
cedar: Optimized and Unified Machine Learning Input Data
Pipelines

Mark Zhao
Stanford University

myzhao@cs.stanford.edu

Emanuel Adamiak
Stanford University

adamiak@stanford.edu

Christos Kozyrakis
Stanford University

christos@cs.stanford.edu

ABSTRACT
The input data pipeline is an essential component of each machine
learning (ML) training job. It is responsible for reading massive
amounts of training data, processing batches of samples using com-
plex transformations, and loading them onto training nodes at low
latency and high throughput. Performant input data systems are be-
coming increasingly critical due to skyrocketing data volumes and
training throughput demands. Unfortunately, current input data
systems cannot fully leverage key performance optimizations, re-
sulting in hugely inefficient infrastructures that require significant
resources – or worse – underutilize expensive accelerators.

To address these demands, we present cedar , an optimized and
unified programming framework for ML input data pipelines. cedar
allows users to define a training job’s data pipeline using compos-
able operators that support arbitrary ML frameworks and libraries.
cedar’s extensible optimizer systematically combines and applies
performance optimizations to the pipeline. cedar then orchestrates
pipeline processing across configurable local and distributed com-
pute resources to efficiently meet the training job’s data throughput
demands. Across eight pipelines, cedar improves performance by up
to 1.87× to 10.65× compared to state-of-the-art input data systems.

PVLDB Reference Format:
Mark Zhao, Emanuel Adamiak, and Christos Kozyrakis. cedar : Optimized
and Unified Machine Learning Input Data Pipelines. PVLDB, 18(2): 488 -
502, 2024.
doi:10.14778/3705829.3705861

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/stanford-mast/cedar.

1 INTRODUCTION
Every deep machine learning (ML) training job relies on an in-
put data pipeline to transform raw datasets into prepared training
samples (i.e., mini-batches of tensors), ready to be consumed by
the ML framework (e.g., PyTorch [73] or TensorFlow [1]). These
pipelines are executed by input data systems such as PyTorch’s
DataLoader [78] or TensorFlow’s tf.data [69]. Input data systems
are a distinct and essential component of the end-to-end ML data
pipeline, complementing the traditional parallel processing frame-
works, such as Spark [90] and Beam [2], commonly used for offline

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 2 ISSN 2150-8097.
doi:10.14778/3705829.3705861

ML data ingestion. In contrast, input data pipelines require online
preprocessing using diverse domain- and ML framework-specific
tensor operations that vary heavily across training jobs. Input data
systems are designed to execute these pipelines while meeting the
stringent performance requirements [8, 65, 94] of each training job.

For example, a computer vision (CV) input data pipeline may use
various Python libraries and UDFs (e.g., OpenCV [15] or torchvi-
sion [79]) to decode JPEG images from a dataset, apply random
augmentations such as crops and distortions to each image, and con-
vert batches of images into a tensor. Each training job uses an input
data system to continuously execute the input data pipeline, poten-
tially over multiple epochs, throughout the training job’s lifetime.
The input data system must carefully match its throughput to accel-
erator demands. This avoids data stalls [65], which degrade training
throughput, without over-provisioning input data resources.

Recently, the input data throughput required by training jobs
has grown at an immense rate [65, 69, 93, 94], driven by specialized
hardware [9, 43, 82], optimized software techniques [34, 35], and
massive training clusters [42, 53, 62, 63, 67]. To avoid costly data
stalls, companies such as Google [8], Alibaba [93], and Meta [94]
have deployed distributed input data services. While simply scaling-
out compute addresses performance bottlenecks, it comes with an
immense resource cost. Meta’s DPP can require dozens of CPU
servers to support a single GPU server [94], while a single model at
Google can require more than five thousand preprocessing work-
ers [8]! To continue scaling ML infrastructure, it is critical to opti-
mize both the performance and efficiency of input data systems.

While recent research has explored various performance opti-
mizations such as caching [20, 31, 41, 46, 51, 65, 92, 96], offloading to
high-performance backends [31, 50, 69, 87, 93, 94], prefetching [69],
and fusion [69], current input data systems are insufficient for
several reasons. First, current systems apply optimizations in an
isolated manner using bespoke and inextensible solutions. Combin-
ing multiple optimizations is crucial; however these systems cannot
navigate the complex search space that is needed to enable this
combination. Thus, users are currently forced to pick and choose
optimizations, sacrificing performance and efficiency. Secondly, cur-
rent systems are not context-aware, precluding key optimizations
that require understanding application semantics. Finally, current
systems are specialized – they cannot support the wide breadth of
ML frameworks, domain-specific libraries, and execution engines
in use across the ML training landscape. For example, many input
data systems, including tf.data [69], tf.data service [8], Cachew [31],
Plumber [50], FastFlow [87], PRESTO [41], and GoldMiner [93] rely
on TensorFlow’s dataflow graph and execution backend, limiting
their compatibility with non-TensorFlow frameworks such as Py-
Torch. This is especially worrisome given TensorFlow’s decline

488

https://doi.org/10.14778/3705829.3705861
https://github.com/stanford-mast/cedar
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3705829.3705861
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Image
Dataset

(D)

D
ec
od
e

(F)
Fl
oa
t

(C)

R
an
dC
ro
p

(H)

R
an
dF
lip

(J)

Ji
tte
r

(G)

G
ra
ys
ca
le

(R)

B
lu
r

(N)

N
or
m
al
iz
e

(B)

B
at
ch

Figure 1: A computer vision input data pipeline applies a
sequence of augmentations to each image.

among ML practitioners – supporting only 2% of recent ML research
as of September 2024 [21].
A Motivating Example. To illustrate these limitations, consider
the challenges faced by an ML practitioner training a PyTorch CV
model. The practitioner uses the input data pipeline shown in Fig-
ure 1 to apply augmentations [18, 19] to each image. Suppose during
testing, the practitioner discovers a data stall [65]. The practitioner
recalls some optimizations, such as caching, using distributed work-
ers, reordering operators, and fusion, and begins manually testing
different execution plans. They quickly realize both the complexi-
ties in applying a single optimization (discovering that caching can
harm throughput), and the difficulties in combining them (resolv-
ing an ideal operator fusion that conflicts with an ideal operator
ordering)1. Upon realizing the billions of execution plans they need
to manually implement and test, they decide to port their entire
model and pipeline to TensorFlow to leverage its distributed input
data frameworks, such as tf.data service [8] or FastFlow [87]. Upon
observing that the disaggregated backend needs further optimiza-
tions to improve resource efficiency, the practitioner is forced to
reluctantly continue manually exploring optimizations.

To address this gap, we believe there is a strong need for an in-
put data framework that can systematically apply a suite of system
optimizations and navigate the complex search space that these op-
timizations introduce. Such a framework must address the unique
challenges of ML input data pipelines, which render the straightfor-
ward application of traditional query optimizers ineffective. These
challenges include the need to support diverse ML frameworks, and
the ability to optimize pipelines – programmed via opaque Python
UDFs – that heavily rely on domain-specific preprocessing libraries
and execution engines. The application of these optimizations must
also be context-aware, respecting requirements (e.g., randomness)
and leveraging novel optimization opportunities (e.g., semantic-
preserving reorderings2) presented by input data pipelines.
Our Solution.We present cedar , an optimized and unified Python-
native programming framework for ML input data pipelines. cedar
transparently enables systematic, context-aware, and general opti-
mizations to meet the high performance and efficiency needs of
modern ML training systems. cedar allows ML practitioners to eas-
ily build input data pipelines by linking together modular native and
higher-order operators functionally. These pipelines can support
a wide breadth of ML frameworks (e.g., PyTorch and TensorFlow)
and domain-specific preprocessing libraries. Meanwhile, cedar au-
tomatically optimizes and manages the execution of the pipeline to
meet the training job’s throughput requirements, eliminating data
stalls with high resource efficiency. To do so, cedar introduces an
extensible Optimizer, which systematically applies a combination
1We experimentally illustrate these scenarios in Section 3.
2e.g., applying blur and crop to an image in either order yields the same semantics.

of state-of-the-art and novel context-aware input data optimiza-
tions to improve throughput on a per-resource basis. Importantly,
to maintain the semantic correctness of black-box UDFs under
these optimizations, the Optimizer leverages a set of simple yet
expressive hints specified by the practitioner that provide essential
domain knowledge to cedar . Then during runtime, cedar dynami-
cally orchestrates processing across an extensible and scalable set
of execution engines, such as a distributed cluster or local process
pools on the training nodes’ CPUs, according to the optimized plan.
cedar continuously monitors and right-sizes resources, efficiently
meeting the training job’s throughput demands.

We evaluated cedar on a diverse set of eight input data pipelines
across ML domains, using both local and distributed execution en-
gines. By understanding the complex systems dynamics that arise
in each pipeline, cedar successfully leverages a mix of optimizations
and engines to improve each pipeline’s throughput. cedar outper-
forms state-of-the-art ML input data systems, including tf.data [69],
tf.data service [8], FastFlow [87], Plumber [50], Ray Data [81], and
PyTorch’s DataLoader [78] by up to 1.87× to 10.65× while utilizing
the same set of resources. cedar then effectively scales resource al-
locations to meet diverse training throughput demands, translating
this performance benefit to high input data system efficiency.

In summary, we make the following contributions.
• We introduce an extensible optimization framework for ML input

data pipelines that automatically explores the massive combina-
torial search space introduced by concurrent optimizations.

• We introduce easy-to-use interfaces that enable novel input data
optimizations (i.e., semantic-preserving reorderings) that rely on
the domain knowledge of black-box UDFs.

• We present cedar , a unified input data framework that transpar-
ently optimizes and orchestrates pipeline processing, supporting
a wide range of ML frameworks and execution engines.
cedar provides an important, yet missing, foundation for input

data systems research, analogous to the influence extensible op-
timizers (e.g., Spark SQL’s Catalyst [7]) and execution interfaces
(e.g., Beam’s Runners [28]) have had in traditional data processing.

2 ML DATA INGESTION BACKGROUND
ML training jobs rely on data ingestion pipelines to transform raw
operational data into structured samples (i.e., tensors) interpretable
by ML frameworks such as PyTorch [73] and TensorFlow [1]. As
shown in Figure 2, these pipelines traditionally consist of two
phases: offline feature engineering and online input data processing.
Offline Feature Engineering. Feature engineering pipelines val-
idate, aggregate, join, and transform raw operational data into
structured datasets, off the critical path of training. Since feature
engineering predominantly requires traditional extract-transform-
load (ETL) tasks, ML practitioners commonly use general-purpose
distributed processing frameworks such as Spark [90], Flink [17],
and Beam [2]. These ETL tasks are independent from training jobs.
They run prior to training and materialize datasets that are stored
across a variety of systems, from training nodes’ local file systems
to distributed data lakes [6, 23, 71, 96].
Online Input Data Pipelines. Each training job concurrently
runs an input data pipeline to perform the “last-mile” of processing
– extracting a job-specific subset of training samples from stored

489

Raw Data
Sources

ML
Datasets

Offline Feature
Engineering

Training Jobs
Accelerator

Input Data
Pipeline

Accelerator
Input Data
Pipeline

Figure 2: ML training data pipelines consist of an offline fea-
ture engineering and an online input data processing stage.

datasets, transforming them into ready-to-use mini-batches of ten-
sors, and loading tensors into the host memory of the training
node – all on-the-fly. This “online” processing is needed because
operations often vary heavily across jobs or even across epochs
within the same job, making materialization highly inefficient. For
example, NLP practitioners often experiment with tokenization al-
gorithms [39] across model architectures. Recommendation models
require different hashing configurations depending on their em-
bedding table dimensions [83]. Many domains, including CV [22],
NLP [26], and speech [72], apply random augmentations that re-
process each sample every epoch to improve model generalization.

As a result, input data pipelines have requirements distinct from
traditional ETL tasks, demanding a dedicated class of systems. In-
put data systems must right-size resources and generate each mini-
batch to meet strict low latency (𝑂 (100𝜇𝑠 − 1𝑚𝑠) per step) [8] and
high throughput (𝑂 (10𝐺𝐵/𝑠) per node) [94] requirements through-
out the lifetime of the job, which can take days to weeks. Violations
of these requirements can bottleneck expensive accelerators [65].
Furthermore, ML input data pipelines predominantly operate on un-
structured tensors within a mini-batch granularity and rely heavily
on myriad domain-specific Python libraries and UDFs. For example,
practitioners may call a HuggingFace [39] tokenizer or a torchvi-
sion [79] crop for each text or image training sample, respectively.

Distributed input data systems, such as Meta’s DPP [94] and
Google’s tf.data service [8], are increasingly deployed to address
throughput demands. However, they present an immense resource
cost that constrains the scalability of ML training systems. For
example, tf.data service deployments at Google commonly use be-
tween 2 and 32 (and up to 5K) distributed workers for each training
job [8]. Recommendation training jobs atMeta can require dozens of
DPP workers for each GPU training node – demanding comparable
power capacity to the training node itself [94].

