
LLM-R2: A Large Language Model Enhanced Rule-based Rewrite
System for Boosting !ery E"iciency

Zhaodonghui Li∗
Nanyang Technological University,
DAMO Academy Alibaba Group,

Singapore
G220002@e.ntu.edu.sg

Haitao Yuan†
Nanyang Technological University,

Singapore
haitao.yuan@ntu.edu.sg

Huiming Wang
Singapore University of Technology

and Design, Singapore
huiming_wang@mymail.sutd.edu.sg

Gao Cong
Nanyang Technological University,

Singapore
gaocong@ntu.edu.sg

Lidong Bing
DAMO Academy, Alibaba Group,

Singapore
l.bing@alibaba-inc.com

ABSTRACT
Query rewrite, which aims to improve query e!ciency by altering
an SQL query’s structure without changing its result, has been
an important research problem. In order to maintain equivalence
between the rewritten query and the original one during rewriting,
traditional query rewrite methods always rewrite the queries fol-
lowing certain rewrite rules. However, some problems still remain.
First, existing methods of "nding the optimal choice or sequence
of rewrite rules are still limited and the process always costs a
lot of resources. Methods involving discovering new rewrite rules
typically require complicated proofs of structural logic or extensive
user interactions. Second, current query rewrite methods usually
rely highly on DBMS cost estimators which are often not accurate.
In this paper, we address these problems by proposing a novel query
rewrite method named LLM-R2, which leverages a large language
model (LLM) to recommend rewrite rules for a database rewrite
system. To further enhance the inference ability of the LLM in
recommending rewrite rules, we train a contrastive model using
a curriculum-based approach to learn query representations and
select e#ective query demonstrations for the LLM. Experimental
results show that our method signi"cantly improves the query exe-
cution e!ciency and outperforms the baseline methods. In addition,
our method exhibits high robustness across di#erent datasets.
PVLDB Reference Format:
Zhaodonghui Li, Haitao Yuan, Huiming Wang, Gao Cong, and Lidong Bing.
LLM-R2: A Large Language Model Enhanced Rule-based Rewrite System
for Boosting Query E!ciency. PVLDB, 18(1): 53 - 65, 2024.
doi:10.14778/3696435.3696440
PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/DAMO-NLP-SG/LLM-R2.

∗Zhaodonghui Li is under the Joint PhD Program between DAMO Academy and
Nanyang Technological University
†Haitao Yuan is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 1 ISSN 2150-8097.
doi:10.14778/3696435.3696440

1 INTRODUCTION
E!cient query processing has been a crucial task in modern data-
base systems. One of the key topics in query optimization is query
rewrite [22, 27]. The objective of query rewrite is to generate a new
query that is equivalent to the original SQL query but executes in
less time. Ideally, query rewrite should meet three critical criteria:
(1) Executability: the rewritten query should be executable and
without any errors; (2) Equivalence: it must produce identical
results as the original query; (3) E!ciency: this encompasses two
aspects—Execution E!ciency and Computational E!ciency. Execu-
tion E!ciency requires the rewritten query executes more e!ciently
than the original, while Computational E!ciency implies that the
overhead of the rewriting process should be justi"able by the time
saved during query execution.

To improve both Executability and Equivalence in rewritten
queries, existing studies have mainly focused on rule-based rewrit-
ing techniques. In particular, these studies are divided into two
complementary research directions: discovering novel rewriting
rules and e#ectively applying existing ones. For the "rst direction,
although additional rewrite rules [7, 34, 36] have been discovered,
many challenges remains, particularly concerning the complexity
of rule validation and the speci"city of their applicability. These
challenges often lead to high computational demands and require
professional-level user competence. For example, Wetune [34] only
supports discovering rewrite rules on limited types of operators and
Querybooster [7] necessitates user engagement with specialized
rule syntax. This work focuses on the latter direction, exploring
methodologies for the e#ective utilization of pre-established rules.
For example, Learned Rewrite [45] utilizes existing rewrite rules
from the Apache Calcite [8] platform and learns to select rules
to apply. It notably incorporates a Monte Carlo search algorithm
together with a machine-learned query cost estimator to stream-
line the selection process. However, it is non-trivial to solve the
challenges related to the computational demand of the Monte Carlo
algorithm and the accuracy of the cost estimation model, which
can signi"cantly impact the execution e!ciency.

