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ABSTRACT

As large volumes of trajectory data accumulate, simplifying trajec-
tories to reduce storage and querying costs is increasingly studied.
Existing proposals face three main problems. First, they require
numerous iterations to decide which GPS points to delete. Second,
they focus only on the relationships between neighboring points
(local information) while neglecting the overall structure (global
information), reducing the global similarity between the simplified
and original trajectories and making it difficult to maintain con-
sistency in query results, especially for similarity-based queries.
Finally, they fail to differentiate the importance of points with simi-
lar features, leading to suboptimal selection of points to retain the
original trajectory information.

We propose MLSimp, a novel Mutual Learning query-driven
trajectory simplification framework that integrates two distinct
models: GNN-TS, based on graph neural networks, and Diff-TS,
based on diffusion models. GNN-TS evaluates the importance of
a point according to its globality, capturing its correlation with
the entire trajectory, and its uniqueness, capturing its differences
from neighboring points. It also incorporates attention mechanisms
in the GNN layers, enabling simultaneous data integration from
all points within the same trajectory and refining representations,
thus avoiding iterative processes. Diff-TS generates amplified sig-
nals to enable the retention of the most important points at low
compression rates. Experiments involving eight baselines on three
databases show that MLSimp reduces the simplification time by
42%–70% and improves query accuracy over simplified trajectories
by up to 34.6%.
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1 INTRODUCTION

The widespread use of mobile and location-aware devices gener-
ates large volumes of GPS trajectory data. Efficient compression
of this data [13, 23, 25, 34] is attractive as it reduces storage and
transmission costs. Trajectory simplification [42], which focuses on
retaining only essential points, provides an efficient space reduction
with acceptable information loss.

Most trajectory simplification methods [14, 31, 44], such as those
using Synchronized Euclidean Distance (SED) [32, 33, 35], Per-
pendicular Euclidean Distance (PED) [26, 27, 31], Direction-aware
Distance (DAD) [17, 18], and Speed-aware Distance (SAD) [33],
evaluate the importance of GPS points based on error margins.
They are Error-Driven Trajectory Simplification (EDTS) methods.
Such methods often fail to accommodate common queries. An ex-
perimental report [49] finds that simplification methods using the
DAD error, e.g., [28, 29], result in nearly a 50% drop in performance
on range queries. Simplification methods using the PED and SED
errors, e.g., [7, 14, 31], lead to a performance decline of up to 57%
on 𝑘NN queries and up to 33% on similarity queries.

Query-Driven Trajectory Simplification (QDTS) [45] has been
proposed to address the above limitations. QDTS aims to ensure that
the results of queries on simplified trajectories match those on the
original trajectories closely across various query types, while also
achieving low compression rates. Motivated by these advantages,
we focus on batch mode QDTS. In this mode [14, 31, 41, 45], all tra-
jectories are stored in the database and simplified offline once. The
resulting simplified trajectory database is then available for online
querying. The state-of-the-art QDTS model, named RL4QDTS [45],
employs a reinforcement learning model and takes into account the
relationship between trajectories and queries during simplification.

Example 1. Fig. 1 provides an example of RL4QDTS. Given four
trajectories 𝑇𝑖 (1 ≤ 𝑖 ≤ 4) comprising a set of points 𝑃 ( |𝑃 | = 22)
and a compression rate 𝑐𝑟 = 0.5, RL4QDTS has two major steps. First,
RL4QDTS includes the start and end points of each trajectory in the
simplified set 𝑆 = {𝑝1,1, 𝑝2,1, 𝑝3,1, 𝑝4,1, 𝑝1,5, 𝑝2,7, 𝑝3,4, 𝑝4,6}. Second,
RL4QDTS iteratively simulates queries 𝑄1, 𝑄2, and 𝑄3 (blue rectan-
gulars in Fig. 1). In the first iteration, it selects a region 𝑅1 based on𝑄𝑖

(1 ≤ 𝑖 ≤ 3) and adds 𝑝4,4 that falls within 𝑅1 (grey grid cells in Fig. 1)
to 𝑆 . In the second iteration, it updates the states based on the selected
region 𝑅1, selects 𝑅2, and adds 𝑝1,4 to 𝑆 . This procedure is repeated
until |𝑆 |

|𝑃 | = cr, with a higher cr indicating a higher compression rate.
The final simplified trajectory set is 𝑆 = {𝑇 ∗

1 = ⟨𝑝1,1, 𝑝1,4, 𝑝1,5⟩,𝑇 ∗
2 =

⟨𝑝2,1, 𝑝2,7⟩,𝑇 ∗
3 = ⟨𝑝3,1, 𝑝3,4⟩,𝑇 ∗

4 = ⟨𝑝4,1, 𝑝4,4, 𝑝4,6⟩}.
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T1  = {p1,1, p1,2, p1,3, p1,4, p1,5}
T2 = {p2,1, p2,2, p2,3, p2,4, p2,5, p2,6, p2,7}
T3  = {p3,1, p3,2, p3,3, p3,4}
T4  = {p4,1, p4,2, p4,3, p4,4, p4,5, p4,6}

 GPS trajectories
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Figure 1: Circles denote GPS points, with solid lines connecting them to form trajectories. Colored circles indicate points

retained in simplified trajectories, while white circles show points that are not retained by the current iteration.

While existing studies demonstrate effectiveness in trajectory
simplification, they face three major challenges:
1)How to compute the importance ofGPS points non-iteratively?
Trajectory simplification typically calculates the importance of GPS
points iteratively, as their significance changes with updates to the
simplified trajectory [7, 9, 14, 30, 44]. For example in Fig. 1, when
𝑝4,4 is included, the importances of its neighboring points 𝑝4,3 and
𝑝4,5, as determined by existing EDTS methods [7, 14], are likely
to decrease. Moreover, EDTS methods [7, 14, 28, 29, 31] typically
rely on dynamic programming or binary search, which are time-
consuming. The recent methods RLTS [44] and RL4QDTS [45], as
shown in Example 1, implement an iterative process due to its use
of reinforcement learning, resulting in substantial time overhead
(as discussed in Sec. 5.3).
2)How to retain “global information” in simplified trajectories
for adapting to diverse queries? The effectiveness of range-search
queries (e.g., point, range, and window) is affected significantly by
the specific distribution of individual locations, referred to as lo-
cal information [2]. Conversely, similarity-based queries (e.g., 𝑘NN
queries, similarity search, and clustering) depend on the overall
structure of a trajectory, referred to as global information [2]. Ex-
isting studies [7, 14, 17, 18, 26, 27, 30–33, 35, 44, 45] typically sim-
plify GPS points while focusing solely on local information, ignor-
ing global information. For example, for trajectory 𝑇1, an existing
study [30] measures the importance of 𝑝1,3 based on its distance
to the line segment 𝑝1,4𝑝1,5. Recent studies [3, 8, 16, 51] employing
trajectory embeddings aim to preserve similarity in the embedding
space, but often fail to represent accurately the distribution space
of simplified trajectories, especially when having to capture global
information across extended trajectories.
3) How to identify the most important point for simplified
trajectories from points with similar importance at low com-
pression rates? Existing studies [7, 14, 30, 31] typically select either
the most important point to retain or the least important point to
drop. However, candidate points often have equal importance and
the “most important” one is chosen randomly. At low compression
rates—where few points are retained—this random selection can
cause substantial deviations from the original trajectory. For exam-
ple in Fig. 1, when simplifying trajectory 𝑇2 [7], initially, only the
start and end points are retained. Next, the importances of points
𝑝2,𝑖 (2 ≤ 𝑖 ≤ 6) are measured by their Euclidean distance to the

segment 𝑝2,1𝑝2,7, and 𝑝2,3 is selected. In the next iteration, 𝑝2,5 and
𝑝2,6 have equal distances to 𝑝2,3𝑝2,7, and 𝑝2,6 is chosen randomly.
If the iteration ends here due to the low compression rate, this
choice results in more information loss than if 𝑝2,5 was selected, as
𝑝2,5 is better for maintaining 𝑇2’s shape. This highlights the need
for means of more accurately discerning point importance, espe-
cially at low compression rates, ensuring the retention of the most
important points.

To address the above challenges, we introduce a novelMutual
Learning query-driven trajectory simplification method (MLSimp).
We define two key concepts to quantify point importance: glob-
ality and uniqueness. Globality captures the correlations of GPS
points with their entire trajectory, while uniqueness captures the
differences between a point and its neighboring points. MLSimp
incorporates a lightweight Graph Neural Network (GNN)-based tra-
jectory simplification (GNN-TS) model. For the first challenge, the
GNN-TS models a trajectory as a graph with points as nodes. The
GNN-TS enables parallel generation of node embeddings, avoiding
iterative updates dependent on a trajectory’s current state.

