐵,𝐶)) ⋉ 𝑍 (𝐶,𝐴)))
segmented into pipelines and the pseudocode for the probe
pipeline. Γ is a group-by aggregation operator [6], where the
aggregation key is the attribute 𝐴.

The source code, data, and/or other artifacts have been made available at
https://github.com/postechdblab/themis.

1 INTRODUCTION
Today, research endeavors to accelerate relational query processing
for analytics on a GPU [1, 9, 12, 23, 34, 46]. One of the primary
objectives of such research, which is also our objective, is to fully
utilize a massive number of GPU cores for the parallel execution
of each pipeline on a single GPU [9, 34]. A pipeline is a sequence
of non-blocking operators and an optional blocking operator at
the end [8, 9, 34, 35]. For a given query plan, the previous stud-
ies [8, 9, 34] segment the plan into pipelines and generate a GPU
kernel function for each pipeline. To avoid the overhead of material-
izing intermediate tuples at operator boundaries within a pipeline,
the previous studies [8, 9, 34] adopt a tuple-at-a-time approach in-
stead of an operator-at-a-time approach. As an implementation
for the tuple-at-a-time approach, the generated kernel function
for a pipeline consists of nested-loops to iterate over input tuples
for relational operators. Figure 1 shows the query plan and the
pseudocode of the generated kernel function for the probe pipeline.

For pipeline execution on a GPU, the previous studies [8, 35]
parallelize the outermost loop in a generated kernel function, and
this approach leads to load imbalances between threads when dis-
tributions of attribute values are non-uniform [9, 34]. For example,
threads execute the pseudocode in Figure 1b in parallel. Follow-
ing the pseudocode, a thread evaluates the join operator for an
input tuple 𝑡1 and a table 𝑌 , and a non-uniform distribution for join
keys results in a varying number of outputs for each input tuple.
The variability in output sizes can make threads process different
numbers of inputs for the semi-join.

426

https://doi.org/10.14778/3705829.3705856
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3705829.3705856
https://github.com/postechdblab/themis
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Intra-warp load imbalances (intra-WLIs) cause the suboptimal
usage of GPU cores allocated to the threads [9, 18–20, 26, 30, 34].
During pipeline execution, a warp (a group of 32 threads) itera-
tively evaluates a relational operator for input tuples in a single-
instruction-multiple-threads manner [8, 9, 34, 35]; every thread in a
warp executes the same operator concurrently. Here, we refer to
each iteration as a warp iteration [9], and each thread in a warp pro-
cesses one of the tuples held by the thread in a warp iteration. Due
to intra-WLIs, in a warp iteration, some threads hold no input tuple
while others hold input tuples. The problem is that the threads that
hold no input tuple (i.e., idle threads) must wait for other threads
that hold input tuples (i.e., active threads) to evaluate an operator,
thereby wasting GPU cores allocated to the idle threads [9].

Inter-warp load imbalances (inter-WLIs) also lead to underuti-
lization of GPU cores [13, 14, 20, 23, 29, 47]. Such imbalances result
in warps processing varying numbers of warp iterations during
pipeline execution. It indicates that warps finish at different times,
and the GPU cores for the warps that finish early will be wasted
until the longest-running warp finishes.

Figure 2 illustrates warp iterations of four warps during the exe-
cution of the probe pipeline in Figure 1. For simplicity, we assume
each warp comprises four threads. Here, the tuples in the table 𝑋
are evenly distributed to threads, and eight tuples are distributed to
the threads in the warp𝑤1 (𝜉1, 𝜉2, 𝜉3, and 𝜉4). In the warp iteration
1○, 𝑤1 evaluates a join for four tuples in the table 𝑋 . After that,
in the next iteration 2○, 𝜉1 and 𝜉3 each hold three and two input
tuples, respectively, while 𝜉2 and 𝜉4 hold no tuple and become idle.
The example also shows the inter-WLI where𝑤3 processes more
than 108 warp iterations for a large number of join outputs A○while
𝑤4 finishes early because there is no join output B○. Here, the GPU
cores for𝑤4 will be wasted until𝑤3 finishes.

To solve intra-WLIs and inter-WLIs, previous studies [9, 23, 34]
redistributed tuples between threads through buffers. However,
retrieving and storing tuples in buffers require expensive reads,
writes, and synchronization costs, especially when the buffers are
located in global memory (GMEM) [34]. The buffers in GMEM are
used for the tuple redistribution between threads in different warps
(i.e., inter-warp redistribution), while the intra-warp redistribution
can be performed through buffers in registers [9]. We observe that
the previous studies [23, 34] make a warp access to a buffer in
GMEM for each warp iteration in the worst case. Moreover, since
all warps share a single buffer in GMEM, severe contention issues
arise. We demonstrate in Section 8 that these costs slow down query
execution by up to 300 times.

While state-of-the-arts, DogQC [9] and Pyper [34], attempted to
tackle intra-WLIs, they did not propose inter-warp load balancing
(inter-WLB) methods and just evenly distributed the tuples in the ta-
ble to be scanned among the warps. As a baseline for the inter-WLB,
we employ a fixed-granularity work-sharing (FWS) approach [23].
In FWS, a warp checks the heaviness of its workload using a fixed
threshold for the output size of an operator for an input, and it
redistributes its workload to other warps if its workload is heavy.
However, it fails to solve inter-WLIs across various workloads due
to its fixed granularity as we shall explain in Section 2.3.

DogQC and Pyper also fail to solve the intra-WLI effectively.
Specifically, DogQC proposed two intra-warp load balancing (intra-
WLB) methods, push-down parallelism (PP) and lane-refill (LR).

Figure 2: Parallel execution of the probe pipeline in Figure 1
by four warps (𝑤1-𝑤4). Horizontally aligned small polygons
represent input tuples for an operator in a warp iteration.
Each ‘×’ means the absence of an input tuple for a thread.
The left-side number on an input tuple is the output size of
an operator for the input. If there is no output, we omit the
number. Here, the output tuples have the same shape, color,
and pattern as the input for clarity. Following the arrows, the
outputs of an operator become input tuples for the operator
located above. The circled numbers represent the execution
order of𝑤1’s warp iterations.

Since a join may generate a varying number of outputs per input,
PP tried to solve such an intra-WLI by pushing the parallelism down
from inputs to outputs of the join [9]. That is, instead of letting
each thread take the join outputs of an input it processes, PP lets all
threads in a warp evenly take the join outputs of a single input tuple
at a time. However, PP fails to solve intra-WLIs if the join output
size of an input is less than the number of threads in a warp (wSize).
In such cases, some threads in a warp become idle when evaluating
the succeeding operator of the join. This case occurs frequently
if a join key distribution is skewed. For example, in Figure 3a,𝑤1
distributes the three join outputs marked as red to 𝜉1, 𝜉2, and 𝜉3.
However, 𝜉4 becomes idle in the warp iteration 2○.

LR attempts to solve intra-WLIs by buffering input tuples in a
warp iteration where the number of active threads is less than a
fixed threshold (e.g., wSize). In the warp iteration, a warp flushes
the inputs into a buffer and proceeds to the next warp iteration.
If flushed tuples become sufficient to fill all the idle threads in a
warp iteration, the idle threads are refilled to remove the intra-WLI
for this iteration. For example, in Figure 3b, the inputs in the warp
iteration 3○ are flushed to a buffer, and the idle threads in the warp
iteration 5○ are covered by the flushed tuples.

However, LR cannot solve the intra-WLI in a warp iteration
to evaluate an operator op if there is no remaining input for the
preceding operator (i.e., the producer) that produces inputs for 𝑜𝑝 .
When a warp buffer tuples in a warp iteration, the warp evaluates
the producer of 𝑜𝑝 in the next warp iteration if there is no remaining
tuple generated by the producer. For example, in Figure 3b, after
the warp iteration 3○, the warp𝑤1 evaluates the semi-join in the
warp iteration 4○ to generate inputs for the group-by aggregation.
However, if there is no input for the producer, instead of evaluating
preceding operators of the producer, the warp evaluates op even
if there are idle threads not covered by the flushed inputs. For
example, the warp 𝑤1 executes the group-by aggregation in the

427

(a) Push-down parallelism (PP). (b) Lane refill (LR).

Figure 3: Intra-WLB of DogQC for the parallel execution in
Figure 2. The semi-join in figure 3a generates the input tuples
in Figure 3b. The circled numbers indicate the execution
order of warp iterations.

warp iteration 4○ even if the thread 𝜉4 becomes idle. It is because
𝑤1 already processes all inputs for the semi-join generated in the
warp iteration 1○. The problem is that inputs for the producer will
frequently be insufficient if the inputs are generated by a join with
a skewed join key distribution.

Pyper proposed an intra-WLB technique, Shuffle, as an alterna-
tive to LR. The difference with LR is that multiple warps flush (i.e.,
gather) tuples into a buffer shared by them, and the gathered tuples
are processed by (i.e., concentrated over) fewer warps among the
warps that gather the tuples. Note that Shuffle redistributes tuples
between warps, but it does not solve inter-WLIs. To avoid the tuple
redistribution through a buffer in GMEM, Shuffle attempts the con-
centration across warps in a thread block first, not across all warps.
A thread block is a group of warps, and the tuple redistribution
between warps in a thread block can be executed through a buffer
in shared memory (SMEM). SMEM is a specific type of cache we will
detail in Section 2.1. If the number of tuples gathered by warps in a
thread block is too small (e.g., less than half of wSize), the intra-WLI
still occurs even if the gathered tuples are concentrated over one
warp. To avoid such cases, if the number of the gathered tuples
is less than a fixed threshold, Shuffle executes the concentration
across all warps through a buffer in GMEM shared by all warps.