On the other hand, with the rise of large language models (LLMs),
several “large language model for database” projects [3, 37] have
emerged, which support direct query rewrite. The idea of these

53

https://www.acm.org/publications/policies/artifact-review-and-badging-current

methods is to utilize the sequence-to-sequence generation ability
of a language model to directly output a new rewritten query given
an input query, without considering any rewrite rules or DBMS
information. Although it is possible for these methods to discover
new rewrites not following any existing rules, they easily su#er
from the hallucination problem of language models [20, 41], espe-
cially for long and complicated queries, where language models
give plausible but incorrect outputs. Either a syntax or reference
error during generation will lead to vital errors when executing
the query. Therefore, relying solely on LLM’s output query may
violate the executability and equivalence to the original query,
deviating from the basic aim for query rewrite.

To address the limitations of the current query rewriting tech-
niques while bene"ting from their advantages, we propose an LLM-
enhanced rewrite system. This system uses LLMs to recommend
rewrite rules and apply these rules with an existing database plat-
form to rewrite the input query. Inspired by the LLM-based learning
framework for using tools [29, 38], we leverage the LLM’s general-
ization and reasoning abilities for query rewriting while avoiding
issues like hallucination. We design a novel LLM-enhanced query
rewrite system to automate the process of selecting more e#ective
rewrite. Note that our approach guarantees the executability and
equivalence of the rewritten query since all the candidate rules
are provided by existing DB-based rule rewrite platforms. In addi-
tion to meeting the basic requirements of valid query rewrite, we
also develop new techniques to boost the execution e!ciency
of our rewrite system. Firstly, to overcome hallucination, we col-
lect a pool of demonstrations consisting of e#ective query rewrites
using existing methods and our designed baselines. We develop a
contrastive query representation model to select the most useful
in-context demonstration for the given query to prompt the system,
optimizing the LLM’s selection on rewrite rules. In addition, to
address the challenge of limited training data, we propose using the
learning curriculum technique [9] to train the model using training
data in an easy to hard way. We apply our LLM-enhanced rewrite
method on three di#erent datasets, namely TPC-H, IMDB, and DSB.
We observe a signi"cant query execution time decrease using our
method, requiring only 52.5%, 56.0%, 39.8% of the querying time
of the original query and 94.5%, 63.1%, 40.7% of the time of the
state-of-the-art baseline method on average on the three datasets.
Our main contributions are:
• To the best of our knowledge, this is the "rst work on an LLM-

enhanced query rewrite system that can automatically select
e#ective rules from a given set of rewrite rules to rewrite an
input SQL query.

• To enable LLMs to select better rewrite rules for a query, we con-
struct a demonstration pool that contains high-quality demon-
strations so that we can select good demonstrations to prompt
the LLM-enhanced rewrite system for few-shots learning.

• We develop a contrastive query representation model to opti-
mize the demonstration selection. To address the challenge of
limited training data, we further design a learning curriculum to
organize the training data from easy to hard.

• We analyze the robustness of our method. By applying our
method to unseen datasets and di#erent dataset volumes, we

Query
select
 l_orderkey,
 sum(l_extendedprice * (1 - l_discount)) as revenue,
 o_orderdate,
 o_shippriority
from
 customer, orders, lineitem
where
 c_mktsegment = 'MACHINERY'
 and c_custkey = o_custkey
 and l_orderkey = o_orderkey
 and o_orderdate < date '1995-03-07'
 and l_shipdate > date '1995-03-07'
group by
 l_orderkey,
 o_orderdate,
 o_shippriority
order by
 revenue desc, o_orderdate;

Query Tree

Sort

Scan

Scan

Filter

Join

Aggregate

Join

Scan

orderscustomerlineitem

Figure 1: A TPC-H query and its query tree

demonstrate that our method is muchmore $exible than the base-
line methods and shed light on generalizing to other database
problems.

2 PRELIMINARY
In this section, we "rst introduce some key concepts including
query, query tree and query rewrite rules in Section 2.1. Then,
we will formalize the problem of query rewrite based on rules in
Section 2.2. Finally in Section 2.3, we introduce the related work.