To address the second challenge, the GNN-TS measures point
importance using both globality and uniqueness, which enables
consideration of both the global and local information of a trajec-
tory. Moreover, the GNN-TS incorporates attention mechanisms in
its GNN layers. This allows points to dynamically integrate data
from adjacent nodes and refine their representations, thereby pre-
serving essential trajectory details. To address the third challenge,
we introduce Diff-TS, a complex diffusion-based trajectory simpli-
fication model, and integrate it with the GNN-TS in the MLSimp
mutual learning framework. In this framework, the GNN-TS pro-
vides simplified trajectories with high compression rates as soft
labels for Diff-TS, which, in turn, offers low compression rate tra-
jectories as feedback to enhance GNN-TS training. This facilitates
a clearer distinction between the importance of GPS points, based
on data inferred from the integrated model. Subsequently, MLSimp
adjusts point importance based on simulated queries and generates
simplified trajectories by performing sampling.

Example 2. Fig. 1 illustratesMLSimp applied to trajectories𝑇𝑖 (1 ≤
𝑖 ≤ 4). The dashed arrows indicate the direction of information pass-
ing. Each point 𝑝𝑖 (1 ≤ 𝑖 ≤ 22) aggregates global and local informa-
tion from other points in the same trajectory, allowing for simultane-
ous information exchange and thus avoiding iterations. In trajectory
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𝑇2, although 𝑝2,5 and 𝑝2,6 initially have similar importance due to
comparable semantics, the Diff-TS model subsequently decreases 𝑝2,6
importance and increases that of 𝑝2,5 based on simplified point gen-
eration conditioned on 𝑇2. Next, we adjust the importance based on
the distribution of three generated queries 𝑄𝑖 (1 ≤ 𝑖 ≤ 3). The im-
portances of 𝑝1,3, 𝑝1,4, 𝑝2,4, 𝑝2,5, 𝑝4,2, 𝑝4,4, and 𝑝4,5 are elevated as
they are included in range queries, whereas the remaining points have
their importance reduced as they are not in the range queries. Finally,
we sample three GPS points based on the importance and obtain the
final simplified trajectory dataset 𝑆 = {𝑇 ∗

1 = ⟨𝑝1,1, 𝑝1,4, 𝑝1,5⟩,𝑇 ∗
2 =

⟨𝑝2,1, 𝑝2,3, 𝑝2,7⟩,𝑇 ∗
3 = ⟨𝑝3,1, 𝑝3,4⟩,𝑇 ∗

4 = ⟨𝑝4,1, 𝑝4,4, 𝑝4,6⟩}.
Our contributions are summarized as follows:

• We introduceMLSimp, a novel mutual learning framework for
QDTS. It alternates training between two models, GNN-TS and
Diff-TS, but employs only the GNN-TS for simplification. To the
best of our knowledge, this is the first mutual learning frame-
work and the first application of GNNs and diffusion models in
trajectory simplification.

• The GNN-TS model evaluates the importance of GPS points using
two new metrics: globality and uniqueness. It aggregates data
from all points in the same trajectory simultaneously to eliminate
iterations and captures global information efficiently.

• The Diff-TS model processes simplified trajectories with high
compression rates from the GNN-TS to train its diffusion model.
This feedback, in the form of low compression trajectories, sharp-
ens the distinction in the importance of GPS points through
insights from the combined model.

• We report on experiments with eight state-of-the-art methods
on three datasets. The results show that MLSimp not only can
reduce the simplification time by 44%–70% but also enhances
query accuracy by up to 34.6%.
We review related work in Section 2 and cover preliminaries in

Section 3. Section 4 presents MLSimp, while Section 5 discusses
experimental findings. Section 6 concludes the paper and outlines
research directions.

2 RELATED WORK

Trajectory simplification can be performed in two modes: online
and batch. In online mode [9, 24, 32, 33, 35, 44, 48], sensors con-
tinuously collect trajectory data, storing it temporarily in a local
buffer. This mode aims to select key trajectory points to be saved on
the server. This mode is suitable in scenarios that require real-time
updates, such as vehicle tracking, live sports analytics, and dynamic
route optimization. Conversely, in batch mode [7, 14, 30, 31, 45],
all trajectory data is pre-stored in the database, and there are no
updates. This mode reduces simplification errors and optimizes stor-
age space, making it suitable in scenarios requiring high precision
and data usability, such as historical data analyses and offline route
optimization. We review the studies on the batch mode, which is
the focus of this paper.

2.1 Error-Driven Trajectory Simplification

2.1.1 Non-learning-based methods. Many methods simplify trajec-
tories using a top-down approach [7, 14, 31]. The DP method [7]
simplifies trajectories by recursively splitting them based on an er-
ror threshold, using the point with the maximum perpendicular Eu-
clidean distance to dictate splits. To improve efficiency, DPhull [14]

leverages convex hull properties to identify significant points, re-
ducing the computational complexity while maintaining the same
output. Another extension of DP, TD-TR [31], incorporates time,
using synchronized Euclidean distance to measure errors.

In contrast, Bottom-Up trajectory simplification [30] begins with
individual GPS points and gradually aggregates them into segments
until a specified error threshold is satisfied. This method focuses on
gradually reducing errors by merging segments while preserving
critical trajectory characteristics. Despite its effectiveness at pre-
serving location information, the method may omit critical points
that are important for clustering and querying. To address this, the
DPTS method [28] retains both directional and positional informa-
tion by considering angular distances.
2.1.2 Learning-basedmethods. RLTS [44] uses reinforcement learn-
ing for trajectory simplification. It models trajectory simplification
as a Markov decision process and employs policy gradient methods
to learn simplification policies. Although it achieves minimal error,
the high time cost of training poses challenges. To address this,
S3 [9] leverages two Seq2Seq models that utilize BiRNNs [36] to
compress and then reconstruct trajectories, reducing both training
and simplification times. Despite higher error rates compared to
RLTS, S3 lowers the simplification time considerably. EB-OTS [46]
also employs reinforcement learning for trajectory simplification,
targeting a minimal compression rate given a fixed error threshold.
In contrast, MLSimp assumes a fixed compression rate and then
performs simplification to meet that rate (see Example 1). Thus,
MLSimp is not compared against EB-OTS.

In summary, while the majority of trajectory simplification stud-
ies [7, 14, 30, 31, 44] seeks to minimize error, they often overlook
enhancing query correctness—a crucial simplification goal in real-
world applications. In Section 5, we include DPHull [14], Bottom-
Up [30], RLTS [44], and S3 [9] which are considered as baselines.

2.2 Query-Driven Trajectory Simplification

Error-driven trajectory simplification methods treat trajectory com-
pression and storage as independent components. However, in a
larger trajectory management system, trajectories are often stored
and indexed to support query processing or pattern mining. Thus,
Zhang et al. [49] propose considering data availability as a simpli-
fication quality measure. Inspired by this work, Wang et al. [45]
introduce the Query-Driven Trajectory Simplification (QDTS) prob-
lem. They aim to find a simplified trajectory database within a
given storage budget while preserving query accuracy as much as
possible on the simplified database. They present a reinforcement
learning-based method, RL4QDTS. This method works in a top-
down manner. RL4QDTS establishes an octree index based on the
trajectory database, defining the selection process as two decision
tasks. The model learns the selection strategy from the difference
between the query results of the original and the simplified data-
base for a set of range queries. The simplified database not only
supports range queries but also effectively supports 𝑘NN queries,
similarity queries, and clustering.

However, RL4QDTS still has shortcomings: First, although it
works in a top-down manner, it remains an iterative simplification
method that requires multiple steps. Second, RL4QDTS no longer
considers whether the simplified trajectory still retains the key
information of the original trajectory. It relies solely on training
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the model based on range queries, making it easy to lose critical
information during simplification, thereby reducing the accuracy of
similarity-based queries (such as 𝑘NN queries). In contrast,MLSimp
mines the semantics of trajectories, predicts the importance of each
GPS point based on the information contained in each point, and
then adjusts the importance based on the generated range query
workload.MLSimp considers trajectory and query information si-
multaneously while avoiding iterations.

3 PRELIMINARIES

Definition 1. A GPS point (𝑥,𝑦, 𝑡) records the longitude 𝑥 and
the latitude 𝑦 at time 𝑡 .

Definition 2. A trajectory 𝑇 is a sequence of GPS points, i.e.,
𝑇 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑛⟩, where 𝑝𝑖 .𝑡 < 𝑝𝑖+1 .𝑡 (1 ≤ 𝑖 ≤ 𝑛 − 1).

Definition 3. Given a database 𝐷 of trajectories, a range query
𝑄range = (𝑥min, 𝑥max , 𝑦min, 𝑦max , 𝑡min, 𝑡max ) finds all trajectories
that contain at least one point 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 ) such that 𝑥min ≤
𝑥𝑖 ≤ 𝑥max , 𝑦𝑚𝑖𝑛 ≤ 𝑦𝑖 ≤ 𝑦max , and 𝑡min ≤ 𝑡𝑖 ≤ 𝑡max .

