
Goku: A Schemaless Time Series Database for Large Scale
Monitoring at Pinterest

Monil Mukesh Sanghavi
Pinterest Inc.

msanghavi@pinterest.com

Ming-May Hu
Pinterest Inc.

mingmayhu@pinterest.com

Zhenxiao Luo
Pinterest Inc.

zluo@pinterest.com

Xiao Li
Pinterest Inc.

xiaoli@pinterest.com

Kapil Bajaj
Pinterest Inc.

kapil@pinterest.com

ABSTRACT
Engineers rely heavily on observability tools to monitor their busi-
ness and system metrics and set up alerting on it. A reliable and
efficient monitoring system is very important for development ve-
locity. In this paper, we introduce Goku, a time series database
(TSDB) we built from the ground up at Pinterest. Over the years,
we have studied user patterns and common requests to constantly
evolve Goku to store and serve the use cases at Pinterest with high
efficiency and reduced costs. At its core, Goku uses tiered storage
to store new and frequently queried metrics data in memory while
leveraging solid state drive (SSD) and hard disks (HDD) for older
data. Goku aggregates metrics data at write time while also rolling
up datapoints with lower time granularity to low latency to certain
use cases. Goku also supports modifying configurations on metrics
data like time to live (TTL), rollup granularity, backfilling capability,
etc. Using multiple replicas and AWS S3 as backup, Goku is highly
available and fault tolerant.

PVLDB Reference Format:
Monil Mukesh Sanghavi, Ming-May Hu, Zhenxiao Luo, Xiao Li, and Kapil
Bajaj. Goku: A Schemaless Time Series Database for Large Scale
Monitoring at Pinterest. PVLDB, 18(2): 503 - 515, 2024.
doi:10.14778/3705829.3705862

1 INTRODUCTION
Pinterest, an industry leader in visual discovery, faces extensive
system monitoring requirements due to its global user base and
diverse services, such as Pins, Boards, and Recommendations. Var-
ious teams are tasked with running these services, the back-end
infrastructure to support these services and ensure their seam-
less performance. They need to monitor a growing collection of
heterogeneous entities, including servers, virtual machines, and
containers, spread across multiple availability zones. Metrics from
these entities must be collected, stored in time series, and queried to
support key use cases like identifying and notifying when services
are under performing, displaying graphs that show the state and
health of the services, diagnosing problems and exploring perfor-
mance and resource usage etc.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 2 ISSN 2150-8097.
doi:10.14778/3705829.3705862

Initially, Pinterest used OpenTSDB [7] and HBase [1] for its time
series data management. OpenTSDB offers an open-source, scalable
time series database built on top of HBase, a distributed and scalable
NoSQL database based on SSD/HDD storage. During its time of
operation, the usage of OpenTSDB and HBase scaled considerably
due to rapid growth in monitoring traffic. However, this expansion
revealed several critical limitations, explained in subsection 7.1,
with some of them being:

• High Operation Costs: The infrastructure was cost intensive.
• Performance Issues: Slow query response times were experi-

enced due to serving from secondary storage and single machine
aggregation, which led to to poor monitoring experiences and
delayed alerts.

• Significant Maintenance Effort: Frequent manual interven-
tion was required for maintaining the HBase clusters costing
substantial engineering hours.

These challenges highlighted the need for a more efficient and
scalable solution, leading to the development of Goku. In this pa-
per, we present the architecture of Goku, which fulfills the fol-
lowing requirements. Initial requirements at time of development
(2018/2019):

(1) OpenTSDB feature parity to seamlessly integrate into the ex-
isting observability stack. It should allow for easy addition of
tags and continue to maintain a schemaless architecture.

(2) In-memory storage required for storing the last 24 hours of
data to ensure rapid query responses and timely alerts.

(3) Secondary storage must be supported with data retention for
up to 1 year, replacing OpenTSDB and HBase. This includes
storing raw metrics data for 24 days and rolled-up data for the
remaining period.

(4) The system should support a high ingestion rate of millions of
datapoints per second and accommodate storing 2-3 billion time
series per day in the in-memory database, with an estimated
growth of 100% per year.

(5) Low query latency: Achieve p99 latency of 5 seconds for queries
on in-memory time series data and 10 seconds for queries on
data stored in secondary storage.

(6) Architecture should support high availability with multiple
replicas each in different availability zones.

(7) Cost efficiency with scalability: Design for cost efficiency while
maintaining scalability to handle growing data volumes. Over
this paper, we will highlight the features or decisions which
led to achieving lower costs.

503

https://doi.org/10.14778/3705829.3705862
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3705829.3705862

(8) Fault tolerance with no data loss: Incorporate fault tolerance
mechanisms, with routing capabilities to redirect to healthy
clusters if a host fails. No data loss is expected once data is
ingested in in-memory storage.

Additional requirements over time:

(1) Flexible metric configurations: Support multiple metric con-
figurations, such as TTL and data granularity, with seamless
transition of metrics between configurations.

(2) Support for expensive queries: Enable support for complex
queries through pre-aggregation and pagination techniques.

This paper presents several novel contributions that enhance the
functionality and efficiency of Goku:

• Ingestion Using Apache Kafka [21] With Batching: Goku’s
data ingestion mechanism is tightly integrated with Apache
Kafka along with asynchronous logging. This approach ensures
high write throughput, fault tolerance, and active health moni-
toring at shard level, which in turn aids in intelligent routing.

• Cost Efficient Indexing: Through efficient string handling tech-
niques, Goku achieves cost-effective storage of indexes, reducing
overall storage costs and enhancing query performance.

• Namespace: Goku supports multi-tenancy through the con-
cept of namespaces. This feature allows multiple metric con-
figurations such as TTL, rollup granularity, raw data retention,
sharding strategy, backup locations, and ingestion topics. It also
facilitates seamless movement of metrics between configurations,
offering flexibility and operational efficiency.

• RocksDB [16] Based Secondary Storage: The secondary stor-
age layer leverages RocksDB for serving of metrics data older
than a day.

In section 2 and section 3, we start by discussing the data and query
models of Goku respectively. This is followed by the system ar-
chitecture in section 4. Here, we dig deeper into how Goku stores
the data and achieves fault tolerance with high availability. Fol-
lowing this, in section 5, we shed light on the features we have
implemented in Goku that help users at Pinterest immensely. In
section 6, we share our learnings and cover some important changes
we made in the architecture to reduce cost and improve availability
of Goku. In subsection 7.1, we discuss in-production evaluation of
Goku against OpenTSDB and in subsection 7.2, we share the results
of evaluating Goku against other TSDBs. In section 8 , we theoreti-
cally compare Goku with other TSDBs and in section 9, we share
insights about our production data. In section 10, we summarize a
few future projects.

2 DATA MODEL
A time series in Goku is a key-value pair, where the key comprises
a metric name and multiple tag value pairs. Tags provide additional
context about the time series. For example, in Table 1, the time
series tracking CPU usage of a host named “abc” in cluster “kv”,
availability zone “east-1a” and running “ubun-1” os would have
the metric name “cpu” and tags as "host", "os", "az" and "cluster".
Goku is schemaless as the tags can be added anytime with no
schema definitions needed beforehand. Additionally, the tags are
not necessary for queries to execute as explained in section 3.

Figure 1: High level architecture overview of Goku

Table 1: Five unique time series based on metric names and
tag=value combinations. Id for reference only

Id Metric Tag 1 Tag 2 Tag 3 Tag n
1 cpu host=abc cluster=kv az=east-1a os=ubun-1
2 cpu host=pqr cluster=ml az=east-1a os=ubun-1
3 cpu host=xyz cluster=ml az=east-1a os=ubun-1
4 mem host=abc cluster=kv az=east-1a os=ubun-1
5 mem host=xyz cluster=ml az=east-1a os=ubun-1

Table 2: Example datapoints for time series id 1 in table 1
consisting of timestamp in Unix time and value in double
precision

datapoint 1 datapoint 2 datapoint 3 datapoint 4
Time 1704153600 1704153660 1704153720 1704153780
Value 3.0 4.2 5.2 4.0

In Goku, the value of a time series, referred to as datapoints, is a
list of timestamp-value pairs as shown in Table 2. These timestamps
are in Unix time, and the values follow 8 byte double precision
format. To optimize retrieval and cost, datapoints are divided into
separate buckets rather than stored as a continuous list. This is
explained in more detail in subsection 4.4.

Multiple hosts can emit time series data for the same metric
name, such as CPU, memory, and disk usage, with each host-specific
detail included in the tags. Each time series is uniquely identified
by its metric name and tag value pairs. The cardinality [6] of a
metric is the total number of unique time series for that metric. For
example, in Table 1, the cardinality of “cpu” is 3, and “mem” is 2.
High cardinality can negatively impact query performance.

