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ABSTRACT
Portfolio management is an important yet challenging task in AI

for FinTech, which aims to allocate investors’ budgets among dif-

ferent assets to balance the risk and return of an investment. In

this study, we propose a generalMulti-objectIve framework with

controLLable rIsk for pOrtfolio maNagement (MILLION), which
consists of two main phases, i.e., return-related maximization and

risk control. Specifically, in the return-related maximization phase,

we introduce two auxiliary objectives, i.e., return rate prediction,

and return rate ranking, combined with portfolio optimization to

remit the overfitting problem and improve the generalization of the

trained model to future markets. Subsequently, in the risk control

phase, we propose two methods, i.e., portfolio interpolation and

portfolio improvement, to achieve fine-grained risk control and fast

risk adaption to a user-specified risk level. For the portfolio interpo-

lation method, we theoretically prove that the risk can be perfectly

controlled if the to-be-set risk level is in a proper interval. In ad-

dition, we also show that the return rate of the adjusted portfolio

after portfolio interpolation is no less than that of the min-variance

optimization, as long as the model in the reward maximization

phase is effective. Furthermore, the portfolio improvement method

can achieve greater return rates while keeping the same risk level

compared to portfolio interpolation. Extensive experiments are con-

ducted on three real-world datasets. The results demonstrate the

effectiveness and efficiency of the proposed framework.
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1 INTRODUCTION
Portfolio management is an essential component of a trading sys-

tem, which allocates a budget among different possible financial

assets according to different objectives, such as maximizing returns

at a given risk level [16, 24, 29, 41]. In 1952, Markowitz introduced

a pioneer work, called Modern Portfolio Theory (MPT) [29]. MPT

aims to construct a portfolio by solving a combinational optimiza-

tion problem, leading to a higher return per risk than trading an

individual asset [46]. Recently, the benefit of the portfolio compared

with investing a single asset is further confirmed [46, 51], e.g., Eric

Zivot [51] shows that the risk of a long-only portfolio is always

lower than that of an individual asset, for a given expected return,

as long as assets are not perfect correlated. Due to the desirable

property of investing a bucket of assets, portfolio management has

drawn much attention over the past decades.

Existing studies on portfolio management can be roughly di-

vided into three main lines, i.e., predict-then-optimize, reinforce-

ment learning (RL) based methods, and deep learning (DL) based

approaches, based on different optimization ways. The methods

along the first line [4, 5, 12, 13, 16, 20, 50] first estimate future price

or return rate of each asset, and then solve a combinational opti-

mization problem, e.g., mean-variance model, to obtain the final

portfolio. For example, Huang et al. [16] forecast the future price

of each asset through a sliding window-based moving average and

then optimize the robust median reversion problem with the esti-

mated prices to obtain the portfolio. Despite its ability of great ease

of use, the performance of these methods is strongly related to the

accuracy of the forecasting model. Unfortunately, the accurate asset

price or return rate cannot be accessible due to the volatility of

the dynamic market. Thus, rather than focusing on accurate price

prediction, RL-based methods [1, 14, 17, 24, 25, 35] aim to directly

obtain a portfolio from the observed market state through maximiz-

ing the defined reward function. For example, Liu et al. [25] propose

a general RL-based framework to achieve automated trading, in

which they adopt classical RL methods, such as Proximal Policy

Optimization (PPO), to optimize the neural networks using the

cumulative return as their reward. However, these methods ignore

the fact that the portfolio optimization problem is different from

others, such as video gaming and cheesing, where the reward from

many investing goals, such as Sharpe ratio [32] and cumulative

return, is differentiable. Therefore, optimizing from a surrogate

loss in RL is inefficient. The methods in the last line [42, 44–46]
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overcome this issue through directly optimizing the objective. For

example, Zhang et al. [46] develop an end-to-end DL-based model

and directly adopt Sharpe ratio as their objective.

Despite growing interest in the last direction, existing studies

are still limited to the following aspects. First, the market is highly

dynamic and the historical information of each asset has a relatively

low signal-to-noise ratio, which causes a poor generalization of the

trained model to the future market. Current studies on this problem

either adopt simple architecture [45, 46], or incorporate outsourcing

information [37], such as financial news [7, 8, 22, 28, 44, 48], to

enrich the information ratio in raw data. The former approaches

may not be effective enough to extract the necessary features, while

the outsourcing information may not be always available in the

latter approaches. Second, different investors may have different

tastes in taking risks. For example, an investor with limited wealth

usually prefers to allocate their budget to low-risk bonds and stocks,

while an investor with enough spare money prefers to take more

risks to achieve higher expected returns. Current learning-based

approaches only return a fixed portfolio for a given market state,

which cannot satisfy different investors’ demands with different

risk levels. Moreover, existing DL-based methods cannot achieve

fine-grained risk control. For example, Zhang et al. [45] combine

the return objective and risk term using a Lagrange form, where the

risk multiplier is hard to preset, i.e., higher weights risk underfitting

the return while lower weights weaken risk control.

To tackle these problems, we propose a general Multi-objectIve
framework with controLLable rIsk for pOrtfolio maNagement,

named MILLION. In summary, we decompose the mean-variance

optimization [29] into two phases, i.e., return-related maximiza-

tion and risk control. Specifically, in the first phase, rather than

introducing outsourcing data to improve the data quantity, we only

leverage the assets’ historical price and volume information de-

spite our framework also being easy to modify to incorporate other

source information. To improve the generalization of the trained

model to the future market, we introduce two auxiliary objectives,

i.e., assets return rate forecasting and assets return rate ranking,

which are highly related to portfolio construction. Furthermore, to

control risk to a user-specified risk level, we propose a simple but

effective portfolio interpolation method in the risk control phase,

in which the constructed portfolio is obtained through interpola-

tion between the portfolios from the reward maximization phase

and the min-variance optimization. We theoretically prove that

the risk can be perfectly controlled as long as the given risk level

is in a risk interval. Besides, we also theoretically show that the

expected return of the portfolio after interpolation is always greater

than the portfolio from the min-variance optimization if the reward

maximization is effective. In addition, based on the idea of the in-

terpolation approach, we further propose a portfolio improvement

method to achieve higher portfolio return with the same risk level

compared with the interpolation method. It should be emphasized

that the risk control components can be appended to any existing

portfolio construction approaches to help them control the risk.

In summary, our contributions are as follows:

• We propose a general DL-based framework with multi-objective

learning to improve the generalization of the trained model to

perform better in the future market.