3 OPTIMIZING INPUT DATA PIPELINES
3.1 Requirements
Optimizing the performance and efficiency of input data systems is
essential. Recent systems have begun to explore techniques such as
parallelism and disaggregation [31, 50, 69, 87, 93, 94], caching [20,
31, 41, 46, 51, 54, 65, 92, 96], operator fusion [69, 81], and inter-job
coordination [31, 45, 51, 65, 92]. Unfortunately, current input data
systems cannot enable the systematic, context-aware, and general
optimizations critical to achieving this goal.
Need for Systematic Optimizations. As we deeply explore in
Section 3.2, myriad input data optimizations (e.g., offloading, fusion,

caching, reordering, and prefetching) can be effective at signifi-
cantly improving performance. Combining these optimizations is
essential, improving throughput by 4.44× versus a single technique
in isolation. To do so, systems need a deep understanding of the
interactions between optimizations and a systematic approach to
navigating the complex tradeoffs and search space introduced.

Current systems cannot systematically combine and apply opti-
mizations. They lack the notion of an extensible optimizer and in-
stead craft bespoke solutions focused only on a limited and isolated
set of techniques. For example, Plumber [50] uses a complex linear
program to tune operator parallelism, but its formulation is con-
strained to a single processing node. Meanwhile, FastFlow [87] can
leverage distributed workers for processing, but explicitly chooses
between only three execution plans, precluding additional opti-
mizations such as caching intermediate outputs or operator fusion.
PRESTO [41] introduces a profiler that can inform certain optimiza-
tions, such as the optimal location to cache, but requires users to
manually reason about and perform these changes.
Need for Context-Aware Optimizations. Unlike traditional data
processing applications with standardized APIs, like SQL, input
data pipelines heavily rely on opaque Python UDFs with unique
operational semantics. This can both complicate and serve as an
opportunity for optimizations. For example, caching after certain
stochastic operators may harmmodel convergence [54]. Meanwhile,
certain reorderings may yield performance benefits while preserv-
ing intended semantics; for example performing a crop before a
blur eliminates wasted work. Input data systems require domain
knowledge for these context-specific considerations.

Various input data systems such as tf.data [69] and TorchData [76]
allow users to build structured pipelines from these UDFs via
higher-order operators (e.g., map and filter). However, these sys-
tems still require users to manually reason about and perform
optimizations, such as explicitly inserting a cache operator in the
pipeline. While systems like Cachew [31] can automatically iden-
tify optimal caching points, they require users to explicitly indicate
where caching is allowed. By requiring users to directly modify the
pipeline, such interfaces limit the integration of further optimiza-
tions. For example, with reordering, users would need to modify
the combinatorial set of orderings with permissible cache locations.
Ideally, input data systems should enable users to provide simple
yet expressive hints that facilitate context-aware optimizations and
ensure correctness, but without precluding further optimizations.
Need for General Optimizations. Finally, ML practitioners use a
variety of preprocessing libraries and ML frameworks tailored to
their needs. For example, an NLP practitioner may use Hugging-
Face’s Tokenizer library [39], while an ASR practitioner may require
MP3 decoding methods from librosa [59]. Furthermore, these li-
braries often rely on different execution backends, such as Apache
Arrow [27] or TensorFlow kernels. These input data pipelines then
supply data to various ML training platforms, such as PyTorch [73],
Jax [14], TensorFlow [1], MindSpore [64], and others [21]. Input
data systems should be able to apply optimizations across diverse
domain-specific libraries, execution engines, and ML frameworks.

Unfortunately, many systems restrict their scope to optimizing
a subset of use cases. For example, many (if not most) input data
systems, including PRESTO [41], Cachew [31], tf.data service [8],
tf.data [69], GoldMiner [93], FastFlow [87], and Plumber [50] are

490

Figure 3: Pipeline throughput, normalized to the baseline, by
offloading operators across local and remote backends.

built on top of TensorFlow’s static graph abstraction. While doing
so allows these systems to gain the benefits of TensorFlow’s graph
optimizations [85], this severely limits their applicability to the lim-
ited set of practitioners who rely on TensorFlow [21]. For example,
these systems cannot optimize pipelines that rely on third-party
training frameworks or libraries. In a similar vein, other recent
works use specific execution engines for input data processing (e.g.,
Ray [66] with Ray Data [81], or GPUs with FusionFlow [47] and
DALI [70]). While it is critical to leverage the benefits of these
specialized engines, it is also important to not be limited to them.

Finally, we note that recent works also address additional consid-
erations, such as multi-tenant environments. For example, Cachew
[31], CoorDL [65], Quiver [51], OneAccess [45], and Tectonic-Shift
[96] are designed to exploit data reuse in multi-tenant scenarios
where datasets and transformations are shared across concurrent
training jobs. In this paper, we focus on optimizing the perfor-
mance and efficiency of input data systems for a single training
job. However, because these works leverage input data systems as
a foundation (e.g., Cachew builds on tf.data), our optimizations will
be essential to the performance of these orthogonal applications.

3.2 The Complex Optimization Space
We begin by analyzing and distilling insights behind an exten-
sive set of optimization techniques that are currently applied in
an isolated manner: offloading, fusion, caching, and prefetching.
We also introduce a new optimization in the context of input data
pipelines: semantic-preserving reorders. We used the representa-
tive CV pipeline3 for SimCLR [18, 19] shown in Figure 1, and we
performed experiments on an 8-core (n2-standard-8) and 32-core
(n2-standard-32) VM on Google Cloud. The pipeline reads a sub-
set of the ImageNet dataset [25] stored on the file system of the
8-core VM. Unless otherwise specified, each optimization extends
a baseline that executes all operators in the main data loading
process on the 8-core VM. We focus on how these optimizations im-
prove raw input data throughput given a fixed amount of resources,
which translates to improved training throughput and efficiency.
Offloading.Many input data systems offload the entire pipeline
to parallel execution engines (e.g., thread/process pools [69, 78]
or distributed workers [8, 93, 94]). The choice of execution engine
presents complex tradeoffs on a pipeline and per-operator basis.
Figure 3 shows the throughput of the CV pipeline across various
engines, normalized to the baseline. mp offloads execution of the
entire pipeline to a local multiprocess pool. mp+r offloads the entire
pipeline to multiple processes on the remote 32-core VM, with
local processes facilitating RPCs. Surprisingly, more parallelism
harms performance because each local process performs more work
3We refer to each operator by its letter abbreviation in this section.

Figure 4: Pipeline throughput, normalized to the baseline, by
executing fused operators (see Figure 1) remotely.

Figure 5: Pipeline throughput and cache size requirement
after materializing the output of each operator (see Figure 1),
normalized to no caching and the raw dataset size (‘-’).

communicating than it would performing the operators themselves.
That being said, remote backends can offer benefits if used correctly.
mp+sr only selectively offloads the blur operator, which exhibits a
high arithmetic intensity, improving throughput by 25% over mp.

Insight. Each operator exhibits diverse performance benefits, or
losses, across engines. Carefully select each operator’s engine, as
opposed to relying on a single engine for the entire pipeline.
Fusion. Fusing operators can improve performance by eliminating
intermediate data transfers. Figure 4 shows the throughput of the
CV pipeline when fusing and offloading certain operators to the
remote 32-core VM. Fusing and offloading neighbors to blur (R) can
either improve or degrade performance. Fusing grayscale (GRN)
harms performance because doing so sends RGB images remotely,
incurring I/O costs. Meanwhile, continuing to fuse the compute-
intensive jitter (JGRN) is optimal as it best leverages parallelism.
Further fusing crop (CHJGRN) eliminates these benefits, as full-
sized images now need to be sent to the remote VM.

Insight. Simple heuristics (e.g., fusing all adjacent maps [69]) has
severe pitfalls. Instead, fusions must be systematically applied based
on each operator’s dynamics (e.g., I/O and compute demands).
Caching.Caching can improve performance by trading off compute
for storage costs. Figure 5 shows the execution time and interme-
diate cache size observed when caching the output of a specific
operator to the disk of the 8-core VM. Caching can harm through-
put, such as caching the output of int8 to fp32 conversion (F). Doing
so increases the size of each sample, incurring more I/O overheads
relative to compute saved. Furthermore, caching after any random
operator (e.g., crop (C)) would violate the stochastic semantics of the
pipeline, harming the model’s accuracy. Considering these factors,
caching the CV pipeline is largely ineffective without additional
optimizations! The best semantic-preserving cache location (after
decode (D)) minimally reduces execution time at large storage cost.

Insight. Caching must consider both random operators, and the
relative savings in compute compared to storage and I/O costs.
Reordering. While operator reordering is well-known in database
systems [48], its benefits have yet to be explored for input data

491

Figure 6: Pipeline throughput (without offloading) by re-
ordering various operators in the CV pipeline (see Figure 1).

pipelines. Figure 6 shows how there is a 5.90× variation in exe-
cution time across seven operator orderings. The ideal reordering
pushed size-reducing transformations (e.g., crop (C) and grayscale
(G)) towards the beginning and size-increasing transformations
(e.g., int8 to fp32 conversion (F)) towards the output. Note that
certain reorderings can cause minor variations in the output (e.g.,
reordering a blur and crop) while preserving its overall semantics (a
cropped, blurred image). ML training jobs are robust to these varia-
tions (e.g., augmentations are often applied in random order [22]).

Insight. Reordering operators based on how they change sample
size can improve performance by reducing the compute required for
each sample. However, safely reordering operators requires domain
knowledge from users to specify permissible reorderings.
Prefetching. Prefetching the output of the pipeline allows input
data processing to be overlappedwith the training step. For example,
we observed a 35% improvement in end-to-end training throughput
for the CV pipeline by prefetching its output, assuming a 100𝑚𝑠

training step. Furthermore, prefetching the output of an offloaded
operator can overlap its computation with downstream operators.
We observed a 30% improvement in overall input data throughput
by prefetching the output of an offloaded blur operator.

Insight. Input data systems should prefetch both the pipeline
output and offloaded operators to overlap and pipeline computation.

3.3 Our Approach
Despite their impact, we do not believe that these optimizations
are exhaustive; we instead advocate for an extensible platform that
can incorporate future optimizations, akin to optimizers in tradi-
tional data processing systems. Furthermore, it is critical to combine
multiple optimizations together to maximize the performance and
efficiency of input data systems. As we later show in Figure 11,
concurrently applying the above optimizations achieves a 4.44×
higher throughput than using a single optimization (local offload-
ing), and a 21.81× higher throughput than the baseline. However,
combining even the above optimizations requires the exploration
of a vast search space: ∼ 85 billion plans for the CV pipeline.

To address these challenges and the key requirements in Sec-
tion 3.1, we argue that input data systems need a higher level
of components and abstractions. First, an extensible optimizer,
leveraging structured cost- and rule-based optimization passes, is
needed to systematically explore the complex set of plans generated
when combining multiple optimizations. Secondly, an easy-to-use
and expressive programming model is essential to support diverse
pipelines and to capture the necessary domain knowledge to enable
key context-aware optimizations. Finally, well-defined interfaces,

Raw
Dataset

ce
da

r
Tr

ac
er

cedar Source

ce
da

r
C

lie
nt

Training NodeExecution Engines

ML Practitioner

Feature Interface

Optimization
Interface

Execution Interface

class CustomFeature(Feature):
 def compose(self, source):
 ...

dataset
 .register(pipe,...)

dataset
 .mutate(pipe,...)

dataset
 .scale(pipe,...)

cedar
Scaler

cedar
Optimizer

cedar
Optimizer

M
et

ad
at

a
St

or
e

DataSet Dataflow IR
cedar core

cedar
Driver

cedar
Driver GPU

1 2

6

3

4

7

5

8

Figure 7: cedar block diagram, showing how users can lever-
age cedar to define, optimize, and execute pipelines.

providing an easy-to-manage intermediate representation, is vital
to enable future optimizations and execution engines.

4 CEDAR FRAMEWORK
To this end, cedar introduces higher-level abstractions and com-
ponents that allow ML practitioners to easily build, optimize, and
execute input data pipelines. cedar provides native and higher-order
operators which practitioners use to define input data pipelines
that are general – supporting arbitrary ML frameworks and li-
braries – and logical – abstracting away underlying processing
details (e.g., which engine or how much parallelism to use). Prac-
titioners can optionally provide a lightweight set of hints to pro-
vide domain knowledge for context-aware optimizations. cedar’s
Optimizer then statically applies the optimizations presented in
Section 3.2 to yield an optimized execution plan that improves per-
formance on a per-resource basis. During runtime, cedar’s Scaler
auto-scales resources to execute this plan, across configurable en-
gines, to efficiently meet training throughput requirements.