3 QUERY MODEL
Goku uses Apache Thrift [24] for query RPC and responses. For
seamless migration from OpenTSDB, Goku supports all features

504

that OpenTSDB querying [9] offers. To retrieve a time series, the
user needs to specify the following fields:

Metric Name And Tags: A combination of the metric name
and/or tag value pairs.

Time Range: Start and end times of the query. For example,
as shown in Table 1 and Table 2, a query for the metric “cpu” for
"host=abc" from Unix time 1704153600 to 1704153720 will return
the datapoints [3.0, 4.2, 5.2].
The user can also specify additional fields to discover aggregated or
downsampled views of their metrics. They can also specify filters
in their tag values to narrow down candidate time series.

Aggregation: Aggregation combines multiple time series into a
summarized form. Supported aggregations include sum, max, min,
p99, p50 (median), mean, and count.

Downsampling: Downsampling reduces data granularity by
aggregating datapoints over larger intervals. It needs an interval
and an aggregating function.

Rate Option: The rate option calculates the rate of change of
a metric over time. If enabled, the query returns differences in
successive datapoints instead of raw values, which helps identify
trends and anomalies.

Filters: Users can apply filters [10] to tag values such as: wild-
card, regular expressions [22], explicit (tag1=value1), and operator
(tag1=value1 and tag2=value2), or operator (tag1=value1 or value2),
and exclusion operator (tag1 = !value1).

4 SYSTEM ARCHITECTURE
4.1 System Overview
Figure 1 shows the overall architecture of Goku. Goku is not a single
cluster, but a collection of independent components including:

Goku Short Term (GokuS): a set of storage nodes which hold
the last 24 hours of data in-memory for fast retrieval.

Goku Long Term (GokuL): a set of storage nodes which use
persistent storage (SSD or HDD) for data older than 24 hours.

Goku Ingestor: consumes data from the applications and pre-
pares it for GokuS.

Goku Compactor And Shuffler: prepares data for GokuL as
per GokuL storage format.

Goku Root: a set of compute nodes that serve as a query end-
point for observability clients. It routes the queries to GokuS and/or
GokuL storage nodes.

For high availability, we maintain 3 replicas of GokuS and GokuL
in different availability zones. We maintain hosts in different avail-
ability zones for root, ingestor, compactor and shuffler.

Each of these nodes operates within its own cluster, ensuring
physical separation of functionalities. This separation is crucial for
several reasons:
• Avoiding Noisy Neighbor Issues: GokuS is a critical compo-

nent as it serves the most recent time series data required for
alerting. Issues in other components, like the shuffler/compactor
or GokuL, which manage long-term metrics and have less strin-
gent SLAs, should not affect the performance of GokuS.

• Optimized Hardware Selection: Physical isolation allows us
to study the operational patterns of each node type and select
the most suitable hardware for their specific needs: GokuL re-
quires storage-optimized machines due to its heavy reliance on

secondary storage. GokuS benefits from memory-optimized ma-
chines to efficiently handle in-memory data. Goku Root is best
served by compute-optimized machines as it primarily functions
as a routing layer and performs top-level aggregation as and
when needed.

• Deployment And Restarts: Isolation facilitates smoother de-
ployments and handling of cluster restarts. For example, deploy-
ing a non-trivial change in the Compactor or Goku Root, both
of which are stateless services, should not trigger the recovery
routine of GokuS. This is especially important because restarting
GokuS involves recreating the in-memory footprint of the met-
rics data, which is an expensive and time-consuming operation.

By maintaining separate clusters for each of these node systems,
Goku can optimize performance, reduce operational costs, and
enhance the overall stability and efficiency of the platform.

4.2 Sharding Scheme
Sharding horizontally partitions data across multiple storage nodes
to address performance and scalability challenges when handling
large volumes of time series data. Goku employs a two-layer shard-
ing strategy:
• Shard-Group Assignment: First, the metric name of a time

series is hashed to determine the shard-group.
• ShardAssignment:Next, the full time series name (metric name
+ tag key-value pairs) is hashed to determine the specific shard
within the shard-group.

For instance in Table 1, multiple time series with the same metric
name (example: metric = “cpu”) will be assigned to the same shard-
group but may reside in different shards within that group. The
advantages of two-layer sharding strategy:
• Mitigating Noisy Neighbor Issues: The sharding strategy

helps isolate the impact of spammy metrics which create ab-
normally high time series and/or datapoints enough to spike the
Goku resource usage and cause undefined behavior. If a spammy
metric is introduced in the write path, it will be confined to
within its shard-group. The other shard groups won’t be affected
and hence observability for only a select subset of metrics will
be impacted.

• ReducedCross-AZFailovers:The sharding scheme reduces the
amount of cross-AZ failovers, which are typically discouraged
due to their high latency and infrastructure costs. Without the
two-layer sharding, a single shard could receive queries for all
metrics, increasing the likelihood of cross-AZ failovers if a host
fails. With Goku’s strategy, queries are more effectively confined
within appropriate shard-groups and AZs, reducing the need for
cross-AZ traffic and its associated latency and cost.

4.3 Cluster and Shard Management
Goku uses Apache Helix [17] for cluster and shard management
and monitoring as shown in Figure 1. In Apache Helix, there are
three roles:
• Participant: The nodes (Goku nodes) that actually host the

distributed resources.
• Spectator: The service that simply observes the current state of

each participant and takes necessary actions which, in our case,

505

is to create a cluster shard map. The cluster shard map is a map
of the storage nodes to the shards they own.

• Controller: The node (running as a standalone cluster) that
observes and controls the participant nodes. It is responsible for
coordinating all transitions in the cluster and ensuring that state
constraints are satisfied while maintaining cluster stability.

Apache Zookeeper [18] records the view of the cluster, which in-
cludes the health of the participant nodes and the state view.

Helix continuously monitors the health of the clusters it manages
which are GokuS, GokuL and Goku shuffler and compactor. It polls
for the health of the nodes at regular intervals and if there is no
response, it moves the shards to the healthy nodes and updates the
shard map accordingly.

4.4 Data Storage
Goku uses Gorilla compression technique [26] for compressing both
its short-term in-memory data and long-term secondary storage
data. Gorilla compression uses the delta of delta encoding scheme
for timestamps and xor compression for values, which is strongly
suited for time series data. Some examples in the industry that
use Gorilla compression are InfluxDB [19], Prometheus [4], Uber’s
M3DB [3], and Apache IOTDB [37]. We had to make crucial deci-
sions regarding the amount of data to pack into a single Gorilla-
compressed stream. Given that we were designing for tiered storage
from the start, determining an effective chunking or bucketing strat-
egy was essential for our system’s efficiency. After analyzing user
query data, the observability team at Pinterest provided valuable
insights. They found that users typically query shorter periods
for recent data, such as the last 1 hour, last 6 hours, or last 1 day.
Conversely, they tend to query longer periods for older data, such
as the last 12 weeks, last 6 months, or last 1 year. Notably, 97%
of the queries were for data in the last 24 hours. Based on these
insights, we decided to adjust the bucket size of Gorilla-compressed
metrics data as it ages, to achieve better compression. For older
data, we increase the bucket size to maximize compression benefits.
For recent data, we use smaller buckets. This approach benefits us
by allowing fetching and decoding operations to be parallelized,
enhancing performance and responsiveness for recent queries. The
bucket sizes are stated in Table 3.

4.5 Tiering Strategy
We observed that most queries for metrics data are for the last 24
hours and decided to use a tiered storage format. We define tiers
as partitions of the whole dataset, which allow configuring bucket
sizes, rollup strategy, etc. Rollup (explained in subsection 5.2) is a
downsampled time series with defined aggregations to reduce the
number of datapoints stored. The aggregationswe support for rolled
up data are sum, max, min, average and count. It is beneficial as it
makes queries faster as compute costs to fetch data and aggregate
them is reduced due to fewer datapoints. Rollup is done only on
the older data (> 24 hours) and at write time specifically in the
Goku compactor. To summarize, we store the most recent 24 hours
of data in-memory (GokuS) which is tier 0 for us, the last recent
80 days of data that is tier 1 to 4 in nodes with SSD storage, and
80 days to 384 days of data that is tier 5 in HDD based storage
nodes. Table 3 explains the tiering strategy. Note that we store raw

Table 3: Tiering Strategy in Goku.

Tier TTL Bucket size Raw Rollup Cluster

0 24 hours 2 hours y N/A GokuS
1 30 hours 6 hours y 15 mins GokuL SSD
2 5 days 1 day y 15 mins GokuL SSD
3 24 days 4 days y 15 mins GokuL SSD
4 80 days 16 days n 15 mins GokuL SSD
5 384 days 64 days n 60 mins GokuL HDD

datapoints (original granularity) only for the last 24 days. Tiering
time series data is a well known strategy for saving costs. In 2020,
we migrated tier 5 data from GokuL SSD to GokuL HDD because
of low QPS observed by monitoring the user query pattern thereby
cutting costs.