• We develop two risk control approaches, i.e., portfolio inter-

polation and portfolio improvement, which can be used to fit

investors’ personalized risk preferences. According to the best of

our knowledge, this is the first attempt to achieve fine-grained

risk control in learning based portfolio construction.

• We conduct extensive experiments to demonstrate the effective-

ness of MILLION and its components.

2 PRELIMINARIES
We present necessary concepts and define the problem addressed.

Definition 2.1 (Holding Period). A holding period is the minimum
time unit to invest an asset. We follow previous studies that divide
the whole investment period into multiple non-overlapped holding
periods with fixed length, such as one day or one month.

Definition 2.2 (Asset Prices). The price of an asset is defined as a
time series 𝒑𝑖 = {𝑝𝑖

1
, 𝑝𝑖

2
, ..., 𝑝𝑖𝑡 }, where 𝑝𝑖𝑡 is the price of asset 𝑖 at 𝑡 .

Definition 2.3 (Return Rate). The return rate of an asset 𝑖 at time
𝑡 is defined as 𝑟 𝑖𝑡 = 𝑝𝑖

𝑡+1/𝑝
𝑖
𝑡 − 1, which presents that if an investor

spent 𝑛 cash to buy asset 𝑖 at time 𝑡 , he can get profit 𝑛 ∗ 𝑟 𝑖𝑡 .
Definition 2.4 (Risk). Following the risk definition in MPT [29],

we define the risk as volatility (i.e., variance) of return rate (i.e., 𝜎2
𝑖
=

𝐸 [(𝑟 𝑖𝑡 − 𝑟 𝑖 )2], where 𝑟 𝑖 is the expectation of 𝑟 𝑖 ). The idea behind this
definition is that the return rate of an asset has a lower variance, and
the certainty of investing in this asset is higher, which induces lower
risk. In this study, 𝜎2

𝑖
is calculated from a sliding window of historical

asset return rate, in which the window size is consistent with 𝑤 in
temporal modeling (cf. Section 3.1.2).

Definition 2.5 (Long Position). The long position is to buy an asset
𝑖 at time 𝑡1 and then sell it at time 𝑡2, aiming for a profit derived
from an increase in the asset’s price over this period. The produced
profit can be formulated as 𝑛 ∗ 𝑟 𝑖𝑡1,𝑡2 , where 𝑛 and 𝑟 𝑖𝑡1,𝑡2 denotes the
investment amount and return rate from 𝑡1 to 𝑡2 of asset 𝑖 , respectively.

Conversely, a short position operation represents the opposite

strategy, where investors profit from the decline in an asset’s price.

In this study, we prohibit the short position operation, i.e., investors

can only get profits when the prices of invested assets increase.

Definition 2.6 (Portfolio). Given 𝑁 assets to be invested, a port-
folio is defined as a vector 𝒃 = (𝑏1, 𝑏2, ..., 𝑏𝑁 ), where 𝑏𝑖 presents the
proportion of the investment on asset 𝑖 and

∑︁𝑁
𝑖=1 𝑏

𝑖 = 1. The return
rate of portfolio 𝒃 is 𝒃𝑇 𝒓 , where 𝒓 indicates the return rates of N assets.
The risk of portfolio is 𝒃𝑇 𝚺𝒃 , where 𝚺 ∈ R𝑁×𝑁 is the return rate
covariance matrix of N assets.

Definition 2.7 (Portfolio Management). Portfolio management is
a sequential investment, which determines portfolio 𝒃 at the end of
each holding period. We pursue to achieve two goals in this study: (1)
maximizing the portfolio return; (2) controlling the portfolio risk to a
user-specific risk level.

3 METHODOLOGY
We propose a general multi-objective framework with controllable

risk for portfolio management, named MILLION, as shown in Fig-

ure 1, which consists of two main phases, i.e., return-related maxi-

mization and risk control. In the return-related maximization phase,
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Figure 1: The proposed MILLION framework

we adopt a DL-based spatio-temporal model to construct a portfolio

for each time step to maximize the objectives (e.g., Sharpe ratio)

that are related to the portfolio return, which provides a significant

signal to get profits from the investment behaviors. Then, in the

risk control phase, we propose two novel methods (i.e., portfolio

interpolation and portfolio improvement) to adjust the portfolio

obtained from the return-related maximization phase to fulfill a

user-specified risk level. Each component is elaborated in the fol-

lowing sections.

3.1 Return Maximization
Earning money is the primary goal for most investors, in which

understanding the current market state is a fundamental and crit-

ical step to provide instructions to guide the investors’ decision

process. In this study, rather than designing a new DL-based model

to effectively extract more powerful and predictive representations

from raw features, we focus on developing a general framework

that can fit various models. Thus, we directly adopt existing models,

i.e., LSTMHA [9], with slight modifications to encode the market

state. It should be noted that another model with the ability of

spatial-temporal modeling can also be adopted to encode the state

of assets [6, 26, 38, 40, 49]. As shown in the left panel of Figure 1,

we model the spatial (i.e., relations among assets) and temporal (i.e.,

relations along timestamp) information with attention technique

and LSTM, respectively, in which the covariance matrix between as-

sets’ historical return rate is incorporated into the attention module.

After the representation of each asset is obtained, a multi-objective

optimization module is appended, in which two portfolio-related

objectives are adopted to improve the model generalization.

3.1.1 Assets Indicators. Following previous studies, e.g., FinRL [25],
we incorporate the eight indicators derived from the prices and

volumes as our model input. These indicators include Moving Av-

erage Convergence/Divergence (MACD), Bollinger Bands (BOLL)

(i.e., lower bound and upper bound of BOLL), Relative Strength In-

dex (RSI), Commodity Channel Index (CCI), Directional Movement

Index (DMI), and Simple Moving Average (SMA) (i.e., 30-days and

60-days). Given the disparate scales across these financial metrics,

we employ Z-score normalization to standardize them.

3.1.2 Spatio-Temporal Modeling. To construct an effective port-

folio, we necessitate insight into the future market, particularly

regarding the performance (e.g., return rate) of individual assets.

To achieve this goal, we differentiate the modeling of each asset

into temporal and spatial relations.