Figure 7 shows an end-to-end example. 1 A practitioner com-
poses a logical input data pipeline (a Feature) by functionally
chaining together operators (Pipes) using the Python Feature API
(Section 4.1). 2 cedar parses the Feature into a dataflow graph.
3 cedar’s Optimizer (Section 5.1) then collects performance sta-
tistics for each Pipe from past runs or via a short profiling job. 4
Using these statistics, the Optimizer applies optimizations via the
Optimization interface (Section 4.2) to yield an execution plan.

5 Once training begins, cedar uses the Execution interface (Sec-
tion 4.2) to initialize each Pipe by running its assigned Variant – a
physical implementation of the operator – on its respective engine.
6 Engines continuously process samples using their respective
operators. 7 Meanwhile, because training jobs ingest data in a
data-parallel manner, cedar creates a Client for each distributed
training process (e.g., training node). The Client launches Driver
processes to manage operator processing across each engine and
to ingest fully-processed samples into the ML training framework

492

Figure 8: cedar Feature API.

(e.g., PyTorch). 8 Finally, the Client continuously monitors pro-
cessing and uses a Scaler (Section 5.2) to dynamically right-size
the resources allocated to each engine via the Execution interface.

4.1 Feature API
cedar provides an easy-to-use Feature API. It allows users to de-
fine dataflows (Features) by composing together stateless opera-
tors (Pipes) that implement common data loading primitives (e.g.,
batching, shuffling) and higher-order functions (e.g., map, filter)
that support arbitrary Python UDFs. Each Pipe applies a logical
transformation to input samples, yielding transformed samples to
the downstream Pipe(s). Transformations may be applied one-
to-one (e.g., map), many-to-one (e.g., batch), or one-to-many (e.g.,
reading lines in a file). Featuresmay also be non-linear DAGs with
a single output node that generates mini-batches of data iteratively.
Pipes may ingest from/emit to one or more Pipes (e.g., zip/unzip).

Users can thus easily define and share Features, without need-
ing to manage their underlying execution details. For example,
Figure 8 shows a Feature for the CV pipeline in Figure 1. Each
Feature is logical; it is not bound to a specific dataset, nor does
it specify how the dataflow is executed. Instead, ML engineers de-
fine a Source, which wraps a raw dataset with a Pipe, providing
an iterator over raw samples. Users supply one or more Sources,
the Feature, and available engines to cedar , which constructs an
iterable DataSet. Training nodes simply iterate over the DataSet,
which yields fully processed mini-batches within host memory to
be consumed by ML frameworks. Execution is lazy and incremental,
allowing cedar to scale to large out-of-memory datasets.
Relaxed Operator Dependencies. While the original Feature
dataflow specifies a potential ordering, cedar allows users to relax
ordering constraints by expressing a dependency graph on top of
the original dataflow specification. As shown in Figure 8, if a Pipe
𝑏 depends on 𝑎, users can label 𝑎 with an explicit 𝑡𝑎𝑔𝑎 (Line 5) and
declare the dependency via 𝑏.𝑑𝑒𝑝𝑒𝑛𝑑𝑠_𝑜𝑛([𝑡𝑎𝑔𝑎]) (Line 6). Users
can also fix the position of a pipe 𝑎 by calling 𝑎.𝑓 𝑖𝑥 (), which makes
𝑎 depend on all upstream Pipes and makes all downstream Pipes
depend on 𝑎. As we show in Section 5.1, this allows the Optimizer
to enumerate semantic-preserving reordered plans.

Table 1: Optimization (top) & Execution (bottom) interfaces.

API Description

register(pipe) Registers a new Pipe into the DataSet.
fuse(pipes) Registers a new Pipe that fuses all input Pipes.
update_dfg(graph) Updates the dataflow graph as specified.
assign(pipe, variant) Assign a Variant to the provided Pipe.
set_shards(n) Assign a number of Drivers for each Client.

shard(n) Shard the Feature into 𝑛 Drivers.
mutate(pipe, variant) Mutate the Pipe to the specified Variant.
scale(pipe, n) Sets the parallelism of Pipe to 𝑛.

Random Operators. cedar also allows ML engineers to designate
which Pipes represent random augmentations of data (Lines 5-7),
allowing the Optimizer to preserve randomness by disallowing
caching after random operators.
Correctness and Fault Tolerance. cedar ensures that the relaxed
operator dependencies and randomness constraints are correctly
met. Specifically, if operator B depends on A, cedar will never gen-
erate a plan where B precedes A. Similarly, if operator C is random,
cedar will never insert a cache operator D such that C precedes
D. Users may choose to not specify dependencies or randomness;
cedar disables reordering and caching, respectively, to ensure cor-
rectness. Inferring dependencies or randomness (e.g., via static code
analysis [38, 50]) is left for future work.

cedar also guarantees precise checkpoints and exactly-once se-
mantics, key requirements to ensure that model convergence is
not affected by faults. Specifically, each Source tags all training
samples with a UUID, and the Client verifies receipt of all tags (ac-
counting for aggregations and filters). Because Pipes are stateless,
upon detecting a fault, the Client instructs the Source to re-emit a
specific sample to recompute the result. Clients do not return du-
plicate samples to ensure exactly-once semantics. cedar provides a
checkpoint API which allows cedar to resume processing, skipping
received samples, in the event of a training job or Client failure.

4.2 Optimization and Execution Interfaces
Optimization Interface. The Optimization interface (Table 1)
provides well-defined methods that allow the Optimizer to apply
multiple optimizations to the DataSet in an extensible manner,
allowing cedar to easily integrate future optimizations. For example,
to introduce caching or prefetching, the Optimizer creates a cache
or prefetch Pipe, registers it via register, and updates the dataflow
via update_dfg to insert it at the appropriate location. A fused
Pipe can be created via fuse and inserted into the dataflow, and
the dataflow can be reordered via update_dfg accordingly.
Execution Interface. The Optimizer also specifies pipeline ex-
ecution via Drivers and Variants. A Driver is an independent
Python process that manages the end-to-end processing of a dis-
joint (data-parallel) subset of samples. Each Client can usemultiple
Drivers to parallelize GIL-constrained Python operations within a
training node. Meanwhile, a Variant is a physical implementation
of the Pipe’s logical operation on a given engine (and potentially
for a specific ML framework). For example, a map(tf.image.resize)
Pipe can have Variants that executes resize from the tf.image

493

library a) locally in the Driver’s Python process, b) on a distributed
worker, or even c) by using the runtime of another framework such
as tf.data. Native operators (e.g., batch) can further have specific
Variants that process ML framework-specific tensors on a given
engine (e.g., PyTorch/distributed or TF/local), which cedar selects
from based on the ML framework used by the training job.

Once the training job starts, each Client will create Drivers
using shard and initiate processing for each Pipe by calling mutate
to transform the Pipe to the appropriate Variant. Some Variants
allow a configurable amount of parallelism (e.g., process pool size);
scale sets the amount of parallelism appropriately. Throughout
training, each Client ingests data and manages execution only for
its respective training process (e.g., training node), allowing cedar to
support large-scale distributed training in a decentralized manner.
Specifically, each Client will use a local Scaler (Section 5.2) to
tune both the parallelism and Variant of each Pipe (via scale and
mutate) to meet its training process’s throughput requirements.

5 OPTIMIZATION AND DYNAMIC SCALING
cedar first applies global static optimizations to increase the per-
resource throughput. During runtime, each Client then dynami-
cally right-sizes the resources used by its Variants to efficiently
meet the throughput demanded by its training process.
Tracing and Profiling. The Optimizer relies on a collection of
performance statistics within the Metadata Store (Figure 7) to
calculate cost models across plans. These statistics are automatically
collected by cedar , which traces the execution of each Pipe. Each
Source periodically marks emitted samples to be traced. Each Pipe
transparently tags traced samples with statistics, including the
sample’s execution latency and size (bytes), and the Pipe’s current
Variant and prefetch buffer length (if applicable). Upon reception,
the Client updates the Metadata Store with traced results and a
measure of the current overall throughput.

The Optimizer requires a core set of statistics. These include the
throughput 𝑡𝑝𝑢𝑡𝑏𝑎𝑠𝑒 of the baseline plan,𝐺𝑏𝑎𝑠𝑒 , which executes the
un-optimized pipeline locally (i.e., within a single Driver Python
process). For each Pipe 𝑝 , the Optimizer also requires the average
latency to process a sample, 𝑙𝑎𝑡𝑏𝑎𝑠𝑒 (𝑝), and its average input and
output sample sizes, 𝑠𝑖𝑧𝑒𝑖𝑛 (𝑝) and 𝑠𝑖𝑧𝑒𝑜𝑢𝑡 (𝑝), respectively. Finally,
for each Variant 𝑣 available for 𝑝 , the Optimizer requires the
average DataSet throughput achieved by offloading only 𝑝 to 𝑣 ,
𝑡𝑝𝑢𝑡𝑣 (𝑝). If statistics are insufficient (e.g., from a previous job) or
performance characteristics are different (e.g., the infrastructure
changes), the Optimizer runs a short profiling job.

Profiling and optimization introduce negligible overheads (sec-
onds) compared to long-running (hours-days) training jobs.

5.1 Static Optimization
To explore the optimization search space, the Optimizer itera-
tively applies a set of cost- and rule-based optimization passes to
the dataflow graph, similar to traditional database query optimiz-
ers [29, 30, 38, 48]. Within each pass, the Optimizer begins by
enumerating possible plans by applying a specific optimization
technique to the current plan(s) (e.g., enumerating all possible oper-
ator orderings for reordering). The Optimizer then evaluates the
enumerated plans using a cost model or a set of rules. To efficiently

search the optimization space, each pass prunes plans based on
cost and satisfiability (i.e., obeying user-specified dependencies and
randomness constraints). By default, each pass outputs the lowest-
cost, permissible plan to the next pass. Each optimization pass thus
enumerates plans G = {𝐺1, · · · ,𝐺𝑛} and determines the cost of a
plan𝐺 by calculating a 𝑐𝑜𝑠𝑡 (𝑝) for each Pipe 𝑝 ∈ 𝐺 . It aims to find:

𝐺∗ = argmin
𝐺∈G

∑︂
𝑝∈𝐺

𝑐𝑜𝑠𝑡 (𝑝), s.t. 𝐺 satisfies user constraints (1)

A higher cost represents more work and thus lower performance.
cedar uses a comprehensive cost model that extends 𝑐𝑜𝑠𝑡 (𝑝) with
each pass, allowing system experts to customize the cost model
used by a pass, if needed, in a modular manner.

The Optimizer uses an initial cost model for the profiled baseline
plan 𝐺𝑏𝑎𝑠𝑒 , which weights the cost of each pipe by its fractional
latency in the end-to-end pipeline:

𝑐𝑜𝑠𝑡𝑏𝑎𝑠𝑒 (𝑝) =
𝑙𝑎𝑡𝑏𝑎𝑠𝑒 (𝑝)

Σ𝑖∈𝐺𝑏𝑎𝑠𝑒
𝑙𝑎𝑡𝑏𝑎𝑠𝑒 (𝑖)

/𝑡𝑝𝑢𝑡𝑏𝑎𝑠𝑒 (2)

We next describe each optimization pass in the order that it is
applied. We applied logical passes (e.g., reordering) prior to physi-
cal optimizations (e.g., offloading). Within each optimization pass,
we present a) how the Optimizer enumerates plans, and b) (if ap-
plicable) the cost model used. Using iterative passes allows the
Optimizer to be easily extended with further optimizations.
Reordering. The Optimizer first finds the best dataflow ordering.

Enumeration. The Optimizer enumerates all permissible reorder-
ings of the initial plan 𝐺𝑏𝑎𝑠𝑒 . It does so by removing the output
Pipe, 𝑜 , of 𝐺𝑏𝑎𝑠𝑒 and recursively calculating the set of all possible
reorderings of the shrunk graph. For each shrunk reordering 𝐺𝑠

with output Pipe 𝑜𝑠 , adding 𝑜 as a successor to 𝑜𝑠 produces a viable
reordering. Furthermore, if 𝑜 and 𝑜𝑠 may be reordered according to
user constraints, swapping 𝑜 and 𝑜𝑠 also produces a viable reorder-
ing (i.e., 𝑜 precedes 𝑜𝑠). reorder only reorders Pipes within their
linear subgraph (i.e., fix()-ing Pipes with > 1 input or output).