4.6 Write Path
Figure 1 shows the write path in Goku. Every application node in
Pinterest has a sidecar running called metrics agent, which pushes
the system metrics and application metrics to predefined Kafka
topics (metrics Kafka). From here, the Goku ingestor consumes the
metrics data and prepares it for GokuS. The Goku ingestor produces
the datapoints to another Kafka topic (Goku Kafka). The GokuS
storage nodes consume the data from Goku Kafka and back up the
data in AWS S3 [12]. From S3, the Goku shuffler and compactor
prepare the metrics data for consumption by GokuL storage nodes.
We have intentionally separated functionalities into different clus-
ters for independent operation. An approach could be to have the
ingestor push datapoints directly into Goku’s in-memory storage
(GokuS) based on the shard map. However, this method introduces
additional complexities:
• Replica Management: The ingestor would need to push writes

to all replicas and maintain the state of the latest consumed
writes across all replicas. It would also need local storage to
buffer writes that are in transition or have failed, complicating
the ingestion process. Ingestor would need a separate mechanism
to delete locally saved data that is past the backfilling period.

• State Management: The ingestor would have to handle data-
point routing during restarts or during shard movements, adding
further complexity.

• Functionality Overlap: Kafka inherently provides functionali-
ties such as consumer offsets and TTL management of the topic,
which simplifies ingestion. Relying on Kafka as a persistent data
buffer between the ingestor and Goku’s storage minimizes the
need to duplicate these capabilities within the ingestor itself,
leading to a more streamlined and robust system.
Another approach could have been to have GokuS Kafka con-

sume directly from Metrics Kafka topic. However, this approach
would require GokuS nodes to route the writes to right shards as
the sharding scheme is not visible to the metrics agent. Even if it
were, GokuS would consume one message at a time which would
contain just 1 datapoint, write it and then move on to the next
message. Batching multiple datapoints in a single message is highly
advantageous as explained in subsubsection 4.6.1. By using Kafka
as an intermediary persistent buffer, Goku efficiently manages data

506

Table 4: Batching ingestion experiment with 145,440,000 dat-
apoints shows throughput improvements of almost 60x by
batching multiple datapoints in single Kafka message

datapoint Batch size 1 10000

Load time (seconds) 3,846 70
Write throughput (DPs/second) 37,816 2,852,652

ingestion while leveraging Kafka’s robust features for handling
consumer offsets, data persistence, and fault tolerance.

4.6.1 Goku Ingestor. The Goku ingestor is responsible for effi-
ciently processing and routing incoming datapoints. Here, we ex-
plain our first novel contribution which is utilizing Kafka and data-
point batching for achieving high write throughput. The ingestion
process as shown in Figure 2 is detailed below:
• Data Consumption: The ingestor via reader thread pool con-

sumes datapoints from the metrics kafka topic (adhering to the
OpenTSDB telnet put format [8]) and stores them in a shared in
memory queue buffer.

• Sharding Assignment: An internal thread pool-based worker
picks datapoints from the shared queue, processes each to de-
termine the target shard ID as per the sharding strategy. Each
datapoint is then appended to a queue within an in-memory
map, keyed by the target shard ID/ Kafka topic partition ID. The
worker also ensures the integrity of each datapoint by checking
the length of time series names, timestamps, and values.

• Batching Mechanism: A scheduled writer thread runs every
few milliseconds, empties the queue of a partition assigned to
it, divides it into smaller lists of a pre-configured batch size, and
writes each batch of datapoints as a single Kafka message as
shown in Figure 3, producing it to the appropriate partition ID.
This batching strategy significantly enhances write throughput.
Advantages Of Goku’s Batching Strategy: Other TSDBs like

QuestDB [30] and TimescaleDB [35] typically batch writes for the
same measurement table, but they do not support batching data-
points from multiple tables targeting the same host. Goku’s shard-
based batching addresses this gap, routing and batching datapoints
efficiently, which is crucial for maintaining high write throughput
from Goku ingestor. The high write throughput provided by GokuS
is explained in subsubsection 4.6.2.

Experiment And Optimization:We conducted an experiment
to test the ingestor throughput with different batch sizes. One test
run was conducted with batch size 1, sending each datapoint as
a single Kafka message, relying solely on Kafka’s native batch-
ing [14] (configured with linger.ms and producer.buffer.batch.size).
The second run had ingestor’s default configured batch size 10,000.
The 145,440,000 datapoints used in both runs were generated from
TSBS [36] with the seed=123 and scale=1000. As seen in Table 4,
we observed a fall in throughput with batch size=1 test run. This is
because of the increased number of non-payload bytes sent, due
to the larger volume of individual Kafka messages, elevating the
compression cost in the Kafka producer batching. Given the high
volume of datapoints being ingested per minute, batching at the ap-
plication level in ingestor proves more efficient. This local batching,

as shown in Figure 3, reduces the number of messages Kafka has to
handle, with Kafka’s batching serving as an additional optimization
to minimize network payload.

Fault Tolerance: Goku ingestor is stateless and registers itself
as part of a Kafka consumer pool when it starts up. If Kafka de-
tects that a consumer is not healthy or not consuming, then it will
perform rebalancing and move the partition to a new consumer.
For fault tolerance, Goku ingestor also commits the Kafka offset to
the metrics Kafka brokers for the consumer once the data has been
produced to Goku Kafka. This way the messages can be redelivered
to the new node which resumes data consumption after a partition
rebalance completes.

4.6.2 Goku Short Term Storage (GokuS). A GokuS node can host
multiple shards. A GokuS node hosting a particular shard id, con-
sumes metric datapoints from the corresponding Kafka partition,
identified by the same shard id, that the ingestor produced to. The
GokuS nodes store and serve the last 24 hours of data and support
backfilling capability of up to 2 hours. Backfilling refers to the pro-
cess of filling in the missing or the historical datapoints in a time
series dataset.

Automatic Indexing: Every time series in a shard is identified
by its full name, consisting of components like metric name and
tag set. As shown in Figure 4, every shard maintains a forward
index which is a map with the full name as the key and the value
is an index in a vector of time series objects. The empty positions
in the vector are maintained in a free list. When encountering a
new time series, GokuS pick an available index from a free list
and adds it to the forward index. To facilitate query candidate
selection, GokuS employs an inverted index (postings list). In this
index, each component in the full metric name is mapped to a
list of time series vector indices that contain that term. This list
is stored using a Roaring Bitmap [23], enabling efficient filtering
via union and intersection operations. For example, the 2 time
series provisioned at index 0 and 2 are present in the forward index,
and the inverted index consists of metric name components of
their names. Together, these indexes help speed up the queries by
identifying the candidate time series quickly. We have made the
indexes along with storing the full metric name in the time series
memory efficient by employing deduplication techniques. This is a
novel contribution of Goku and is explained in detail in section 6.

Active Data Bucket: As shown in Figure 4, each shard owns
multiple time series. Each time series stores the most recent 4 hours
of data in 2 active data buckets (buckets explained in subsection 4.4)
with granularity of 2 hours each. The active data buckets support
backfilling and hence datapoints are stored out of order. The last
data arriving datapoint trumps the earlier ones with the same times-
tamp if any. Each active bucket contains a time series stream which
is basically a string storing Gorilla encoded datapoints. Data from
an active bucket becomes immutable after 4 hours. This process is
called finalization.

Logging: Every datapoint written to an active bucket time stream
is asynchronously logged/appended to a log file on a disk. A new
log file is created whenever a current timestamp is a multiple of
20 minutes and is named by the same time stamp. Each datapoint,
along with its associated Kafka message offset, is placed into a
Multi-Producer, Multi-Consumer (MPMC) queue. From this queue,

507

Figure 2: Goku Ingestor architecture showing flow of datapoints from metrics Kafka to Goku Kafka

Figure 3: A single Kafka batch consisting of multiple Kafka
messages each containing multiple datapoints

Figure 4: GokuS shard architecture containing forward index,
inverted index, time series vector, active buckets andfinalized
buckets

a thread pool worker retrieves the datapoint and stores it in a buffer.
When the buffer reaches a pre-configured size, the datapoints and
associated Kafka offset are batched and appended to the current log
file on disk in a specific format. Every 10 minutes, a thread uploads
the modified log files to S3. The thread also uploads any local log
files which are missing in S3 which helps provide fault tolerance.
Because the Kafka offset is logged along with the datapoints in the
log file, the recovery routine will always seek the consumer to the
latest Kafka offset recovered from the log file. If there is a hardware
failure on a host between when a log file is modified and the modifi-
cation is uploaded to S3, the host which gets new ownership of the
shard will simply seek from the Kafka offset which was recorded
in the log file downloaded from S3.