Temporal Modeling. We use the vector 𝒙𝑖𝑡 to denote the his-

tory state of asset 𝑖 at time 𝑡 , which consists of eight indicators as

stated in section 3.1.1. Thus, the current state of asset 𝑖 at time 𝑡

is presented by a window size of 𝒙𝑖𝑡 (i.e., 𝑿
𝑖
𝑡 = {𝒙𝑖𝑡−𝑤 , · · · , 𝒙𝑖𝑡 }). A

one-layer LSTM is adopted to recursively encode 𝑿𝑖
into a vector.

𝒉𝑖𝑡 = LSTM (𝑿𝑖
𝑡 ) (1)

where 𝒉𝑖𝑡 ∈ R𝑑
is the representation of asset 𝑖 at time 𝑡 , which

models the intra-correlation along the timestamps.

Spatial Modeling. Despite the temporal dependency is encoded

into 𝒉𝑖𝑡 , the inter-correlation among assets are not included. There-

fore, we leverage the attention technique to model the dynamic

relations among assets, in which the covariance matrix between

assets’ historical return rates is integrated to remit the burden in

the learning process.

𝒉ˆ
𝑖

𝑡 =
1

𝛽 + 1

𝑁∑︂
𝑘=1

𝛼𝑘 · 𝒉𝑘𝑡 + 𝛽

𝛽 + 1

𝑁∑︂
𝑘=1

𝑐𝑖,𝑘 · 𝒉𝑘𝑡

𝛼𝑘 =
exp(𝑾𝒉𝑘𝑡 )∑︁𝑁
𝑗=1 exp(𝑾𝒉 𝑗

𝑡 )

(2)

where𝑾𝑎 ∈ R𝑑1×𝑑
is the to-be-learned parameters, 𝛽 is a scalar

to balance the weight between attention weights and covariance

matrix, which is updated with the training goes on, 𝑐𝑖,𝑘 presents

the covariance between asset 𝑖 and 𝑘 , and 𝒉ˆ
𝑖
𝑡 is the encoded repre-

sentation for asset 𝑖 at time 𝑡 .

Portfolio Construction. Based on the extracted feature from pre-

vious modules, we adopt a two-layer MLP with ReLU activation to

evaluate each asset and construct a portfolio as follows:

𝑣𝑖𝑡 = 𝑀𝐿𝑃𝑝 (�̂�𝑖𝑡 )

𝑏𝑖𝑡 =
𝑒𝑥𝑝 (𝑣𝑖𝑡 )∑︁𝑁

𝑘=1
𝑒𝑥𝑝 (𝑣𝑘𝑡 )

(3)

where 𝑣𝑖𝑡 indicates the estimated valuation of investing on asset 𝑖 ,

and 𝑏𝑖𝑡 is the portfolio weight of asset 𝑖 .

3.1.3 Multi-Objective Optimization. After obtaining the portfolio

weight at each time step, we can directly optimize the Sharpe ratio

or the cumulative return as the same with previous studies [45, 46].

However, while neural networks offer powerful representational

ability, they often face challenges in generalizing to future mar-

ket conditions effectively. To remit this problem, we propose a
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shift from a singular objective to a multiple objective optimization

framework, which incorporates two auxiliary loss functions: asset

return rate prediction and asset return rate ranking. In the latter,

we first elaborate the portfolio optimization and then the auxiliary

optimization, separately.

Portfolio Optimization. To optimize the constructed portfolio,

there are two common objectives [46] as follows:

(𝑀𝑎𝑥𝐶𝑢𝑚)L𝑚𝑐 =

𝑇∏︂
𝑡=1

(𝑟𝑝𝑡 + 1)

(𝑀𝑎𝑥𝑆ℎ𝑎𝑟𝑝𝑒 )L𝑚𝑠 =
𝑀𝑒𝑎𝑛 ({𝑟𝑝𝑡 }𝑇𝑡=1 )
𝑆𝑡𝑑 ({𝑟𝑝𝑡 }𝑇𝑡=1 )

𝑟
𝑝

𝑡 = 𝒃𝑇𝑡 𝒓𝑡 − 𝑐𝑡 |𝒃𝑇𝑡 − 𝒃𝑇𝑡−1 |1

(4)

where 𝒓𝑡 represents the return rate of each assets at time 𝑡 , 𝑟
𝑝
𝑡

is the corresponding portfolio return rate, 𝑐𝑡 is the transaction

cost rate, and 𝑇 is the total number of holding period. MaxCum
focuses on maximizing the cumulative return, which will drive the

model to construct a centralized portfolio (i.e., investing in a single

asset that may achieve the highest return rate among other assets).

MaxSharpe not only focuses on maximizing the portfolio return

rate at each time but also aims to minimize its standard deviation,

which will impose the model to construct a relatively conservative

portfolio. Except for the two commonly used objectives, we also

develop another objective as follows:

(𝑀𝑖𝑛𝐷𝑜𝑤𝑛)L𝑚𝑑 = −
𝑇∑︂
𝑡=1

max(−𝑟𝑝𝑡 + 𝛿𝑑 , 0) (5)

where 𝛿𝑑 indicates a threshold, which presents the investors’ ex-

pected return rate in each holding period. The goal of MinDown is

to construct portfolios that can achieve a return rate larger than

the given threshold 𝛿𝑑 . The lower 𝛿𝑑 is, the more conservative the

constructed portfolio is, which will endow the model with roughly

risk-control ability. Moreover, 𝛿𝑑 is unnecessary to be fixed, which

can be dynamic according to the situation of the current market

state. For example, a simple implementation is to replace 𝛿𝑑 with

the return rate of a benchmark such as NAS100 index.

Auxiliary Optimization. Directly optimizing a single objective

in portfolio optimization, the trained model may suffer from the

overfitting problem (i.e., it has poor generalization in the future

market) due to the highly dynamic market and low signal-to-noise

ratio in historical information. To remit this problem, we introduce

two auxiliary objectives [8, 10, 11, 34, 47], which are optimized

combining with the objective in portfolio optimization.