2.1 Query and Rewrite Rules
Query & Query tree. Each query in our study is formulated as
an executable SQL statement. Furthermore, we model each query
as a query tree using various nodes, where each node represents a
speci"c type of query operator (e.g., Sort, Join, and Scan). Figure 1
illustrates an example of a SQL query and its corresponding query
tree representation. It is worth noting that any given query can be
transformed into a query tree, and conversely, this query tree can
be reverted back to its original raw query form.
Query rewrite rules. Given an input query denoted as 𝐿 , a se-
quence of transformation methods, represented as 𝑀1, 𝑀2, · · · , can be
applied to the query’s query tree, yielding an equivalent query, de-
noted as 𝐿→. These transformation methods, referred to as rewrite
rules, encompass a diverse range of functionalities. These include
the conversion of one operator to another, the alteration of execu-
tion sequences between operators, and the elimination of redundant
operators. Table 1 delineates a representative set of these query
rewrite rules. For the sake of brevity, we succinctly express the
query rewrite process as 𝐿→ = 𝑁(𝐿), where 𝑁 = [𝑀1, 𝑀2, · · · , 𝑀𝐿]
symbolizes the sequence of 𝑂 applied rewrite rules.

2.2 Rule-based Query Rewrite
With the introduction of the rewrite rules, we now formally de"ne
the problem of query rewrite based on rules as follows:

De"nition 2.1. (Rule-based query rewrite): Consider an input
query 𝐿 and a set of candidate rewrite rules 𝑁. The objective is
to identify a sequence of rules 𝑁→ = [𝑀→1 , 𝑀→2 , · · · , 𝑀→𝐿] where 𝑀→𝑀 ↑ 𝑁,
that transforms the query 𝐿 into a more e!cient version 𝐿→ =
𝑁→ (𝐿). The e!ciency of the rewritten query 𝐿→ is quanti"ed by its
execution latency. Such rewrite is characterized by transforming
𝐿 into an equivalent query 𝐿→, which exhibits a lower execution
latency compared to other possible rewritten versions of the query.

54

Table 1: Examples of query rewrite rules. Examples of query
rewrite rules of the Apache Calcite Rules [1].

Rule Name Rule Description

AGGREGATE_UNION_AGGREGATE Rule that matches an Aggregate whose input is
a Union one of whose inputs is an Aggregate

FILTER_INTO_JOIN Rule that tries to push "lter expressions into a
join condition and into the inputs of the join

JOIN_EXTRACT_FILTER Rule to convert an inner join to a "lter on top
of a cartesian inner join

SORT_UNION_TRANSPOSE Rule that pushes a Sort past a Union

The problem can be formally represented as:

argmin𝑁→↓𝑁 latency(𝐿→) s.t. 𝐿→ = 𝑁→ (𝐿) (1)

2.3 Related Work
2.3.1 !ery Rewrite. Query rewrite is a signi"cant function in
current Database Management Systems (DBMSs), and can be sup-
ported in the query optimizers [16–19, 40]. In particular, DBMSs,
such as Calcite [8] and PostgreSQL [4], have developed di#erent
rewrite functions to achieve various rewrite rules. Consequently,
there are two primary research directions for the query rewriting
problem: discovering new rewrite rules and optimally leveraging
existing rewrite rules.
Discovering New Rewrite Rules. Recent advancements, exempli-
"ed by Querybooster [7] and Wetune [34], have made signi"cant
strides in discovering new rewrite rules. Querybooster enables
database users to suggest rules through a specialized rule language.
On the other hand, Wetune compiles potential rewrite templates
and pinpoints constraints that convert these templates into action-
able rules. While these methodologies have proven their worth by
e!ciently handling small real-world workloads, they have their
limitations. Querybooster’s e#ectiveness hinges on the user’s abil-
ity to propose potent rules, whereas Wetune’s e!cacy on simple or
generalized queries remains uncertain.
Selecting Rewrite Rules. The heuristic rewrite approach exe-
cutes rewrite rules contingent upon the types of operators involved.
Learned Rewrite [45] employs a Monte Carlo Tree search to opti-
mize the selection of applicable rules. It conceptualizes each query
as a query tree, with applied rules modifying the tree’s structure.
This approach utilizes a learned cost model to predict the impact of
applying speci"c rules, enabling the selection of an optimal rewrite
sequence through Monte Carlo Tree search. While Learned Rewrite
improves adaptability to varying queries and database structures, it
faces challenges in cost model accuracy and potential local minima
in the search process, highlighting areas for future enhancement in
rule-based query rewriting techniques.