Unfortunately, Shuffle also fails to solve intra-WLIs, and it incurs
a substantial synchronization cost for a buffer in GMEM [34]. If
the number of tuples gathered by warps in a thread block is not
a multiplier of wSize, the intra-WLI still occurs. For example, in
Figure 4, since𝑤1 and𝑤2 in the same thread block gather six tuples,
𝑤2 should execute the semi-join for two tuples only. Furthermore,
skewed join key distributions frequently trigger the inter-block
redistribution, and synchronization costs for the buffer slow down
query execution. In the case of𝑤3 and𝑤4 in the same thread block,
the gathered tuples are too few, so the tuples are flushed into the
buffer in GMEM. Then, the flushed tuples are concentrated over
𝑤1 and 𝑤2 in a different thread block. The problem is that such
inter-block redistribution occurs frequently while 𝑤3 processes
more than 108 join outputs in Figure 2.

We propose Themis, a GPU-accelerated relational query process-
ing engine, which consistently solves inter-WLIs and intra-WLIs
while minimizing the inter-warp redistribution costs. First, we sim-
plify the execution of a pipeline on a GPU to parallel tree traversal
by warps on a fine-grained computation tree, and we refer to the
tree as an evaluation tree. In the tree, each node corresponds to an

…

𝑤!
𝜉! 𝜉" 𝜉# 𝜉$ 𝜉% 𝜉!&𝜉!! 𝜉!" 𝜉!#𝜉!$𝜉!'𝜉!(

…

𝜉' 𝜉(𝜉) 𝜉*

… … …

𝑤" 𝑤# 𝑤$

Sh
uf
fle

+
⋉

Thread block 1 Thread block 2

Gather

Concentrate

X X1 1 1 1 1 1

SMEM

GMEM

Figure 4: Intra-WLB of Pyper for the parallel execution in
Figure 2.

input tuple for an operator, and visiting a node (i.e., tuple) corre-
sponds to evaluating an operator for the tuple. Here, the outputs of
an operator have child-parent relationships with the input.

For intra-WLB, we can simply view that each warp visits up to
wSize nodes for each warp iteration, and we propose a traversal
order for a warp that minimizes intra-WLIs. This traversal order
enables Themis to solve the intra-WLIs without any inter-warp
redistribution.

In terms of inter-WLB, we can see that we need to consider not
only the number of nodes but the sizes of the subtrees rooted at the
nodes when we check the heaviness of a warp’s workload. In this
work, we propose a heuristic to approximate the workload size of
a subtree and a novel work-sharing method that adaptively deter-
mines the load balancing granularity based on the approximated
workload sizes of subtrees to overcome the limits of the FWS.

We also present the efficient implementation of the proposed
inter-WLB and intra-WLB technique. To reduce the costs for retriev-
ing and storing tuples in buffers located in GMEM, we employ a
lazy materialization of attribute values to represent tuples in buffers
concisely. We also propose an inter-warp redistribution method
that alleviates contention problems by redistributing tuples through
multiple buffers in GMEM.

To demonstrate that Themis effectively solves load imbalances
even for skewed join key distributions, we use a benchmark JCC-
H [2] as in [17, 22, 39, 42, 43], which introduces skewed join key
distributions to TPC-H [41]. Themis significantly alleviates inter-
WLIs and intra-WLIs, outperforming the runner-up by up to 379x.

We summarize our contributions as follows. We reinterpret
pipeline execution as traversal on an evaluation tree to provide
a simple and fine-grained view for the inter-WLB and intra-WLB
problems (Section 3). We present a parallel tree traversal algorithm
for a pipeline execution on a GPU (Section 4). We devise a traversal
order that minimizes intra-WLIs (Section 5). We propose an inter-
WLB technique that adaptively solves the inter-WLIs across various
workloads (Section 6). We present an efficient implementation of
our inter-WLB techniques (Section 7). We empirically validate the
benefit of our intra-WLB and inter-WLB techniques on JCC-H [2],
and Themis outperforms the baselines up to 379x (Section 8).

2 BACKGROUND
2.1 Characteristics of GPUs and CUDA
Figure 5 illustrates a simplified modern GPU architecture [31] that
consists of streaming multiprocessors (SMs), L2 cache, and GMEM.
Each SM has processing blocks (PBs) that contain cores, registers

428

Figure 5: GPU architecture [31]

(REGs), a L1 cache, and SMEM. During execution, a PB executes
instructions of threads using its cores [31].The combined L1 cache
and SMEM are shared by PBs in an SM. Programmers can reside
desired data in SMEM, manually, while load and eviction of data in
L1 and L2 caches are managed automatically in hardware [31].

GPU processing is modeled as processing a kernel function in
parallel with a massive number of threads managed in a grid-block-
warp hierarchy [40]. The number of threads in a thread block, the
number of thread blocks in a grid, and the number of grids should
be specified before a GPU executes a kernel function. The number
of threads in a thread block is usually configured to a multiple of
wSize, and the threads are automatically divided intomultiple warps.
When a GPU starts to execute a kernel function, the GPU allocates
an SM for each thread block considering available resources (e.g.,
REGs and SMEM). Here, an SM can be allocated to multiple thread
blocks. After that, each warp in a thread block is assigned to a PB
based on its identifier [15].

Threads can share data through REG, SMEM, and GMEM[32].
While GMEM allows data sharing between all threads, it is slow
and incurs high synchronization costs. The threads within a thread
block can share data via SMEM instead of GMEM. Moreover, the
threads within a warp can share data via REGs. Accesses to REG
and SMEM are at least 375 and 13 times faster than accesses to
GMEM, respectively [15].

2.2 Pipeline Processing on a GPU
2.2.1 Pipeline. A pipeline 𝑃 is a sequence of non-blocking opera-
tors, optionally followed by a blocking operator at the end, denoted
as [𝑜𝑝0, 𝑜𝑝1, ..., 𝑜𝑝𝑘−1], where 𝑘 is the number of operators in 𝑃 .
The blocking operator (e.g., Γ) is such that the operator consuming
its outputs (i.e., consumers) cannot be executed until the blocking
operator has processed all input tuples. In contrast, it is feasible to
execute the consumer of a non-blocking operator (e.g., 𝜎).

2.2.2 Base Table. The GPU-based pipeline processing methods [3,
8, 9] store tuples in a table as arrays in GMEM. For a fixed-sized
attribute of the table, one array is used to store attribute values. To
store a variable-sized attribute, an additional array is used to store
pointers to attribute values.

Therefore, the 𝑖-th tuple in a table𝑇 can be simply represented as
an offset 𝑖-1 with an indicator to𝑇 . If necessary, a thread processing
this tuple loads its attribute values from the 𝑖-th slots of the arrays.

Further extending this idea, to maintain the outputs of all oper-
ators in a concise and unified way each operator is implemented
to produce an offset range to represent its set of outputs. For ex-
ample, a base table 𝑇 itself can be represented as [0, |𝑇 |), where
|𝑇 | is the number of tuples in 𝑇 . We now explain other operators’
implementations and output representations.

2.2.3 Selection. For each input tuple, if the input satisfies the con-
dition of a selection operator (𝜎), the operator is considered to
return an output tuple identical to the input. Otherwise, there is
no output tuple. If the offset of the input tuple is 𝑖 , the selection
operator produces either [𝑖 ,𝑖+1) or [𝑖 ,𝑖).

2.2.4 Join. For a join operator, previous studies [3, 8, 9, 23, 46]
concisely represent the tuples in a build-side table with the same
join-key value as an offset range by making a build-side pipeline
store such tuples consecutively in the arrays for the build-side
table. The offset ranges of all join-key values are stored in a hash
table. Once a tuple from the probe side arrives, the join partners of
the build-side table can be retrieved from the hash table. Instead
of concatenating the join partners with the probe-side tuple, the
corresponding build-side offset range and the probe-side tuple (also
represented as an offset range) are returned as the join outputs.

2.2.5 Group-by Aggregation. Previous studies [8, 9] employ the
hash-based aggregation [16]. For an input tuple, the group-by ag-
gregation (Γ) is performed by updating the hash table where each
bucket in the hash table stores the values of the group key and
aggregation result. Since the group-by aggregation is a blocking
operator (Section 2.2.1), it produces outputs once all inputs are
consumed, where the hash table is returned, not an offset range.

2.2.6 Materialization. For materialization, in previous studies [8,
9, 34], the attribute values of an input tuple are appended to the
arrays for the output table, to make the representation consistent
with the base tables. As a blocking operator, it directly returns these
arrays instead of an offset range.

2.3 Fixed-granularity Work-Sharing
As an inter-WLB technique, FWS was proposed in a previous study
only for join queries [23]. In FWS, after a warp executes a join for
an input tuple, the workload of a warp is considered heavy if the
number of outputs exceeds a fixed threshold. To redistribute the
heavy workload to other warps, the warp divides the join outputs
into partitions and pushes these partitions to a queue in GMEM.
The FWS keeps each partition size as the fixed threshold. When a
warp becomes idle, it attempts to pop one of the pushed partitions
from the queue. For example, in Figure 2, FWS makes the warp𝑤3
divide the large number of join outputs into partitions and push
the partitions to the queue in GMEM.