Definition 4. Given a trajectory database 𝐷 , a kNN query
𝑄kNN = (𝑘,𝑇𝑞, [𝑡𝑠 , 𝑡𝑒 ]) finds a set 𝑅 of 𝑘 trajectories such that ∀𝑇𝑖 ∈
𝑅;∀𝑇𝑗 ∈ 𝐷 − 𝑅; (Θ(𝑇𝑞 [𝑡𝑠 , 𝑡𝑒 ],𝑇𝑖 [𝑡𝑠 , 𝑡𝑒 ]) ≤ Θ(𝑇𝑞 [𝑡𝑠 , 𝑡𝑒 ],𝑇𝑗 [𝑡𝑠 , 𝑡𝑒 ])),
where Θ(·, ·) represents a dissimilarity measure for trajectories.

In this paper, we use EDR [5] to instantiate Θ(·, ·). However, our
proposals are orthogonal to the dissimilarity measure used.

Definition 5. Given a trajectory database𝐷 , a similarity query
𝑄sim = (𝑇𝑞, [𝑡𝑠 , 𝑡𝑒 ],Δ) finds a set 𝑅 of trajectories defined as 𝑅 = {𝑇 ∈
𝐷 |∀𝑖 ∈ [𝑡𝑠 , 𝑡𝑒 ] (𝑑 (𝑇𝑞 [𝑖],𝑇 [𝑖]) ≤ Δ)} where 𝑇𝑗 ∈ 𝑅, 𝑑 (·, ·) denotes
Euclidean distance.

Definition 6. Given a trajectory database, trajectory cluster-
ing [22] partitions each trajectory into subtrajectories and then clus-
ters subtrajectories based on some notion of trajectory distance.

Definition 7. Trajectory simplification aims to eliminate
points from a trajectory 𝑇 to obtain a simplified trajectory 𝑇 ′ of
the form 𝑇 ′ = ⟨𝑝𝑠1 , 𝑝𝑠2 , . . . , 𝑝𝑠𝑚 ⟩,

Definition 8. Given a trajectory database𝐷 and a storage budget
𝑊 indicating a fraction 𝑟 of the original points in 𝐷 to be retained,
Query-Driven Trajectory Simplification [45] aims to find a tra-
jectory database 𝐷′ of simplified trajectories, such that the difference
between query results on 𝐷 and 𝐷′ are minimized.

4 MUTUAL LEARNING TRAJECTORY

SIMPLIFICATION

4.1 GNN-based Trajectory Simplification Model

4.1.1 Framework. GNN-TS consists of three steps: trajectory en-
coding, trajectory graph construction, and GNN importance pre-
diction, as shown in Fig. 2.
Trajectory Encoding. Given a trajectory 𝑇 , a pre-trained Trajec-
tory Bert (T-Bert) encodes each point, generating embeddings for
points. We detail T-Bert in Sec. 4.1.2.
Trajectory GraphConstruction. Trajectory segment embeddings
are generated from the embeddings of GPS points. A long trajectory
is constructed into a graph𝐺𝑇 using trajectory segments and points,
as described in Sec. 4.1.3.
GNN Importance Prediction. The GNN aggregates hidden in-
formation from multiple segments to update node embeddings by

𝐺𝑇 . It analyzes the uniqueness and globality of embeddings to pre-
dict their importance and construct a self-supervised contrastive
learning loss. Importance is combined with amplification signals
provided by Diff-TS to form a mutual learning loss (ML loss). Both
contrastive and mutual learning losses are used to train the GNN.
The prediction and training process is detailed in Sec. 4.1.4.
4.1.2 Trajectory Encoding. Given a trajectory 𝑇 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑛⟩,
we partition it into trajectory segments, each containing𝑤 points.
The trajectory segment sequence is denoted as 𝑆𝑇 = ⟨seg1, seg2, . . . ,
seg𝑚⟩, where seg𝑘 = ⟨𝑝 𝑗

𝑘
, 𝑝

𝑗+1
𝑘

, . . . , 𝑝
𝑗+𝑤
𝑘

⟩ (1 ≤ 𝑘 ≤ 𝑚). Each seg-
ment is encoded separately. If the last segment, seg𝑚 , has fewer than
𝑤 points, it is automatically padded to𝑤 points during processing.
Next, we detail the encoding of the points in a segment.

T-Bert first encodes the location and time of point 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 ),
where 𝑝𝑖 ∈ seg𝑘 and seg𝑘 ∈ 𝑆𝑇 , as inputs to the Transformer
layers through a spatiotemporal encoder. For location encoding,
we employ node2vec [11] to capture the location information of
GPS points. To capture temporal differences of points, we follow an
existing study [47] and use a set of trainable parameters to encode
time. Thus, the initial encoding of 𝑝𝑖 is z𝑖 = z

𝑡
𝑖
+ z𝑙

𝑖
, where z𝑡

𝑖
and z𝑙

𝑖
denote the temporal and spatial embeddings of point 𝑖 , respectively.

The resulting sequence of vectors of each segment is then fed
into a stacked Transformer encoder layer [39], where each layer
consists of a multi-head self-attention layer and a feed-forward
neural network, generating embedding for each point based on its
trajectory segment. The 𝑙-th layer output embedding for 𝑝𝑖 of the
Transformer is denoted as:

h
(𝑙 )
𝑖

= FFN(MultiHeadAttention(𝒉(𝑙−1)
𝑖

)), (1)
where MultiHeadAttention(·) is themulti-head self-attention layer,
FFN(·) is the feed-forward neural network and h

(0)
𝑖

= z𝑖 .
Inspired by an existing study [6], we employ a Masked Language

Model (MLM) to construct a self-supervised training task. Given a
trajectory 𝑇 , we randomly mask 20% of the points using a special
token [𝑚𝑎𝑠𝑘]. For amasking set𝑀 , we train themodel by predicting
the value of its original token.
4.1.3 Trajectory Graph Construction. Using T-Bert, we obtain the
output of the last layer of the Transformer as the embedding for
each point, i.e., 𝒉𝑖 = 𝒉(𝐿)

𝑖
. For each segment seg𝑖 = ⟨𝑝1

𝑖
, ..., 𝑝𝑤

𝑖
⟩, we

compute its embedding 𝒉seg𝑖 through average pooling.
To explore the relationships between GPS points and other seg-

ments in trajectory 𝑇 , we construct a trajectory graph.
Definition 9. The trajectory graph𝐺𝑇 = (𝑉 , 𝐸) of trajectory𝑇

is an undirected graph, where 𝑉 and 𝐸 are the set of nodes and edges,
respectively. The node set 𝑉 = 𝑉𝑝 ∪𝑉seg , where 𝑉𝑝 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}
is the set of all GPS points in 𝑇 , and 𝑉seg = {𝑣seg1 , 𝑣seg2 , . . . , 𝑣seg𝑚 }
is the segments of 𝑇 . Each segment node is connected to each GPS
node via an edge in 𝐸. The feature matrix 𝑯 = [𝑯𝑝 ,𝑯seg] that
contains the initial representation of the GPS point and segment nodes:
𝑯𝑝 = [𝒉1,𝒉2, . . . ,𝒉𝑛] and 𝑯seg = [𝒉seg1 ,𝒉seg2 , . . . ,𝒉seg𝑚 ].

The trajectory graph 𝐺𝑇 in Fig. 2 has 𝑉𝑝 = {𝑣1, 𝑣2, 𝑣3, . . . , 𝑣7},
𝑉seg = {𝑣seg1 , 𝑣seg2 , 𝑣seg3 }, and 𝐸 = {(𝑣𝑖 , 𝑣seg𝑗 ) |1 ≤ 𝑖 ≤ 7, 1 ≤ 𝑗 ≤ 3}.
Next, we define a feature vectors of the point 𝑝𝑖 and segment 𝑣seg𝑗
node are 𝒉𝑖 and 𝒉seg𝑗 , respectively.

The trajectory partitioning and graph construction methods
we propose are designed to address the input limitations of the
Transformer encoder. This is inspired by the encoding of long
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Figure 2: GNN-TS model overview.

text, as discussed elsewhere [1, 12]. Unlike existing techniques that
involve trajectory partitioning, we do not require goal-oriented
segmentation. For example, the goal of one study [37] is to consider
the homogeneity in the neighborhoods of space-time points, and
the goal of another study [19] is to minimize the cost of multicut.
4.1.4 GNN Importance Prediction. Using the trajectory graph 𝐺𝑇 ,
we update the representation of trajectory nodes using a GNN.
GNNs [15, 20, 21, 38, 40] are neural networks that operate on graph-
structured data, allowing for efficient aggregation of node informa-
tion from edges. Here, we use a GNN consisting of Graph Attention
Network (GAT) [40] layers. GATs can learn complex relationships
between nodes, and their attention mechanism allows the model to
focus on specific nodes in a graph. Specifically, given a node 𝑖 and
its neighbor node set N𝑖 , we propagate the features as:

𝒈 (𝑙 )
𝑖

= GATLayer(𝒈 (𝑙−1)
𝑖

,𝒈 (𝑙−1)
N𝑖

), (2)

where GATLayer(·) is the propagation function of a GAT layer,
1 ≤ 𝑙 ≤ 𝐿, 𝐿 is the number of GAT layers, and 𝒈 (0)

𝑖
= 𝒉𝑖 .