2.3.2 LLM-based SQL Solvers. Large Language Models (LLMs)
have recently emerged as a hot topic in machine learning research.
These models have demonstrated a surprisingly strong ability to
handle a variety of text-related tasks such as generation, decision-
making, and reasoning. One such task that is highly related to DB
research is text-to-SQL, in which an LLM directly generates an SQL
query given database information and user requirements. Numer-
ous studies [23, 31, 46] have highlighted the potential of LLMs in
the text-to-SQL task, showcasing their pro"ciency in SQL query-
related tasks. While much of this existing research has focused on
LLMs’ ability to generate executable queries, there is a growing

recognition of the e!ciency and accuracy of these queries. In par-
ticular, [23] discussed their attempts in an e!ciency-oriented query
rewrite task, where an LLM is directly given an input query and
tries to rewrite it into a more e!cient one. However, a signi"cant
issue previous methods face is the problem of hallucination, which
refers to instances where the model generates incorrect outputs
but is done so with a misleading level of con"dence. Although
some methods try to utilize instruction tuning to solve the problem,
there are still three main limitations. First, only open-source LLMs
like Llama and Phi can be "ne-tuned, but they lag behind closed-
source LLMs like the GPT family. Second, "ne-tuning techniques
still cannot eliminate hallucinations. One example is the SOTA
LLM for txt-to-SQL task Granite-20b-code model [26], which is an
LLM specially "ne-tuned on txt-to-SQL data but only 67.86% of the
queries generated by the model on the BIRD benchmark [23] are ex-
ecutable. This is particularly problematic in the context of database
applications, where accuracy is paramount and it motivates us to
use rule-based methods to ensure query correctness. Lastly, lever-
aging LLMs’ generalization ability is crucial. Instruction tuning
requires re-tuning with new datasets and queries, which is ine!-
cient. Therefore, we propose a di#erent direction of utilising the
LLMs while overcoming hallucination by using LLM’s in-context
learning capability and adopt a DB-based SQL rewriter enhanced
by an LLM.

2.3.3 In-context Learning. Due to the extensive data and resource
requirements of "ne-tuning an LLM, many works choose to uti-
lize LLMs by in-context learning (ICL). The concept of ICL, "rst
introduced by Brown et al. in their seminal work on GPT-3 [10],
shows that language models like GPT-3 can leverage in-context
demonstrations at inference time to perform speci"c tasks, without
updating the model weights. ICL typically involves enriching the
context with select examples to steer the model’s output. Formally,
consider a model denoted as𝑃 and a contextual input represented
by 𝑄 . The output 𝑅 generated by applying the ICL method to model
𝑃 with input 𝑄 can be succinctly expressed as 𝑅 = 𝑆𝑇𝑈𝑂 (𝑄).

ICL has rapidly gained popularity for addressing diverse chal-
lenges in natural language processing. However, it is a sophisticated
technique requiring careful implementation. Extensive research,
including studies by [35] and [24], has explored the intricacies of
LLMs’ learning processes in this context. These studies highlight
that the success of in-context learning is closely related to the
construction of the context and the quality of the examples used.

2.3.4 Contrastive Learning by Curriculum. Contrastive learning by
curriculum merges the strengths of contrastive learning and cur-
riculum learning to create e!cient machine learning models with
minimal labeled data. Contrastive learning enhances representa-
tion by bringing similar data points closer and separating dissimilar
ones, while curriculum learning structures the training process pro-
gressively. In particular, the SOTA method [39] in natural language
processing creates data with di#erent levels of di!culties using the
PCA jittering method to form the learning curriculum. However,
PCA jittering is a method that generates textual sentences and can-
not be applied to generating SQL queries. Similarly, in computer
vision, the SOTA methods [11] and [33] demonstrate how a cur-
riculum can be set up to incrementally learn a classi"cation model.
They use the curriculum to incrementally train models by starting

55

Figure 2: The Framework of LLM-enhanced Rewrite System

to focus on more con"dently labeled data. However, they assume a
semi-supervised setting where a computer vision model generating
image pseudo-labels is required. Therefore, the SOTA methods may
not directly apply to our problem and we need to adapt the idea of
contrastive learning by curriculum to our own problem.

3 LLM-ENHANCED REWRITE SYSTEM
In this section, we will introduce our innovative LLM-enhanced
rule-based rewrite system (LLM-R2). In Section 3.1, we will "rst
illustrate the pipeline of our rewrite system. Then in Section 3.2, we
will state our motivation to optimize the demonstration selection
and introduce our novel Demonstration Manager module.