(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)L𝑝 =

𝑇∑︂
𝑡=1

| | �̂�𝑡 − 𝒓𝑡 | |2

(𝑅𝑎𝑛𝑘𝑖𝑛𝑔)L𝑟 =

𝑇∑︂
𝑡=1

𝑁∑︂
𝑖=1

𝑁∑︂
𝑗=1

𝑚𝑎𝑥 (−(𝑟 𝑖𝑡 − 𝑟
𝑗
𝑡 ) (𝑟 𝑖𝑡 − 𝑟

𝑗
𝑡 ), 0)

(6)

where 𝒓�̂� = [𝑟1𝑡 , 𝑟2𝑡 , · · · , 𝑟𝑁𝑡 ] and 𝒓𝑡 = [𝑟1𝑡 , 𝑟2𝑡 , · · · , 𝑟𝑁𝑡 ] is the pre-

dicted and the ground-truth return rate of N assets. 𝒓�̂� is obtained

through a MLP with 𝒉ˆ
𝑖
𝑡 as inputs. This neural networks share the

same architecture with MLP𝑝 in portfolio construction but with

different parameters. With these objectives, we define our final

optimization objective as follows:

L = −𝜁𝑚L∗ + 𝜁𝑝L𝑝 + 𝜁𝑟 L𝑟 (7)

where ∗ is in {𝑚𝑐,𝑚𝑠,𝑚𝑑}, and 𝜁𝑚 , 𝜁𝑝 , and 𝜁𝑟 are the weights to

balance the contributions of different objectives. In our experiments,

we notice the performance of the constructed portfolio is sensitive

to the weights. To reduce the efforts to search an optimal weights,

we follow Kendal et al. [18] to set the weights adaptively.

L = − 1

𝜁 2

𝑚

L∗ +
1

𝜁 2

𝑝

L𝑝 + 1

𝜁 2

𝑟

L𝑟 +
∑︂

𝑖∈{𝑚,𝑝,𝑟 }
log 𝜁𝑖 (8)

where 𝜁𝑚 , 𝜁𝑝 , and 𝜁𝑟 are to-be-learned parameters, which are adap-

tively updated in the training phase. The parameters of the neural

networks are optimized through minimizing L in Equation 8.

3.2 Risk Control
Despite risk management being a vital component in portfolio

management, current DL-based and RL-based approaches are hard

to achieve fine-grained risk control. For example, Zhang et al. [45]

utilize neural networks to optimize the Lagrange formulation mean-

variance model, in which the risk term is weighted and added

to the portfolio return. It can achieve rough risk control in the

training phase but without guaranteeing the unseen data. Moreover,

existing studies always construct one portfolio for all investors

at each holding period, which cannot satisfy investors’ different

preferences for risk-taking. Thus, we propose two methods, i.e.,

portfolio interpolation and portfolio improvement, to deal with

these issues, which are elaborated as follows.

3.2.1 Portfolio Interpolation. We denote 𝒃𝑚𝑡 as the portfolio at

time 𝑡 obtained from the min-variance optimization, which has the

lowest risk compared to any other portfolios. To control the risk of

the constructed portfolio from the return maximization phase, we

obtain the risk-adjusted portfolio 𝒃𝑎𝑡 with interpolation as follows:

𝒃𝑎𝑡 = (1 − 𝛾𝑡 )𝒃𝑡 + 𝛾𝑡𝒃𝑚𝑡 (9)

where 𝛾𝑡 ∈ [0, 1] is the weight to control the amount of interpola-

tion. With the above interpolation method, we have the following

proposition, in which we denote 𝜎𝑎𝑡 , 𝜎𝑡 , and 𝜎
𝑚
𝑡 as the risk of the

three portfolios 𝒃𝑎𝑡 , 𝒃𝑡 , and 𝒃
𝑚
𝑡 , respectively (e.g., 𝜎𝑡 = 𝒃𝑇𝑡 Σ𝑡𝒃𝑡 ).

Proposition 3.1. 𝜎𝑎𝑡 is a decreasing monotone function in terms
of 𝛾𝑡 if 𝛿𝑡 ≠ 𝛿𝑚𝑡 , whose value is in the interval [𝜎𝑚𝑡 , 𝜎𝑡 ].

Proof.

𝜎𝑎
𝑡 = 𝒃𝑎𝑡

𝑇 Σ𝑡𝒃
𝑎
𝑡

= [ (1 − 𝛾𝑡 )𝒃𝑡 + 𝛾𝑡𝒃𝑚𝑡 ]𝑇 Σ𝑡 [ (1 − 𝛾𝑡 )𝒃𝑡 + 𝛾𝑡𝒃𝑚𝑡 ]
= (𝒃𝑇𝑡 Σ𝑡𝒃𝑡 − 2𝒃𝑇𝑡 Σ𝑡𝒃

𝑚
𝑡 + 𝒃𝑚𝑡

𝑇 Σ𝑡𝒃
𝑚
𝑡 )𝛾2

𝑡

+ 2(𝒃𝑇𝑡 Σ𝑡𝒃𝑚𝑡 − 𝒃𝑇𝑡 Σ𝑡𝒃𝑡 )𝛾𝑡 + 𝒃𝑇𝑡 Σ𝑡𝒃𝑡

(10)

We represent the portfolios with the eigenvectors of Σ𝑡 (i.e., 𝒃𝑡 =∑︁𝑁
𝑖=1 𝑐𝑖𝒙𝑖 and 𝒃

𝑚
𝑡 =

∑︁𝑁
𝑖=1 𝑑𝑖𝒙𝑖 ). The eigenvalue of 𝒙𝑖 is denoted as

𝜆𝑖 . It should be noted that Σ𝑡 is symmetric and semi-positive whose

eigenvalue is non-negative (i.e., 𝜆𝑖 ≥ 0,∀𝑖 ∈ [1, 𝑁 ]).

𝒃𝑇𝑡 Σ𝑡𝒃𝑡 − 2𝒃𝑇𝑡 Σ𝑡𝒃
𝑚
𝑡 + 𝒃𝑚𝑡

𝑇 Σ𝑡𝒃
𝑚
𝑡 =

𝑁∑︂
𝑖=1

𝜆𝑖𝑐
2

𝑖 − 2

𝑁∑︂
𝑖=1

𝜆𝑖𝑐𝑖𝑑𝑖 +
𝑁∑︂
𝑖=1

𝜆𝑖𝑑
2

𝑖

=

𝑁∑︂
𝑖=1

𝜆𝑖 (𝑐𝑖 − 𝑑𝑖 )2 ≥ 0

(11)