Finalized Data Bucket: Every 2 hours, a thread creates a fi-
nalized data bucket from the metrics data collected between 4 to
2 hours prior. This data is also backed up in S3. After finalization,
the data in the finalized bucket becomes immutable, and the file
is named by the Unix timestamp from 4 hours ago. Thus, a final-
ized file named with a specific Unix time contains datapoints from
that time to +2 hours. Only the most recent datapoint for a given
timestamp is retained, discarding any previous ones. Finalized data
buckets store metrics data for all time series together in a list of
contiguous same-sized pages. As shown in Figure 4, every time
series has a page index and page offset specifying its data location
within the finalized bucket. After finalizing a bucket, the finaliza-
tion thread uploads the file to S3, deletes the corresponding local
log files, and then deletes these log files from S3. The thread also
verifies that the configured number of finalized buckets is present
locally and on S3. If not, it triggers a finalization routine for the
missing bucket, ensuring fault tolerance in case of process restarts
or crashes during the finalization routine.

Recovery: In the event of a recovery, GokuS employs a com-
prehensive routine to restore its in-memory state. If the required
data is not available locally, the shard recovery routine downloads
finalized bucket files and log files from S3. The data from finalized
bucket files are read into in-memory buffers. Each time series is
then updated with the relevant page index and page offset within
these buffers. Following the loading of finalized data, the log files
are replayed to ensure all recent updates are applied. Finally, the
recovery routine starts consuming from the Kafka partition by seek-
ing to the latest offset it gets from the log files, ensuring continuity
in data ingestion and processing. By using this method, GokuS ef-
fectively reconstructs its state. Both the log files and finalized data
bucket files are stored in local storage along with backing up to S3
for the sole purpose that recovery may be faster in cases of process
restarts as files can be read from local storage and no download
from S3 is needed. However, the recovery routine will always verify
that if the file is present locally, then file size is same or larger than
file size on S3. In cases when the expected file is not present locally
or the local file size is smaller than the same on S3, it will download
the file from S3 before replaying.

4.6.3 Goku Shuffler and Compactor. Based on the shards it owns,
the Goku Shuffler reads finalized bucket files stored in S3 by GokuS
and reshards the data according to the GokuL sharding strategy. It

508

then stores the resharded data back in S3. After shuffling, it adds
a marker in S3 to indicate that a particular shard’s bucket file has
been successfully shuffled. Each time the shuffling routine runs, the
shuffler checks for these markers. If any markers are missing, it
schedules the shuffle utility for the unshuffled buckets. This mech-
anism ensures fault tolerance in case a shuffler host crashes and
shards need to be managed by another shuffler.
Similarly, based on shard ownership, the Goku Compactor pre-
pares data in the GokuL storage format, using RocksDB SST (static
sorted table) [5] files. For each bucket, the compactor reads mul-
tiple smaller buckets from the previous tier, merges the data, cre-
ates indices, and generates the SST files using RocksDB’s SST file
writer [31] utility. Like the shuffler, it creates a marker in S3 to in-
dicate the completion of compaction for a particular shard and tier.
The compaction routine checks for these markers and schedules
compactions if they are missing. For tier 0 to tier 1 compaction, the
routine also ensures shuffling markers are present before sched-
uling. For example, based on Table 3, a tier 1 bucket of 6 hour
granularity is prepared from 3 tier 0 buckets of 2 hour granularity
or a tier 5 bucket for 64 days is created by merging data from 4 tier
4 buckets of 16 days each. These SST files are uploaded to S3. The
keys we insert per bucket into RocksDB are:

Index Key [string] -> [id]: This dictionary key, which maps a
string like metric name or tag key or tag value string to a unique
numerical id assigned to that string in this bucket. For example,
assuming the time series in Table 1, a possible dictionary would be
{ cpu : 1, mem : 2, host : 3, abc : 4, pqr : 5, xyz : 6, cluster : 7, kv : 8,
ml : 9, az : 10, east-1a : 11, os : 12, ubun-1 : 13}

Index Key [id] -> [string]: This reverse dictionary key stores
the reverse of the dictionary map.

Posting List Key [metric name id][tag key id][tag value
id] -> [encoded time series ids]: This inverted index key gives a
list of time series ids within this bucket, which contains the metric
name and the tag key-value. During compaction, while creating
a new bucket, every time series in the new bucket is assigned a
unique numerical id to help create the data key.

Special Posting List Key [metric name id][tag key id] ->
[encoded time series ids][tag value ids]:We add another posting
list key with tag value id as -1 to fetch all the time series candidates
in case of queries with wildcard or regexp filters.

Data Key [rollup aggregator][metric name id][time series
id] -> [num tags][tag key ids][tag value ids][number of data-
points][Gorilla encoded data]: This data key maps a time series
id to its data, i.e. all tag value pairs and the Gorilla encoded data-
points for the bucket duration.
Another key we insert along with the above is a marker key to
indicate that the bucket has been ingested completely. For all the
keys added to the SST files of a particular bucket, we prepend the
keys with [key type][tier][bucket] to indicate the type of the
key, i.e. dictionary, reverse dictionary, inverted index, or data key
and the tier and bucket information.

4.6.4 Goku Long Term Storage (GokuL). GokuL leverages RocksDB
(an LSM tree based persistent key value store) to store long term
metrics data. GokuL ingests the data prepared by the compactor
from AWS S3. The GokuL process has a thread running that reg-
ularly polls if the necessary bucket has been ingested and if not,

Figure 5: Goku query internals showing partition delay based
health monitoring and pipelined threadpool execution

it uses the RocksDB bulk ingestion API for SST ingestion of the
bucket. We designed the persistent storage format including the
data format and indexing leveraging RocksDB. With local persis-
tent storage that RocksDB provides, we can have fine control on
the location of data. This is beneficial as we can implement query
pushdown and have storage nodes perform local aggregation of
data. Additionally, we store the datapoints of each time series in
Gorilla compressed format which highly reduces the storage size.
Storing Gorilla compressed metrics data in RocksDB key-value
store is novel as compared to other TSDBs.

4.7 Query Path
4.7.1 Goku Root. Goku Root is the query endpoint for observabil-
ity alerting and web monitoring clients. It monitors the cluster
shard map and routes queries to storage clusters. As shown in Fig-
ure 5, a query from the Observability client goes to Goku root. Root
breaks the query into two queries if the time range touches both
GokuS and GokuL. For example, a query for last 20 days is broken
into GokuS query for last 1 day and GokuL query for current time -
1 day to current time - 19 days. Further, it fanouts the query to the
storage nodes who own the shards in the shard group. For example,
root sends the GokuS query to shard 1 and shard 2.

The storage nodes (both GokuS and GokuL) get a list of time
series that satisfy the criteria of the filters provided in the query as
described in section 3. They then fetch the data of the time series,
process the data, perform aggregation if specified, and return the
results to the Root node. Root merges these intermediate results
from all storage nodes, performs a second round of aggregation if
needed, and returns the final result to the client. Root also performs
a failover of the query to replica storage nodes if the query fails
from a particular storage node. This speculative failover mechanism

509

is used to provide fault tolerance in the query path. Root also rate-
limits the queries for system protection.

4.7.2 GokuS Health Monitoring. For both GokuS and GokuL, the
spectator process, as described in subsection 4.3, monitors the clus-
ter and node level state and updates the shard map. The shard map
is monitored by Goku Root to know which nodes hold which shard
before routing queries as shown in Figure 5. However, as GokuS
ingests in real time, it’s very important to know if the shard is ready
for serving queries i.e. if the GokuS shard ingestion is up to speed
with the corresponding offset in the Goku Kafka partition. Another
reason to continuously monitor the health of the GokuS cluster is
because it serves almost all of the alerting data at Pinterest and thus
demands high availability. For this, we have modified the spectator
process to also query the GokuS storage nodes along with the node
health, the latest Kafka message timestamp they have consumed
per shard, and update the lag in a file monitored by the Goku Root
nodes. This provides information to the Goku Root if a shard is lag-
ging behind in data consumption from Kafka. Based on this health
monitoring, root decides whether to route a query to a shard in the
particular GokuS node or not. For example, as shown in Figure 5,
root will route the GokuS query to shard 1 in replica 3 because
the partition lag of shard 1 is high in replica 2. This novel health
monitoring of GokuS shards is tied to the Kafka based ingestion
logic. It provides fault tolerance in the query path by making Root
know which GokuS shard is not up to date for querying.

4.7.3 GokuS. As stated before in subsubsection 4.6.2, for fetching
the target time series based on the filter provided in the query, the
GokuS nodes maintain an inverted index per shard. This index maps
the tag value pair to a list of time series ids in which the tag value
pair is present. The list is maintained as a roaring bitset [23]. The
idea is to get the bitsets associated with the tag value pairs specified
in the query and merge the bitsets (intersect, union etc) based on
the filter, which should list of time series ids to fetch data from.
This works for AND (tag1=value1 and tag2=value2) include filter
where user specifies to consider time series with two different tags,
OR (tag1=value1 || value2) include filter where user specifies to use
any time series which has either of the tag value pairs, and NOT
exclude (tag1=!value1) filter where user specifies to not consider
time series which has specific tag value pair. Additionally, Goku
supports wildcard and regular expression pattern matching query
filter operations as well. A query for the most recent 4 hours of
data is fetched from the finalized buckets while data beyond that is
fetched from the active buckets.