Cost model. To calculate the cost of a reordering 𝑅, reordering
augments the base cost model by calculating a size scaling factor
𝑆 (𝑝) = 𝑠𝑖𝑧𝑒𝑜𝑢𝑡,𝑏𝑎𝑠𝑒 (𝑝)/𝑠𝑖𝑧𝑒𝑖𝑛,𝑏𝑎𝑠𝑒 (𝑝) for each pipe 𝑝 , representing
how it scales the size of its output on average. The cost model then
computes the new input size of 𝑝 ∈ 𝑅 as 𝑠𝑖𝑧𝑒𝑖𝑛,𝑅 (𝑝) = 𝑠𝑖𝑧𝑒𝑟𝑎𝑤 ∗
Π𝑖∈𝑈 𝑆 (𝑖), where 𝑠𝑖𝑧𝑒𝑟𝑎𝑤 is the average raw sample size and 𝑈 ⊂
𝑅 is the ordered sequence of all ancestors of 𝑝 . The cost model
calculates the reordered cost as:

𝑐𝑜𝑠𝑡𝑅 (𝑝) = (𝑠𝑖𝑧𝑒𝑖𝑛,𝑅 (𝑝)/𝑠𝑖𝑧𝑒𝑖𝑛,𝑏𝑎𝑠𝑒 (𝑝)) ∗ 𝑐𝑜𝑠𝑡𝑏𝑎𝑠𝑒 (𝑝) (3)

Thus, reordering assumes that the cost of each Pipe scales linearly
with its input sample size (e.g., a tokenizer requires half as much
compute to process half as many tokens). However, system experts
may customize the cost model for different scaling properties of
each pipe (e.g., to scale 𝑐𝑜𝑠𝑡𝑏𝑎𝑠𝑒 (𝑝) quadratically with sample size).
Furthermore, since 𝑠𝑖𝑧𝑒𝑖𝑛 and 𝑠𝑖𝑧𝑒𝑜𝑢𝑡 is the average sample size,
reordering optimizes the location of operators that change both
selectivity (e.g., filter) and sample size (e.g., crop).
Caching.Next, the Optimizer evaluates if and where to best cache
(i.e., materialize) intermediate data.

Enumeration. The Optimizer enumerates plans by creating a
new plan for each permissible caching location within the dataflow
(i.e., after every operator that does not contain an ancestor that is

494

marked random). We currently consider only inserting one cache
operator in the dataflow (i.e., finding the best cache location).

Cost model. To calculate the cost of a plan with a cache Pipe
𝑝𝑐𝑎𝑐ℎ𝑒 , the cost model simply sets the cost of any exclusive ancestor
𝑝 of 𝑝𝑐𝑎𝑐ℎ𝑒 (i.e., all paths from 𝑝 to the output contain 𝑝𝑐𝑎𝑐ℎ𝑒) to
zero. To account for I/O costs to read cached data, we calculate

𝑐𝑜𝑠𝑡 (𝑝𝑐𝑎𝑐ℎ𝑒) = 𝑑 ∗ 𝑠𝑖𝑧𝑒𝑖𝑛,𝑅 (𝑝𝑐𝑎𝑐ℎ𝑒) (4)

where 𝑑 is a constant derived from the node’s disk I/O throughput,
and 𝑠𝑖𝑧𝑒𝑖𝑛,𝑅 (𝑝𝑐𝑎𝑐ℎ𝑒) is derived using 𝑆 (𝑝) as with reordering.
Fusion and Offloading. The Optimizer considers offloading and
fusion concurrently.

Enumeration. It enumerates all possible offloading plans by gen-
erating a set 𝑃𝑖 = {(𝑝𝑖 , 𝑣) |𝑣 ∈ 𝑉 and 𝑝𝑖 supports 𝑣} for each Pipe
𝑝𝑖 , which contains the set of supported Variants for 𝑝𝑖 within the
user-provided engines𝑉 . The Optimizer first enumerates plans by
taking the Cartesian product between all 𝑃𝑖s. Then, the Optimizer
performs all possible fusions for each plan (e.g., fusing adjacent
Pipes assigned the same Variant if each Pipe supports fusion).
Furthermore, as mentioned in Section 3.1, caching may preclude
the ability to fuse operators. The Optimizer thus enumerates plans
based on the input plan with and without the inserted cache Pipe.

Cost model. To compare costs between plans, the cost model
uses Amdahl’s Law to determine the benefit that 𝑝 gains if it is of-
floaded to a Variant 𝑣 . It assigns a lower cost 𝑐𝑜𝑠𝑡𝑣 (𝑝) to Variants
that achieve a higher throughput. The cost model uses the over-
all speedup 𝑠𝑣 (𝑝) = 𝑡𝑝𝑢𝑡𝑣 (𝑝)/𝑡𝑝𝑢𝑡𝑏𝑎𝑠𝑒 of 𝑣 . It then solves for the
speedup of 𝑝 on 𝑣 and linearly scales the reordered 𝑐𝑜𝑠𝑡𝑅 (𝑝) accord-
ingly. We constrain 𝑐𝑜𝑠𝑡𝑣 (𝑝) ≥ 0.

𝑐𝑜𝑠𝑡𝑣 (𝑝) = 𝑐𝑜𝑠𝑡𝑅 (𝑝) ∗
𝑠𝑣 (𝑝)−1 − (1 − 𝑓 (𝑝))

𝑓 (𝑝) (5)

Fusion reduces I/O costs between Pipes. To calculate the cost of
a fused Pipe 𝑝 , which fuses pipes𝑞1, ..., 𝑞𝑛 , the cost model calculates
the reduction of I/O relative to the un-fused baseline as 𝑖𝑜 (𝑝) =

(𝑠𝑖𝑧𝑒𝑖𝑛,𝑅 (𝑞1) + 𝑠𝑖𝑧𝑒𝑜𝑢𝑡,𝑅 (𝑞𝑛))/(𝑠𝑖𝑧𝑒𝑖𝑛,𝑅 (𝑞1) + 2 ∗ 𝑠𝑖𝑧𝑒𝑖𝑛,𝑅 (𝑞2) + ... +
2 ∗ 𝑠𝑖𝑧𝑒𝑖𝑛,𝑅 (𝑞𝑛) + 𝑠𝑖𝑧𝑒𝑜𝑢𝑡,𝑅 (𝑞𝑛)). The cost model then discounts the
aggregate costs of all original Pipes by the relative I/O savings:

𝑐𝑜𝑠𝑡𝑓 𝑢𝑠𝑒𝑑,𝑣 (𝑝) = 𝑖𝑜 (𝑝) ∗ (𝑐𝑜𝑠𝑡𝑣 (𝑞1) + · · · + 𝑐𝑜𝑠𝑡𝑣 (𝑞𝑛)) (6)

Prefetching and Sharding. Finally, the Optimizer applies a set
of rules to prefetch and shard the DataSet. It inserts a prefetching
Pipe after each offloaded (non-base) Variant, as well as at the end
of the dataflow, to allow pipelined execution throughout the input
data pipeline. The Optimizer also calculates the ideal number of
shards (i.e., Drivers) to use for each Client. To do so, it estimates
the throughput of each Driver using the cost model. If the through-
put is over a threshold, the Optimizer runs a single Driver within
each Client process to avoid introducing an inter-process commu-
nication bottleneck. Otherwise, the Optimizer further replicates
Drivers to improve local parallelism (i.e., one per host CPU core).

Summary. The Optimizer applies complex optimizations by
enumerating and pruning plans in discrete passes (like query op-
timizers), allowing cedar to search the optimization space in an
efficient and extensible manner. Each cost-based optimization pass
leverages an informed cost model, based on well-founded principles

(e.g., Amdahl’s Law), that estimates the cost of each Pipe using pro-
filed statistics. Some models apply heuristics to support black-box
UDFs; for example, reordering assumes that operator costs scale
linearly with input size. However, users may easily customize the
model in a modular manner for each Pipe if needed, for example
by modifying Equation 3 to scale quadratically w.r.t. input size.

5.2 Dynamic Scaling
The Optimizer’s static pass is designed to select a high-throughput
plan in order to increase the utilization of training accelerators.
Since Clients independently process samples for its respective
training process, each Client runs an Scaler during training
to right-size resources to efficiently meet its training process’s
throughput demands. The Scaler continuously monitors perfor-
mance, identifies the bottleneck Pipe, and tunes its parallelism.

As mentioned above, each Client continuously traces and re-
ports runtime metrics during training. To identify the bottleneck,
the Scaler examines the prefetch buffer at the pipeline output. If
the buffer length is over a configurable threshold, the input data
pipeline is not the bottleneck. In this case, the Scaler selects a
random Pipe 𝑝 with a non-base Variant and scales down its par-
allelism by a unit (e.g., one process). Importantly, if the current
parallelism of 𝑝 cannot be further decreased, cedar will mutate 𝑝
into the base Variant to avoid over-provisioning resources.

However, if the output buffer is below a threshold, a bottleneck
exists. The Scaler will attempt to scale-up the parallelism for the
bottleneck Pipe 𝑝𝑏 . It identifies 𝑝𝑏 by examining the set of all Pipes
which were statically assigned a non-base Variant, 𝑃∗, which repre-
sents Pipes that benefit from offloading. First, the Scaler examines
the prefetch buffer of all 𝑝 ∈ 𝑃∗ that are currently offloaded (i.e.,
non-base), selecting the 𝑝 with the smallest buffer below a thresh-
old. If no such Pipes exist (e.g., if all 𝑝 ∈ 𝑃∗ are mutated to the
base Variant), the Scaler examines all 𝑝 ∈ 𝑃∗ with base Variants
and selects the 𝑝 with the largest 𝑙𝑎𝑡𝑏𝑎𝑠𝑒 (𝑝) – the largest speedup
opportunity. Given 𝑝𝑏 , the Scaler will iteratively increase its par-
allelism by a unit until throughput plateaus, potentially mutating
𝑝𝑏 back into a non-base Variant. If the backend’s resources are
exhausted, the Scaler will scale down another random Pipe with
the same Variant as 𝑝𝑏 . The Scaler periodically runs (e.g., every
minute), scaling resources to meet throughput demands.

The Optimizer’s static passes (Section 5.1) are responsible for
exploring the complex optimization space presented in Section 3.2.
Meanwhile, the Scaler is responsible for scaling the resources
used to execute the optimized execution plan in order to meet
throughput demands. While alternative methods such as Bayesian
Optimization [55] or simulated annealing [44] could be applied to
scaling, we find that the Scaler’s hill-climbing approach is a simple
and effective solution. This is because as we increase the parallelism
(and thus throughput) of a Pipe, we can apply Amdahl’s Law [4]
to model the throughput of the entire pipeline (as in Section 5.1),
resulting in a concave function with respect to parallelism. A similar
concave speedup function has long been used to scale parallelism
for cases ranging from multicore processors [36, 88] to datacenter
workloads [12, 91]. We evaluate the Scaler in Section 6.2, and
Figure 10 experimentally validates this model.

495

Table 2: Description of pipelines used to evaluate cedar.

Pipeline Description Model

CV-
{torch,tf}

Decode→ Float→ RandCrop→ RandFlip
→ Jitter→ Grayscale→ Blur→ Normalize

SimCLR
[18, 19]

SSD-
{torch,tf}

Decode→ Resized Bounding Box Crop→
Flip→ Distort→ Normalize

SSD
[57]

NLP-
{torch,hf-tf,tf} Read→ Tokenize→ Truncate→ Embedding LSTM

[37]

ASR Decode→ Resample→ Spectrogram→
Stretch→ Time Mask→ Freq. Mask→Mel Scale

RNN-T
[33]

6 EVALUATION
We designed cedar to support the numerous libraries and frame-
works currently used across ML deployments. Since ML practition-
ers predominantly rely on Python, cedar is built from the ground up
in ∼12K lines of Python. cedar supports all popular ML frameworks
(e.g., PyTorch, JAX, and TensorFlow) and can execute operations
from arbitrary preprocessing libraries that provide a Python API.
Workloads. We evaluated cedar on a diverse set of eight ML input
data pipelines across computer vision, natural language, and speech
domains as shown in Table 2. CV-torch and CV-tf implemented
the SimCLR [18, 19] pipeline in Figure 1 using PyTorch and Ten-
sorFlow (TF) operators, respectively. They processed the ImageNet
dataset [25] and used the semantic constraints shown in Figure 8.
SSD-torch and SSD-tf implemented the SSD pipeline from the
MLPerf Training benchmark [58] using PyTorch and TF operators,
respectively. SSD pipelines used the COCO dataset [56]. All SSD op-
erators were random; Distort was able to be reordered between De-
code and Normalize. NLP-torch, NLP-hf, and NLP-tf implemented
a standard pipeline for natural language tasks [16, 80]. NLP-torch
used torchtext [77] operators, while NLP-hf-tf and NLP-tf used
tf.text [86] operators with a Hugging Face [39] and TF tokenizer,
respectively. All NLP pipelines used the WikiText-103 dataset [61],
and all operators were not random and not reorderable. Finally, ASR
implemented the SpecAugment speech recognition pipeline [72]
using the third-party librosa [59] library. ASR used the Common
Voice dataset [5]. All ASR operators were fixed except for Stretch,
TimeMask, and FreqMask; TimeMask and FreqMask were random.