When 𝜎𝑎𝑡 is a quadratic function in terms of 𝛾𝑡 , we can know that

this function is an upward opening and it gets the lowest when

𝛾𝑡 equals 1. Thus, this function is decreasing monotone when 𝛾𝑡
varies from 0 to 1 (i.e., 𝜎𝑎𝑡 ∈ [𝜎𝑚𝑡 , 𝜎𝑡 ]). Next, when the quadratic
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Figure 2: An illustration of portfolio interpolation.
term equals 0, this function degenerates to a linear function. It

should be noted that 𝜎𝑚𝑡 ≤ 𝒃∗𝑡
𝑇 Σ𝑡𝒃∗𝑡 from the definition of 𝒃𝑚𝑡 ,

where 𝒃∗𝑡 represents any portfolio. We analyze the coefficient of the

primary term as follows:

2(𝒃𝑇𝑡 Σ𝑡𝒃𝑚𝑡 − 𝒃𝑇𝑡 Σ𝑡𝒃𝑡 ) = 2𝒃𝑇𝑡 Σ𝑡𝒃
𝑚
𝑡 − 𝒃𝑇𝑡 Σ𝑡𝒃𝑡 − 𝒃𝑚𝑡

𝑇 Σ𝑡𝒃
𝑚
𝑡 −

𝒃𝑇𝑡 Σ𝑡𝒃𝑡 + 𝒃𝑚𝑡
𝑇 Σ𝑡𝒃

𝑚
𝑡

= −
𝑁∑︂
𝑖=1

𝜆𝑖 (𝑐𝑖 − 𝑑𝑖 )2 − (𝜎𝑡 − 𝜎𝑚
𝑡 ) ≤ 0

(12)

We can see that when the function is linear, it is also decreasing

monotone when 𝛾𝑡 in [0, 1]. Thus, combining these two situations,

we can conclude that 𝜎𝑎𝑡 ∈ [𝜎𝑚𝑡 , 𝜎𝑡 ] and with the increase of 𝛾𝑡 , the

portfolio risk will be gradually decreased if 𝜎𝑚𝑡 ≠ 𝜎𝑡 . □
With proposition 3.1, we can control the portfolio risk to a user-

specified risk level 𝜎𝑔 by replacing the left of Equation (10) with

𝜎𝑔 and solving 𝛾𝑡 as long as 𝜎𝑔 ∈ [𝜎𝑚𝑡 , 𝜎𝑡 ]. Since this equation is a

quadratic equation with only 𝛾𝑡 unknown, it is easy to calculate the

exact value of 𝛾𝑡 when the expected risk is given. Therefore, the

portfolio can be fast adapted to satisfy different investors’ requests

in terms of risk level. After analysing the effect of risk through

interpolation, we continue to study the effect on the portfolio return

rate. We have the following proposition, in which we denote 𝑟𝑎𝑡 ,

𝑟
𝑝
𝑡 , and 𝑟

𝑚
𝑡 as the return rate of the three portfolios 𝒃𝑎𝑡 , 𝒃𝑡 , and 𝒃

𝑚
𝑡 ,

respectively (e.g., 𝑟
𝑝
𝑡 = 𝒃𝑇𝑡 𝒓𝑡 ).

Proposition 3.2. 𝑟𝑎𝑡 is always no less than 𝑟𝑚𝑡 if the model is
effective (i.e., 𝑟𝑝𝑡 ≥ 𝑟𝑚𝑡 ).

Proof.

𝑟𝑎𝑡 = [ (1 − 𝛾𝑡 )𝒃𝑡 + 𝛾𝑡𝒃𝑚𝑡 ]𝑇 𝒓𝑡 = (1 − 𝛾𝑡 )𝒃𝑇𝑡 𝒓𝑡 + 𝛾𝑡𝒃𝑚𝑡 𝑇 𝒓𝑡

= (1 − 𝛾𝑡 )𝑟𝑝𝑡 + 𝛾𝑡𝑟𝑚𝑡
(13)

From above equation, we can see that the portfolio return rate is a

linear function in terms of 𝛾𝑡 , which achieves the lowest 𝑟𝑚𝑡 when

𝛾𝑡 equals to 1. Thus, 𝑟𝑎𝑡 is no less than 𝑟𝑚𝑡 . □
Proposition 3.2 demonstrates that no matter how we interpolate,

the return rate of 𝒃𝑎𝑡 is always bounded by it of 𝒃𝑡 (i.e., upper

bound) and 𝒃𝑚𝑡 (i.e., lower bound), which means that the portfolio

interpolation method is safe and will not generate a portfolio that

causes dramatic loss.

3.2.2 Portfolio Improvement. Despite the advantages of the port-
folio interpolation method, the portfolio after interpolation may

be far away from the efficient frontier, which means there is an

opportunity to improve the portfolio return while keeping the user-

specified risk unchanged.We provide an illustration of this situation

as shown in Figure 2(a). The horizontal and vertical axis represent

the risk and return, respectively. The blue dash line presents the

portfolio interpolation . From this figure, we can see that there may

exist an orange area that cannot be obtained through interpolation,

in which there exist points that have the same risk as the inter-

polated point but have higher returns. To reach these points, we

propose a portfolio improvement approach, which is to optimize

the portfolio from return maximization to push it to the orange area

as shown in Figure 2(b). Then, the portfolio interpolation is adopted

to control risk, in which the interpolated point is expected to have

a higher return with the same risk compared with the portfolio

from the pure portfolio interpolation method. Before introducing

our approach, we first present a proposition as follows:

Proposition 3.3. Assumewe have a set of portfolios {𝒃1𝑡 , 𝒃2𝑡 , · · · , 𝒃𝑖𝑡 ,
· · · } whose return rates are the same. We apply the portfolio interpo-
lation method to control their risks to a given risk 𝜎𝑔 . The portfolio
with the highest return after interpolation has the lowest 𝛾𝑡 .

Proof. Since this proposition can be directly deduced from

proposition 3.2, the details of the proof are omitted. □

From this proposition, the portfolio improvement approach is

to minimize the interpolation weight 𝛾𝑡 for a user-specified risk

level 𝜎𝑔 . Specifically, we solve Equation 10 for a given 𝜎𝑔 to get 𝛾𝑡 ,

in which 𝛾𝑡 can be presented as a function of 𝜎𝑔 , Σ𝑡 , 𝒃𝑡 , and 𝒃𝑚𝑡 .

Since 𝛾𝑡 is the root of a quadratic equation with one unknown, the

function 𝑓 is differentiable. Thus, we can directly minimize 𝛾𝑡 to

optimize 𝒗𝑡 (i.e., the portfolio before Softmax, cf. Equation 3) to

compel the portfolio constraint (i.e.,

∑︁𝑁
𝑖=1 𝑏

𝑖 = 1).