However, FWS cannot solve inter-WLIs consistently for various
workloads because its granularity can be too coarse-grained or too
fine-grained depending on a workload. If the partition size is too
large, a small number of partitions is pushed to the queue, and idle
warps cannot become busy as the queue frequently runs out of
partitions. Conversely, if the partition size is too small, the states
of warps frequently transit from a busy state to an idle state. The
tuple redistribution through a single queue in GMEM also requires
expensive costs for pop or push operations of the queue. Even
worse, the contention on this single queue makes idle warps wait
long until they succeed to pop a partition.

429

3 ABSTRACTION FOR PIPELINE EXECUTION
ON A GPU: EVALUATION TREE

We simplify the pipeline execution on a GPU as parallel traversal
on a fine-grained computation tree (i.e., evaluation tree) by warps.
On the evaluation tree, we reinterpret the inter-WLB problem to
redistributing the nodes from busy warps to idle warps, and the
intra-WLB problem to selecting a traversal order for a warp that
minimizes idle threads.

For a given pipeline, an evaluation tree𝑇 consists of nodes where
each node corresponds to an input tuple for an operator in the
pipeline. Here, a pipeline is a sequence of 𝑘 operators, [𝑜𝑝0, 𝑜𝑝1, ...,
𝑜𝑝𝑘−1], and visiting a node (i.e., a tuple) 𝑡 at a level 𝑙 in 𝑇 indicates
evaluating 𝑜𝑝𝑙 for 𝑡 . If a tuple 𝑡 ′ belongs to the output tuples of 𝑜𝑝𝑙
for 𝑡 , 𝑡 ′ and 𝑡 have child-parent relationships. Since 𝑜𝑝0 is a scan
operator, for notational purposes, we consider that the root node
of𝑇 is an empty tuple, and tuples in a scanned table are children of
the root node. Figure 6 shows an evaluation tree for the pipeline in
Figure 2. For example, visiting a node at level one corresponds to
executing the join of a probe-side tuple in table 𝑋 and a build-side
table 𝑌 in Figure 2.

Now, we reinterpret the parallel pipeline execution by warps
as follows. Initially, the nodes located at level one are divided into
partitions, and one partition is distributed to each warp. Here, each
partition is defined as a set of nodes. Then, for each warp iteration,
at most wSize nodes at the same level (inside the warp’s partition)
are visited by a warp, and their child nodes are expanded to the
tree as new leaves. Formally, a warp’s partition part is updated as
follows after the warp visits nodes 𝑡1, 𝑡2, ..., 𝑡𝑛 in a warp iteration.

part ← part − {𝑡1, 𝑡2, ..., 𝑡𝑛} ∪ 𝑐 (𝑡1) ∪ 𝑐 (𝑡2) ∪ ... ∪ 𝑐 (𝑡𝑛)
Here, 𝑐 (𝑡) is a set of a node 𝑡 ’s children. Once the nodes for all
the non-blocking and final blocking operators are visited, all nodes
have been expanded, and the outputs of the blocking operator are
returned as the pipeline results.

We can then view the inter-WLB problem as selecting nodes from
partitions of busy warps with heavy workloads and redistributing
them to idle warps. In the context of tree traversal, a warp’s work-
load𝑊 is represented as {a subtree rooted at a node 𝑡 |𝑡 ∈ part},
where part is the warp’s partition. We can also define the size of
𝑊 as the number of nodes in the subtrees of𝑊 . However, this
size cannot be precomputed since all the descendant nodes are not
known in advance. In Section 6, we instead propose a heuristic that
approximates the workload size of a subtree and redistributes sub-
trees based on the approximations, while adaptively determining
the granularity of subtrees to resolve the limitation of FWS.

The intra-WLB problem can be viewed as selecting a traversal
order, or nodes for a warp to visit at each iteration. In Section 5, we
show that the breadth-first-search (BFS) minimizes the intra-WLIs
but requires an indefinite memory consumption up to the tree size.
To overcome such a problem, we propose a novel traversal order
that minimizes the intra-WLIs while using a fixed size of memory.

4 OVERVIEW OF THEMIS
In Themis, each warp executes Algorithm 1 to visit nodes in an
evaluation tree. After the equi-partitioning the nodes at level one
(Line 1), each warp starts to visit nodes. Here, part denotes the
workload assigned to this warp, consisting of one or more subtrees

Figure 6: An evaluation tree of the pipeline in Figure 2.

in the evaluation tree. In each warp iteration, a warp chooses nodes
in its partition based on our traversal order (Line 6) After that, it
visits the chosen nodes (Line 7). The partition is updated to add
their child nodes (Lines 8-9). For inter-WLB, each warp periodically
checks if its workload is heavy and tries to redistribute its workload
to idle warps. If the warp is not idle (Line 13), it redistributes its
workload to an idle warp as long as it is determined as heavy (Line
14). If the warp is idle (Line 15), it instead waits for a busy warp
to redistribute some workload and resume iterations (Lines 16-
19) or ends iterations if all warps become idle (Line 20). After the
redistribution, the warp chooses the next warp iteration number to
check its heaviness (Line 21).

Algorithm 1: Traversal function for an evaluation tree 𝑇
executed by a warp.
1 part← a set of level-one nodes assigned to this warp
2 iteration← 0
3 iterationToRedistributeWorkload← 1
4 while true do
5 while part ≠ ∅ do
6 nodesToVisit, part← chooseNodesToVisit(part)
7 visit the nodes in nodesToVisit concurrently
8 children← a set of the child nodes of the visited nodes
9 part← part ∪ children

10 iteration← iteration + 1
11 if iteration > iterationToRedistributeWorkload :
12 break
13 if part ≠ ∅ : part← redistributeWorkloadIfItIsHeavy(part)
14 else
15 while true do
16 if a busy warp shares nodes with this warp :
17 part← the set of the shared nodes
18 break
19 if numIdleWarps = numAllWarps : return
20 iterationToRedistributeWorkload← chooseIteration(iteration)

5 NO-IMBALANCE-FIRST-SEARCH FOR
INTRA-WARP LOAD BALANCING

We propose a traversal order for a warp that minimizes the intra-
WLIs while using a constant size of memory.

One of the traversal orders that minimize intra-WLIs is BFS,
but BFS requires a large memory space for a queue of the nodes
to visit. Note that a warp iteration visits wSize nodes at the same
level regardless of the traversal order. Therefore, if the number of
nodes at a level is not a multiple of wSize, then any order occurs
an intra-WLI at least once. In BFS, such an intra-WLI occurs in the
last warp iteration for each level. However, BFS requires a large
memory space for a queue to store whole nodes at a level. Figure 7a

430

(a) BFS.

(b) NIFS.

Figure 7: An example of BFS and NIFS traversal on the evalu-
ation tree in Figure 6 by the warp𝑤3 in Figure 2. Each large
rectangle covers the nodes visited in each warp iteration.
Here, the two numbers below each rectangle indicates the
warp iteration number and the number of offset ranges the
warp maintain after the warp iteration.

shows an example of BFS on the tree in Figure 6, and the intra-WLI
occurs only in the last warp iteration at each level.

In order to minimize intra-WLIs as BFS while using a fixed size
of memory, we propose no-imbalance-first-search (NIFS) as in Algo-
rithm 2 that can be plugged into Algorithm 1. First, a warp tries to
choose the highest level with at least wSize nodes and takes wSize
nodes from the level (Lines 2-4). If it fails to choose any, it chooses
the lowest level with at least one node and take all nodes from the
level (Lines 5-7), where the number of nodes will be less than wSize.
Figure 7b presents an example of NIFS that minimizes the intra-
WLIs as BFS. After the iteration 1○, 2○ becomes the highest level
with at least wSize nodes. Then 3○ becomes the highest since there
are only three nodes at level 3 at the moment. 4○ is chosen next.
Following NIFS, 𝑤3 minimizes the intra-WLIs as BFS, and it also
maintains the small number of offset ranges during the traversal,
while𝑤3 following BFS in Figure 7a needs to maintain 106 +1 offset
ranges after the last warp iteration at the level two.

We can prove that NIFS minimizes the intra-WLIs as BFS as
follows. Note that the intra-WLI occurs if a warp chooses a level
𝑙 with less than wSize nodes, i.e., Line 6 in Algorithm 2. This in-
dicates that 1) there is no level with more than wSize nodes and
2) no remaining nodes at levels lower than 𝑙 . 1) indicates that an
imbalance must occur. 2) indicates that once making an imbalance
for this level 𝑙 , there will be no additional nodes at 𝑙 ; nodes will
only appear at higher levels than 𝑙 . Therefore, as in BFS, only the
last warp iteration at level 𝑙 generates intra-WLIs in NIFS.

The usage of a constant-size memory space to store nodes can
be shown as follows. For each level, a warp maintains a queue in
its REGs, whose elements are the offset ranges representing the
assigned nodes at the level (Section 2.2). Hence, the set of all queues
corresponds to the part in Algorithm 1. After equi-partitioning
the nodes at level one, a warp stores one offset range in its level-1
queue (Line 1 of Algorithm 1). Then, at each iteration, following
Algorithm 2, a warp selects a level 𝑙 , and it chooses nodes from
offset ranges in the front of the level-𝑙 queue. In detail, a warp starts
with the first offset range in the queue. If the offset range contains

more nodes than it needs, it chooses the front wSize nodes in the
range and adjusts this range to discard the chosen nodes. Otherwise,
it chooses all nodes from the range and removes the range from
the queue. After choosing nodes, the warp visits the nodes, and it
appends the offset ranges corresponding to the child nodes of the
visited ones to the level-(𝑙+1) queue (Lines 8-9 of Algorithm 1).