Using the 𝐿 layers of GAT, the node representation 𝒈𝑖 = 𝒈 (𝐿)
𝑖

learns the representations of GPS points across the entire trajectory
rather than just containing information within the current segment.
To quantify the importance of each point, we analyze the distribu-
tion of point representations and define two metrics for trajectory
importance: uniqueness and globality.
Uniqueness. In a trajectory, due to the short sampling interval
(usually only a few seconds), neighboring points are often highly
similar, leading to redundancy, as illustrated by points 𝑝2,2 and 𝑝2,3
of 𝑇2 in Fig. 1. To reduce this redundancy, we measure the unique-
ness of points relative to the embeddings of neighboring points.
In the uniqueness calculation, neighbors consist of the 𝑘 nearest
trajectory points to 𝑝𝑖 , where 𝑘 is a predefined parameter. These
points are selected based on their cosine similarity to 𝑝𝑖 ’s represen-
tation vector; the higher the similarity, the closer the point to the
target. This selection process ensures that the chosen neighbors
are semantically similar to 𝑝𝑖 , effectively filtering out points that
significantly differ during the comparison. The uniqueness of a
point 𝑝𝑖 represented by 𝒈 (𝐿)

𝑖
is calculated as follows:

Luni (𝒈𝑖 ) =
1

|N𝑖 |
∑︁
𝑗∈N𝑖

∥𝒈𝑖 − 𝒈𝑗 ∥2, (3)

where N𝑖 is the neighbors of point 𝑝𝑖 in 𝑇 .
Globality. The goal of trajectory simplification is to select points
that best represent the original trajectory. Therefore, points that

capture the semantics of the trajectory are important, such as the
starting point 𝑝4,1, end point 𝑝4,6, and turning point 𝑝4,4 of 𝑇4 in
Fig. 1. Hence, we define globality to capture the similarity of a point
with all other points in its trajectory, using the representations
of the points. If a point’s globality is high, the point is important.
Conversely, if the similarity between a point and all other points
is low, the GPS point may be noisy or simply wrong. Globality is
defined as follows:

Lglob (𝒈𝑖 ) = log
©­« 1
|𝑇 | − 1

|𝑇 |∑︁
𝑗=1, 𝑗≠𝑖

𝑒−2∥𝒈𝑖−𝒈𝑗 ∥22 ª®¬ , (4)

where |𝑇 | is the total number of points in trajectory 𝑇 .
To better capture both semantic similarities and relationships

between points, we align uniqueness and globality using contrastive
learning. Contrastive learning [43] is a self-supervised training
method based on the alignment and uniformity of the distribution
of all objects.

During training, we treat the neighboring points of a point 𝑝𝑖
as its positive examples to encourage similarity in the embedding
space (i.e., minimizing Luni). Conversely, we treat distant points
from 𝑝𝑖 as negative examples to ensure separation (i.e. minimizing
Lglob). Therefore, the loss function is:

Lcon (𝒈𝑖 ) = Luni (𝒈𝑖 ) + 𝜆1Lglob (𝒈𝑖 ), (5)
where 𝜆1 is a hyperparameter balancing the two terms. We fix it at
0.5 following the literature [43].

When measuring the importance of point 𝑝𝑖 , we consider unique-
ness and globality simultaneously and define the importance:

𝐼𝑝𝑖 = Luni (𝒈𝑖 ) × Lglob (𝒈𝑖 ) + 𝜖, (6)
where 𝜖 eliminates any zero values in the importance scores. We
assess the importance of each point by evaluating its uniqueness
and globality. Points with high uniqueness are valued more due
to their distinct semantic characteristics; while those with low
uniqueness, which contribute less to the global distinction and local
representativeness of the trajectory, are prioritized for removal.

We employ a mutual learning algorithm for training, where the
results of the Diff-TS are used as amplified labels compared to the
importance generated by GNN-TS, serving as the ML loss. This is
covered in Sec. 4.3.
Discussion. Since long trajectories are common in databases (see
Table 1), the space complexity of encoding an entire trajectory
using a Transformer encoder is very costly and makes encoding
inefficient. For a trajectory of length |𝑇 | encoded into 𝑑 dimen-
sions, the time complexity of a single-layer Transformer encoder is
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𝑂 ( |𝑇 |2𝑑 + |𝑇 |𝑑2), and the space complexity is𝑂 ( |𝑇 |2 + |𝑇 |𝑑). There-
fore, GNN-TS first segments long trajectories for encoding. Long tra-
jectories are typically segmented into chunks of length𝑤 based on
the available computational capabilities. For a trajectory of length
|𝑇 |, the number of segments is 𝑘 = ⌈|𝑇 |/𝑤⌉. If all segments are
encoded serially, their time complexity is 𝑂 (𝑘𝑤2𝑑 + 𝑘𝑤𝑑2). Due to
serial encoding, the space complexity is𝑂 (𝑤2+𝑤𝑑) < 𝑂 ( |𝑇 |2+|𝑇 |𝑑).
Next, we construct a trajectory graph where the number of nodes
is |𝑇 | + 𝑘 and the number of edges is 𝑘 |𝑇 |. Finally, we use a GAT
to fine-tune the encoding of nodes , and predict the importance of
trajectory points. Since the trajectory graph is sparse, with each
trajectory node connected only to 𝑘 segment nodes, the encoding
time complexity is approximately 𝑂 (( |𝑇 | + 𝑘)𝑑2 + 𝑘 |𝑇 |𝑑). There-
fore, the time complexity for GNN-TS to encode a trajectory is
𝑂 (𝑘𝑤2𝑑 + 𝑘𝑤𝑑2) + 𝑂 (( |𝑇 | + 𝑘)𝑑2 + 𝑘 |𝑇 |𝑑) = 𝑂 ((𝑘𝑤2 + 𝑘 |𝑇 |)𝑑 +
(𝑘𝑤 + 𝑇 + 𝑘)𝑑2). When 𝑤2

𝑤−1 + 𝑤+1
𝑤−1𝑑 < |𝑇 |, the time complexity

of GNN-TS is lower than when using only a Transformer encoder
to generate a trajectory embedding. Thus, for long trajectories
(e.g., the average trajectory length exceeds 1000), segmenting with
a reasonable 𝑤 can improve encoding efficiency markedly. How-
ever, although GNN-TS connects trajectory nodes from different
segments through the trajectory graph, segmentation encoding
introduces information loss. To limit this loss,𝑤 in GNN-TS is gen-
erally not very small (e.g., 500 in this paper). Thus, compared to a
trajectory graph containing only trajectory points with |𝑇 | nodes,
the number of additional segment nodes ⌈|𝑇 |/𝑤⌉ ≪ |𝑇 | does not
impact the GAT encoding efficiency substantially.

4.2 Diffusion-based Trajectory Simplification

Model

4.2.1 Training Process. During training, since we lack ground truth
optimal simplified trajectories, we instead employ a high compres-
sion rate 𝑐𝑟high simplified trajectories 𝑇∗, sampled based on the
importance generated by GNN-TS. We set 0.5 ≤ 𝑐𝑟high < 1 and
assume that 𝑇 ∗ retains a considerable amount of trajectory infor-
mation and can serve as soft labels for training. We concatenate
the original trajectory 𝑇 with the simplified trajectory 𝑇 ∗ and then
encode the trajectory to generate trajectory embeddings. Next, the
trajectory is fed into a diffusion module. Finally, the model parame-
ters are updated using a joint diffusion and similarity loss.
Trajectory Encoding. We use an Transformer to encode the con-
catenated trajectory 𝑇concat mapping the points into initial rep-
resentation vectors 𝑯𝑇concat = [concat(𝑯𝑇 ,𝑯𝑇 ∗ )], where 𝑯𝑇 =

[𝒉1, . . . ,𝒉𝑛], 𝑯𝑇 ∗ = [𝒉∗1, . . . ,𝒉
∗
𝑧], 𝑛 = |𝑇 |, and 𝑧 = |𝑇 ∗ |.