L𝑖𝑚𝑝 =

𝑇∑︂
𝑡=1

𝛾𝑡 (14)

Moreover, since the goal of personalized risk control is to fit

different investors’ requests, it is time-consuming to finetune the

whole model for each investor. Therefore, the model’s parameters

are fixed at the portfolio improvement, which can save the amount

of calculation.

However, only minimizing 𝛾𝑡 may cause unexpected damage to

the portfolio return as shown in Figure 2(b), where the pink area will

produce a smaller𝛾𝑡 but also a smaller portfolio return. To deal with

this situation, we incorporate a return objective when optimizing.

The return-added objective can be formulated as follows:

L𝑖𝑚𝑝+𝑟𝑒𝑡 = −𝜁
𝑇∏︂
𝑡=1

(𝒃𝑇𝑡 𝒓�̂� ) +
𝑁∑︂
𝑡=1

𝛾𝑡 (15)

where 𝒓�̂� is the predicted assets’ return rate, and 𝜁 is a weight

to balance the loss of the two components. It should be noted

that the predicted return rate is not constrained to obtained from

our predictor in the return-related maximization phase but can

be accessed from any predictors, such as LSTM or more advanced

models, and training separately.

4 EXPERIMENTS
Dataset. The data from both the U.S. stock market and cryptocur-

rency market is obtained using FinRL
1
and CCXT

2
, and then pre-

processed with the FinRL library to extract the indicators detailed

in section 3.1.1. In the case of the stock market, we specifically

focus on stocks from two prominent U.S. stock indexes, namely

NAS100 and DOW30. For the cryptocurrency market, we select the

top 10 cryptocurrencies by market occupancy. Table 2 provides an

1
https://github.com/AI4Finance-Foundation/FinRL

2
https://github.com/ccxt/ccxt
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Table 1: Performance comparison between MILLION and competitors on three real-world datasets.
Methods DOW30 NAS100 Crypto10

APR↑ AVOL↓ ASR↑ ACR↑ MDD↑ APR↑ AVOL↓ ASR↑ ACR↑ MDD↑ APR↑ AVOL↓ ASR↑ ACR↑ MDD↑
Market 0.2182 0.1133 1.7994 3.6065 -0.0605 0.3566 0.3704 1.0101 1.1099 -0.3213 -0.0494 0.5612 0.1922 -0.0656 -0.7530

MVM 0.0941 0.1138 0.8472 1.6677 -0.0565 0.3907 0.2914 1.2796 1.3885 -0.2814 0.1406 0.4560 0.5180 0.1939 -0.7252

DT 0.0948 0.1229 0.7979 1.1003 -0.0861 0.9011 0.4100 1.7731 4.4232 -0.2037 -0.1786 0.6937 0.0627 -0.2116 -0.8438

LR 0.2125 0.1416 1.4318 2.5832 -0.0823 0.7128 0.4149 1.5057 2.2923 -0.3109 -0.1489 0.6744 0.0757 -0.1774 -0.8395

RF 0.2326 0.1562 1.4173 2.6315 -0.0884 0.5249 0.3772 1.3082 1.7548 -0.2991 -0.1698 0.7046 0.0830 -0.2175 -0.7806

SVM 0.0047 0.1105 0.0980 0.0545 -0.0871 0.8349 0.3617 1.6598 3.1439 -0.2656 0.0025 0.7448 0.3526 0.0028 -0.8955

LSTM-PTO 0.1808 0.1194 1.4516 2.6715 -0.0677 -0.4360 0.9906 -0.0831 -0.7148 -0.6099 0.0334 0.6555 0.3759 0.0432 -0.7730

LSTMHAM-PTO 0.1044 0.1143 0.9254 1.8236 -0.0572 -0.4640 0.8107 -0.3547 -0.7971 -0.5821 -0.0297 0.7656 0.3403 -0.0436 -0.6799

FinRL-A2C 0.2186 0.1134 1.8001 3.5902 -0.0609 0.3630 0.3718 1.0203 1.1285 -0.3217 -0.0451 0.5605 0.2000 -0.0602 -0.7488

FinRL-PPO 0.2379 0.1128 1.9492 4.1736 -0.0570 0.3572 0.3686 1.0143 1.1170 -0.3198 -0.0835 0.5521 0.1204 -0.1095 -0.7624

LSTMHAM-S 0.2731 0.1212 2.0532 3.8952 -0.0701 0.4442 0.5038 0.9794 1.5705 -0.2828 0.1837 0.6858 0.5684 0.2525 -0.7278

LSTMHAM-C 0.2915 0.1198 2.1949 4.1515 -0.0702 1.2153 0.8541 1.3296 2.7640 -0.4396 0.0838 0.6444 0.4357 0.1138 -0.7365

LSTMHAM-M 0.3214 0.1279 2.2432 4.2906 -0.0749 0.1846 0.4949 0.5888 0.5421 -0.3404 0.0532 0.5797 0.3790 0.0714 -0.7449

MILLION-S 0.3936 0.1417 2.4132 4.6153 -0.0806 1.9763 0.7243 1.8528 6.9817 -0.2830 0.3871 0.7405 0.7914 0.5821 -0.6650
MILLION-C 0.3857 0.2103 1.6572 3.8870 -0.0992 1.3172 0.8578 1.3759 3.1930 -0.4125 0.1996 0.7279 0.5888 0.2786 -0.7165

MILLION-M 0.3389 0.1288 2.5306 4.6412 -0.0736 1.2206 0.5638 1.6917 4.0832 -0.2989 0.0581 0.5797 0.3870 0.0783 -0.7440

overview of the statistics for each dataset. In the case of NAS100

and DOW30 datasets, the data from the last year of the training

period is utilized as a validation set for conducting model selection.

Competitors. We compare three types of competitors. (1) The

predict-then-optimize methods are: Decision Tree (DT) [3], Lin-

ear Regression (LR), Random Forest (RF) [2], Support Vector Ma-

chine (SVM) [30], LSTM-PTO [15], and LSTMHAM-PTO, where

they focus on predicting the assets’ return rate of next holding

period and then solve the classical mean-variance problem through

maximizing Sharpe ratio. It should be noted that LSTMHAM-PTO

shares the same model architecture with ours. (2) The RL-based

methods: A2C and PPO, in which we adopt a RL-based financial

lib, i.e., FinRL [24, 25], to implement. (3) The DL-based methods:

LSTMHAM-S, LSTMHAM-C, and LSTMHAM-M, which keep the

same model architecture as ours but with only one objective to opti-

mize, where -S, -C, and -M indicates the model is trained with

𝑀𝑎𝑥𝑆ℎ𝑎𝑟𝑝𝑒 , 𝑀𝑎𝑥𝐶𝑢𝑚, and 𝑀𝑖𝑛𝐷𝑜𝑤𝑛, respectively. We also in-

clude two classical methods, i.e., Market and min-variance model

(MVM), as competitors.