6.1 cedar Optimizer
We begin by evaluating how effectively cedar’s static optimizations
improve per-resource throughput compared to state-of-the-art in-
put data systems. As highlighted by recent work [41, 65], end-to-
end training throughput 𝑇𝑒2𝑒 is the minimum of the input data
throughput 𝑇𝑝 and the GPU computation rate 𝑇𝑔 . 𝑇𝑔 depends on
the model and training infrastructure (e.g., GPU version and net-
working hardware). The primary goal of an input data optimizer
is to increase per-resource throughput (e.g., 𝑇𝑝 per CPU core). If
𝑇𝑝 < 𝑇𝑔 given fixed input data resources (e.g., the training node’s
host CPU), increasing the per-resource throughput, and thus 𝑇𝑝 ,
directly improves 𝑇𝑒2𝑒 . Alternatively, if 𝑇𝑝 > 𝑇𝑔 , increased per-
resource throughput allows a dynamic scaler (which we evaluate in
Section 6.2) to reduce the amount of allocated resources, improving
the resource efficiency of input data systems.

Thus, to directly evaluate the per-resource throughput, we eval-
uated the maximum 𝑇𝑝 achieved by systems on two hardware se-
tups. Since training jobs often use CPU host resources for input
data processing, we first used a local setup where all systems
performed processing on a single 8-core VM (n2-standard-8 on
Google Cloud). We provided cedar with a Python multiprocessing
engine, as well as two engines that used a tf.data or a Ray Data run-
time to execute operators, respectively. In this setup, we compared
against tf.data [69], Plumber [50], Ray Data [81], and the PyTorch
DataLoader [78]. We also used a distributed (remote) setup, which
provided each system with a remote 32-core VM (n2-standard-32)
in addition to the local VM. In addition to the local engines, we
provided cedar with a distributed engine which executed opera-
tors on the remote VM. In the remote setup, we compared against
tf.data service [8], FastFlow [87], and Ray Data [81].

We configured each system to maximize throughput (e.g., en-
abled auto-tuning in tf.data). We also disabled caching in order to
directly evaluate the improvements to computational efficiency (e.g.,
avoiding degenerate cases where the pipeline output is cached). We
explicitly evaluate caching in Section 6.2. Figure 9 shows the input
data throughput (𝑇𝑝) for each system across the eight pipelines.
To highlight the importance of input data optimizations on 𝑇𝑒2𝑒 ,
we also report the 𝑇𝑔 of the representative model for each pipeline
shown in Table 2 on an A100 GPU. Because input data pipelines
are data-parallel (i.e., independent across training processes), these
results directly scale to multi-GPU training environments as each
GPU would require a similar input data demand.
cedar optimizes local input data processing throughput. For
the CV and SSD pipelines, cedar reordered operators to reduce the
overall amount of computation required per sample, which we
further explore in Section 6.3. This allowed cedar to largely out-
perform PyTorch, tf.data, Plumber, and Ray Data. For CV-tf, tf.data
and Plumber were able to achieve a comparable performance due to
their underlying TF graph optimizer and performant C++ backend.

For NLP-torch, both PyTorch and Ray Data suffered from a
serialization bottleneck in sending large embeddings between pro-
cesses. cedar was able to avoid this by fusing Read, Tokenize, and
Truncate into one multiprocess Pipe, while performing Embedding
within the main Client process. For NLP-hf-tf, tf.data could not
optimize the non-TF Tokenizer, while Ray Data achieved slightly
higher performance (1.17×) than cedar because its Arrow core elim-
inated intermediate data copies. cedar’s extensibility allows it to
adopt Arrow as a future Variant. For NLP-tf, tf.data was able to
compile the pipeline into an optimized TF graph. cedar recognized
this benefit and offloaded execution to the tf.data engine, without
requiring users to modify the pipeline, allowing cedar to near tf.data’s
throughput (0.91× due to tracing) and out-perform Ray Data.

For ASR, cedar first reordered Stretch (to decrease work for the
Mask operators) and then offloaded execution to the Ray Data
engine, obtaining its zero-copy benefits and matching Ray Data’s
performance. Meanwhile, PyTorch and tf.data suffered from copy
overheads, and tf.data could not optimize the non-TF operators.

These results highlight the impact of cedar’s extensible optimizer
– optimizing the dataflow via reordering and fusion, and offloading
and prefetching execution to the best engine – all without user
input. cedar out-performed tf.data, Plumber, Ray Data, and PyTorch

496

Figure 9: Achieved processing throughput (𝑇𝑝 , higher is better) across eight pipelines. (l) and (r) denote the local and remote
setups of each system, where applicable. The dashed red line marks the GPU computation rate (𝑇𝑔) for the corresponding model
of each pipeline shown in Table 2 on an NVIDIA A100 GPU. Incompatible system/pipelines pairs are not shown.

by up to 6.14×, 1.87×, 10.65×, and 4.28× on the local setup, respec-
tively. In almost all cases, the input data throughput𝑇𝑝 achieved by
baselines was less than the GPU rate 𝑇𝑔 . Since 𝑇𝑒2𝑒 =𝑚𝑖𝑛(𝑇𝑝 ,𝑇𝑔),
cedar’s ability to improve𝑇𝑝 over the baselines directly translates to
a corresponding improvement in end-to-end training performance.
cedar intelligently uses distributed processing engines. For
the CV and SSD pipelines, cedar generated a similar reordering
the local setup. cedar also offloaded compute-intensive operators
(e.g., Distort for SSD and Jitter/Blur for CV) to the distributed
engine for SSD-torch and the CV pipelines, further improving its
throughput over the local case. Interestingly, cedar did not use the
distributed engine for SSD-tf. It instead correctly recognized
that offloading operators remotely would incur a slowdown due to
data movement overheads. cedar improved throughput over tf.data
service, FastFlow, and Ray Data; tf.data service matched cedar’s
performance for CV-tf due to its TF graph optimizations.

For NLP-torch and NLP-hf-tf, cedar fused and offloaded only
the Read, Tokenize, and Truncate operators to the distributed
engine, avoiding embedding serialization overheads as in the local
case. cedar correctly decided to not offload any NLP-tf operators
to the remote VM, avoiding network overheads similar to SSD-tf.
Meanwhile, tf.data service and Ray Data were both limited by these
communication overheads. FastFlow executed processing locally,
but inserted logic that hampered TensorFlow’s graph compiler.
Finally, cedar automatically determined that reordering and offload-
ing ASR to a distributed Ray Data engine was ideal for the same
zero-copy benefits as the local setup, matching Ray Data.

cedar was able to effectively and judiciously leverage distributed
processing engines, out-performing Ray Data, FastFlow, and tf.data
service by up to 4.99×, 3.45×, and 4.94×, respectively. By improving
the achievable𝑇𝑝 compared to baselines, given the same remote VM,
cedar reduces the substantial input data resources needed to meet
GPU demands. For instance, linearly scaling the Ray Data’s 𝑇𝑝 per
core to match the 𝑇𝑔 demand for CV-torch would require remote
CPU cores equal in cost to 83% of the A100 GPU VM itself (even
discounting the cost of the local VM), based on Google Cloud billing

Figure 10: Throughput as the number of distributed processes
increases for the CV-torch pipeline. The red box shows the
scale found by the Scaler given a target throughput.

rates. Meanwhile, cedar reduces this cost to 56%; the Scaler (which
we evaluate next) can use fewer resources to match 𝑇𝑔 demands.

Finally, cedar supports and optimizes diverse input data
pipelines. In contrast, many input data systems could not sup-
port all of the evaluation pipelines. DataLoaders and tf.data were
limited to PyTorch and TF pipelines, respectively. Systems reliant
on TF graphs – tf.data service, Plumber, and FastFlow – could not
use any non-TF operator, such as a Hugging Face tokenizer or
librosa. Plumber could also not support operators that required
non-serializable assets, such as the TF tokenizer in NLP-tf.

6.2 Dynamic Scaling and Caching
cedar adjusts parallelism to efficiently meet diverse train-
ing throughput demands. While cedar’s Optimizer successfully
improves per-resource throughput, its Scaler is responsible for
translating this high performance to high resource efficiency by
right-sizing resources to meet a given throughput demand (i.e.,
matching𝑇𝑝 to𝑇𝑔). To evaluate this, we used the CV-torch pipeline
with the remote setup (other pipelines showed similar results),
which cedar optimized by fusing and offloading compute-intensive
operators (Jitter and Blur) to the distributed engine.

497

Table 3: Auto-cached throughput (normalized to remote cedar,
higher is better) and throughput of the next best cache loca-
tion across three torch pipelines.

Pipeline Norm. Throughput with Caching Next Best Throughput

CV-torch 1.74 1.23
NLP-torch 1.42 1.37
ASR 1.00 (Do Not Cache) 0.82

The blue line in Figure 10 shows the throughput (i.e.,𝑇𝑝) achieved
by cedar as we swept the number of distributed processes, up
to saturation. We next set 5 target training throughputs (i.e., 𝑇𝑔),
shown by the horizontal red lines. We allowed the Scaler to adjust
the number of processes; the tuned scale for each target is shown
by the intersecting vertical red line. An efficient input data system
should tune parallelism such that this intersection is close to, but below
the blue line. This means that the system provisions the minimal
amount of resources to meet demand (i.e., 𝑇𝑝 > 𝑇𝑔).

Figure 10 shows that cedar can not only scale across a wide range
of throughput demands, but also efficiently right-size resources;
it selected the smallest amount of parallelism to meet each tar-
get. Furthermore, cedar’s ability to dynamically mutate a Pipe’s
Variant even completely deallocated the remote VM in the case of
low training throughput, as shown by the zero processes result in
Figure 10. This is in contrast to systems such as tf.data service [8]
and Cachew [31] which must always use distributed processing.
cedar optimizes if and where to apply caching. To evaluate
cedar’s ability to leverage caching, we allowed cedar to automati-
cally place a cache Pipe, which materialized all intermediate sam-
ples to disk in the first epoch. We then ran multiple epochs of the
torch pipelines across three domains (CV-torch, NLP-torch, and
ASR); caching is not applicable to SSD as it only used random opera-
tors. Table 3 shows the throughput (higher is better) of the cached
plan after the first epoch, normalized to the throughput achieved
by the plan generated by cedar-remote. We also report the next-
best throughput achieved by enumerating all other cache locations.
cedar was able to find the optimal location to apply caching.

For CV-torch, cedar cached the result after Decode andGrayscale,
but prior to random Cropping, satisfying randomness requirements.
This improved throughput by reducing disk I/O (Decode) and com-
pute (Grayscale). For NLP-torch, cedar cached the tokenized and
truncated sample prior to Embedding, avoiding overheads of read-
ing large embeddings. Interestingly, cedar did not cache ASR, deter-
mining that re-computation was ideal because transforms signifi-
cantly increased data volumes. Table 3 confirms this; the next “best”
solution cached the output of the entire pipeline, which reduced
throughput by 18%. cedar is effectively able to apply caching while
reasoning about its complex interactions with other optimizations.

6.3 In-depth Analysis
Combining optimizations is essential to cedar’s performance.
To understand cedar’s ability to combine optimizations, we per-
formed an ablation study by successively enabling local paral-
lelism (i.e., multiple Drivers), reordering, offloading (enabling the
distributed engine), and fusion. All experiments used prefetching.

Figure 11: Ablation study showing throughput across
pipelines as optimization techniques are successively en-
abled, normalized to the unoptimized pipeline. P = local par-
allelism, R = reordering, O = offloading, F = fusion.

Table 4: Throughput overheads with tagging/tracing enabled.

CV-torch SSD-torch NLP-torch ASR

Throughput Loss 1.45% 2.08% 7.12% 0.71%

Figure 11 shows the throughput of each experiment, normalized
to the baseline (i.e., executing the unoptimized DataSet within
a single Driver). No single optimization is a panacea. Instead, a
diverse set of optimizations is needed to achieve high performance
due to the diverse characteristics across pipelines.