DiffusionModule. After obtaining the input encoding 𝑯𝑇concat , the
continuous diffusion model conditionally generates embeddings for
the simplified trajectory. The diffusion model consists of a forward
and a reverse process.
(i) Forward process: In each forward step𝑞(𝑯𝛾 | (𝑯𝛾−1), we gradually
inject Gaussian noise 𝜖 ∼ 𝑁 (0, 𝐼 ) into the hidden state 𝑯𝛾−1 from
the previous step to obtain 𝑯𝛾 . Inspired by an existing study [10],
we only apply noise to 𝑯𝑇 ∗ , allowing for conditional modeling by
the diffusion model. After 𝛾 forward steps, a noisy representation
𝑯𝛾 is obtained:

𝑯𝛾 = [concat(𝑯𝑇 ,𝑯
𝛾

𝑇 ∗ )], 𝑯
𝛾

𝑇 ∗ = 𝑁 (
√︃
1 − 𝛽𝛾𝑯

𝛾−1
𝑇 ∗ , 𝛽𝛾 𝑰 ), (7)

where 𝛾 ∈ {1, 2, ..., Γ}, Γ is the total number of diffusion steps,
𝑯 0
𝑇 ∗ = 𝑁 (𝑯𝑇 ∗ , 𝛽0𝑰 ), and 𝛽𝛾 ∈ {𝛽0, 𝛽1, 𝛽2, . . . , 𝛽Γ}, where 𝛽0 <

𝛽1 < 𝛽2 < . . . < 𝛽Γ , is a hyperparameter.
(ii) Reverse process: During the training, the goal of the reverse
process is to recover the original 𝑯𝑇 ∗ through denoising. Once the
noisy representation of the simplified trajectory part is obtained,
we perform the reverse process to remove the noise conditioned
on the previous step’s trajectory representation:

𝑝𝜃 (𝑯
𝛾−1
𝑇 ∗ |𝑯𝛾

𝑇 ∗ ) = 𝑁 (𝑯𝛾−1
𝑇 ∗ ; 𝜇𝜃 (𝑯

𝛾

𝑇 ∗ ), 𝜎2𝜃 (𝛾)𝑰 ), (8)
where 𝜇𝜃 (·) and 𝜎2

𝜃
(·) are models for predicting the mean and

standard deviation during the forward process 𝑞((𝑯𝛾−1 |𝑯𝛾 ). Here
we use stacked Transformer layers as the noise prediction model.
Training Loss. After Γ rounds of the backward process, the re-
covered representation vectors of the simplified trajectory are
𝑯̂𝑇 ∗ = [𝒉̂∗1, . . . , 𝒉̂

∗
𝑧]. We train the diffusion model using the dif-

fusion loss Ldiff in an existing study [10].
We also introduce a diversity loss to reduce the similarity among

generated simplified points, thus reducing redundant information
in generated trajectories. We define the diversity loss as:

Ldiv (𝒉̂𝑖 ) = log
©­« 1
|𝑇 ∗ | − 1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝑒−2∥𝒉̂𝑖−𝒉̂ 𝑗 ∥22 ª®¬ , (9)

where |𝑇 ∗ | is the length of the simplified trajectory. Finally, we
combine the diffusion loss and the diversity loss. The training loss
function is: LDiff −TS = Ldiff + 𝜆2Ldiv, (10)
where 𝜆2 is a hyperparameter that balances the two losses.
4.2.2 Inference Process. For inference, Diff-TS first obtains the rep-
resentation 𝑯𝑇 of the original trajectory𝑇 , and then adds Gaussian
noise to obtain the initial simplified trajectory embedding through
a Markov transition. Next, we randomly sample 𝛼 (𝛼 ≪ 𝑛) points
of Gaussian noise embeddings as the initial simplified trajectory
embeddings input 𝑯 0

𝑇 ′ ∈ R𝑚×𝑑 , where 𝑑 is the dimensionality of
the embeddings. The concatenated input to the diffusion model is
𝑯 #
0 = [concat(𝑯 0

𝑇
,𝑯 0

𝑇 ′ )]. The diffusion model utilizes the learned
reverse denoising process (generation process) to iteratively remove
Gaussian noise. After Γ steps of diffusion, we obtain the output sim-
plified trajectory representation 𝑯̃𝑇 ′ = [𝒉̃𝑠1 , 𝒉̃𝑠2 , . . . , 𝒉̃𝑠𝛼 ]. Then,
Diff-TS computes the matching between the generated summary
representation 𝒉̃𝑖 and the original trajectory 𝑯𝑇 representation,
selects the point with the highest score, and adds it to the simplified
trajectory. Finally, we obtain the simplified trajectory.

4.3 Mutual Learning and Simplification

GNN-TS can be viewed as an extractive simplification model. Simi-
lar to extractive summarization in NLP, GNN-TS selects the 𝑙𝑠 most
important points as the simplified trajectory by evaluating the im-
portance of all points. However, extractive simplification may retain
redundant points, as the importance is fixed and is unaffected by the
importance of already retained points. Diff-TS can be considered a
generative simplification model. It generates a simplified trajectory
by learning from the original one. However, (i) it cannot guarantee
that generated points exist in the original trajectory, and (ii) the
generated trajectory may deviate considerably from the original in
terms of information—it may contain noise and may fail to maintain
the original shape.
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To address the shortcomings of GNN-TS, we use ML to integrate
the two models for trajectory simplification. The unsupervised
GNN-TS provides training labels for the supervised Diff-TS, en-
suring that the simplified trajectories generated by Diff-TS do not
deviate substantially from the original trajectories. The trajectories
generated by Diff-TS are regarded as amplified signals that prompt
GNN-TS to retain important points that might be lost due to re-
dundancy. Next, we present the framework for mutual learning
between the two models and the process of simplification using the
trained models.
4.3.1 Mutual Learning Training. We iteratively train two simpli-
fication models. This is inspired by an existing sudy [50], where
multiple networks learn from each other in a supervised setting.
We train two models with two stages.

In the first stage, we train the GNN-TS using only the contrastive
loss in a self-supervised manner, without using the mutual learning
loss. The trained GNN-TS is used to infer a high compression rate
simplified database. In the second stage, we perform mutual learn-
ing for both models. We use the simplified database as the labels for
Diff-TS training. After training, Diff-TS infers the 𝛼 most important
points from trajectory 𝑇 to add these to the simplified trajectory
𝑇 #, generating amplified labels 𝑌𝑇 = {𝑦1, ..., 𝑦𝑛}. If 𝑝𝑖 ∈ 𝑇 #, where
𝑝𝑖 ∈ 𝑇 , then 𝑦𝑖 = 1; otherwise 𝑦𝑖 = 0. We retrain the GNN-TS,
introducing an ML loss:

Lml =

𝑛∑︁
𝑖=1

−𝑦𝑖log𝐼𝑝𝑖 − (1 − 𝑦𝑖 )log(1 − 𝐼𝑝𝑖 ), (11)

where 𝐼𝑝𝑖 is the importance predicted by GNN-TS. The overall loss
function of GNN-TS during the mutual learning stage is as follows:

LGNN−TS = Lcon + 𝜆3Lml, (12)
where 𝜆3 is a hyperparameter for balancing the two losses.
4.3.2 Simplification. Upon training, we use the lightweight GNN-
TS for inference. Given a dataset 𝐷 to be simplified, we first use
GNN-TS to predict the importance 𝐼𝑝𝑖 of each point 𝑝𝑖 ∈ 𝐷 and
perform global normalization. However, the effectiveness of the
simplified database on range queries is not ideal, as shown in Fig. 11.
Therefore, to support range queries better, we include range query-
based importance adjustment.
Importance Adjustment: Since previous queries are not available,
we synthesize a workload of range queries 𝑄𝑤 , where each query
location is randomly sampled by following some distribution (e.g.,
a data distribution) as in the literature [45]. Through the queries,
we obtain a set of query results. We divide the spatial and temporal
ranges into coarse-grained grid cells, where the cells hit by the query
results are assigned an importance of 1, and the remaining cells
are assigned 0. Finally, we normalize the query-based importance
of each cell. The query-based importance 𝐼𝑞𝑝𝑖 of point 𝑝𝑖 in 𝐷 is
consistent with the importance of the cell it belongs to. The adjusted
importance of point 𝑝𝑖 is defined as follows:

𝐼
adj
𝑝𝑖

= (1 − 𝛿)𝐼𝑝𝑖 + 𝛿𝐼
𝑞
𝑝𝑖
, (13)

where 𝛿 is the adjustment ratio based on queries.
Finally, we directly sample𝑚 points with the adjusted impor-

tance to construct the simplified trajectory database, with compres-
sion rate 𝑐𝑟 =𝑚/𝑛.
4.3.3 Complexity. Following existing learning-based trajectory
simplification models [9, 44, 45], we focus on analyzing the time
complexity of simplification inference and exclude the training.

Table 1: Trajectory dataset statistics.

Statistic Geolife T-Drive OSM

# of trajectories 17,621 10,359 513,380
Total # of points 24,876,978 17,740,902 2,913,478,785
Ave. # of pts per traj 1,433 1,713 5,675
Sampling rate 1s–5s 177s 53.5s
Average length 9.96m 623m 180m

For a database with 𝑚 trajectories, where 𝑤 is the maximum
input length of T-Bert and |𝐷′ | is the storage budget of the sim-
plified database, the simplification process includes the following
steps: (i) Trajectory encoding segments a trajectory, resulting in
𝑛/𝑤 encodings for a trajectory of length 𝑛, with time complexity
𝑂 (𝑛/𝑤). (ii) Trajectory graph construction is a logical process
where, in practice, it is not necessary to construct the actual graph
structure. Thus, the time complexity of trajectory graph construc-
tion is 𝑂 (1). (iii) GNN importance prediction consists of GAT’s
attention matrix computation and attention-based node feature
aggregation, and importance calculation (uniqueness and global-
ity computations). All steps are matrix computations on the fea-
ture matrix and the edge index matrix. Following learning-based
trajectory studies [4, 8, 9, 44, 45], the time complexity of GNN
importance prediction is 𝑂 (1). (iv) Importance adjustment of
each trajectory point is calculated in parallel based on the adjust-
ment values derived from the simulated range query results. Thus,
the time complexity of importance adjustment is 𝑂 (1). (v) Sam-
pling is performed after determining the importance of all trajec-
tories. Thus, the sampling time complexity for the entire database
is 𝑂 (1). Therefore, the overall simplification time complexity is
𝑚 ·𝑂 (𝑛/𝑤 + 1 + 1 + 1) +𝑂 (1) = 𝑂 (𝑚 · 𝑛/𝑤).