EvaluationMetrics.We include six commonly-used metrics [5, 44,

46] in portfolio management to evaluate the proposed framework,

i.e., Cumulative Wealth (CW), Annualized Percentage Rate (APR),

Annualized Volatility (AVOL), Annualized Sharpe Ratio (ASR), Max-

imum DrawDown (MDD), and Annualized Calmar Ratio (ACR).

Parameter Settings. The holding period is fixed at one day, with a

window size (𝑤 ) of 20 for temporal modeling. Transaction cost (𝑐𝑡 )

in Equation 4 is set to 0, while the threshold (𝛿𝑑 ) in Equation 5 is set

to 0.005. Optimization is conducted using the AdamW optimizer

with a learning rate of 1e-4. The neural networks’ hidden size

(𝑑) is set to 64 for the DOW30 and Crypto10 datasets and 128

for the NAS100 dataset. In subsequent sections, we independently

assess the efficacy of our proposed components: return-related

maximization and risk control.

4.1 Return-Related Maximization Performance
Overall. Table 1 displays the backtesting outcomes of various

models across three datasets, while Figure 3 illustrates cumulative

wealth curves. It’s evident that among the predict-then-optimize

approaches, no single model outperforms others consistently in

terms of APR or ASR. This suggests that different market condi-

tions favor different prediction models, making it challenging to

Table 2: Dataset Statistics
Dataset Training Period Testing Period #Assets
NAS100 2009/01/01-2020/02/01 2020/02/01-2021/01/01 78

DOW30 2009/01/01-2019/02/01 2019/02/01-2020/01/01 28

Crypto10 2018/08/02-2021/07/01 2021/07/01-2023/10/32 10

devise a universal model applicable to all scenarios. Additionally, the

performance of these methods varies significantly across datasets,

indicating the sensitivity of portfolio construction to predicted

asset returns. Furthermore, Market and MVM exhibit relatively

lower AVOL and MDD yet competitive APR compared to predict-

then-optimize methods, underscoring the validity of diversified

investment strategies. Notably, RL-based methods excel in DOW30

but not in other datasets. Our experiments reveal that RL-based

methods often demand extensive interactions to learn effective poli-

cies on training data but struggle with generalization to unseen test

data, highlighting training efficiency and generalizability issues.

Moreover, LSTMHAM with diverse objectives generally outper-

forms other benchmarks in most cases. Ultimately, our proposed

MILLION framework consistently achieves the best performance

in terms of return-related metrics such as APR, ASR, and ACR.

Effect of different frameworks. Comparing the same model

architecture with different portfolio construction methods (e.g.,

LSTMHAM-PTO, FinRL-PPO, LSTMHAM-S), we can find that the

DL-based framework always achieves better while the predict-then-

optimize framework is comparable with RL-based framework.

Effect of different objectives. Our investigation into the impact

of different optimization objectives uncovers distinct advantages as-

sociated with each. For instance, the𝑀𝑎𝑥𝑆ℎ𝑎𝑟𝑝𝑒 objective typically

minimizes MDD to a greater extent compared to other objectives.

On the other hand,𝑀𝑎𝑥𝐶𝑢𝑚 tends to achieve superior APR, while

𝑀𝑖𝑛𝐷𝑜𝑤𝑛 consistently minimizes AVOL across most scenarios.

Effect of multiple objectives. Compared with single objective

DL-based methods (e.g., LSTMHAM-S), our proposed framework

MILLION (e.g., MILLION-S) can always perform better in terms

of return-related metrics, which shows the effectiveness of using

multiple objectives to train the DL-based models.

4.2 Risk Control Performance
We conduct a comparative analysis of the proposed risk control

methodologies alongside predict-then-optimize strategies, as illus-

trated in Figure 5. The horizontal axis represents user-defined risk
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Figure 3: Backtest results in terms of CW on three datasets
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Figure 4: Training efficiency

levels, while the vertical axis denotes the corresponding backtest-

ing metrics. "Interpolation" and "Improvement" refer to portfolio

interpolation (cf. Equation 9) and portfolio improvement (cf. Equa-

tion 14) methodologies, respectively. "Improvement-LSTM" and

"Improvement-SVM" denote portfolio enhancement utilizing Equa-

tion 15, where return rates are forecasted using LSTM and SVM

algorithms, respectively.

From Figure 5, it is evident that predict-then-optimize method-

ologies yield varied outcomes when risk is constrained to specific

values across different datasets. Notably, for LR, ASR in the DOW30

dataset demonstrates a gradual increase with risk levels ranging

from 1e-5 to 1e-4, while in NAS100, it exhibits an inverse trend.

Furthermore, the construction of risk-constrained portfolios may

outperform those optimized solely for maximizing the Sharpe ra-

tio, as evidenced by Table 1. For example, in the DOW30 dataset,

constraining LR’s risk to 5e-5 results in an ASR exceeding 1.5, sur-

passing the 1.43 ASR achieved through maximizing the Sharpe

ratio alone (cf. Table 1). Additionally, our proposed risk control

methodologies consistently demonstrate an anticipated pattern:

as specified risk increases, both realized ASR and AVOL simulta-

neously increase. Moreover, it is noteworthy that Improvement

consistently outperforms Interpolation, even in scenarios where

there are no predicted return rates to guide optimization. Incor-

porating predicted return rates into portfolio enhancement tends

to yield superior performance by guiding the portfolio towards

regions with higher return rates.

4.3 Efficiency
In Figure 4, we present the training time required for each algorithm

to reach convergence. Traditional machine learning methods, such

as DT and RF, are executed on the CPU, while other models are

run on an A100 GPU. Notably, MILLION demonstrates comparable

training times to predict-then-optimize algorithms and outperforms

RL-based methods in terms of speed. This is attributed to the sta-

bility of training in DL compared to RL, which typically requires

over 100K steps to converge. Additionally, the interaction between

RL agents and the environment is slower, further hampering the

training efficiency of RL-based methods.