The key aspect is that the number of offset ranges for the new
child nodes is at most wSize, since each visited node can generate
one offset range as explained in Section 2.2. Here, according to the
NIFS, the number of nodes (and thus the number of offset ranges)
in the level-(𝑙+1) queue must had been less than wSize. Otherwise,
level 𝑙+1 should had been selected instead of level 𝑙 . Therefore, at
any time (even after adding new child nodes), the number of offset
ranges in the level-(𝑙+1) queue is less than wSize + wSize = 2 ×
wSize. This proves that NIFS requires a constant-size memory of at
most 2 × (𝑘-1) × wSize × 8B (the size of an offset range, of just two
integers), where 𝑘 is the height of an evaluation tree.

Algorithm 2: Function executed by a warp to choose
tuples to visit.
Function chooseNodesToVisit(part)

1 nodesToVisit← ∅
2 if there is a level with at least wSize nodes in part :
3 l← the highest level with at least wSize nodes in part
4 nodesToVisit← a set of wSize nodes at l in part
5 else
6 l← the lowest level with at least one node in part
7 nodesToVisit← a set of all nodes at l in part
8 return nodesToVisit, part - nodesToVisit

6 ADAPTIVE WORK-SHARING FOR
INTER-WARP LOAD BALANCING

We propose a novel adaptive-granularity work-sharing (AWS) that
solves the limitations of FWS and reduces inter-WLIs. Since it is
hard to allocate equi-sized workloads to warps in the first place,
we first set indirect goals to reduce the number of busy warps that
become idle and the average waiting time of an idle warp until it
becomes busy again.

To achieve the first goal, we let the busiest warp redistribute
half of its workload to an idle warp. The rationale for selecting
the busiest warp, i.e., the warp with the largest workload, is that
redistributing workload from a warp with a small workload to an
idle warp would result in both warps becoming idle soon thereafter.
The rationale for selecting half of its workload is to balance the
loads between the giver and the receiver.

To determine the busiest warp, we approximate the size of each
warp’s workload𝑊 under the heuristic that a subtree’s size in-
creases exponentially with its height, so the highest subtrees will
dominate the workload size. Formally, the workload size is ap-
proximated as a pair (ℎ, |{𝑆𝑇 |𝑆𝑇 ∈𝑊 ∧ height(𝑆𝑇) = ℎ}|}, where
ℎ = max𝑆𝑇 ∈𝑊 ℎ𝑒𝑖𝑔ℎ𝑡 (𝑆𝑇), and | · | is a cardinality function for a
set. Given a subtree, we use (the number of operators in a pipeline,
i.e., 𝑘) - (the level of the subtree’s root) as its height. If a workload
size (ℎ1, 𝑛1) is larger than another size (ℎ2, 𝑛2), either 1) ℎ1>ℎ2 or
2) ℎ1 = ℎ2 and 𝑛1>𝑛2.

AWS provides a theoretical bound for the number of times a warp
becomes idle as follows: 𝐼 ≤ ⌈log2 (𝑁)⌉ × nWarps × (𝑘-1). Here, 𝐼

431

Figure 8: An example of the inter-warp tuple redistribution
that redistributes half of a warp 𝑤3’s workload to an idle
warp 𝑤4. Each white square indicates a visited node. Each
light green rectangle indicates a queue of offset ranges in
REGs to maintain the input nodes at a level (Section 5). Here,
each offset range in a queue is marked as the same color with
corresponding nodes. For example, the offset range [𝑠2, 𝑠2+1)
represents the node at the level 2 marked as yellow. The 𝑠1,
𝑠2, and 𝑠3 are the start offsets of the offset ranges.

is the number of times a warp becomes idle, 𝑁 is the number of
the nodes in an evaluation tree, 𝑘 is the height of the evaluation
tree, and nWarps denotes the number of warps. This can be proved
as follows. First, the busiest warp can have (𝑘-1, 𝑛) as the largest
workload size for some 𝑛. Formally, max𝑖 (𝑠𝑖) ≤ (𝑘-1, 𝑛), where
𝑠𝑖 is the workload size of the 𝑖-th warp. After warps become idle
nWarps times, max𝑖 (𝑠𝑖) ≤ (𝑘-1, ⌊𝑛/2⌋) since 1) whenever a warp
becomes idle, half the workload of the busiest warp is shared with
the idle warp, and 2) thus the busiest warp at the moment must
have shared its workload with some idle warp. Then, as 𝑛 < 𝑁 ,
we can guarantee that max𝑖 (𝑠𝑖) < (𝑘-1, 1) after warps become
idle ⌈log2 (𝑁)⌉× nWarps times. Using the same approach, warps
can become idle at most ⌈log2 (𝑁)⌉× nWarp ×(𝑘-1) in total. AWS
corresponds to Line 14 of Algorithm 1 and is implemented as the
first function in Algorithm 3. First, the (approximated) workload
size (ℎ, 𝑛) is calculated in Lines 1-2 of Algorithm 3.

However, we instead use the log scale of 𝑛 as in Line 3 to avoid
frequent changes in its value and reduce the tracking cost of the
busiest warp’s workload size in Lines 4-5. This tracking is imple-
mented using a hash table in GMEM of workload sizes (keys) and
the numbers of warps having that workload sizes (values). During
the traversal, each warp updates the hash table if its workload size
changes. Using the log scale for 𝑛 reduces the frequency of hash
table updates. Each warp scans the hash table from the largest key
to check if it is the busiest warp (Line 6).

If this warp is not the busiest warp, no work sharing occurs
(Lines 4-5). Otherwise, it tries to redistribute half of its workload to
an idle warp and returns the remaining workload (Lines 6-7). Figure
8 shows an example of the redistribution. In the example, the warp
𝑤3 redistributes half of the highest subtrees to the idle warp 𝑤4,
and𝑤3 updates its level-2 queue to discard the redistributed nodes.

To reduce the average waiting time of an idle warp until it be-
comes busy again, we introduce an adaptive mechanism allowing
busy warps to adjust the interval of the warp iterations to redis-
tribute subtrees to an idle warp (Line 4 of Algorithm 1) based on
the total number of idle warps. This approach is implemented in
the second function of Algorithm 2. In Line 8, a warp chooses a
small interval if the majority of warps are idle, to make such idle

warps quickly busy again. Otherwise, it chooses a large interval
to avoid the overhead of unnecessary redistribution attempts. The
maximum interval is set to 32.

Algorithm 3: Functions executed by a warp for work-
sharing.
Function redistributeWorkloadIfItIsHeavy(part)

1 ℎ← the height of the highest subtrees in part
2 𝑛← the number of subtrees with height ℎ
3 workloadSize← (ℎ, ⌈log2(1 + n)⌉)
4 if workloadSize < current busiest warp’s workloadSize : return part
5 try to redistribute ⌈𝑛/2⌉ subtrees with the height ℎ to an idle warp
6 return the set of remaining nodes after the redistribution
Function chooseNextIteration(currentIteration)

7 interval← 1 + min(32, ⌊ log2(numAllWarps / numIdleWarps) ⌋)
8 return currentIteration + interval

7 EFFICIENT IMPLEMENTATION OF THEMIS
We propose an efficient node redistribution approaches that allow
warps to concurrently redistribute their subtrees to idle warps and
lazily materialize attribute values.

To reduce the cost of inter- and intra-warp tuple redistribution,
Themis employs a lazy materialization of attribute values. When
a warp evaluates the succeeding operator of a scan or a join, in
DogQC and Pyper, the warp eagerly loads attribute values that will
be used for succeeding operators and stores the values into buffers.
In Themis, a warp stores the offset for table arrays that store the
values (Section 2.2.2) and lazily loads the values when they become
necessary, for example, filtered attributes for selections and group-
by attributes for aggregations. This approach avoids unnecessary
memory accesses to GMEM. Furthermore, this technique reduces
the redistribution cost by enabling threads to share offsets only not
the attribute values for the redistribution. As we will experimen-
tally demonstrate in Section 8.3.1, this optimization reduces query
execution times by up to 30%, especially when the filtering ratios
of selection operators are low (< 25%).

For efficient AWS, we allow busy warps to concurrently share
their workloads with idle warps using the hierarchical bitmap [28]
in GMEM and a dedicated buffer in GMEM for each warp. This
parallel redistribution enables us to alleviate the contention problem
compared to the single buffer approach of Pyper and FWS.

The hierarchical bitmap of Themis comprises two bitmaps, bit1
and bit2. The 𝑖-th bit in bit2 is set to one to indicate that the 𝑖-th
warp is idle. Similarly, the 𝑗-th bit in bit1 is set to one if there is any
idle warp between the (64 × (𝑗 − 1) + 1)-th and (64 × 𝑗)-th warps.

When a warp becomes idle, it uses atomic operations to 1) mark
the status of its buffer as empty, 2) update the number of idle warps,
and 3) update the bitmap to indicate that it is idle. Then, it periodi-
cally checks its buffer and the number of idle warps. If the buffer
becomes non-empty, it retrieves the stored nodes from its buffer and
stores the nodes into its queue in REGs. If the number of idle warps
becomes equal to the total number of warps, the warp terminates.