5 EXPERIMENTAL STUDY

5.1 Experimental Setup

5.1.1 Datasets. We evaluateMLSimp on three publicly available
real-world datasets. Table 1 provides statistics of the datasets.
Geolife

1 is a GPS trajectory dataset collected in the Geolife project
from 182 users over a period of more than three years.
T-Drive

2 contains one-week trajectories from 10,357 taxis. The
dataset contains about 17 million points.
OSM

3 contains 500 million GPS trajectories with 3 billion points
shared by the community on OpenStreetMap over 9 years.

5.1.2 Competitors. Since the existing algorithms for the QDTS
problem only include RL4QDTS, the existing EDTS algorithm is
also considered as a potential baseline. Guided by the skyline study
in an existing study [45], we select the most competitive existing
EDTS method as the target baseline.
Top-Down(E, PED) and Top-Down(W, PED) [14] start with the
entire trajectory and iteratively divides it into segments until each
segment meets an error threshold. In the following section, we use
“TD” to represent “Top-Down.”

1https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-
dataset-user-guide/
2https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-
sample/
3https://star.cs.ucr.edu/?OSM/GPS#center=43.6,-56.1&zoom=2
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p2,4

SED(p2,5)

p2,4

SED(p2,5)

Figure 3: An example of the SED and PED errors, where (i)

circles denote trajectory points, (ii) green solid and dash lines

denote the original and simplification trajectory, respectively,

and (iii) the red and blue solid lines denote the SED of 𝑝2,5
and the PED of 𝑝2,3, respectively.

Bottom-Up(E, PED), Bottom-Up(E, SED), and Bottom-Up(E,

DAD) [30] start with the individual points of a trajectory and merge
them iteratively to meet the compression rate. In the following
section, we use “BU” to represent “Bottom-Up.”
RLTS(E, SED) [44] employs reinforcement learning to iteratively
simplify trajectories. It formulates trajectory simplification as a se-
quential decision-making problem, where an agent decides which
points to retain or remove based on rewards associated with sim-
plification decisions.
S3 [9] uses two Seq2Seq models for training and generates simpli-
fied trajectories by feeding the original trajectory into an encoder-
decoder consisting of Bi-LSTM units as a compressor.
RL4QDTS [45] performs QDTS by reinforcement learning. It con-
siders range queries and simplifies trajectories for queries.

Top-Down(E, PED), Top-Down(W, PED, Bottom-Up(E, PED),
Bottom-Up(E, SED), Bottom-Up(E, DAD), RLTS(E, SED), and S3
are EDTS baselines. RL4QDTS is a QDTS baseline. “E” and “W” de-
note simplifying each trajectory in the database and considering the
entire database as a whole by inserting or deleting points between
all points in the database, respectively.
5.1.3 Hyperparameters and Experimental Settings. For training,
we randomly sample 1,000 trajectories and fix each |𝑇 | at 1,000.
The remaining trajectories are used for testing. For testing, the
compression rate (𝑐𝑟 ) is defined as shown in Example 1. The lower
the 𝑐𝑟 , the fewer points remain. For example, when 𝑐𝑟 = 0.25%, the
amount of data after simplification is reduced by 400 (i.e., 100/0.25)
times compared to the original data.We follow a previous study [45]
and generate range queries, 𝑘NN queries, similarity queries, and
clustering. Queries are generated based on two distributions: the
data distribution and a Gaussian distribution (with parameters
𝜇 = 0.5 and 𝜎 = 0.25). The spatial window size for range queries is
set to 2𝑘𝑚×2𝑘𝑚. For all queries, the temporal window size is 7 days
for Geolife, 3 hours for T-Drive, and 1 day for OSM. The similarity
metric of 𝑘NN queries is EDR [5] with a threshold of 2 km. The
value of 𝑘 is set to 3. The distance threshold for similarity queries
is set to 5 km. For clustering, we adopt the tracking algorithm [22].

We set the hyperparameters of the baselines as suggested in the
respective papers. In GNN-TS, the pre-trained T-Bert employs a
transformer with 4 layers and 8 attention heads as the embedding
layer, trained for 500 epochs. The embedding dimensionality is
128, and the maximum embedding sequence length is set to 500.
The GNN consists of 2 layers of GATs with 4 attention heads, each
producing an output with dimensionality 32. During training, the
GNN-TS generates coarse-grained simplified trajectories with a
compression rate of 0.5 for training the Diff-TS. The Diff-TS’s en-
coder utilizes a transformer with 2 layers and 2 attention heads,

producing output with a dimensionality of 128. The diffusion model
employs a transformer with 2 layers and 2 attention heads, with an
output dimensionality of 128. The diffusion steps are set to 500. Diff-
TS generates amplified labels for simplified trajectories containing
only 20 trajectory points. The hyperparameter 𝜆1 in Lcon is fixed
at 0.5 [43]. The hyperparameter 𝜆2 is used to balance the two terms
in LDiff −TS . The hyperparameter 𝜆3, set to 0.5. The parameter for
query-based adjustment 𝛿 is set to 0.5 (0.7 for T-Drive). We perform
100 range queries for the query-based importance adjustment. All
experiments are conducted on a server with an Intel(R) Xeon(R)
W-2155 CPU, 128GB memory, and an NVIDIA TITAN RTX GPU.
5.1.4 Metrics. We use the 𝐹1-score to evaluate the performance
of queries on the simplified database. For each query distribution,
we generate 100 queries and report the average 𝐹1-score. Given
a query 𝑄 ∈ {𝑄range, 𝑄kNN, 𝑄sim}, where 𝑄range is a range query,
𝑄kNN is a 𝑘NN query, and 𝑄sim is a similarity query, and given the
query results 𝑅𝑠 on the simplified database and 𝑅𝑜 on the original
database, the 𝐹1-score is:

𝐹1-score(𝑄) =
2𝑃 (𝑄)𝑅(𝑄)
𝑃 (𝑄) + 𝑅(𝑄) , (14)

where 𝑃 (𝑄) = |𝑅𝑠∩𝑅𝑜 |
|𝑅𝑠 | , 𝑅(𝑄) = |𝑅𝑠∩𝑅𝑜 |

|𝑅𝑜 | , and | · | returns the cardi-
nality of its argument set.

For clustering queries, following the literature [49], we introduce
𝐶 to represent the clustering results on a database 𝐷 . If 𝑇𝑖 and 𝑇𝑗
(𝑇𝑖 ,𝑇𝑗 ∈ 𝐷) belong to the same cluster then (𝑇𝑖 ,𝑇𝑗 ) ∈ 𝐶 . Given a
clustering 𝑄𝑐 , the clustering results 𝐶𝑠 on the simplified database,
and the clustering results 𝐶𝑜 on the original database, the 𝐹1-score
is defined as follows:

𝐹1-score(𝑄𝑐 ) =
2𝑃 (𝑄𝑐 )𝑅(𝑄𝑐 )
𝑃 (𝑄𝑐 ) + 𝑅(𝑄𝑐 )

, (15)

where 𝑃 (𝑄𝑐 ) = |𝐶𝑠∩𝐶𝑜 |
|𝐶𝑠 | and 𝑅(𝑄𝑐 ) = |𝐶𝑠∩𝐶𝑜 |

|𝐶𝑜 | .
We use SED and PED to evaluate the simplification errors for

simplification methods. We first define the anchor segment of each
point in the original trajectory.

Definition 10. Given an original trajectory 𝑇 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑛⟩
and a simplified trajectory 𝑇 ′ = ⟨𝑝𝑠1 , 𝑝𝑠2 , . . . , 𝑝𝑠𝑚 ⟩ (𝑚 ≪ 𝑛 and
1 = 𝑠1 < 𝑠2 < · · · < 𝑠𝑚 = 𝑛), the anchor segment of a point 𝑝𝑖
(1 ≤ 𝑖 ≤ 𝑛) is AncSeg𝑝𝑖 = 𝑝𝑠 𝑗 𝑝𝑠 𝑗+1 , where 𝑝𝑠 𝑗 𝑝𝑠 𝑗+1 is a trajectory
segment of 𝑇 ′ and 𝑠 𝑗 ≤ 𝑖 ≤ 𝑠 𝑗+1 − 1.