4.7.4 GokuL. Based on the query start time and end time, GokuL
determines the buckets that need to be queried. It creates the dictio-
nary keys, as described in subsubsection 4.6.3, to get the ids of the
tag value pairs specified in the filters of the query. To get the list
of time series ids, it uses the inverted index key. The lists fetched
are then shortened based on the filters provided, and the data is
fetched based on the final list of time series. After processing and
aggregation, the data is returned to the root.

4.7.5 Pipelined And Thread Pool BasedQuery Execution. As shown
in Figure 5, GokuS and GokuL use thread-pool based pipelined
execution. There are separate thread pools for fetching (from in-
memory or on-disk), decoding data and aggregation. There are

Figure 6: Example configurations of 3 namespaces named
NS1, NS2 and NS3.

Figure 7: Goku Architecture with namespace

configurable limits on the batch size (number of time series) a thread
works on. Pipelined execution allows parallelizing data fetch and
compute operations thereby utilizing the system resources in an
efficient way.

5 USEFUL FEATURE ADDITIONS
5.1 Namespace
Initially, Goku had a fixed set of properties for the metrics stored
which is in-memory storage for most recent 1 day metrics data, disk
(mix of SSD and HDD) storage for 1 - 365 days of data, raw data of 24
days, rolled up time series of 15 mins, and 1 hour granularity as data
gets older, etc. These were static properties defined during the clus-
ter setup. Adding a metric family with different properties required
setting up a new cluster(s) and pipeline. As time passed, we had re-
quests from the client team and some users to support more metric
families with different configurations. A generic solution to support
these ad-hoc requests was to add namespace support in Goku. A
namespace is a logical collection of a unique set of metric config-
urations and properties like rollup support, backfilling capability,
TTL, sharding strategy etc. A metric belongs to only 1 namespace

510

and fulfills all the configured properties of the namespace. The
namespace configurations are stored in a config file watched by all
the hosts in the Goku ecosystem as shown in Figure 7. Any moment
the contents of this file change, the Goku process running on the
hosts is notified and it parses the new changes.

As shown in Figure 6, a metric belonging to namespace NS1
will have its most recent 1 day’s datapoints stored in memory
while older datapoints will be stored and served from disk. The
metric will also have 15 minute rolled up data available for the last
80 days and 1 hour rolled up data afterwards. However, a metric
belonging to namespace NS2 will not have any data stored on
disk. Note how a metric belonging to namespace NS3 will have
capability to ingest data as old as 3 days (backfill allowed) whereas
metrics in NS1 and NS2 cannot ingest data older than 2 hours.
The information about which namespace holds what metrics and
the time the metric was added (Unix time rounded to next day
00:00:00 UTC) to the namespace is stored in the same namespace
configuration as a list of metric prefixes under each namespace
(see key:"metrics" in each configuration). For example, in Figure 6,
metrics with prefixes metric2 and metric3 added at 1704096000 and
1704009600 respectively are stored in namespace NS2. All other
metrics are stored in the default namespace NS1.

The Goku ingestor compares the metric prefix to find the target
namespaces of a datapoint. Then it compares the datapoint times-
tamp with the time associated with the prefix in the config file to
write the datapoint to the corresponding namespace that is the
Goku Kafka topic of the namespace. The Kafka topics as well as S3
buckets for each namespace are different. Each namespace has its
own set of shards in GokuS and GokuL. In the query path, using the
prefix and the associated timestamp, Goku root breaks the query
into independent smaller queries each of which is fulfilled by a
different namespace. For example, based on Figure 6, datapoints
for metric2 will be fetched from the NS1 namespace before time
1704096000 and NS2 namespace afterwards. This seamless migra-
tion of metrics between namespaces provided by Goku is novel,
and we have not seen support for this from DBs which support
namespace-like features like Monarch [2] and Timon [13].

In Production: We have 3 namespaces in production with 2
successful metric migrations into new namespaces as the time the
feature was introduced. While 1 namespace was added with the
ambition of supporting lower TTL and only in-memory data, the
other added more backfilling capability for an ads based metric. In
the future, we have 2 more metric migrations planned. One to move
the high cardinality metrics to a new namespace with a different
sharding strategy and the other to increase the TTL of long term
data to 3 years for a select set of metrics.

5.2 Rollup
We support storing rolled up data in GokuL. Rollup is a write time
data aggregation process that summarizes and stores time series
data at higher levels of granularity. Rollup data generated during
compaction benefits Goku by reducing the storage costs of abundant
raw data in higher tiers as explained in subsection 4.5. It also reduces
the query latency by reducing the amount of data fetched and
decoded and lowers the CPU aggregation cost.

5.3 Pre-aggregation and Pagination
Pre-aggregation is when the time series of a metric are aggregated
beforehand while preserving some tags and grouping the rest. This
helps tackle expensive high cardinality queries that might require
a lot of aggregations. The aggregation is done at the write path
in GokuS. Currently, Goku has onboarded more than 70 metrics
enabled for pre-aggregation. Each of these metrics have cardinality
of more than 1 million with some of them having cardinality of
more than 50 million.

Pagination refers to the practice of breaking up query results into
smaller, manageable subsets or pages. It is commonly used when
querying large volumes of time series data to avoid overwhelming
the storage nodes by consuming excessive resources during data
retrieval or aggregation. Goku implements pagination by returning
query results bucket by bucket. We have onboarded 10 metrics
(cardinality > 100K), all returning large quantities of time series
datapoints due to the usage of wildcard filters in their queries.

6 LESSONS LEARNED/OPTIMIZATIONS
6.1 Highly Redundant Information In Time

Series Names
For cost efficiency initiatives, we started tracking memory usage in
GokuS specifically to understand the consumers of memory and
check if any optimization was possible to reduce the memory usage
and thus scale down the cluster capacity. We observed that:

• For a GokuS cluster replica storing 16 billion time series, around
8 TB was consumed by full metric name strings. The other top
consumers of memory resources were finalized data buckets (8
TB), active data buckets (2 TB), roaring bitmap (0.5 TB), reverse
index keys (0.2 TB).

The full metric name of a time series consists of the metric name
and tag value pairs (metric name components) as a single string.
Initially, we stored the full metric name of the time series as a
key in the forward index as stated in Figure 4. The metric name
components are stored as keys in the inverted index. We further
observed that

• The cumulative size of keys in the forward index was almost 40x
the cumulative size of keys in the inverted index.

We inferred that there was a lot of redundancy if we store full metric
name strings in the forward index as metric name components
are likely duplicated across time series. For example, as shown in
Table 1, the tag-value pair “os=ubun-1” appears in all the 5 time
series. To check what could be the best replacement of the substring
in the full metric name, we tracked the size of the metric name
components and observed the following:

• On an average, every time series had 8 to 16 metric name com-
ponents and out of them, 6 to10 were auto generated by the
observability client. The auto-generated ones signify service
or project related details, availability zone information, cluster
information etc.

• Almost 70-90% of the size of full metric name strings consisted
of metric name component substrings sized more than 16 bytes.
Further, all metric name component substrings had a minimum
size of 8 bytes.

511

Table 5: In production comparison of OpenTSDB vs Goku

OpenTSDB Goku

Storage HBase In memory + RocksDB
p99 latency (sec) 20 GokuS - 0.03, GokuL - 1
2019 costs 5.18M 2.95M
Upkeep Load 30-60 alerts/wk < 5 alerts/wk
Data size 531 TiB 400 TiB
Replicas 3 3
Data TTL 90 days 13 months

We decided to replace the full metric name with a vector of elements
each of which contain a pointer to the single copy of the string of
the metric component in the inverted index. At present, as shown
in Figure 4, we use std::string_view [15] which takes 16 bytes in a
64 bit architecture to represent the metric name component. After
the change was made, we observed almost 75% reduction in the
memory consumption of forward index keys (around 2TB) for a
similar number of time series. This change also increases the scal-
ability of Goku as it can accommodate more time series with the
same capacity (assuming sparse time series). A similar behavior
was observed in the Goku Compactor cluster as well which loads
multiple buckets of lower tiered metrics data in memory and creates
a single bucket for the next higher tier as described in subsubsec-
tion 4.6.3. Higher tier compactions like tier 4 to 5 would require
billions of time series in memory and would cause out of memory
scenarios. By creating a set of metric name components and storing
vectors of string views to represent metric names, we observed a
sharp decrease in memory usage of almost 60% even during high
tier compactions. We were able to remove the cost attributed to
on-demand replacement of compactor hosts (vertical scaling) to
alleviate the out of memory scenarios.