To identify an idle warp, a busy warp first randomly selects a
64-bit segment in 𝑏𝑖𝑡1 and picks a bit set to one. It then examines
the corresponding 64-bit segment in 𝑏𝑖𝑡2, chooses a bit set to one,
and set the bit to zero using atomic operations. To redistribute its
workload to the identified idle warp, it stores its nodes to the idle

432

warp’s buffer in GMEM. Here, the busy warp divides each offset
range in its queue into two offset ranges, and it stores one of the
two offset ranges to the idle warp’s buffer. This ensures that the cost
remains constant regardless of the number of nodes being shared,
and this inter-warp redistribution occurs 𝑂 (log(𝑁)) times as we
explained in Section 6. In Figure 8, the buffer for𝑤4 lies between
𝑤3 and𝑤4’s queues. The buffer for a warp requires a fixed size of
memory as the queues for a warp in Section 5.

8 PERFORMANCE STUDY
We conduct a comprehensive evaluation of Themis against DogQC
and Pyper, focusing on query processing times and addressing intra-
and inter-WLIs. The workload for our experiments is the JCC-H
benchmark, the variant of the TPC-H [41], where join key distribu-
tions are skewed. We also conduct experiments using the TPC-H
benchmark. We compare the methods on various environments by
varying 1) a scale factor, 2) the number of warps per block, 3) the
number of warps. Due to the space limitation, the key results are
presented here, and the additional results are available at [21].

8.1 Experimental Setup
To conduct evaluations in a realistic environment, we employ JCC-
H benchmark [2], which introduces skewed join key distributions
into the TPC-H benchmark [41]. The experiments were performed
using the dataset on a scale factor of 30. For the dataset, as we
explained in Section 2, we build tables and indices for the primary-
key and foreign-key relationships.

We evaluate DogQC, Pyper, and Themis for all 22 JCC-H queries.
Our focus is on assessing their load balancing techniques, so we use
the same plan for direct comparison to see if they can effectively
and efficiently eliminate both intra-WLIs and inter-WLIs. Because
of the absence of a query optimizer available for all 22 queries [34],
we generate the variants of the DogQC’s plans [7] considering index
hash joins, and choose the best plan that demonstrates the fastest
execution time for each query when using a single thread. The
index hash join is a hash join that uses a pre-built hash table, and it
allows us to choose plans that are 1.15 to 4 times faster than plans
using hash joins only. However, the plans using index hash joins
have significant load imbalances as we will explain in Section 8.3.1.

We extend the released implementation of DogQC [7] to support
index hash joins. We also make LR available in warp iterations to
evaluate any operators. In the original implementation, LR is not
supported in warp iterations to evaluate succeeding operators of
a join in a pipeline where the join produces multiple outputs for
an input. We refer to our extended version as DogQC++. In the
experiments, we set the number of warps of DogQC++ following
the TPC-H benchmark experiment of its paper (80 warps per SM
which can execute 32 warps concurrently).

For Pyper, we develop an implementation following its paper, ow-
ing to the absence of publicly available source code or binaries. To
investigate the trade-off of the expensive inter-block redistribution
(IBR) of Pyper, we evaluate two variants of Pyper: Pyper-w/o-ibr,
which omits IBR, and Pyper, which incorporates it. Pyper uses the
same number of warps with DogQC++.

For Themis, for the ablation study of our load balancing tech-
niques, we evaluate two versions: Themis-w/o-aws, which excludes

AWS, and Themis, which exploits both NIFS and AWS. Themis also
uses the same number of warps with DogQC++.

To evaluate the load balancing techniques, we mainly present the
execution times for a given query. Additionally, we assess the intra-
WLIs and inter-WLIs by reporting two metrics: the intra-warp idle
ratio (IIR) and the Inter-Warp Load Imbalance Factor (ILIF). The IIR is
(the average number of idle threads in a warp iteration)/wSize. ILIF
for a given pipeline is (the maximum execution cycles)/(average
execution cycles) of warps when they process tuples. For each
query, we report the weighted sum of the ILIFs for all pipelines.
The weight for each pipeline is (the total execution cycles of warps
for each pipeline)/(the total execution cycles of warps).

We conduct all the experiments on a machine running Ubuntu
20.04, equipped with an NVIDIA RTX3090 GPU, which boasts 82
SMs and 24GB of GMEM. Each SM has four PBs, with the L1 cache
and a register file size being 128KB and 256KB, respectively, for each
SM. We utilize NVIDIA driver version 470.103.01 and CUDA ver-
sion 11.4. Because each SM in an NVIDIA RTX3090 can execute 64
warps concurrently, we set the number of warps to 82 × 160 (≈ 13K)
following the DogQC’s experimental setup for the TPC-H bench-
mark (80 warps per SM which can execute 32 warps concurrently).
We also set four warps to compose a single thread block.

8.2 Categorization of JCC-H Queries
To simplify exposition, we categorize the queries into two groups:
1) queries where the query plans include operators that produce
multiple outputs per input (e.g., a join), and 2) queries where plans
only contain operators that produce at most one output per input
(e.g., a semi-join). Hereafter, we refer to the former as QG-M and
the latter as QG-1 (Table 1). For QG-M queries, index hash joins are
typically the operators generating multiple outputs per input. It is
because indices enable us to scan a small dimension table first and
execute a join operation on a large fact table at a low cost. We ob-
serve that DogQC++ and Pyper still have load imbalance problems
for QG-M queries while they effectively solve the imbalances for
QG-1 queries as we will show in Figures 10 and 11 later.

We investigate the characteristics of the queries to facilitate the
analysis of the inter-WLI and intra-WLI problems of the baselines
on JCC-H. Each query is represented by the pipeline that takes the
longest execution time. Here, DogQC++, Pyper, and Pyper-w/o-ibr
have the same longest pipeline for all queries except Q8. For Q8, the
longest pipeline varies for each method, and we select the longest
pipeline of DogQC++ since DogQC++ outperforms other baselines
for Q8. The selected pipelines account for more than 50% of the
total execution time for their respective queries. They also contain
the operators that return multiple outputs for an input.

8.2.1 Characterization in Terms of the Inter-warp Load Imbalance.
For characterizing the queries, we collect metrics for the selected
pipeline per each query as evidence of the load balancing tech-
niques’ ILIF values as shown in Table 1. One such metric is the
number of tuples in a scanned table (i.e., the size of a scanned table).
If there are operators (e.g., a semi-join) that filter scanned tuples,
we track the number of filtered tuples instead of the number of
the scanned tuples. A small size of a scanned table, less than the
number of warps, suggests potential inter-WLIs if we just evenly
distribute the tuples in a scanned table to warps, as is the case with

433

baselines, DogQC++, Pyper-w/o-ibr, and Pyper. We consider the
scanned table for a query to be large if the size of the table is larger
than or equal to the number of warps.

To analyze inter-WLIs on a query with a large scanned table, we
characterize the query by the skewness in the number of tuples
derived from a scanned tuple. In the query, processing the derived
tuples is the main bottleneck for pipeline execution time. Ideally,
if the baselines can evenly distribute the derived tuples to warps,
they will not suffer from inter-WLIs. In this context, we refer to the
workload per warp in this ideal scenario as the Ideal Workload per
Warp (IWW), which is equal to (the # tuples derived from all tuples
in a scanned table) / (# warps). However, it is impossible if there is a
tuple 𝑡 in a scanned table with an extremely large number of tuples
derived from it that exceeds IWW. This is because DogQC++ and
Pyper cannot redistribute the tuples derived from 𝑡 . So, if there is a
tuple in a scanned table where the number of tuples derived from
it is larger than IWW, we consider the distribution of the number
of tuples derived from each scanned tuple as highly skewed.

Table 1: Characteristics of JCC-H queries related to inter-
WLIs of the baselines. The gray color indicates categories
where we expect to observe the inter-WLIs of the baselines.

Query
group

The
size of

a
scanned
table

Skewness in #
tuples derived
from each tuple
in a scanned

table

Query ID

QG-M
Small High Q2, Q8, Q9, Q11, Q21

Low Q5, Q7, Q17, Q18, Q20
Large High Q4, Q10, Q13, Q16, Q22

Low Q3
QG-1 Large Low Q1, Q6, Q12, Q14, Q15, Q19

8.2.2 Characterization in Terms of the Intra-warp Load Imbalance.
To explain the trade-off of Pyper’s IBR, we categorize QG-1 queries
based on the filtering ratio of the selected pipeline as shown in Table
2. Here, the filtering ratio is (# filtered tuples in a scanned table)/(#
tuples in a scanned table). The selected pipeline includes an operator
that filters scanned tuples, and alleviating intra-WLIs when a warp
processes the output tuples of the operator (i.e., filtered tuples in
a scanned table) is crucial. As we will explain in Section 8.3.2, we
expect the intra-WLIs of Pyper-w/o-ibr due to the absence of IBR,
especially for the queries where the filtering ratio is low (< 25%).
In contrast, Pyper is anticipated to demonstrate longer execution
times than Pyper-w/o-ibr due to the overhead of IBR.

In the case of QG-M queries, we classify the queries by the size
of a scanned table to explain the significant intra-WLIs of Pyper.
To guarantee that there is no remaining tuple in buffers after a
query execution, Pyper has a post-processing step that processes
the remaining tuples without IBR. For the queries marked as blue
in Table 2, Pyper will suffer from the intra-WLIs since the tuples
in a tiny scanned table will be stored in the buffers, and the tuples
will be processed in the post-processing step.

We also characterize the selected pipeline of each QG-M query
based on the average output size of the last join per input to demon-
strate the DogQC++’s limitations discussed in Figure 3. In the se-
lected pipeline, processing the outputs of the last join is the main

bottleneck for the pipeline execution, and alleviating the intra-WLIs
for the outputs is crucial. However, DogQC++ will show higher
IIRs compared to Themis-w/o-aws on queries marked as orange in
Table 2 where the output size of the last join is small (< wSize).