The simplification error 𝜖 (𝑇 ′) of a simplified trajectory 𝑇 ′ is
defined as follows:

𝜖 (𝑇 ′) = max
1≤ 𝑗≤𝑚−1

max
𝑠 𝑗 ≤𝑖<𝑠 𝑗+1

𝜖 (𝑝𝑖 ), (16)

where 𝜖 (𝑝𝑖 ) is the error of the trajectory point 𝑝𝑖 in 𝑇 .
The similarity errors PED and SED for each point are shown in

Fig. 3. PED is the shortest distance from 𝑝𝑖 to the anchor segment
AncSeg𝑝𝑖 = 𝑝𝑠 𝑗 𝑝𝑠 𝑗+1 . SED is the Euclidean distance between the
trajectory point 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 ) and its mapped point 𝑝′

𝑖
= (𝑥 ′

𝑖
, 𝑦′

𝑖
, 𝑡𝑖 )

on the anchor segment AncSeg𝑝𝑖 = 𝑝𝑠 𝑗 𝑝𝑠 𝑗+1 of 𝑇 ′ based on 𝑡𝑖 :

𝑥 ′𝑖 = 𝑥𝑠 𝑗 +
𝑡𝑖 − 𝑡𝑠 𝑗

𝑡𝑠 𝑗+1 − 𝑡𝑠 𝑗
· (𝑥𝑠 𝑗+1 − 𝑥𝑠 𝑗 )

𝑦′𝑖 = 𝑦𝑠 𝑗 +
𝑡𝑖 − 𝑡𝑠 𝑗

𝑡𝑠 𝑗+1 − 𝑡𝑠 𝑗
· (𝑦𝑠 𝑗+1 − 𝑦𝑠 𝑗 )

SED(𝑝𝑖 ) =
√︃
(𝑥𝑖 − 𝑥 ′

𝑖
)2 + (𝑦𝑖 − 𝑦′

𝑖
)2,

(17)

where 𝑝𝑠 𝑗 = (𝑥𝑠 𝑗 , 𝑦𝑠 𝑗 , 𝑡𝑠 𝑗 ) and 𝑝𝑠 𝑗+1 = (𝑥𝑠 𝑗+1 , 𝑦𝑠 𝑗+1 , 𝑡𝑠 𝑗+1 ).
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(a) Range query (b) 𝑘NN query (c) Similarity query (d) Clustering

(e) Range query (f) 𝑘NN query (g) Similarity query (h) Clustering

Figure 4: 𝐹1-score with different compression rate (%) on Geolife, where (a)–(d) are queries following the data distribution and

(e)–(h) are queries following a Gaussian distribution.

(a) Range query (b) 𝑘NN query (c) Similarity query (d) Clustering

(e) Range query (f) 𝑘NN query (g) Similarity query (h) Clustering

Figure 5: 𝐹1-score with different compression rate (%) on T-Drive, where (a)–(d) are queries following the data distribution and

(e)–(h) are queries following a Gaussian distribution.

5.2 Effectiveness Evaluation

Figs. 4, 5, and 6 report the 𝐹1-scores of all baselines on the Geolife,
T-drive, and OSM datasets with 2,000,000 trajectory points, respec-
tively. MLSimp tops consistently across all datasets and queries.
Even at a fairly low compression rate of 0.25%, which means that
we reduce the data by a factor of 400, most query scores exceed
0.5. Compared to the state-of-the-art method, RL4QDTS,MLSimp
achieves up to a 21% improvement in range query performance,
up to an 11.8% improvement in 𝑘NN query performance, up to a
34.6% improvement in clustering, and up to a 20.3% improvement
in similarity queries on the three datasets. This is because MLSimp
not only considers the impact of range queries on trajectory sim-
plification but also, more importantly, preserves key points in the
simplified database by mining global information, better fitting the
trajectory similarity of the original database.

5.3 Efficiency Evaluation

We study the simplification efficiency of MLSimp. Fig. 7 reports the
simplification time required by all methods discussed in Sec. 5.2. We
report the overall simplification time rather than the time for simpli-
fying individual trajectories. For RL4QDTS and MLSimp, we report
the simplification time separately for queries generated based on

the data distribution and queries generated based on a Gaussian
distribution. Across the three datasets,MLSimp generates simpli-
fied results in less than 60 seconds for all compression rates and
datasets. Compared to the fastest Top-Down method, the average
compression time is reduced by 42%–70%.

Fig. 8 further reports the overall simplification time of MLSimp on
Geolife, T-drive, and OSM, including the time for each component.
The components measured include trajectory encoding, trajectory
graph construction, importance prediction, importance adjustment,
and trajectory sampling. In the same dataset, the time cost of tra-
jectory encoding, trajectory graph construction, and importance
prediction in GNN-TS is unaffected by varying compression rates
and query distributions. This is because GNN-TS is only used to
obtain global information of trajectory points and to predict im-
portance based on this information. The main time cost during
MLSimp simplification comes from the inference on the learned
models T-Bert and GAT in the GNN-TS, as these models are multi-
layered, with each layer involving multiple matrix computations.
The second highest time cost is from the importance adjustment,
influenced by simulated query results. The subsequent adjustment
of trajectory points varies across different query distributions. Fi-
nally, the sampling time increases with the compression rate but
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(a) Range query (b) 𝑘NN query (c) Similarity query (d) Clustering

(e) Range query (f) 𝑘NN query (g) Similarity query (h) Clustering

Figure 6: 𝐹1-score with different compression rate (%) on OSM, where (a)–(d) are queries following the data distribution and

(e)–(h) are queries following a Gaussian distribution.

(a) Geolife (b) T-Drive (c) OSM

Figure 7: Simplification timewith different compression rates

(cr), where (i) TD1 and TD2 represent TD(E, PED) and TD(W,

PED); (ii) BU1, BU2, and BU3 represent BU(E, DAD), BU(E,

PED), and BU(E, SED); (iii) RLTS represents RLTS(E, SED);

(iv) RL1 and RL2 represent RL4QDTS for queries generated

based on the data and Gaussian distribution, respectively; (v)

ML1 and ML2 represent MLSimp for queries generated based

on the data and Gaussian distribution, respectively.

(a) ML1 (Geolife) (b) ML1 (T-Drive) (c) ML1 (OSM)

(d) ML2 (Geolife) (e) ML2 (T-Drive) (f) ML2 (OSM)

Figure 8: Overall simplification time of MLSimp, including

the time spent on each component. ML1 andML2 are as Fig. 7.

remains minimal, as MLSimp samples directly based on adjusted
importance without requiring iterative sampling.

5.4 Model Analysis

We evaluate the training cost of MLSimp on Geolife. We compare
MLSimp with the learning-based lightweight model S3. SinceML-
Simp iteratively trains GNN-TS and Diff-TS, we measure the overall

(a) Training time (b) Warm-up epochs (c) Memory budget

Figure 9: Model analysis of MLSimp.

(a) The impact of 𝜆3 (b) The impact of 𝛿 (c) The impact of |𝑄𝑤 |

Figure 10: Impact of hyperparameters.

training time forMLSimp for one epoch of the mutual learning. The
results are shown in Fig. 9 (a). Since the simplification of S3 is based
on the Seq2Seq model, which requires iterative encoding of each
GPS point, the training time of S3 is substantially higher than those
of GNN-TS and Diff-TS. However, the one-epoch training time of
MLSimp is higher than that of S3 when the data size is large. To
save training costs, we only perform ML after multiple training
epochs of GNN-TS and Diff-TS.

Fig. 9 (b) presents (i) the training times for 20 epochs of GNN-
TS and Diff-TS (upper part), and (ii) the query 𝐹1-scores on the
simplified datasets using models trained with different warm-up
epochs before ML adjustments (lower part), where MLSimp-i (with
𝑖 ∈ 1, 5, 10, 15) indicates that GNN-TS and Diff-TS update the ML
signal to each other after every 𝑖 warm-up epochs. At 𝑖 = 1, the
models update ML signals after each training epoch, eliminating
the need for additional warm-up. As the data size increases, the
training time and growth rate of MLSimp-1 are significantly higher
than those of models with 5, 10, and 20 warm-up epochs. This is
because both GNN-TS and Diff-TS need to perform an inference
to generate ML signals. As Diff-TS is a generative model requiring
multiple iterations, each inference takes substantial time. Although
MLSimp-5, MLSimp-10, and MLSimp-20 reduce the frequency of
updating ML information, the query performance of the trained
MLSimp-i (𝑖 ∈ {1, 5, 10, 15}) models is almost identical. The reason
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(a) Compression rate = 0.25% (b) Compression rate = 2%

Figure 11: Ablation study results.

may be that, despite the reduced frequency of ML information
updates, the training objective remains unchanged, resulting in a
similar distribution in the encoding space of the trajectory points
in the final GNN-TS. Therefore, in all experiments in Sec. 5, we use
MLSimp-20 as the training strategy.

Next, we evaluate the memory use of GNN-TS, Diff-TS, and S3.
Since MLSimp uses GNN-TS for simplification, the memory use
of GNN-TS is the same as the memory usage of MLSimp during
simplification. Fig. 9 (c) shows the results for GNN-TS, Diff-TS, and
S3 on Geolife with different data sizes. We observe that the memory
use of GNN-TS is slightly lower than that of S3, while the memory
use of Diff-TS is significantly higher than that of GNN-TS and S3.
This is because Diff-TS contains stacked Transformer layers.