6.2 Migration from using AWS EFS to AWS S3
GokuS initially wrote logs and finalized data to AWS EFS [11],
which provides network-attached storage via a POSIX-compliant
file system interface, simplifying feature development. However,
EFS was costly and often hit throughput limits during cluster re-
covery while using the bursting throughput mode. We found that
default local instance storage was sufficient for storing data files.
Transitioning to S3, which is more cost-effective, and local instance
storage reduced costs and improved recovery times, as data was
often available locally.

7 EVALUATION
7.1 In-production comparison with OpenTSDB +

HBase
In 2018, we launched GokuS for storing one day of metrics data,
and in 2019-2020, we introduced GokuL to replace OpenTSDB +
HBase for long-term data. Comparing the in-production metrics
of both setups, transitioning to Goku proved to be a clear win for
Pinterest in terms of cost and service efficiency, as described in the
Table 5. Some limitations of OpenTSDB that we observed were:

Table 6: Benchmark Environment Setup

Environment setup CPU RAM
(GB)

SSD
(GB)

AWS EC2
Instance
Type

Other TSDBs 64 256 3800 m6id.16xlarge

Goku Ingestor 16 128 950 r6id.4xlarge
Goku Kafka Broker 8 16 475 c6id.2xlarge

GokuS 16 32 950 c6id.4xlarge
Goku Compactor 8 32 475 m6id.2xlarge

GokuL 8 32 475 m6id.2xlarge
Goku Root 8 16 475 c6id.2xlarge

High Operational Cost: Inefficient data compression tech-
niques resulted in high costs, with a datapoint in OpenTSDB con-
suming almost 12-20 bytes. In contrast, Goku, using Gorilla com-
pression, achieves more than 4x data storage at almost 0.5x the cost,
as shown in Table 5.

Performance Issues: High query latencies of several seconds
and frequent 60-second timeouts were observed. This was because
OpenTSDB, being a stateless service, translates queries into HBase
scans, often reading unnecessary data, which slows down reads.
AlthoughHBase indexes on the primary key (metric name), defining
additional indices for a schemaless dataset on a NoSQL database
like HBase is challenging and often requires user intervention. After
reading all data from HBase, OpenTSDB performs aggregation on
a single machine. This process can be slow due to extended data
fetch times and limited parallelization within a single machine.
Additionally, OpenTSDB machines often ran out of memory when
handling large data sizes. Also, OpenTSDB created two tables in
HBase: "tsdb" for storing data and "tsdb-uid" for storing metric and
tag key value IDs. Whenever OpenTSDB performed read or write
operations, it accessed the "tsdb-uid" table very frequently, making
it a hotspot.

Scalability Issues: We started observing scale related issues in
OpenTSDB + HBase mainly coming as frequent HBase crashes dur-
ing high write volumes, CPU-intensive compactions, and expensive
query scans. These crashes often forced HBase to read from remote
HDFS data nodes instead of local replicas, resulting in sub-optimal
query performance.

Goku addresses all the above issues with features like query push-
down and two tier sharding for parallelized query execution and
aggregation, efficient indexing to filter list of time series candidates
before query execution.

7.2 Evaluation with other TSDBs
7.2.1 Test Environment: Using the widely known TSBS [36] suite,
we evaluated Goku against TimescaleDB [34], InfluxDB [20] and
QuestDB [29]. As stated in subsubsection 4.6.1, Goku ingests data
in the OpenTSDB telnet put format [8]. Hence, for benchmarking,
we added a client to TSBS that generates and sends data in this
format to an HTTP endpoint set up in the Goku Ingestor. As the
client batches multiple datapoints in a single request body, the Goku
Ingestor splits the request into multiple time series datapoints for

512

Table 7: Write throughput comparison in datapoints/second

Scale InfluxDB TimescaleDB QuestDB Goku

1,000 272,505 746,998 3,434,307 2,852,652
100,000 119,782 515,829 2,304,790 2,345,161

further processing. For the read path, we generate queries in the
OpenTSDB HTTP query format [25], which are then routed to the
Goku Root.

As Goku uses specialized nodes, we configured a 6-node cluster
for Goku and a single-node setup for the other TSDBs, ensuring
that the total resources for Goku matched those of the single-node
TSDBs. The setup details are described in Table 6. We used docker
images from the TSDBs’ websites and ran them as containers on the
host with no special configurations, with the TSBS client running
on the same host for the TSDBs, and on the ingestor for Goku. We
conducted two tests: one at a 1,000 host scale, creating 101,000 time
series with 145.44 million datapoints at 60 second intervals, and
another at a 100,000 host scale, creating 10.1 million time series
with 727.2 million datapoints at 20-minute intervals to test the high
cardinality case.

7.2.2 Write Benchmarking. For all TSDBs, a single worker writes
data without flow control to ensure fairness and a uniform client
write rate. In Goku, the ingestor caches data in an in-memory buffer
before producing it to Kafka. To determine the true write rate, we
record timestamp of the first Kafka message created and appended
to the Kafka broker, and the time when the last message is written
to the async log on the GokuS side. The correct write throughput
is calculated by dividing the total number of datapoints ingested
by the time difference between these two timestamps. In our exper-
iments, we observed that the first Kafka message timestamp aligns
with the client start time for writing data to Goku Ingestor.

Results: As seen in Table 7, Goku demonstrates higher write
throughput than InfluxDB and TimescaleDB. InfluxDB ensures fault
tolerance by fsyncing to the WAL file, guaranteeing data is written
to disk. TimescaleDB, based on PostgreSQL [28], prioritizes fault
tolerance through atomic commits and disk writes, leading to reli-
able transactions. Goku, on the other hand, achieves fault tolerance
by asynchronously logging the data along with the Kafka offset,
thus maintaining high speed alongside reliability. When scaling
up data generation to 100,000 hosts, increasing cardinality by 100
times, QuestDB maintains a high write throughput similar to Goku
due to its in-memory mapped region of a column file. TimescaleDB
and InfluxDB, with their robust fault tolerance mechanisms, ex-
perience a performance shift, but continue to offer reliable data
handling. Goku, with its asynchronous logging mechanism, consis-
tently achieves robust performance and reliability.

7.2.3 Read Benchmarking. As the observability client supports
HTTP endpoints for the OpenTSDB query format, we used it to
communicate with the Goku cluster during benchmarking. We
generated 1,000 queries for two scales (host=1,000 and host=100,000)
using the same seed as the write tests. The queries were for three
use cases:

Table 8: Read Latency (ms) for single-groupby-1-1-1

Scale InfluxDB TimescaleDB QuestDB GokuS GokuL

1,000 1.3 11.44 0.98 0.43 0.66
100,000 1.12 27.75 0.71 0.39 0.71

Table 9: Read Latency (ms) for single-groupby-1-1-12

Scale InfluxDB TimescaleDB QuestDB GokuS GokuL

1,000 5.29 44.44 2.68 0.51 1.23
100,000 2.27 160.5 0.84 0.38 1.24

Table 10: Read Latency (ms) for double-groupby-1

Scale InfluxDB TimescaleDB QuestDB GokuS GokuL

1,000 180.2 92.5 463.83 12.24 82.7
100,000 13553.22 4620.46 2454.89 1081.79 2239.31

single-groupby-1-1-1: 5-minute downsampled data with max
aggregation for a single time series over 1 hour.

single-groupby-1-1-12: Same as above, but over 12 hours.
double-groupby-1: 1-hour downsampled data with average

aggregation for all time series within the metric over 1 day.
After ingestion, we executed the queries on GokuS, then waited a
day for data compaction and ingestion into GokuL. We reran the
queries to obtain latency numbers from GokuL.

Results: As shown in Table 8, Table 9 and Table 10, GokuS,
being an in-memory engine, consistently provided lower query
latencies (3x - 10x) in all 3 query types. GokuL also delivered better
or comparable latencies to other secondary storage solutions. In
single time series tests ("single-groupby-1-1-1" and "single-groupby-
1-1-12"), GokuL uses the index key and the postings list key in
RocksDB for quick data retrieval and downsampling. For multiple
time series queries ("double-groupby-1"), especially at higher scales,
GokuL excels by using a special postings list key, as explained in
subsubsection 4.6.3, to retrieve all candidate time series in a single
RocksDB call, followed by parallel downsampling with a pipelined
thread pool execution engine.

8 RELATEDWORK
Gorilla +HBase:Goku’s in-memory storage engine, GokuS, shares
some similarities with Gorilla storage engine [26], such as using
the Gorilla compression scheme and storing the last 24 hours of
time series data. Goku offers some distinct advantages and ad-
ditional features. Goku ensures no data loss by recording Kafka
offsets with the asynchronous logs, which are backed up to S3 and
synced to disk, whereas Gorilla may tolerate some data loss during
node restarts. Goku also seamlessly handles multiple metric fam-
ily configurations via namespaces. For efficient long-term storage,
Goku uses RocksDB, which our production data has shown to be
more cost-effective and to provide lower read latencies compared
to OpenTSDB + HBase. In contrast, the Gorilla paper states plans to
implement SSD-based storage between Gorilla and HBase, which

513

Goku already manages efficiently. Additionally, Goku prevents par-
tial data returns during shard rebalancing with smart partition
lag-based routing, thereby enhancing query reliability.