Table 2: Characteristics of JCC-H queries related to intra-
WLIs. Pyper-w/o-ibr, Pyper, and DogQC++ are anticipated to
show intra-WLIs on categories marked as sky-blue, blue, and
orange, respectively.

Query
group

filtered tuples in a
scanned table / # tuples

in a scanned table
Query ID

QG-1 High (> 98%) Q1
Low (< 25%) Q6, Q12, Q14, Q15, Q19

Query
group

The
size of a
scanned
table

The average #
output tuples
from the last
join operator

Query ID
(# join operators)

QG-M Tiny Small Q5 (4), Q8 (3), Q9 (2)

Large Q2 (3), Q7 (1), Q11 (3), Q17 (1),
Q18 (1), Q20 (1), Q21 (2)

Large Small Q3 (2), Q4 (1), Q10 (1), Q16 (1)
Large Q13 (1), Q22 (1)

8.3 Performance Study on JCC-H
8.3.1 Execution Times on JCC-H. Figure 9 illustrates the query
processing times of the baselines, Themis-w/o-aws, and Themis.

In terms of inter-WLB, for queries where we expect the inter-
WLIs (marked as gray in Table 1), Themis outperforms DogQC++,
Pyper-w/o-ibr, Pyper, and Themis-w/o-aws by up to 173x with AWS.
In the case of other queries, Themis shows 1.04x longer execution
times compared to Themis-w/o-aws due to the overhead for the
work-sharing, such as the cost to track the number of idle warps.
Despite the overhead, Themis still outperforms DogQC++, Pyper-
w/o-ibr, and Pyper by 9% on average because of its inter-WLB
technique and the lazy materialization of attribute values.

Among the intra-WLB techniques, Themis-w/o-aws generally
exhibits shorter execution times than the DogQC++, Pyper, and
Pyper-w/o-ibr up to 2x, 30x, and 440x, respectively. It is because
NIFS efficiently reduces the IIRs as we will explain in Section 8.3.2.
According to Figure 9, DogQC++ also shows shorter execution times
than Pyper and Pyper-w/o-ibr, but Themis outperforms DogQC++
especially on QG-M queries marked as orange in Table 2.

For QG-1 queries especially where the filtering ratio is low
(marked as sky-blue in Table 2), Themis-w/o-aws is up to 1.4x
faster than DogQC++ and Pyper even if they have no intra-WLI.
Pyper-w/o-ibr shows longer execution times than DogQC++ and
Themis-w/o-aws due to the remaining load imbalances. In contrast,
Pyper suffers from the expensive cost of IBR. The advantage of
Themis-w/o-aws compared to the runner-up, DogQC++, comes
from the lazy materialization of attribute values. It enables Themis-
w/o-aws to avoid the unnecessarymemory accesses for the attribute
values of scanned tuples filtered out, while DogQC++ eagerly loads
attribute values of all scanned tuples.

On the queries in QG-M, Pyper-w/o-ibr and Pyper exhibit longer
execution times than Themis-w/o-aws. The slow pipeline execution

434

of Pyper-w/o-ibr is due to the significant intra-WLIs. While Pyper
alleviates the intra-WLIs of Pyper-w/o-ibr, the expensive IBR makes
Pyper still slower than DogQC++ and Themis-w/o-aws.

For QG-M queries with small average output sizes from the last
join per input tuple (marked as orange in Table 2), Themis-w/o-aws
outperforms DogQC++ by up to 2x, averaging 1.3x. This is because
Themis-w/o-aws effectively solves intra-WLIs for the queries where
DogQC++ struggles with the small join output size per input.

In QG-M queries where the average output size of the last join
per input tuple is large, Themis-w/o-aws exhibits shorter execution
times than DogQC++ by up to 1.4x and on average 1.07x. Here, both
Themis-w/o-aws and Pyper effectively alleviate the intra-WLIs on
these queries. This marginal improvement of Themis-w/o-aws over
DogQC++ is due to the lazy materialization (Section 7).

We also evaluate the effect of lazy materialization, and it reduces
query execution times of Themis and Themis-w/o-aws by 38% and
4% for the JCC-H queries. We also enable the lazy materialization
for the baselines, and we observe that Themis-w/o-aws and Themis
still exhibited 1.17x and 44.01x shorter execution times compared
to the baselines that use the lazy materialization.

8.3.2 Intra-Warp Load Imbalances on JCC-H. Figure 10 depicts the
IIRs for the baselines and Themis-w/o-aws, and we explain the
cause of the intra-WLIs in this section.

For all queries, Themis-w/o-aws consistently demonstrates low
IIRs with an average value of 1%, which is 14 times smaller than
that of the runner-up, DogQC++, across all 22 JCC-H queries. The
highest IIRs of Themis-w/o-aws is 8%, while DogQC++, Pyper-w/o-
ibr, and Pyper exhibit IIRs up to 69%, 97%, and 96%, respectively.
This shows the effectiveness of NIFS always prioritizing operators
with a sufficient number of input tuples (≥wSize).

For QG-1 queries where the filtering ratio is low (marked as
sky-blue in Table 2), Pyper-w/o-ibr shows a high average IIR of
22% while those of other methods are lower than 3%. With the high
intra-WLIs, Pyper-w/o-ibr shows 1.4x longer execution times than
Themis-w/o-aws. It is due to the absence of IBR which is a solution
for when the total number of active threads in a thread block drops
below the threshold of wSize, as demonstrated in Figure 4. The se-
lected pipeline of each QG-1 query contains an operator that filters
scanned tuples. After the warps in a thread block execute a filtering
operator, if the filtering ratio is less than 25%, the total number of
active threads in the warps becomes lower than wSize because each
thread block is composed of four warps in our experimental setup.

On the queries in QG-M, Pyper-w/o-ibr shows a higher average
IIR (85%) than QG-1 queries. It is because the need for IBR increases
on QG-M queries due to the join operators, which yield a varied
number of output tuples per input compared to QG-1 queries where
the operators produce at most one output.

For QG-M queries with tiny scanned tables (marked as blue in
Table 2), Pyper demonstrates the high average IIR (60%) as Pyper-
w/o-ibr. This is because Pyper cannot use the IBR for the selected
pipelines of the queries. As we explained in Section 8.2.2, Pyper
stores the tuples in a tiny scanned table to a buffer, and it processes
the tuples in the processing step without IBR.

For QG-M queries where the average output size of the last join
operator per input is less than wSize (marked as orange in Table 2),
DogQC++ exhibits ten times higher average IIRs (44%) compared

to other QG-M queries. With intra-WLIs, DogQC++ shows up to
2x longer execution times than Themis-w/o-aws because of the
limitations of DogQC++’s PP and LR explained with Figure 3. PP
makes the threads in a warp evenly take outputs of a join for an
input tuple, and the number of outputs less than wSize causes intra-
WLIs. In LR, a warp cannot use the buffering technique in a warp
iteration for the evaluation of an operator if there is no remaining
input for the producer of the operator. In other words, when the
last join produces inputs for the producer, LR cannot solve the intra-
WLIs if the join produces a small number of outputs per input.

8.3.3 Inter-warp Load Imbalances on JCC-H. Figure 11 presents
the values of ILIF for the baselines and Themis across the 22 JCC-
queries. For the queries where we expect the inter-WLIs (marked as
gray in Table 1), we observe that Pyper, Pyper-w/o-ibr, DogQC++,
and Themis-w/o-aws demonstrate the high ILIF values of 777, 943,
907, and 793 respectively. In the case of Themis, the average and
the maximum ILIF values are 1.8 and 4.4, respectively, due to AWS.
By alleviating the inter-WLIs, Themis shows up to 173x shorter
execution times compared to DogQC++, Pyper, Pyper-w/o-ibr, and
Themis-w/o-aws on queries where the competitors suffer from inter-
WLIs, as previously explained in Section 8.3.1. For other queries,
all methods exhibit low ILIFs below two, indicating no inter-WLIs.
8.3.4 Experiments on Various Environments. We also evaluate the
baselines and Themis by varying 1) a scale factor, 2) the number
of warps per block, and 3) the number of warps. We also compare
the methods on TPC-H. Themis consistently outperforms the base-
lines on the various environments, due to NIFS and AWS. First,
Themis consistently demonstrates shorter execution times on aver-
age 7x, 18x, 19x, 23x, 35x, 35x, and 33x, compared to the runner-up,
DogQC++, for the scale factors: 1, 5, 10, 15, 20, 25, and 30, respec-
tively. Themis also shows 32x, 33x, 32x, and 34 shorter execution
times than the runner-up, DogQC++, when we vary the number of
warps per thread block from 1 to 2, 4, and 8. The number of warps
is set to 13K. Themis also demonstrates shorter execution times on
average 2x, 6x, 21x, 31x, and 33x, compared to DogQC++, when we
increase the number of warps from 4 to 32, 256, 2048, and 16384.
The number of warps per thread block is set to 4. In TPC-H, Themis
shows 35x shorter execution times than DogQC++.

8.4 Cost Breakdown of Work-Sharing
To delve deeper into the effectiveness of AWS over FWS, we perform
a cost breakdown for cost breakdown for the three queries with the
highest ILIF values in each gray-colored category in Table 1 where
the baselines experience inter-WLI. For this breakdown, wemeasure
the execution times of warps to process tuples (i.e., processing time).
We also record 1) the duration that an idle warp waits until the idle
warp becomes busy again (i.e., waiting time) and 2) the frequency
of the state transitions of warps from busy to idle.