3.1 System Pipeline
As shown in Figure 2(a), the system integrates an LLM into the query
rewrite system utilizing the ICL methodology [10]. We construct
the ICL prompt with three main components:
Input query: We employ the SQL statement corresponding to the
provided input query 𝐿 for the prompt construction.
Fixed instruction: The "xed instruction consists of a system in-
struction 𝑆 and a rule instruction 𝑁. While the system instruction
speci"es the task requirements, the rule instruction includes a com-
prehensive list of all candidate rewrite rules available for the lan-
guage model to select. Each rule is accompanied by a concise ex-
planation, enabling informed decision-making.

One-shot demonstration: Similar to directly letting LLMs rewrite
queries, selecting rewrite rules using LLMs may also easily su#er
from the hallucination problem, like outputting non-existing rules.
To mitigate this and ensure the LLMs’ outputs are more closely
aligned with our task requirements, yielding superior rule sugges-
tions, we use the demonstration as a part of the prompt. Formally,
we de"ne our demonstration given to the LLM-R2 system as a pair
of text 𝑉 = ↔𝐿𝑃 ,𝑁𝑃 ↗, where 𝐿𝑃 is the example query assembling
the input query and 𝑁𝑃 = [𝑀𝑃1 , · · ·] is the list of rules that have
been applied to rewrite the example query. Such demonstrations
can successfully instruct the LLM to follow the example and output
a list of rewrite rules to apply on the new input query. In particular,
this involves selecting a high-quality demonstration 𝑉 from many
successful rewritten demonstrations (i.e., denoted as a pool D) for
each input query to guide the LLM e#ectively. To achieve this goal,
we design a module named Demonstration Manager, whose details
are elucidated in the subsequent section.

As speci"cally highlighted, Figure 3 delineates the prompt uti-
lized within the In-Context Learning (ICL) process of our system.
Upon constructing the prompt and feeding it into the LLM, we can
extract a sequence of rewrite rules from the model’s output. These
rules undergo further processing and execution by a database-based
rule executor. For instance, the original input query in Figure 2(a)
is modi"ed by the “AGGREGATE_PROJECT_MERGE” rule, as high-
lighted in bold. This modi"cation transforms the original query
into a more optimized output query, demonstrating the practical
application and e#ectiveness of the extracted rules in query opti-
mization processes. Through the synergy of the LLM’s superior
generalization capabilities and the rule executor’s precision, our
proposed system guarantees extensive applicability, alongside en-
suring the executability and equivalence of the rewritten queries.
Consequently, this rewrite process can be formalized as follows:

De"nition 3.1. (LLM-enhanced Query Rewrite): Given a large
language model𝑃 , a textual instruction outlining the rewrite task
𝑆 , a set of candidate rules 𝑁, one successful rewrite demonstration
𝑉 selected from the demonstration pool D, and an input query
𝐿 , a prompt 𝑄 is constructed and provided as input to 𝑃 as 𝑄 =
𝑆 ↘ 𝑁 ↘ 𝑉 ↘ 𝐿 . From𝑃 , a sequence of rewrite rules 𝑁→ is derived:

𝑁→ = 𝑆𝑇𝑈𝑂 (𝑄)
By sequentially applying these rewrite rules 𝑁→, we generate an
optimally equivalent query, represented as 𝐿→ = 𝑁→ (𝐿).

3.2 Demonstration Manager Overview
Motivation. In the above ICL process, optimizing the prompt
𝑄 = 𝑆 ↘𝑁↘𝑉↘𝐿 is crucial for improving the output quality of LLMs.
Given the "xed settings of system instruction(𝑆), rule instruction(𝑁),
and input query(𝐿), our optimization e#orts focus primarily on the
demonstration(𝑉), which is chosen to enhance model performance.
Recent studies on LLMs (e.g., [10, 35]) have underscored the positive
impact of high-quality in-context demonstrations on LLM output,
reducing the tendency of LLMs to produce hallucinatory content.
As shown in Figure 4, our rewrite system exhibits similar e#ective-
ness variability w.r.t. the demonstrations used, further emphasizing
the necessity of optimizing demonstration selection for speci"c
input queries. Therefore, it is an important problem to optimize

56

Figure 3: An Example of the In-Context Learning Process in LLM-R2. All the instructions are concatenated together as one
string input to the LLM. In a zero-shot setting, the “Demonstration Instruction” will be removed and an input query will be
appended directly after the “Rule Instruction”.