InfluxDB: InfluxDB [20], provided by InfluxData, is a robust
time series database. It has a rich feature set and multiple ways to
read and write data. Although InfluxDB is marketed as schemaless,
Goku provides a clearer and more robust solution for handling
changes in metrics, such as the addition of tags. Goku also excels
in sustaining high write throughput required at Pinterest’s scale,
as confirmed by our benchmark results. Goku’s support for metric
family configurations and namespaces is more comprehensive than
InfluxDB, which primarily allows setting TTL on a bucket.

TimescaleDB: TimescaleDB [34] is another feature-rich TSDB
provided as a PostgreSQL extension. While its transactional nature
can impact write throughput, Goku excels in this area, as confirmed
by benchmarks. Goku’s schemaless design simplifies adding tags to
tracked metrics, which can be complex in TimescaleDB, especially
with compressed data. Additionally, Goku automatically creates
forward and reverse indices for quick access, whereas TimescaleDB
relies on user-defined indexing.

TDengine: TDengine [33], based on PostgreSQL, offers a unique
data model with supertables, allowing users to create multiple
tables from a template. However, configuring TDengine requires
significant user input to determine which metrics to include in a
supertable, ensure synchronized emissions from data collection
points, and maintain uniqueness for subtables. In contrast, Goku’s
schemaless nature and automatic configuration make handling
metrics straightforward. Goku also supports pre-aggregated data
for faster queries, whereas TDengine supports rolled-up data.

QuestDB:QuestDB [29] is a relatively new TSDB that integrates
seamlessly with SQL. Unlike QuestDB, Goku inherently supports
features like pre-aggregation and automatic indexing. QuestDB
requires third-party integration for pre-aggregation.

Monarch:Monarch [2], Google’s in-house TSDB, shares simi-
larities with Goku, including in-memory short-term storage and
a regionalized architecture for reliability. Monarch offers a com-
prehensive configuration plane similar to Goku’s namespace but
also supports access controls, metric schemas, and standing queries
and alerts. However, Goku provides seamless metric migration
between configurations, offering superior flexibility. Monarch’s
long-term storage strategy remains unclear, while Goku efficiently
uses RocksDB for cost-effective, low-latency storage.

Timon: Timon [13] handles out-of-order events efficiently using
blind writes and lazy merges. While Timon can append late events
and eventually merge them, Goku handles out-of-order events sim-
ilarly and ensures fast write rates. Goku’s ingestion process lever-
ages Kafka to buffer writes, which is advantageous when down-
stream nodes are not healthy. Timon relies on direct writes to
storage nodes, which may be less resilient. Additionally, Goku’s
time-based finalization provides structured data management, com-
pared to Timon’s space-based finalization.

9 IN PRODUCTION METRICS
As shown in Table 11, between 2018 and 2022, the number of time
series stored in Goku increased from 2.5 billion to 19 billion, more
than fivefold. Correspondingly, daily ingested datapoints increased

Table 11: Write and Read metrics of Goku over the years.
The number of datapoints, time series as well as the QPS are
averaged over a year. We do not have records of data in 2019.

Metrics / day 2018 2020 2021 2022 2023 2024

datapoints (trillion) 1 1.81 3.35 4 3 4.4
Time series (billion) 2.5 6 10 19 9 14

QPS (1000s) 5 - - 13 14.5 15

fourfold, indicating the addition of more sparse time series with
fewer or burst datapoints. In 2022, as part of a company-wide cost-
saving initiative, the observability team decided to eliminatemetrics
that were never queried. To achieve this, Goku began providing
daily reports of the top 10,000 metrics per shard with the highest
cardinality and most datapoints. This information, combined with
query logs, helped identify and block unused metrics at the metrics
agent sidecar, resulting in a drop in time series and datapoints by
2023. For metrics which were to be removed but which were already
in the Goku pipeline, we added capability of blocking metrics in
Goku Ingestor, during finalization in GokuS and during compaction.
This prevented the metrics from being forwarded to the next com-
ponent. The QPS (queries per second) however increased to 15K, a
fourfold rise over six years. By early 2024, Goku was ingesting 4.5
trillion datapoints daily and serving 15K queries per second with a
p99 latency of 100 milliseconds. GokuL stores one year’s worth of
metrics data, totaling over 300 trillion datapoints and 11.5 trillion
time series, and serves queries with a p99 latency of 5-10 seconds.
Queries for rolled-up time series have a sub-second p99 latency.

10 FUTUREWORK
SQL Support: Currently, Goku is queried through a thrift inter-
face. However, engineers at Pinterest want to view their metrics
data along with other analytical data on Apache Superset [32] and
Querybook [27]. These visualization tools connect to SQL based
databases. Thus, we want to provide a SQL layer on top of Goku.

Snapshot GokuS Active Data To Disk For Faster Recovery:
As stated in subsubsection 4.6.2, GokuS replays the logs for recon-
structing the active data. This can be time consuming. Persisting
regular snapshots of the active data to local storage and S3 will help
reduce amount of logs to be replayed during the recovery routine
thus reducing bootstrapping time.

Read From AWS Object Store: We want to store the infre-
quently accessed metrics data in AWS S3 in a queryable storage
format. This might prove more cost efficient than the secondary
storage based GokuL clusters due to low storage and access costs.

ACKNOWLEDGMENTS
We are grateful for the contributions of former Goku teammembers
including Jinghan Xu, Rui Zhang, JianWang, Hao Jiang, MiaoWang,
Tianying Chang and Jian Guo. Additionally, we thank Bo Liu, Dave
Burgess, Chunyan Wang, David Chaiken, Ambud Sharma, Zhany-
ong Wan, the Observability Team at Pinterest, including Brian
Overstreet, Wei Zhu, Naoman Abbas, Peter Kim, Colin Probasco,
and others, for their unwavering support and valuable insights that
have played a crucial role in shaping Goku’s success.

514

REFERENCES
[1] [n.d.]. Apache HBase Book. Retrieved March 15, 2024 from https://hbase.apache.

org/book.html#arch.overview
[2] Colin Adams, Luis Alonso, Benjamin Atkin, John Banning, Sumeer Bhola, Rick

Buskens, Ming Chen, Xi Chen, Yoo Chung, Qin Jia, Nick Sakharov, George
Talbot, Adam Tart, and Nick Taylor. 2020. Monarch: Google’s Planet-Scale
In-Memory Time Series Database. PVLDB, 13(12): 3181-3194 (2020). https:
//www.vldb.org/pvldb/vol13/p3181-adams.pdf

[3] M3 Authors. [n.d.]. Storage Engine. Retrieved March 14, 2024 from https:
//m3db.io/docs/architecture/m3db/engine/#m3tsz

[4] Prometheus Authors. [n.d.]. Storage. THe Linux Foundation. Retrieved March 14,
2024 from https://prometheus.io/docs/prometheus/1.8/storage/#chunk-encoding

[5] RocksDB Authors. 2022. A Tutorial of RocksDB SST formats. Retrieved March 14,
2024 from https://github.com/facebook/rocksdb/wiki/A-Tutorial-of-RocksDB-
SST-formats

[6] The OpenTSDB Authors. 2010. OpenTSDB Cardinality Explanation. Retrieved
March 15, 2024 from http://opentsdb.net/docs/build/html/user_guide/writing/
index.html#time-series-cardinality

[7] The OpenTSDB Authors. 2010. OpenTSDB Overview. Retrieved March 15, 2024
from http://opentsdb.net/overview.html

[8] The OpenTSDB Authors. 2010. OpenTSDB Put Telnet. Retrieved March 15, 2024
from http://opentsdb.net/docs/build/html/api_telnet/put.html

[9] The OpenTSDB Authors. 2010. OpenTSDB Query. Retrieved March 15, 2024
from http://opentsdb.net/docs/build/html/user_guide/query/index.html

[10] The OpenTSDB Authors. 2010. OpenTSDB Query Filters. Retrieved March 15,
2024 from http://opentsdb.net/docs/build/html/user_guide/query/filters.html

[11] AWS. [n.d.]. AWS EFS. AWS. Retrieved March 14, 2024 from https://aws.amazon.
com/efs/

[12] AWS. [n.d.]. What is Amazon S3? AWS. Retrieved March 14, 2024 from
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html

[13] Wei Cao, Yusong Gao, Feifei Li, Sheng Wang, Bingchen Lin, Ke Xu, Xiaojie Feng,
Yucong Wang, Zhenjun Liu, and Gejin Zhang. 2020. Timon: A Timestamped
Event Database for Efficient Telemetry Data Processing and Analytics. SIGMOD
(2020). https://dl.acm.org/doi/10.1145/3318464.3386136