For the evaluation, we implement a variant of Themis that ex-
ploits FWS (fws) [23]. To demonstrate the effect of the granularity
of fws (i.e., the threshold for the join output size per input tuple),
we evaluate fws with four different thresholds, 1K, 2K, 4K, 8K, and
16K. In [23], the threshold was set to 1K for relational data.

Figure 12 presents the cost breakdown of the work-sharing strate-
gies. For the selected queries of the gray-colored categories in Table
1, Themis consistently outperforms fws due to AWS. In Figure

435

Figure 9: Execution times (ms) on JCC-H queries.

Figure 10: The intra-warp idle ratios (IIRs) on 22 queries of JCC-H.

Figure 11: Inter-warp load imbalance factors (ILIFs) on JCC-H queries.

12, fws fails to consistently solve inter-WLIs because of the fixed
granularity as explained in Section 2.3. If the granularity is too
coarse-grained, few partitions are pushed to the queue in GMEM,
leaving idle warps idle, as seen in Figures 12c and 12b. Conversely,
if the granularity is too fine-grained, the states of warps frequently
transit from a busy state to an idle state, and the total waiting times
increase as shown in Figures 12e and 12f. Additionally, contention
on the queue further extends waiting times. In contrast, Themis con-
sistently solves inter-WLIs because of AWS. It also quickly transits
idle warps to a busy through parallel tuple redistribution, facilitated
by the hierarchical bitmap and multiple buffers (Section 7).

We also evaluate the effect of our parallel tuple redistribution
method, and Themis shows 2x shorter execution times compared to
the Themis that uses a global single buffer instead of the hierarchi-
cal bitmap and the multiple buffers. We also compare Themis with
the fws that maintains a buffer per warp and uses the hierarchical
bitmap to detect the non-empty buffer. Our parallel tuple redistri-
bution method decreases the query execution times of fws 1.6x,
however the fws still demonstrates 1.6x longer times than Themis.
For this comparison, we compared the execution time of Themis
with the shortest result among the execution times of the fws for
the thresholds, 1K, 2K, 4K, 8K, and 16K, as used in Figure 12.

8.5 Summary
In summary, Themis outperforms the baselines, DogQC++, Pyper
for the queries where load imbalances exist. It is because Themis
solves the intra-WLIs with NIFS (Section 5), and also resolves inter-
WLIs by AWS (Section 6). It also reduces the tuple redistribution
cost with the lazy materialization of attribute values and the parallel
tuple redistribution between warps (Section 7).

9 RELATEDWORK
We discuss the related work in the database area that was not ex-
plained in sections before. First, we explain the previous work that
tries to solve intra-WLIs. In the CPU area, vectorized analytical
query processing methods [24, 37] can be applied for intra-WLI
issues. DogQC’s lane-refill strategy is derived from the strategy in
[24], and VIP [37] also uses a similar strategy that gathers enough
intermediate results in a buffer before evaluating the intermediate
results for an operator. However, these studies focus on the utiliza-
tion of SIMD lanes during execution of one operator (e.g., join or
filter), while Themis solves intra-WLIs for pipeline.

Second, we present the related work to solve inter-WLIs. Materi-
alizing intermediate results and distributing the results to threads
are used in [10, 35, 46] to solve inter-WLIs as well as intra-WLIs.
These methods can be applied for inter-WLB. However, the interme-
diate results materialization method suffers from a severe overhead
of materialization. Morsel-driven parallelism [25] in CPU area can
also be a baseline as FWS for inter-WLB. However, the morsel-
driven approach is too coarse-grained because the smallest unit for
load balancing is a tuple in a table scanned by the first operator in
a pipeline. The approach divides the tuples in a table to scan into
fixed-size groups (i.e., morsels), and the morsels are assigned to
threads in a round-robin fashion.

Third, we discuss the earlier methods that generate GPU codes
for a given pipeline. RedFox [45] generates a code following the
operator-at-a-time approach that materializes the whole interme-
diate results. Kernel weaver [44], HorseQC [8], HetExchange [5],
Voodoo [36], and Crystal [38] fuse relational operators for a given
pipeline. Kernel weaver and HorseQC focus on reducing PCI-e
communication costs between CPU and GPU by fusing operators

436

(a) Q8 (b) Q11 (c) Q9

(d) Q5 (e) Q17 (f) Q20

(g) Q10 (h) Q4 (i) Q22

Figure 12: The cost breakdown of inter-WLB techniques for JCC-H queries Q2, Q4-5, Q7-11, Q13, Q16-18, and Q20-22. The Y-axis
indicates the execution time in milliseconds. no-LB represents Themis-w/o-aws, and fws is a variant of Themis that uses FWS.
We evaluate fws varying its granularity. aws denotes Themis, and we execute a query three times to show that aws alleviates
the inter-WLIs consistently. The subsequent number following the name of aws indicates the execution ID. The processing
time refers to the duration required to process tuples, while the waiting time denotes the period during which idle warps wait
before becoming busy again. The number above each bar is the frequency of state transitions of warps from a busy state into
an idle state.

because they send the materialized intermediate tuples to CPU
memory from GPU memory. Voodoo generates an OpenCL code to
execute on both CPUs and GPUs. HetExchange proposes code gen-
eration that utilizes multiple CPUs and GPUs concurrently. Crystal
provides a library of data processing primitives that enables a pro-
grammer to implement code where operators are fused. Since the
operator fusion methods do not have inter- and intra-WLB tech-
niques, we compared Themis only with DogQC and Pyper that
propose intra-WLB techniques. Recently, Crystal-Opt [4] shows
that Crystal can be improved by applying the lazy materialization
of attribute values, but it still has inter- and intra-WLI problems.
Themis also shows 2.14x shorter execution times over Crystal on
the star schema benchmark [33] used in Crystal’s experiment.

Fourth, we compare the load balancing approach of the sub-
graph enumeration methods [10, 11, 27] with Themis. The subgraph
enumeration can also be viewed as a tree traversal problem, and
[10, 11, 27] visit nodes in a DFS manner. Specifically, they iterate
visiting a fixed number of nodes at the highest level among levels
where there are nodes to visit. In each iteration, warps visit nodes in
parallel, and each warp generate the children of the nodes it visits
in GMEM to enable any warps to visit the child nodes in the next
iteration. This parallelization approach materializes all nodes in
GMEM. Furthermore, it still has the load imbalance problems since
the number of children varies for each node. Themis also shows
shorter query execution times than the load balancing approach

of the subgraph enumeration methods on the graph queries and
datasets of [11] by up to 13x, with an average of 5x.

10 CONCLUSIONS
In this paper, we have presented Themis, a GPU-accelerated rela-
tional query processing engine that solves inter- and intra-WLIs.
First, we view the pipeline execution as the tree traversal on an
evaluation tree. On the evaluation tree, we reinterpret the inter-
WLB problem to redistributing the subtrees from busy warps to idle
warps, and the intra-WLB problem to selecting a traversal order that
minimizes idle threads. Second, we propose NIFS that minimizes
intra-WLIs. Third, we present AWS that solves the inter-WLIs across
various workloads. Last, the experimental results have shown that
Themis effectively solves inter- and intra-WLIs significantly and
outperforms the baselines, DogQC and Pyper on JCC-H by up to
379x.

ACKNOWLEDGMENTS
This work was supported by the National Research Foundation
of Korea(NRF) grant funded by the Korea government(MSIT) (No.
NRF-2021R1A2B5B03001551) and Institute of Information commu-
nications Technology Planning Evaluation(IITP) grant funded by
the Korea government(MSIT) (No. RS-2018-II181398, Development
of a Conversational, Self-tuning DBMS, 50%).

437

REFERENCES
[1] Dan A Alcantara, Vasily Volkov, Shubhabrata Sengupta, Michael Mitzenmacher,

John D Owens, and Nina Amenta. 2012. Building an efficient hash table on the
GPU. In GPU Computing Gems Jade Edition. Elsevier, 39–53.

[2] Peter Boncz, Angelos-Christos Anatiotis, and Steffen Kläbe. 2018. JCC-H: adding
join crossing correlations with skew to TPC-H. In Performance Evaluation and
Benchmarking for the Analytics Era: 9th TPC Technology Conference, TPCTC 2017,
Munich, Germany, August 28, 2017, Revised Selected Papers 9. Springer, 103–119.

[3] Sebastian Breß, Bastian Köcher, Henning Funke, Steffen Zeuch, Tilmann Rabl,
and Volker Markl. 2018. Generating custom code for efficient query execution
on heterogeneous processors. The VLDB Journal 27, 6 (2018), 797–822.

[4] Jiashen Cao, Rathijit Sen, Matteo Interlandi, Joy Arulraj, and Hyesoon Kim. 2023.
GPU Database Systems Characterization and Optimization. Proceedings of the
VLDB Endowment 17, 3 (2023), 441–454.

[5] Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy, and Anastasia
Ailamaki. 2019. HetExchange: Encapsulating heterogeneous CPU-GPU parallelism
in JIT compiled engines. Technical Report.

[6] Marius Eich, Pit Fender, and Guido Moerkotte. 2018. Efficient generation of
query plans containing group-by, join, and groupjoin. The VLDB Journal 27
(2018), 617–641.

[7] Funke. 2022. Github repository of DogQC. https://github.com/Henning1/dogqc
[8] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner.