4.4 Case Study
To further understand the effectiveness of the proposed risk control

approaches, we conduct a case study on DOW30 dataset.
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Figure 5: Comparison of the proposed risk control methods
with predict-then-optimize approaches

Effect of uniform interpolation. In Figure 6(a), the performance

of uniform portfolio interpolation is depicted, showcasing the vari-

ation of 𝛾𝑡 from 0 to 1 with a step size of 0.1. The bottom curve

represents the cumulative wealth attained from min-variance opti-

mization, where𝛾𝑡 is fixed at 1 for all 𝑡 . Notably, as𝛾𝑡 increases, both

CW and AVOL gradually decrease. Furthermore, CW consistently

remains bounded by the cumulative wealth obtained from min-

variance optimization (MVM), underscoring the empirical validity

of Proposition 3.2.

Effect of portfolio improvement. Apart from the portfolio in-

terpolation method, we demonstrate the effectiveness of portfolio

improvement in Figure 6(b). Here, we maintain the portfolio risk at

5e-5 and iterate Equation (14) optimization 30 times. Each line in

the figure represents a single iteration, with the green line depicting

the outcome of portfolio interpolation and the red line representing

the final result of portfolio improvement. Notably, all lines exhibit

identical risk levels. From this visualization, we observe a notable

enhancement in the CW value, rising from approximately 1.2 to 1.35

by the conclusion of the test period, underscoring the effectiveness

of the proposed portfolio improvement. Additionally, we examine

the performance of portfolio improvement with varying numbers of

optimization epochs (refer to Equation 14 and Equation 15), show-

cased in Figure 7, where each data point corresponds to the same

risk level. Incorporating the predicted return rate into the portfolio

improvement yields a final portfolio with superior returns and re-

duced risk, despite potential inaccuracies in the predicted return

rate. For instance, the predict-then-optimize framework yields a
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Figure 6: The effect of the proposed risk control approaches
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0.1808 APR, as demonstrated in Table 1. This observation under-

scores the robustness of our proposed portfolio improvement to the

accuracy of predicted return rates, owing to the provision of a solid

initial portfolio through the return-related maximization model.

5 RELATEDWORKS
In this section, we survey the related studies on predict-then-optimize

and direct portfolio optimization.

Predict-then-optimize Portfolio Optimization. Mean-variance

model [29] is a classical method to construct a portfolio through

solving a combinational optimization problem as follows:

max

𝑁∑︂
𝑖=1

𝑏𝑖𝑡𝑟
𝑖
𝑡 s.t. 𝒃𝑇𝑡 Σ𝒃𝑡 ≤ 𝜎𝑔,

𝑁∑︂
𝑖=1

𝑏𝑖 = 1, 1 ≥ 𝑏𝑖 ≥ 0, ∀𝑖 (16)

in which the return rate of each asset, i.e., 𝒓𝑡 , and its covariance, i.e.,
𝚺𝑡 , are supposed to be already known or simply estimated using

the sample mean and sample covariance of historical assets’ return

rate. However, since the market is dynamic and volatile, the simple

estimation may not reflect the future market. To construct a more

effective portfolio, plenty of researchers are devoted to developing

more powerful return rate prediction models. For example, Li et

al. [21] propose Confidence Weighted Mean Reversion (CWMR) to

estimate the next price relative as the inverse of the last of it. Huang

et al. [16] exploit the reversion phenomenon via robust 𝐿1-median

estimators to predict the next price relative. With the fast devel-

opment of machine learning, a number of advanced models are

proposed. For example, Li et al. [22] propose a multimodal event-

driven LSTM model using online news to predict stocks’ return

rates. Besides improving the accuracy of return rate prediction,

there are lots of efforts in formulating a different portfolio optimiza-

tion problem. For example, Rockafellar et al. [31] adopt conditional

value-at-risk (CVaR) as the risk metric for portfolio construction.

Furthermore, Lai et al. [19] propose a multi-trend CVaR as the risk

metric to optimize the constructed portfolio. Despite the methods

in this line that can easily control risk to a user-specified risk level,

i.e., 𝜎𝑔 , their effectiveness will be strongly influenced by the estima-

tion of assets’ return rate. Unfortunately, the accurate return rate

prediction is difficult or even impossible, which may be due to the

incorrectness of the model construction or the less predictability of

the market states.

Direct Portfolio Optimization. Instead of predicting the return

rate of assets, RL-based [23, 27, 33, 36, 39, 42, 43] and DL-based

approaches aim to directly output a portfolio for each holding pe-

riod, which usually can achieve higher investment profits compared

with methods in the predict-then-optimize framework. In RL-based

methods, they focus on learning a policy to map the market state to

an action to maximize the discounted cumulative reward, in which

the action is defined as the portfolio weight 𝒃𝑡 . For example, Liu et

al. [24, 25] develop a general deep RL-based framework to enable

investors to automate trading, in which investors can flexibly in-

corporate their prior knowledge. Lien et al. [23] adopt contrastive

learning technique and reward smoothing to indicate the stock

relationships and maximize a long-term profit, respectively. For the

DL-based methods [45, 46], the only difference to RL-based meth-

ods is the way of optimization, where RL-based methods optimize

the parameters through gradients backward from a surrogate loss

while DL-based methods directly optimize the portfolio objective

through gradient ascent since this objective is differentiable. Zhang

et al. [46] propose to directly optimize Sharpe ratio in different

model architectures such as MLP, CNN, and LSTM. Although opti-

mizing Sharpe ratio can control risk to some extent, they are hard

to achieve fine-grained risk control and impossible to fit investors’

personality in terms of risk preference with only one constructed

portfolio. Moreover, the strong ability of representation of neural

networks will degenerate the generalization of the trained model

to be applied to the future market.

6 CONCLUSION
In this paper, we propose a general multi-objective framework

with controllable risk for portfolio management called MILLION,

in which we decompose the portfolio management into two main

phases, i.e., return-related maximization and risk control. In the first

phase, we follow the DL-based portfolio framework and demon-

strate that the multi-objective design is useful in improving return-

related metrics, such as APR, and ASR, through backtesting on

three real-world datasets. In the risk control phase, we propose

two approaches to adjust the risk of the constructed portfolio to fit

different investors’ preferences in terms of risk-taking. Compared

with methods in the predict-then-optimize framework, MILLION

performs better in terms of ASR under the same risk level.
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