Local parallelism was effective for CV-torch, SSD-torch, and
ASR since using multiple Drivers bypassed their GIL bottleneck.
CV-tf and SSD-tf largely used multithreaded C++ operators, limit-
ing this benefit. cedar did not parallelize the NLP pipelines to avoid
serialization overheads. As we explore next, reordering was effec-
tive at improving both CV and SSD pipelines since they used size-
changing operators. Meanwhile, ASR had more limited reordering
opportunities, and the NLP pipelines were not able to be reordered.
Most pipelines took advantage of offloading across engines, but the
overheads incurred by datamovement across offloaded pipes limited
its effectiveness for some pipelines. By eliminating these overheads
with fusion, cedar was ultimately able to improve throughput by
2.54 − 43.82× compared to the baseline. The successive improve-
ments with each step showcase cedar’s ability to systematically
apply and combine optimizations.
Reordering improves throughput by eliminatingwastedwork
on a per-sample basis.While reordering can reduce wasted work
based on operator selectivity (see Section 5.1), akin to predicate
pushdown in traditional query optimizers, cedar further extends
this benefit to operators that affect the size of individual samples.
The impact of this is shown in Figure 11; reordering increased
throughput by up to 5.79× over parallelism alone. Specifically, for
the CV pipelines, cedar reordered operators that reduced the size of
each image (Crop, Grayscale) towards the beginning of the pipeline,
and size-increasing operators (Float) towards the end. Meanwhile
for the SSD pipelines, cedar moved Distort before Resized Crop,
as the Resized Crop increased image sizes. This significantly re-
duced the necessary compute for each sample while obeying the
dependency constraints of each pipeline.

498

cedar introduces minimal overheads. Finally, we evaluate trac-
ing and Optimizer overheads using the PyTorch pipelines of each
domain (TF pipelines show similar results). Table 4 reports the
throughput overheads introduced by tagging each sample with
metadata (to ensure correctness) and periodically tracing samples
with statistics (100ms throughout our experiments). While the over-
heads are slightly larger for high samples/s pipelines (i.e., NLP),
these operations introduce minimal overall overheads.

The Optimizer can also quickly explore optimizations. As dis-
cussed in Section 5.1, the Optimizer prunes the search space after
each optimization pass, limiting the amount of plans it must evalu-
ate. For the CV, SSD, NLP, and ASR PyTorch pipelines, the Optimizer
considered 251055, 5689, 101954, and 22741 plans, respectively. The
Optimizer was able to generate a solution in < 6 seconds in each
case, insignificant compared to long-running training jobs.

7 RELATEDWORK
ML Input Data Frameworks and Optimizations. PyTorch Dat-
aLoaders [78] and tf.data [69] are native frameworks for PyTorch
and TensorFlow, respectively. DataLoaders offer certain options for
performance tuning such as multiprocessing and pinned memory,
but requires manual configuration. TorchData [76] is a beta Py-
Torch data loading library and provides similar primitives to Pipes.
Its DataLoader2 [74] is an incomplete prototype with an API for
distributed processing, but active development has unfortunately
stopped [75]. Meanwhile, tf.data can statically fuse and vectorize
TF-native pipelines and optimize the CPU and RAM allocation to
each operator. Plumber [50] extends tf.data to use a linear pro-
gram for resource allocation. These frameworks only support local
processing, limiting their ability to mitigate data stalls.

DPP [94] and GoldMiner [93] are proprietary distributed services
deployed at Meta and Alibaba, respectively. Ray Data [81] is an
input data library built on top of Ray [66]. Ray Data distributes
processing using Ray’s Task and Actor primitives, and optimizes for
task overheads by fusing operators via fixed rules. tf.data service [8]
offloads processing to distributed workers, but cannot support non-
TensorFlow UDFs [84]. FastFlow [87] extends tf.data service to split
processing between local and remote workers at a coarse granular-
ity. Pecan [32] is a concurrent work, built on top of tf.data service
(and is thus applicable to only TensorFlow pipelines), that also stud-
ies transformation ordering, but does not support its concurrent
application alongside other optimization passes. These systems,
like cedar , use an auto-scaling policy to tune worker parallelism.

Various systems extend input data frameworks to address or-
thogonal concerns. Cachew [31] extends tf.data service to create
a service for multi-tenant environments, scaling processing and
sharing cached samples between training jobs. Cachew can iden-
tify ideal cache locations, but requires users to explicitly insert
autocache operators, hindering its compatibility with other opti-
mizations (e.g., reordering). Cachew relies on tf.data’s underlying
optimizer, which we evaluated in Section 6. PRESTO [41] is a pro-
filer that determines the ideal location to cache, but requires users
to manually implement suggestions. CoorDL [65], OneAccess [45],
Quiver [51], Tectonic-Shift [96], and SiloD [92] provide distributed
caches for data shared across training jobs.

NVIDIA DALI [70] and FusionFlow [47] use GPUs for input
data processing. Revamper [54], SHADE [46], and iCACHE [20]
introduce optimizations that modify input data semantics (e.g., up-
sampling) to improve model convergence and input data efficiency.
RecD [95] deduplicates recommendation datasets for input data
processing efficiency. cedar’s extensibility allows it to easily adopt
these engines and techniques alongside its current optimizations.

As discussed in Section 3.1, cedar addresses the key requirements
that are not met by current input data systems – systematic, context-
aware, and general optimizations. cedar provides an easy-to-use
programming interface, supporting general ML frameworks and
pipelines, that permits users to express a simple set of constraints
that unlock a rich set of reordering and caching optimizations.
Meanwhile, its Optimizer systematically applies a complex set of
optimizations to improve performance, and its Scaler leverages
these benefits to efficiently meet training demand.
Traditional Processing Frameworks. Naiad [68], Spark [90],
DryadLINQ [89], and many other processing frameworks [2, 3, 13,
24, 40, 60] allow users to chain together higher-order transforma-
tions and model computation as data flows. Other data processing
frameworks, such as Apache Beam [2, 28], ApacheWayang [11], and
RHEEM [49], leverage an optimizer and decouple dataflow graphs
from underlying execution engines, similar to cedar’s Execution
interface. cedar is specialized for ML input data pipelines.

cedar applies similar rule- and cost-based optimization passes
to traditional query optimizers [7, 29, 30], while also considering
unique properties to ML input data pipelines such as relaxed order
dependencies and randomness. Lara [52] is a domain-specific lan-
guage that optimizes matrix-heavy preprocessing for traditional
“shallow” ML models (e.g., regressions). Hueske et al. [38] explore
preserving UDF semantics under reordering by statically analyzing
PACT [10] programs. cedar extends the impact of these traditional
data processing techniques to ML input data systems.

8 CONCLUSION
We presented cedar , a unified framework to define, optimize, and
execute ML input data pipelines. cedar’s Feature API allows users
to define input data pipelines using modular Pipes and to express
lightweight hints that allow cedar to reason about operator seman-
tics. cedar automatically applies systematic, context-aware, and
general optimizations to improve performance, and it orchestrates
pipeline execution to efficiently meet training throughput demands.
cedar outperforms tf.data, tf.data service, FastFlow, Plumber, Ray
Data, and PyTorch DataLoader by up to 1.87× to 10.65× across
diverse pipelines. cedar provides extensible and general program-
ming, optimizer, and execution interfaces that allow it to enable
and evolve alongside future ML input data systems research.

ACKNOWLEDGMENTS
We gratefully acknowledge Johann Hauswald, Andrew Woen, and
our anonymous reviewers whose feedback has greatly helped im-
prove this paper. This research was partly supported by the Stanford
Platform Lab and its affiliates, and by ACE, one of the seven centers
in JUMP 2.0, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA. Mark Zhao was supported by a Stanford
Graduate Fellowship and a Meta PhD Fellowship.

499

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and SamWhittle. 2015. The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-
of-Order Data Processing. Proceedings of the VLDB Endowment 8 (2015), 1792–
1803.

[3] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Frey-
tag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl,
Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax, Sebastian
Schelter, Mareike Höger, Kostas Tzoumas, and Daniel Warneke. 2014. The Strato-
sphere Platform for Big Data Analytics. The VLDB Journal 23, 6 (dec 2014),
939–964. https://doi.org/10.1007/s00778-014-0357-y

[4] Gene M. Amdahl. 1967. Validity of the single processor approach to achiev-
ing large scale computing capabilities. In Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference (Atlantic City, New Jersey) (AFIPS ’67 (Spring)).
Association for Computing Machinery, New York, NY, USA, 483–485. https:
//doi.org/10.1145/1465482.1465560

[5] Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler,
Josh Meyer, Reuben Morais, Lindsay Saunders, Francis M. Tyers, and Gre-
gor Weber. 2020. Common Voice: A Massively-Multilingual Speech Corpus.
arXiv:1912.06670 [cs.CL]

[6] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul
Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak,
Michał undefinedwitakowski, Michał Szafrański, Xiao Li, Takuya Ueshin,Mostafa
Mokhtar, Peter Boncz, Ali Ghodsi, Sameer Paranjpye, Pieter Senster, Reynold
Xin, and Matei Zaharia. 2020. Delta Lake: High-Performance ACID Table Storage
over Cloud Object Stores. Proc. VLDB Endow. 13, 12 (aug 2020), 3411–3424.
https://doi.org/10.14778/3415478.3415560

[7] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, andMatei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data (Mel-
bourne, Victoria, Australia) (SIGMOD ’15). Association for ComputingMachinery,
New York, NY, USA, 1383–1394. https://doi.org/10.1145/2723372.2742797

[8] Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiří Šimša, and Chan-
dramohan A. Thekkath. 2023. Tf.Data Service: A Case for Disaggregating ML
Input Data Processing. In Proceedings of the 2023 ACM Symposium on Cloud Com-
puting (Santa Cruz, CA, USA) (SoCC ’23). Association for Computing Machinery,
New York, NY, USA, 358–375. https://doi.org/10.1145/3620678.3624666

[9] AWS. 2024. AWS Trainium. https://aws.amazon.com/machine-learning/
trainium/. Accessed 2024-10-21.

[10] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, and
Daniel Warneke. 2010. Nephele/PACTs: A Programming Model and Execu-
tion Framework for Web-Scale Analytical Processing. In Proceedings of the
1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA) (SoCC
’10). Association for Computing Machinery, New York, NY, USA, 119–130.
https://doi.org/10.1145/1807128.1807148

[11] Kaustubh Beedkar, Bertty Contreras-Rojas, Haralampos Gavriilidis, Zoi Kaoudi,
VolkerMarkl, Rodrigo Pardo-Meza, and Jorge-Arnulfo Quiané-Ruiz. 2023. Apache
Wayang: A Unified Data Analytics Framework. SIGMOD Rec. 52, 3 (nov 2023),
30–35. https://doi.org/10.1145/3631504.3631510

[12] Benjamin Berg. 2023. A Principled Approach to Parallel Job Scheduling. (1 2023).
https://doi.org/10.1184/R1/21817980.v1

[13] Vinayak Borkar, Michael Carey, Raman Grover, Nicola Onose, and Rares Ver-
nica. 2011. Hyracks: A Flexible and Extensible Foundation for Data-Intensive
Computing. In Proceedings of the 2011 IEEE 27th International Conference on
Data Engineering (ICDE ’11). IEEE Computer Society, USA, 1151–1162. https:
//doi.org/10.1109/ICDE.2011.5767921

[14] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax Accessed 2024-10-21.

[15] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

[16] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

[17] P Carbone, S Ewen, S Haridi, A Katsifodimos, V Markl, and K Tzoumas. 2015.
Apache FlinkTM: Stream and batch processing in a single engine. Bull. IEEE
Comput. Soc. Tech. Comm. Data Eng 36, 4 (2015).

[18] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations. arXiv
preprint arXiv:2002.05709 (2020).

[19] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey
Hinton. 2020. Big Self-Supervised Models are Strong Semi-Supervised Learners.
arXiv preprint arXiv:2006.10029 (2020).

[20] Weijian Chen, Shuibing He, Yaowen Xu, Xuechen Zhang, Siling Yang, Shuang
Hu, Xian-He Sun, and Gang Chen. 2023. iCache: An Importance-Sampling-
Informed Cache for Accelerating I/O-Bound DNN Model Training. In 2023 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
220–232. https://doi.org/10.1109/HPCA56546.2023.10070964

[21] Papers With Code. 2024. Trends. https://paperswithcode.com/trends. Accessed
2024-10-21.

[22] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. 2020. RandAug-
ment: Practical Automated Data Augmentation with a Reduced Search Space.
In Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 18613–18624. https://proceedings.neurips.cc/paper_files/paper/2020/file/
d85b63ef0ccb114d0a3bb7b7d808028f-Paper.pdf

[23] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, AshishMotivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 215–226. https:
//doi.org/10.1145/2882903.2903741

[24] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Pro-
cessing on Large Clusters. Commun. ACM 51, 1 (jan 2008), 107–113. https:
//doi.org/10.1145/1327452.1327492

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 248–255. https://doi.org/10.1109/
CVPR.2009.5206848

[26] Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi,
Teruko Mitamura, and Eduard Hovy. 2021. A Survey of Data Augmentation
Approaches for NLP. arXiv:2105.03075 [cs.CL]

[27] Apache Software Foundation. 2024. Apache Arrow. https://arrow.apache.org.
Accessed 2024-10-21.