5.5 Hyperparameter Study

Hyperparameter 𝜆3 is used to adjust the weight of the amplified
label in themutual training loss of GNN-TS. The 𝐹1-scores of queries
with different 𝜆3 are shown in Fig. 10 (a), where 𝜆3 ranges from 0 to 1.
MLSimp performs best across different queries when 0.6 ≤ 𝜆3 ≤ 0.8.
Additionally, the impact of 𝜆3 on range queries is less significant
than on the other three query types. This is because range queries
have a lower correlation with the distribution of trajectories.

Hyperparameter 𝛿 is the adjustment weight based on queries.
The query performance for different 𝛿 is shown in Fig. 10 (b), where
𝛿 ranges from 0 to 1. When 𝛿 = 0, no adjustment is made. When
𝛿 = 1, the importance of GPS points is only related to the queries.
MLSimp achieves the best performance across different queries
when 0.6 ≤ 𝛿 ≤ 0.8. This is because the query-based adjustment
provides query information to MLSimp, allowing it to consider the
importance of both the distribution of trajectories and the queries.

Hyperparameter |𝑄𝑤 | represents the number of queries used
for importance adjustment. The query performance for different
values of |𝑄𝑤 | is shown in Fig. 10 (c), where |𝑄𝑤 | varies from 40
to 400. When |𝑄𝑤 | = 100,MLSimp achieves the best performance
across different queries. When |𝑄𝑤 | exceeds 100, the 𝐹1-scores of
all queries decrease as the number of queries increases. Conversely,
when |𝑄𝑤 | is below 100, the 𝐹1-scores of all queries decrease as the
number of queries decreases. This is becausewhen toomany queries
are used for adjustment, the region involved in the adjustment
increases, and the adjustment cannot focus on popular regions,
potentially introducing noise. When too few queries are used, the
importance adjustment lacks sufficient attention to popular regions,
neglecting points that are truly important for the queries.

5.6 Ablation Study

We conduct ablation experiments on Geolife and report the 𝐹1-score
of five variants in Fig. 11. The five variants are given as follows: (a)

(a) Global simplification (b) Simulated queries

Figure 12: Case study results.

“T-Bert” represents a variant that only uses a pre-trained T-Bert to
generate trajectory embeddings, followed by sampling based on the
importance evaluation in Eq. 6; (b) “+GNN” is a variant that utilizes
a GNN for self-supervised training on top of T-Bert to generate
trajectory embeddings; (c) “+Diff-TS” is a variant where GNN-TS is
trained with Diff-TS for mutual learning; (d) “+Diff*” is the variant
where GNN-TS is trained usingML andDiff-TS, but the loss function
includes only the ML loss Lml and excludes the contrastive loss
Lcon in Eq. 12; (e) “MLSimp” represents the complete model with
query-based importance adjustment.

Under both compression rates, GNN-TS, Diff-TS, the mutual
learning paradigm, and importance adjustment enhance the per-
formance of queries. Additionally, the performance of the +Diff*
variant is consistently lower than the performance of all other vari-
ants. The reason is that without the guidance ofLcon, GNN-TS loses
the ability to filter important trajectory points coarsely. The am-
plified signal generated by Diff-TS, influenced by GNN-TS, cannot
guarantee the inclusion of important trajectory points.

5.7 Case Study

Impact of global simplification. Fig. 12 (a) shows the perfor-
mance of MLSimp and RL4QDTS on Geolife, comparing global
simplification to their variants that simplify each trajectory inde-
pendently (MLSimp(E) and RL4QDTS(E)). All methods are tested
across four types of queries at a compression rate of 0.25%. The
global versions of MLSimp and RL4QDTS achieve higher 𝐹1-scores
than their independent counterparts. This is because global simpli-
fication adaptively selects the compression rate for each trajectory
under a fixed database compression rate.
Discussion. MLSimp(E) outperforms RL4QDTS(E) on similarity-
based queries (e.g., 𝑘NN queries, similarity search, and clustering),
even surpassing RL4QDTS. This is because the simplified trajec-
tories of MLSimp(E) retain more global information than those of
RL4QDTS(E) at the same trajectory length.MLSimp(E) effectively
incorporates global information for each trajectory point during
encoding through multiple iterations of information aggregation by
GNN-TS, determining the importance of trajectory points based on
their distribution. RL4QDTS(E) and RL4QDTS, which only consider
local information, retain points based on range queries, focusing
on the specific distribution of individual locations and timestamps.
Impact of simulated queries. Fig. 12 (b) reports the 𝐹1-scores
of MLSimp and RL4QDTS and their variants without using sim-
ulated queries at a compression rate of 0.25% on four types of
queries on Geolife. MLSimp(w/o Q) is a variant of MLSimp that
does not use simulated queries for importance adjustment. We se-
lect RLTS(E,SED) as a reinforcement learning competitor that does
not use simulated queries. The results of MLSimp and RL4QDTS
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(a) SED error (b) PED error

Figure 13: Simplification error evaluation on Geolife.

(a) The impact of 𝜇 (b) The impact of 𝜎

Figure 14: Transferability test results.

with simulated queries consistently outperform MLSimp(w/o Q)
and RLTS(E,SED) without simulated queries. This is becauseML-
Simp(w/o Q) lacks adjustments based on query distribution dur-
ing database simplification. RLTS(E,SED), cannot select trajectory
points oriented toward queries.

5.8 Simplification Errors Evaluation

Fig. 13 reports the average SED and PED on Geolife. Since the
distribution of queries is irrelevant to the error evaluation, the
query-driven methods, MLSimp and RL4QDTS, report the simplifi-
cation errors using queries generated based on the data distribution.
For the error-driven methods, we test the corresponding simplifica-
tion error results according to the error metrics used by the baseline
methods. For both error metrics, the error-drivenmethods generally
outperform the query-driven methods. RLTS(E,SED) achieves the
lowest SED for simplified trajectories, while TD(W,PED) achieves
the lowest PED for simplified trajectories. The simplification errors
of the two query-driven methods are acceptable.MLSimp’s simplifi-
cation error is at most 0.03 higher for SED and at most 0.01 higher
for PED compared to the optimal error-driven method. This is be-
cause the two query-driven methods generate similar simplified
trajectories for similar trajectories, but do not fully support mini-
mizing the errors between the simplified and original trajectories.

5.9 Transferability Test

We report the results for range queries with distributions where
𝜇 varies from 0.5 to 0.9 and 𝜎 from 0.25 to 0.85 in Figs. 14 (a) and
(b), respectively. They show that although the performance of both
RL4QDTS andMLSimp decline when tested with queries different
from those used for simplification, MLSimp consistently outper-
forms RL4QDTS across different 𝜇 and 𝜎 values. This is due to
MLSimp’s use of global information to eliminate semantically re-
dundant points. Moreover, during adjustment, the hyperparameter
𝛿 controls the simplification result without relying solely on the
generated queries for simplification, enhancingMLSimp’s ability to
generalize across different query distributions.

5.10 Visualization

Fig. 15 visualizes the original trajectories and simplified results
(with a 2% compression rate) of three trajectories from Geolife.

(a) Original trajecotries (b) GNN-TS without ML

(c) Amplify signal by Diff-TS (d) GNN-TS with ML

Figure 15: Simplified trajectory visualization. Circles denote

trajectory points, dashed lines connect adjacent points in

the simplified trajectory, and stars denote points where the

importance is amplified.

Compared to Fig. 15 (a), the simplified trajectories of GNN-TS with-
out ML (Fig. 15 (b)) have multiple redundant nodes at some turning
points and miss some critical turning points. In Fig. 15 (c), Diff-TS
identifies several important points in the trajectory during infer-
ence that are not retained in Fig. 15 (b). Although the information
in amplified signals still contains redundant and non-important
points, the GNN-TS with ML incorporates the knowledge extracted
by Diff-TS, generating simplified trajectories more similar in shape
to the original trajectory, as shown in Fig. 15 (d). This is because
the redundancy and non-important points in the GNN-TS without
ML have low uniqueness or globality. Even when injected with the
amplified signal, their importance remains lower than that of truly
important points. Meanwhile, important points that are unsampled
in Fig. 15 (b) gain higher importance due to the amplification signal.

6 CONCLUSION

We propose a trajectory simplification method called MLSimp,
which retains trajectory information tailored for trajectory query-
ing.MLSimp combines twomodels, GNN-TS and Diff-TS, to simplify
trajectories by predicting and adjusting the importance of trajec-
tory points. GNN-TS uses a pre-trained Bert and a GNN to predict
the importance of trajectory points, while Diff-TS utilizes a diffu-
sion model to generate simplified trajectories. During training, the
two models are used for mutual learning to enhance performance.
Experiments on three real-world datasets offer concrete evidence
of the effectiveness and efficiency of MLSimp. In future research, it
is of interest to extendMLSimp to support online compression of
streaming trajectories and road network trajectory compression.
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