[14] Confluent. [n.d.]. Kafka Producer Batching. Confluent. Retrieved March 14, 2024
from https://docs.confluent.io/kafka/design/producer-design.html#batching

[15] cppreference. [n.d.]. std::basic_string_view. cppreference. Retrieved March 14,
2024 from https://en.cppreference.com/w/cpp/string/basic_string_view

[16] Siying Dong, Andrew Kryczka, YanQin Jin, and Michael Stumm. 2021. RocksDB:
Evolution of Development Priorities in a Key-value Store Serving Large-scale
Applications. ACM Trans. Storage 17, 4 (Oct. 2021), 32. https://doi.org/10.1145/
3483840

[17] Apache Software Foundation. 2023. Architecture. Retrieved March 15, 2024 from
https://helix.apache.org/Architecture.html

[18] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. [n.d.].
ZooKeeper: Wait-free coordination for Internet-scale systems. ([n. d.]). https:
//www.usenix.org/legacy/events/atc10/tech/full_papers/Hunt.pdf

[19] InfluxData. [n.d.]. In-memory indexing and the Time-Structured Merge Tree (TSM).
InfluxData. Retrieved March 14, 2024 from https://docs.influxdata.com/influxdb/

v1/concepts/storage_engine/#floats
[20] InfluxData. [n.d.]. InfluxDB. Retrieved March 14, 2024 from https://github.com/

influxdata/influxdb
[21] Jay Kreps, Neha Narkhede, and Jun Rao. 2011. Kafka: a Distributed Messaging

System for Log Processing. NetDB (June 2011). https://www.microsoft.com/en-
us/research/wp-content/uploads/2017/09/Kafka.pdf

[22] Microsoft Learn. [n.d.]. Regular Expression Quick Language - Reference. Retrieved
March 15, 2024 from https://learn.microsoft.com/en-us/dotnet/standard/base-
types/regular-expression-language-quick-reference

[23] D. Lemire, G. Ssi-Yan-Kai, and O. Kaser. 2018. Consistently faster and smaller
compressed bitmaps with Roaring. arXiv 4 (March 2018). https://arxiv.org/pdf/
1603.06549.pdf

[24] Aditya Agarwal Mark Slee and Marc Kwiatkowski. 2007. Thrift: Scalable Cross-
Language Services Implementation. (April 2007). https://thrift.apache.org/static/
files/thrift-20070401.pdf

[25] OpenTSDB. [n.d.]. OpenTSDB http query format. OpenTSDB. Retrieved March
14, 2024 from http://opentsdb.net/docs/build/html/api_http/query/index.html#
query-api-endpoints

[26] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, In-Memory
Time Series Database. PVLDB 8, 12 (2015), 1816–1827. https://www.vldb.org/
pvldb/vol8/p1816-teller.pdf

[27] pinterest. [n.d.]. Querybook. Retrieved March 14, 2024 from https://www.
querybook.org/

[28] Postgres. [n.d.]. Postgres documentation. Postgres. Retrieved March 14, 2024
from https://www.postgresql.org/docs/

[29] questdb. [n.d.]. QuestDB. questdb. Retrieved March 14, 2024 from https:
//questdb.io/docs/

[30] questdb. [n.d.]. QuestDB write batching. questdb. Retrieved March 14, 2024 from
https://questdb.io/docs/reference/sql/insert/

[31] RocksDB. 2024. Creating and Ingesting SST files. Retrieved March 14, 2024 from
https://github.com/facebook/rocksdb/wiki/Creating-and-Ingesting-SST-files

[32] superset. [n.d.]. Superset. Retrieved March 14, 2024 from https://superset.apache.
org/

[33] taosdata. [n.d.]. TDEngine. taosdata. Retrieved March 14, 2024 from https:
//docs.tdengine.com/

[34] Timescale. [n.d.]. TimescaleDB. Timescale. Retrieved March 14, 2024 from
https://docs.timescale.com/#TimescaleDB

[35] Timescale. [n.d.]. TimescaleDB insert. timescale. Retrieved March 14, 2024
from https://docs.timescale.com/use-timescale/latest/write-data/insert/#insert-
multiple-rows

[36] Timescale. [n.d.]. TSBS Benchmark. Retrieved March 14, 2024 from https:
//github.com/timescale/tsbs

[37] Chen Wang, Xiangdong Huang, Jialin Qiao, Lei Rui, Jinrui Zhang, Rong Kang,
Julian Feinauer, Kevin A. McGrail, Peng Wang, Diaohan Luo, Jun Yuan, Jianmin
Wang, and Jiaguang Sun. 2020. Apache IoTDB: Time-series Database for Internet
of Things. PVLDB 13, 12 (Aug. 2020), 2901–2904. https://doi.org/10.14778/
3415478.3415504

515

https://hbase.apache.org/book.html#arch.overview
https://hbase.apache.org/book.html#arch.overview
https://www.vldb.org/pvldb/vol13/p3181-adams.pdf
https://www.vldb.org/pvldb/vol13/p3181-adams.pdf
https://m3db.io/docs/architecture/m3db/engine/#m3tsz
https://m3db.io/docs/architecture/m3db/engine/#m3tsz
https://prometheus.io/docs/prometheus/1.8/storage/#chunk-encoding
https://github.com/facebook/rocksdb/wiki/A-Tutorial-of-RocksDB-SST-formats
https://github.com/facebook/rocksdb/wiki/A-Tutorial-of-RocksDB-SST-formats
http://opentsdb.net/docs/build/html/user_guide/writing/index.html#time-series-cardinality
http://opentsdb.net/docs/build/html/user_guide/writing/index.html#time-series-cardinality
http://opentsdb.net/overview.html
http://opentsdb.net/docs/build/html/api_telnet/put.html
http://opentsdb.net/docs/build/html/user_guide/query/index.html
http://opentsdb.net/docs/build/html/user_guide/query/filters.html
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://dl.acm.org/doi/10.1145/3318464.3386136
https://docs.confluent.io/kafka/design/producer-design.html#batching
https://en.cppreference.com/w/cpp/string/basic_string_view
https://doi.org/10.1145/3483840
https://doi.org/10.1145/3483840
https://helix.apache.org/Architecture.html
https://www.usenix.org/legacy/events/atc10/tech/full_papers/Hunt.pdf
https://www.usenix.org/legacy/events/atc10/tech/full_papers/Hunt.pdf
https://docs.influxdata.com/influxdb/v1/concepts/storage_engine/#floats
https://docs.influxdata.com/influxdb/v1/concepts/storage_engine/#floats
https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/09/Kafka.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/09/Kafka.pdf
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://arxiv.org/pdf/1603.06549.pdf
https://arxiv.org/pdf/1603.06549.pdf
https://thrift.apache.org/static/files/thrift-20070401.pdf
https://thrift.apache.org/static/files/thrift-20070401.pdf
http://opentsdb.net/docs/build/html/api_http/query/index.html#query-api-endpoints
http://opentsdb.net/docs/build/html/api_http/query/index.html#query-api-endpoints
https://www.vldb.org/pvldb/vol8/p1816-teller.pdf
https://www.vldb.org/pvldb/vol8/p1816-teller.pdf
https://www.querybook.org/
https://www.querybook.org/
https://www.postgresql.org/docs/
https://questdb.io/docs/
https://questdb.io/docs/
https://questdb.io/docs/reference/sql/insert/
https://github.com/facebook/rocksdb/wiki/Creating-and-Ingesting-SST-files
https://superset.apache.org/
https://superset.apache.org/
https://docs.tdengine.com/
https://docs.tdengine.com/
https://docs.timescale.com/#TimescaleDB
https://docs.timescale.com/use-timescale/latest/write-data/insert/#insert-multiple-rows
https://docs.timescale.com/use-timescale/latest/write-data/insert/#insert-multiple-rows
https://github.com/timescale/tsbs
https://github.com/timescale/tsbs
https://doi.org/10.14778/3415478.3415504
https://doi.org/10.14778/3415478.3415504

	Abstract
	1 Introduction
	2 Data Model
	3 Query Model
	4 System Architecture
	4.1 System Overview
	4.2 Sharding Scheme
	4.3 Cluster and Shard Management
	4.4 Data Storage
	4.5 Tiering Strategy
	4.6 Write Path
	4.7 Query Path

	5 Useful Feature Additions
	5.1 Namespace
	5.2 Rollup
	5.3 Pre-aggregation and Pagination

	6 Lessons Learned/Optimizations
	6.1 Highly Redundant Information In Time Series Names
	6.2 Migration from using AWS EFS to AWS S3

	7 Evaluation
	7.1 In-production comparison with OpenTSDB + HBase
	7.2 Evaluation with other TSDBs

	8 Related Work
	9 In Production Metrics
	10 Future Work
	Acknowledgments
	References