2018. Pipelined query processing in coprocessor environments. In Proceedings of
the 2018 International Conference on Management of Data. 1603–1618.

[9] Henning Funke and Jens Teubner. 2020. Data-parallel query processing on
non-uniform data. Proceedings of the VLDB Endowment 13, 6 (2020), 884–897.

[10] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xiaokui Xiao, and Kian-Lee
Tan. 2020. Gpu-accelerated subgraph enumeration on partitioned graphs. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 1067–1082.

[11] Wentian Guo, Yuchen Li, and Kian-Lee Tan. 2020. Exploiting reuse for gpu
subgraph enumeration. IEEE Transactions on Knowledge and Data Engineering
34, 9 (2020), 4231–4244.

[12] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and
Pedro Sander. 2008. Relational joins on graphics processors. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data. 511–524.

[13] Changwan Hong, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay, Jinsung
Kim, Süreyya Emre Kurt, Israt Nisa, Shivani Sabhlok, Ümit V Çatalyürek, Srini-
vasan Parthasarathy, and P Sadayappan. 2018. Efficient sparse-matrix multi-
vector product on gpus. In Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing. 66–79.

[14] Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, and P Sadayappan.
2017. MultiGraph: Efficient graph processing on GPUs. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT). IEEE,
27–40.

[15] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. 2018.
Dissecting the NVIDIA volta GPU architecture via microbenchmarking. arXiv
preprint arXiv:1804.06826 (2018).

[16] Peng Jiang and Gagan Agrawal. 2017. Efficient SIMD andMIMD parallelization of
hash-based aggregation by conflict mitigation. In Proceedings of the International
Conference on Supercomputing. 1–11.

[17] David Justen. 2022. Cost-efficiency and Performance Robustness in Serverless
Data Exchange. In Proceedings of the 2022 International Conference onManagement
of Data. 2506–2508.

[18] Farzad Khorasani, Rajiv Gupta, and Laxmi N Bhuyan. 2015. Efficient warp
execution in presence of divergence with collaborative context collection. In
Proceedings of the 48th International Symposium on Microarchitecture. 204–215.

[19] Farzad Khorasani, Rajiv Gupta, and Laxmi N Bhuyan. 2015. Scalable simd-
efficient graph processing on gpus. In 2015 International Conference on Parallel
Architecture and Compilation (PACT). IEEE, 39–50.

[20] Farzad Khorasani, Bryan Rowe, Rajiv Gupta, and Laxmi N Bhuyan. 2016. Elimi-
nating intra-warp load imbalance in irregular nested patterns via collaborative
task engagement. In 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 524–533.

[21] Young-Koo Lee Yang-SaeMoon Sourav S Bhowmick Kijae Hong, Kyoungmin Kim
and Wook-Shin Han. 2024. The full paper of Themis. https://drive.google.com/
drive/folders/1FoDxT4uS25iezcEgOY2ZMMHMQD0N0ej5

[22] Jan Kossmann, Daniel Lindner, Felix Naumann, and Thorsten Papenbrock. 2022.
Workload-driven, lazy discovery of data dependencies for query optimization. In
Proceedings of the Conference on Innovative Data Systems Research (CIDR).

[23] Zhuohang Lai, Xibo Sun, Qiong Luo, and Xiaolong Xie. 2022. Accelerating
multi-way joins on the GPU. The VLDB Journal 31, 3 (2022), 529–553.

[24] Harald Lang, Andreas Kipf, Linnea Passing, Peter Boncz, Thomas Neumann, and
Alfons Kemper. 2018. Make the most out of your SIMD investments: counter
control flow divergence in compiled query pipelines. In Proceedings of the 14th
international workshop on data management on new hardware. 1–8.

[25] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. 743–754.

[26] Zhihao Li, Haipeng Jia, and Yunquan Zhang. 2017. HartSift: A high-accuracy
and real-time SIFT based on GPU. In 2017 IEEE 23rd International Conference on
Parallel and Distributed Systems (ICPADS). IEEE, 135–142.

[27] Wenqing Lin, Xiaokui Xiao, Xing Xie, and Xiao-Li Li. 2016. Network motif
discovery: A GPU approach. IEEE transactions on knowledge and data engineering
29, 3 (2016), 513–528.

[28] Mikołaj Morzy, Tadeusz Morzy, Alexandros Nanopoulos, and Yannis Manolopou-
los. 2003. Hierarchical bitmap index: An efficient and scalable indexing technique
for set-valued attributes. In Advances in Databases and Information Systems: 7th
East European Conference, ADBIS 2003, Dresden, Germany, September 3-6, 2003.
Proceedings 7. Springer, 236–252.

[29] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard Vuduc, and Ponnuswamy
Sadayappan. 2019. Load-balanced sparse mttkrp on gpus. In 2019 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). IEEE, 123–133.

[30] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr: Trans-
forming irregular graphs for gpu-friendly graph processing. ACM SIGPLAN
Notices 53, 2 (2018), 622–636.

[31] NVIDIA. 2020. NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/
NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf

[32] NVIDIA. 2022. CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#global-memory-5-x

[33] Patrick E ONeil, Elizabeth J ONeil, and Xuedong Chen. 2007. The star schema
benchmark (SSB). Pat 200, 0 (2007), 50.

[34] Johns Paul, Bingsheng He, Shengliang Lu, and Chiew Tong Lau. 2020. Improving
execution efficiency of just-in-time compilation based query processing on GPUs.
Proceedings of the VLDB Endowment 14, 2 (2020), 202–214.

[35] Johns Paul, Jiong He, and Bingsheng He. 2016. GPL: A GPU-based pipelined
query processing engine. In Proceedings of the 2016 International Conference on
Management of Data. 1935–1950.

[36] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. 2016. Voodoo-a vector
algebra for portable database performance on modern hardware. Proceedings of
the VLDB Endowment 9, 14 (2016), 1707–1718.

[37] Orestis Polychroniou and Kenneth A Ross. 2020. VIP: A SIMD vectorized analyt-
ical query engine. The VLDB Journal 29, 6 (2020), 1243–1261.

[38] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A study of the funda-
mental performance characteristics of GPUs and CPUs for database analytics. In
Proceedings of the 2020 ACM SIGMOD international conference on Management of
data. 1617–1632.

[39] Yijie Shen, Jin Xiong, and Dejun Jiang. 2020. SrSpark: Skew-resilient spark based
on adaptive parallel processing. In 2020 IEEE 26th International Conference on
Parallel and Distributed Systems (ICPADS). IEEE, 466–475.

[40] Jieming Shi, Renchi Yang, Tianyuan Jin, Xiaokui Xiao, and Yin Yang. 2019. Real-
time top-k personalized pagerank over large graphs on gpus. Proceedings of the
VLDB Endowment 13, 1 (2019), 15–28.

[41] TPC. 2022. TPC-H. https://www.tpc.org/tpch/
[42] Immanuel Trummer, Junxiong Wang, Ziyun Wei, Deepak Maram, Samuel Mose-

ley, Saehan Jo, Joseph Antonakakis, and Ankush Rayabhari. 2021. Skinnerdb:
Regret-bounded query evaluation via reinforcement learning. ACM Transactions
on Database Systems (TODS) 46, 3 (2021), 1–45.

[43] Ziyun Wei and Immanuel Trummer. 2022. SkinnerMT: Parallelizing for Effi-
ciency and Robustness in Adaptive Query Processing on Multicore Platforms.
Proceedings of the VLDB Endowment 16, 4 (2022), 905–917.

[44] Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yalamanchili.
2012. Kernel weaver: Automatically fusing database primitives for efficient
gpu computation. In 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE, 107–118.

[45] Haicheng Wu, Gregory Diamos, Tim Sheard, Molham Aref, Sean Baxter, Michael
Garland, and Sudhakar Yalamanchili. 2014. Red fox: An execution environment
for relational query processing on gpus. In Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and Optimization. 44–54.

[46] Haicheng Wu, Daniel Zinn, Molham Aref, and Sudhakar Yalamanchili. 2014.
Multipredicate join algorithms for accelerating relational graph processing on
GPUs. In International Workshop on Accelerating Data Management Systems Using
Modern Processor and Storage Architectures, Vol. 10.

[47] Lizhi Xiang, Arif Khan, Edoardo Serra, Mahantesh Halappanavar, and Aravind
Sukumaran-Rajam. 2021. cuTS: scaling subgraph isomorphism on distributed
multi-GPU systems using trie based data structure. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 1–14.

438

https://github.com/Henning1/dogqc
https://drive.google.com/drive/folders/1FoDxT4uS25iezcEgOY2ZMMHMQD0N0ej5
https://drive.google.com/drive/folders/1FoDxT4uS25iezcEgOY2ZMMHMQD0N0ej5
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-memory-5-x
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-memory-5-x
https://www.tpc.org/tpch/

	Abstract
	1 Introduction
	2 Background
	2.1 Characteristics of GPUs and CUDA
	2.2 Pipeline Processing on a GPU
	2.3 Fixed-granularity Work-Sharing

	3 Abstraction for Pipeline Execution on A GPU: Evaluation Tree
	4 Overview of Themis
	5 No-imbalance-first-search for intra-warp load balancing
	6 Adaptive Work-sharing for inter-warp load balancing
	7 Efficient implementation of Themis
	8 Performance Study
	8.1 Experimental Setup
	8.2 Categorization of JCC-H Queries
	8.3 Performance Study on JCC-H
	8.4 Cost Breakdown of Work-Sharing
	8.5 Summary

	9 Related Work
	10 Conclusions
	Acknowledgments
	References