[28] Apache Software Foundation. 2024. Apache Beam. https://beam.apache.org.
Accessed 2024-10-21.

[29] Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data
Eng. Bull. 18, 3 (1995), 19–29.

[30] G. Graefe andW.J. McKenna. 1993. The Volcano optimizer generator: extensibility
and efficient search. In Proceedings of IEEE 9th International Conference on Data
Engineering. 209–218. https://doi.org/10.1109/ICDE.1993.344061

[31] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramohan A.
Thekkath, and Ana Klimovic. 2022. Cachew: Machine Learning Input Data
Processing as a Service. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22). USENIX Association, Carlsbad, CA, 689–706. https://www.usenix.org/
conference/atc22/presentation/graur

[32] Dan Graur, Oto Mraz, Muyu Li, Sepehr Pourghannad, Chandramohan A.
Thekkath, and Ana Klimovic. 2024. Pecan: Cost-Efficient ML Data Preprocessing
with Automatic Transformation Ordering and Hybrid Placement. In 2024 USENIX
Annual Technical Conference (USENIX ATC 24). USENIX Association, Santa Clara,
CA, 649–665. https://www.usenix.org/conference/atc24/presentation/graur

[33] Alex Graves. 2012. Sequence Transduction with Recurrent Neural Networks.
arXiv:1211.3711 [cs.NE] https://arxiv.org/abs/1211.3711

[34] Song Han, Huizi Mao, and William J Dally. 2016. Deep Compression: Compress-
ing Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. International Conference on Learning Representations (ICLR) (2016).

[35] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning Both
Weights and Connections for Efficient Neural Networks. In Proceedings of the
28th International Conference on Neural Information Processing Systems - Volume
1 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA, USA, 1135–1143.

[36] Mark D. Hill and Michael R. Marty. 2008. Amdahl’s Law in the Multicore Era.
Computer 41, 7 (2008), 33–38. https://doi.org/10.1109/MC.2008.209

[37] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Mem-
ory. Neural Comput. 9, 8 (nov 1997), 1735–1780. https://doi.org/10.1162/
neco.1997.9.8.1735

500

https://www.tensorflow.org/
https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://arxiv.org/abs/1912.06670
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/3620678.3624666
https://aws.amazon.com/machine-learning/trainium/
https://aws.amazon.com/machine-learning/trainium/
https://doi.org/10.1145/1807128.1807148
https://doi.org/10.1145/3631504.3631510
https://doi.org/10.1184/R1/21817980.v1
https://doi.org/10.1109/ICDE.2011.5767921
https://doi.org/10.1109/ICDE.2011.5767921
http://github.com/google/jax
https://arxiv.org/abs/2005.14165
https://doi.org/10.1109/HPCA56546.2023.10070964
https://paperswithcode.com/trends
https://proceedings.neurips.cc/paper_files/paper/2020/file/d85b63ef0ccb114d0a3bb7b7d808028f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d85b63ef0ccb114d0a3bb7b7d808028f-Paper.pdf
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/2105.03075
https://arrow.apache.org
https://beam.apache.org
https://doi.org/10.1109/ICDE.1993.344061
https://www.usenix.org/conference/atc22/presentation/graur
https://www.usenix.org/conference/atc22/presentation/graur
https://www.usenix.org/conference/atc24/presentation/graur
https://arxiv.org/abs/1211.3711
https://arxiv.org/abs/1211.3711
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

[38] Fabian Hueske, Mathias Peters, Matthias J. Sax, Astrid Rheinländer, Rico
Bergmann, Aljoscha Krettek, and Kostas Tzoumas. 2012. Opening the Black
Boxes in Data Flow Optimization. Proc. VLDB Endow. 5, 11 (jul 2012), 1256–1267.
https://doi.org/10.14778/2350229.2350244

[39] HuggingFace. 2024. Tokenizer Summary. https://huggingface.co/docs/
transformers/tokenizer_summary. Accessed 2024-10-21.

[40] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks.
In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2007 (Lisbon, Portugal) (EuroSys ’07). Association for Computing
Machinery, New York, NY, USA, 59–72. https://doi.org/10.1145/1272996.1273005

[41] Alexander Isenko, Ruben Mayer, Jeffrey Jedele, and Hans-Arno Jacobsen. 2022.
Where Is My Training Bottleneck? Hidden Trade-Offs in Deep Learning Prepro-
cessing Pipelines. In Proceedings of the 2022 International Conference on Man-
agement of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Com-
puting Machinery, New York, NY, USA, 1825–1839. https://doi.org/10.1145/
3514221.3517848

[42] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang,
Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hong-
min Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou, Yiyao Sheng, Zhuo
Jiang, Haohan Xu, Haoran Wei, Zhang Zhang, Pengfei Nie, Leqi Zou, Sida
Zhao, Liang Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin Jin, and
Xin Liu. 2024. MegaScale: Scaling Large Language Model Training to More
Than 10,000 GPUs. In 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24). USENIX Association, Santa Clara, CA, 745–760.
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng

[43] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai,
Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Clifford Young,
Xiang Zhou, Zongwei Zhou, and David A Patterson. 2023. TPU v4: An Optically
Reconfigurable Supercomputer for Machine Learning with Hardware Support
for Embeddings. In Proceedings of the 50th Annual International Symposium on
Computer Architecture (Orlando, FL, USA) (ISCA ’23). Association for Computing
Machinery, New York, NY, USA, Article 82, 14 pages. https://doi.org/10.1145/
3579371.3589350

[44] D. Juedes, F. Drews, L. Welch, and D. Fleeman. 2004. Heuristic resource allocation
algorithms for maximizing allowable workload in dynamic, distributed real-time
systems. In 18th International Parallel and Distributed Processing Symposium,
2004. Proceedings. 117–. https://doi.org/10.1109/IPDPS.2004.1303072

[45] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, and Shivaram
Venkataraman. 2019. The Case for Unifying Data Loading in Machine Learning
Clusters. In 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
19). USENIX Association, Renton, WA. https://www.usenix.org/conference/
hotcloud19/presentation/kakaraparthy

[46] Redwan Ibne Seraj Khan, Ahmad Hossein Yazdani, Yuqi Fu, Arnab K. Paul, Bo
Ji, Xun Jian, Yue Cheng, and Ali R. Butt. 2023. SHADE: Enable Fundamental
Cacheability for Distributed Deep Learning Training. In 21st USENIX Conference
on File and Storage Technologies (FAST 23). USENIX Association, Santa Clara, CA,
135–152. https://www.usenix.org/conference/fast23/presentation/khan

[47] Taeyoon Kim, ChanHo Park, Mansur Mukimbekov, Heelim Hong, Minseok
Kim, Ze Jin, Changdae Kim, Ji-Yong Shin, and Myeongjae Jeon. 2024. Fu-
sionFlow: Accelerating Data Preprocessing for Machine Learning with CPU-
GPU Cooperation. Proc. VLDB Endow. 17, 4 (mar 2024), 863–876. https:
//doi.org/10.14778/3636218.3636238

[48] Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. 2021. Data Depen-
dencies for Query Optimization: A Survey. The VLDB Journal 31, 1 (jun 2021),
1–22. https://doi.org/10.1007/s00778-021-00676-3

[49] Sebastian Kruse, Zoi Kaoudi, Bertty Contreras-Rojas, Sanjay Chawla, Felix Nau-
mann, and Jorge-Arnulfo Quiané-Ruiz. 2020. RHEEMix in the data jungle: a
cost-based optimizer for cross-platform systems. The VLDB Journal 29, 6 (may
2020), 1287–1310. https://doi.org/10.1007/s00778-020-00612-x

[50] Michael Kuchnik, Ana Klimovic, Jiri Simsa, Virginia Smith, and George
Amvrosiadis. 2022. Plumber: Diagnosing and removing performance bottle-
necks in machine learning data pipelines. Proceedings of Machine Learning and
Systems 4 (2022), 33–51.

[51] Abhishek Vijaya Kumar and Muthian Sivathanu. 2020. Quiver: An Informed
Storage Cache for Deep Learning. In 18th USENIX Conference on File and Storage
Technologies (FAST 20). USENIX Association, Santa Clara, CA, 283–296. https:
//www.usenix.org/conference/fast20/presentation/kumar

[52] Andreas Kunft, Asterios Katsifodimos, Sebastian Schelter, Sebastian Breß,
Tilmann Rabl, and Volker Markl. 2019. An Intermediate Representation for
Optimizing Machine Learning Pipelines. Proc. VLDB Endow. 12, 11 (jul 2019),
1553–1567. https://doi.org/10.14778/3342263.3342633

[53] Frederic Lardinois. 2022. Google launches a 9 exaflop cluster of cloud TPU V4
pods into public preview. https://techcrunch.com/2022/05/11/google-launches-
a-9-exaflop-cluster-of-cloud-tpu-v4-pods-into-public-preview/. Accessed 2024-
10-21.

[54] Gyewon Lee, Irene Lee, Hyeonmin Ha, Kyunggeun Lee, Hwarim Hyun, Ahn-
jae Shin, and Byung-Gon Chun. 2021. Refurbish Your Training Data: Reusing

Partially Augmented Samples for Faster Deep Neural Network Training. In 2021
USENIX Annual Technical Conference (USENIX ATC 21). USENIX Association,
537–550. https://www.usenix.org/conference/atc21/presentation/lee

[55] Qian Li, Bin Li, Pietro Mercati, Ramesh Illikkal, Charlie Tai, Michael Kishinevsky,
and Christos Kozyrakis. 2021. RAMBO: Resource Allocation for Microservices
Using Bayesian Optimization. IEEE Computer Architecture Letters 20, 1 (2021),
46–49. https://doi.org/10.1109/LCA.2021.3066142

[56] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
2015. Microsoft COCO: Common Objects in Context. arXiv:1405.0312 [cs.CV]
https://arxiv.org/abs/1405.0312

[57] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD: Single Shot MultiBox Detector.
Springer International Publishing, 21–37. https://doi.org/10.1007/978-3-319-
46448-0_2

[58] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micike-
vicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bit-
torf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta, Kim Hazelwood,
Andrew Hock, Xinyuan Huang, Atsushi Ike, Bill Jia, Daniel Kang, David Kan-
ter, Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak Narayanan, Tayo Ogun-
tebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie,
Tom St. John, Tsuguchika Tabaru, Carole-Jean Wu, Lingjie Xu, Masafumi Ya-
mazaki, Cliff Young, and Matei Zaharia. 2019. MLPerf Training Benchmark.
arXiv:1910.01500 [cs.LG]

[59] Brian McFee, Colin Raffel, Dawen Liang, Daniel P Ellis, Matt McVicar, Eric
Battenberg, and Oriol Nieto. 2015. librosa: Audio and Music Signal Analysis in
Python. In Proceedings of the 14th Python in Science Conference, Vol. 8. 18–25.

[60] Erik Meijer, Brian Beckman, and Gavin Bierman. 2006. LINQ: Reconciling Object,
Relations and XML in the .NET Framework. In Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data (Chicago, IL, USA)
(SIGMOD ’06). Association for Computing Machinery, New York, NY, USA, 706.
https://doi.org/10.1145/1142473.1142552

[61] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016.
Pointer Sentinel Mixture Models. arXiv:1609.07843 [cs.CL]

[62] Meta. 2022. Introducing the AI Research SuperCluster. https://ai.facebook.com/
blog/ai-rsc/. Accessed 2024-10-21.

[63] Meta. 2024. Building Meta’s GenAI Infrastructure. https://engineering.fb.com/
2024/03/12/data-center-engineering/building-metas-genai-infrastructure/. Ac-
cessed 2024-10-21.

[64] MindSpore. 2024. MindSpore. https://github.com/mindspore-ai/mindspore.
Accessed 2024-10-21.

[65] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram.
2021. Analyzing and Mitigating Data Stalls in DNN Training. Proc. VLDB Endow.
14, 5 (jan 2021), 771–784. https://doi.org/10.14778/3446095.3446100

[66] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. 2018. Ray: A Distributed Framework for Emerging AI Applica-
tions. In Proceedings of the 13th USENIX Conference on Operating Systems Design
and Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Association, USA,
561–577.

[67] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch,
Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,
Jie (Amy) Yang, Leon Gao, Dmytro Ivchenko, Aarti Basant, Yuxi Hu, Jiyan Yang,
Ehsan K. Ardestani, Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu,
Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yinbin Ma, Junjie Yang, Ellie
Wen, Hong Li, Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna
Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman, Kiran Kumar Matam, Adi
Gangidi, Guoqiang Jerry Chen, Manoj Krishnan, Avinash Nayak, Krishnaku-
mar Nair, Bharath Muthiah, Mahmoud khorashadi, Pallab Bhattacharya, Petr
Lapukhov, Maxim Naumov, Ajit Mathews, Lin Qiao, Mikhail Smelyanskiy, Bill
Jia, and Vijay Rao. 2022. Software-Hardware Co-Design for Fast and Scalable
Training of Deep Learning Recommendation Models. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (New York, New York)
(ISCA ’22). Association for Computing Machinery, New York, NY, USA, 993–1011.
https://doi.org/10.1145/3470496.3533727

[68] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 439–455. https://doi.org/10.1145/2517349.2522738

[69] Derek G. Murray, Jiří Šimša, Ana Klimovic, and Ihor Indyk. 2021. Tf.Data: A
Machine Learning Data Processing Framework. Proc. VLDB Endow. 14, 12 (jul
2021), 2945–2958. https://doi.org/10.14778/3476311.3476374

[70] NVIDIA. 2024. NVIDIA DALI. https://docs.nvidia.com/deeplearning/dali/user-
guide/docs/index.html. Accessed 2024-10-21.

[71] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Zakharov,
Abhinav Sharma, Shiva Shankar P, Mike Shuey, Richard Wareing, Monika

501

https://doi.org/10.14778/2350229.2350244
https://huggingface.co/docs/transformers/tokenizer_summary
https://huggingface.co/docs/transformers/tokenizer_summary
https://doi.org/10.1145/1272996.1273005
https://doi.org/10.1145/3514221.3517848
https://doi.org/10.1145/3514221.3517848
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1109/IPDPS.2004.1303072
https://www.usenix.org/conference/hotcloud19/presentation/kakaraparthy
https://www.usenix.org/conference/hotcloud19/presentation/kakaraparthy
https://www.usenix.org/conference/fast23/presentation/khan
https://doi.org/10.14778/3636218.3636238
https://doi.org/10.14778/3636218.3636238
https://doi.org/10.1007/s00778-021-00676-3
https://doi.org/10.1007/s00778-020-00612-x
https://www.usenix.org/conference/fast20/presentation/kumar
https://www.usenix.org/conference/fast20/presentation/kumar
https://doi.org/10.14778/3342263.3342633
https://techcrunch.com/2022/05/11/google-launches-a-9-exaflop-cluster-of-cloud-tpu-v4-pods-into-public-preview/
https://techcrunch.com/2022/05/11/google-launches-a-9-exaflop-cluster-of-cloud-tpu-v4-pods-into-public-preview/
https://www.usenix.org/conference/atc21/presentation/lee
https://doi.org/10.1109/LCA.2021.3066142
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/abs/1910.01500
https://doi.org/10.1145/1142473.1142552
https://arxiv.org/abs/1609.07843
https://ai.facebook.com/blog/ai-rsc/
https://ai.facebook.com/blog/ai-rsc/
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://github.com/mindspore-ai/mindspore
https://doi.org/10.14778/3446095.3446100
https://doi.org/10.1145/3470496.3533727
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.14778/3476311.3476374
https://docs.nvidia.com/deeplearning/dali/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/dali/user-guide/docs/index.html

Gangapuram, Guanglei Cao, Christian Preseau, Pratap Singh, Kestutis Patieju-
nas, JR Tipton, Ethan Katz-Bassett, and Wyatt Lloyd. 2021. Facebook’s Tec-
tonic Filesystem: Efficiency from Exascale. In 19th USENIX Conference on File
and Storage Technologies (FAST 21). USENIX Association, 217–231. https:
//www.usenix.org/conference/fast21/presentation/pan

[72] Daniel S. Park,WilliamChan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D.
Cubuk, and Quoc V. Le. 2019. SpecAugment: A Simple Data Augmentation
Method for Automatic Speech Recognition. In Proc. Interspeech 2019. 2613–2617.
https://doi.org/10.21437/Interspeech.2019-2680

[73] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. Curran Associates Inc., Red Hook, NY, USA.

[74] PyTorch. 2024. DataLoader2. https://github.com/pytorch/data/blob/
a5b4720dece60565788ac4c9a85e01719188b28e/torchdata/dataloader2/
README.md. Accessed 2024-10-21.

[75] PyTorch. 2024. Future of torchdata and dataloading. https://github.com/pytorch/
data/issues/1196. Accessed 2024-10-21.

[76] PyTorch. 2024. TorchData. https://pytorch.org/data/beta/index.html. Accessed
2024-10-21.

[77] PyTorch. 2024. Torchtext. https://torchtext.readthedocs.io/en/latest/. Accessed
2024-10-21.

[78] PyTorch. 2024. torch.utils.data. https://pytorch.org/docs/stable/data.html. Ac-
cessed 2024-10-21.

[79] PyTorch. 2024. Torchvision. https://pytorch.org/vision/stable/index.html. Ac-
cessed 2024-10-21.

[80] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[81] Ray. 2024. Ray Data: Scalable Datasets for ML. https://docs.ray.io/en/latest/data/
data.html. Accessed 2024-10-21.

[82] Dave Salvator. 2022. NVIDIA Hopper, Ampere GPUs Sweep Benchmarks in
AI Training. https://blogs.nvidia.com/blog/2022/11/09/mlperf-ai-training-hpc-
hopper/. Accessed 2024-10-21.

[83] Geet Sethi, Bilge Acun, Niket Agarwal, Christos Kozyrakis, Caroline Trippel, and
Carole-JeanWu. 2022. RecShard: Statistical Feature-Based Memory Optimization
for Industry-Scale Neural Recommendation. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). Association for
Computing Machinery, New York, NY, USA, 344–358. https://doi.org/10.1145/
3503222.3507777

[84] TensorFlow. 2023. tf.data.experimental.service. https://www.tensorflow.org/
versions/r2.14/api_docs/python/tf/data/experimental/service#limitations. Ac-
cessed 2024-10-21.

[85] TensorFlow. 2024. TensorFlowGraphOptimization. https://www.tensorflow.org/
guide/graph_optimization. Accessed 2024-10-21.

[86] TensorFlow. 2024. TensorFlow Text. https://www.tensorflow.org/text. Accessed
2024-10-21.

[87] Taegeon Um, Byungsoo Oh, Byeongchan Seo, Minhyeok Kweun, Goeun Kim,
and Woo-Yeon Lee. 2023. FastFlow: Accelerating Deep Learning Model Training
with Smart Offloading of Input Data Pipeline. Proc. VLDB Endow. 16, 5 (jan 2023),

1086–1099. https://doi.org/10.14778/3579075.3579083
[88] Erlin Yao, Yungang Bao, Guangming Tan, and Mingyu Chen. 2009. Extending

Amdahl’s law in the multicore era. SIGMETRICS Perform. Eval. Rev. 37, 2 (oct
2009), 24–26. https://doi.org/10.1145/1639562.1639571

[89] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. 2008. DryadLINQ: A System for General-
Purpose Distributed Data-Parallel Computing Using a High-Level Language.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (San Diego, California) (OSDI’08). USENIX Association, USA,
1–14.

[90] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Clus-
ter Computing. In 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12). USENIX Association, San Jose, CA, 15–28. https:
//www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

[91] Seyed Majid Zahedi, Qiuyun Llull, and Benjamin C. Lee. 2018. Amdahl’s Law
in the Datacenter Era: A Market for Fair Processor Allocation. In 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
1–14. https://doi.org/10.1109/HPCA.2018.00011

[92] Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Mingxia Li, Fan Yang,
Qianxi Zhang, Binyang Li, Yuqing Yang, Lili Qiu, Lintao Zhang, and Lidong Zhou.
2023. SiloD: A Co-Design of Caching and Scheduling for Deep Learning Clusters.
In Proceedings of the Eighteenth European Conference on Computer Systems (Rome,
Italy) (EuroSys ’23). Association for Computing Machinery, New York, NY, USA,
883–898. https://doi.org/10.1145/3552326.3567499

[93] Hanyu Zhao, Zhi Yang, Yu Cheng, Chao Tian, Shiru Ren, Wencong Xiao, Man
Yuan, Langshi Chen, Kaibo Liu, Yang Zhang, Yong Li, and Wei Lin. 2023. Gold-
Miner: Elastic Scaling of Training Data Pre-Processing Pipelines for Deep
Learning. Proc. ACM Manag. Data 1, 2, Article 193 (jun 2023), 25 pages.
https://doi.org/10.1145/3589773

[94] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan, Mustafa
Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, Sundaram
Narayanan, Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-Jean Wu,
Christos Kozyrakis, and Parik Pol. 2022. Understanding Data Storage and Inges-
tion for Large-Scale Deep Recommendation Model Training: Industrial Product.
In Proceedings of the 49th Annual International Symposium on Computer Architec-
ture (New York, New York) (ISCA ’22). Association for Computing Machinery,
New York, NY, USA, 1042–1057. https://doi.org/10.1145/3470496.3533044

[95] Mark Zhao, Dhruv Choudhary, Devashish Tyagi, Ajay Somani, Max Kaplan, Sung-
Han Lin, Sarunya Pumma, Jongsoo Park, Aarti Basant, Niket Agarwal, Carole-
Jean Wu, and Christos Kozyrakis. 2023. RecD: Deduplication for End-to-End
Deep Learning Recommendation Model Training Infrastructure. In Proceedings
of Machine Learning and Systems, D. Song, M. Carbin, and T. Chen (Eds.), Vol. 5.
Curan, 754–767. https://proceedings.mlsys.org/paper_files/paper/2023/file/
f9b15fec25182f2d70af68a39546d60e-Paper-mlsys2023.pdf

[96] Mark Zhao, Satadru Pan, Niket Agarwal, Zhaoduo Wen, David Xu, Anand
Natarajan, Pavan Kumar, Shiva Shankar P, Ritesh Tijoriwala, Karan Asher,
Hao Wu, Aarti Basant, Daniel Ford, Delia David, Nezih Yigitbasi, Pratap Singh,
Carole-Jean Wu, and Christos Kozyrakis. 2023. Tectonic-Shift: A Composite
Storage Fabric for Large-Scale ML Training. In 2023 USENIX Annual Techni-
cal Conference (USENIX ATC 23). USENIX Association, Boston, MA, 433–449.
https://www.usenix.org/conference/atc23/presentation/zhao

502

https://www.usenix.org/conference/fast21/presentation/pan
https://www.usenix.org/conference/fast21/presentation/pan
https://doi.org/10.21437/Interspeech.2019-2680
https://github.com/pytorch/data/blob/a5b4720dece60565788ac4c9a85e01719188b28e/torchdata/dataloader2/README.md
https://github.com/pytorch/data/blob/a5b4720dece60565788ac4c9a85e01719188b28e/torchdata/dataloader2/README.md
https://github.com/pytorch/data/blob/a5b4720dece60565788ac4c9a85e01719188b28e/torchdata/dataloader2/README.md
https://github.com/pytorch/data/issues/1196
https://github.com/pytorch/data/issues/1196
https://pytorch.org/data/beta/index.html
https://torchtext.readthedocs.io/en/latest/
https://pytorch.org/docs/stable/data.html
https://pytorch.org/vision/stable/index.html
https://docs.ray.io/en/latest/data/data.html
https://docs.ray.io/en/latest/data/data.html
https://blogs.nvidia.com/blog/2022/11/09/mlperf-ai-training-hpc-hopper/
https://blogs.nvidia.com/blog/2022/11/09/mlperf-ai-training-hpc-hopper/
https://doi.org/10.1145/3503222.3507777
https://doi.org/10.1145/3503222.3507777
https://www.tensorflow.org/versions/r2.14/api_docs/python/tf/data/experimental/service#limitations
https://www.tensorflow.org/versions/r2.14/api_docs/python/tf/data/experimental/service#limitations
https://www.tensorflow.org/guide/graph_optimization
https://www.tensorflow.org/guide/graph_optimization
https://www.tensorflow.org/text
https://doi.org/10.14778/3579075.3579083
https://doi.org/10.1145/1639562.1639571
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://doi.org/10.1109/HPCA.2018.00011
https://doi.org/10.1145/3552326.3567499
https://doi.org/10.1145/3589773
https://doi.org/10.1145/3470496.3533044
https://proceedings.mlsys.org/paper_files/paper/2023/file/f9b15fec25182f2d70af68a39546d60e-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/f9b15fec25182f2d70af68a39546d60e-Paper-mlsys2023.pdf
https://www.usenix.org/conference/atc23/presentation/zhao

	Abstract
	1 Introduction
	2 ML Data Ingestion Background
	3 Optimizing Input Data Pipelines
	3.1 Requirements
	3.2 The Complex Optimization Space
	3.3 Our Approach

	4 cedar Framework
	4.1 Feature API
	4.2 Optimization and Execution Interfaces

	5 Optimization and Dynamic Scaling
	5.1 Static Optimization
	5.2 Dynamic Scaling

	6 Evaluation
	6.1 cedar Optimizer
	6.2 Dynamic Scaling and Caching
	6.3 In-depth Analysis

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