Good Demonstration
SELECT * FROM title t,cast_info ci WHERE t.id=ci.movie_id
AND t.kind_id<7 AND t.production_year=1968 AND
ci.person_id<1275251 AND ci.role_id<8;

Bad Demonstration

SELECT * FROM movie_keyword mk WHERE keyword_id =
43462;

Input Query
SELECT * FROM title
t,movie_companies mc
WHERE t.id=mc.movie_id
AND mc.company_id>11145
AND
mc.company_type_id=1;

Original Cost: 0.994251331

Good Rewrite
Rules Adopted:
[FILTER_INTO_JOIN]
New Cost: 0.692219734

Bad Rewrite

Rules Adopted: []
No Rewrite

Figure 4: Example of good and bad demonstration selections

Figure 5: Our demonstration preparation module generates
a set of training triplets and a demonstration pool.

the demonstration selected for a given input query. Particularly,
we address this problem by designing the Demonstration Manager
module.
Overview. Figure 2(b) illustrates the basic structure of our proposed
Demonstration Manager module, comprising two parts: Demonstra-
tion Preparation and Demonstration Selection.
(1) The primary objective of the Demonstration Preparation is to
generate a substantial number of successful rewritten demonstra-
tions for constructing a demonstration pool. Furthermore, this part
also serves to supply training data essential for model learning in
the second part. Speci"cally, we design two modules: the Bene"t
Estimator and the Pool Generator, to achieve our objectives. The
Bene"t Estimator is capable of assessing the potential bene"ts of
a given query rewrite strategy, thereby generating corresponding
rewrite tuple recording the performance of this rewrite strategy on
the input query. Subsequently, the Pool Generator is employed to
extract demonstrations for constructing a pool. Moreover, we utilize
the rewrite tuples to derive training triplets, which are essential for
model learning in subsequent parts.
(2) The second part involves the Demonstration Selection module,
tasked with identifying the optimal demonstration from the pool

for each input query. This process is enhanced by incorporating a
query representation model within the selector, designed to evalu-
ate the similarity between input queries and demonstrations in the
pool. This representation model undergoes o%ine training using
the training data. In addition, to obtain an e#ective model, we en-
hance the model’s training through the integration of a curriculum
learning approach. Afterwards, the trained model is integrated into
Demonstration Selector for online inference. In other words, upon
receiving an input query for rewriting, the selector discerns and
selects the most appropriate demonstration from the pool based
on the trained model. More detailed elaboration on the above two
parts will be provided in the following sections.

4 DEMONSTRATION PREPARATION
In this section, we aim to generate su!cient high-quality data to
build the demonstration pool. As shown in Figure 5, we "rst design
the Bene"t Estimator module to generate the ground truth, where
each ground truth data point indicates the e!ciency gain obtained
by rewriting an input query using generated rules in the context of
a demonstration. With su!cient ground truth, including both good
and bad samples, we further design the Pool Generator module to
select all good samples to build the demonstration pool. In addition,
we can deduce contrastive training triplets from the ground truth,
which can help train our selection model.

4.1 Bene"t Estimator
Since we are only able to start with solely training queries without
demonstrations, the triplet generation pipeline is segmented into
two distinct phases: the "rst stage involves initializing high quality
candidate demonstrations utilizing baseline method and a zero-shot
LLM-R2 system where no demonstration is selected, followed by
the demonstration adoption stage employing a one-shot LLM-R2

system. Subsequently, each stage is elucidated in detail.
Stage-1:We start with a diverse set of input queries collected from
our dataset as the training set. To obtain a rich set of e#ective
rewrites as candidate demonstrations, we "rst apply our zero-shot
LLM-enhanced rewrite system (LLM-R2) to rewrite the training set
queries. After getting the rewrite rules adopted and the resulted
rewrite queries, we directly execute the rewritten queries on the cor-
responding databases. The execution time of the rewritten queries
as well as the original queries is evaluated to collect the initial

57

Figure 6: Our representation model encodes each query tree
node into a "xed-length vector, with the "nal query repre-
sentation obtained through tree-biased attention over the
nodes. The model 𝑊 is trained using contrastive query tuples.

candidate demonstration set consisting of the improvable queries,
together with their rules adopted.
Stage-2: With the candidate demonstrations collected from the
previous step, we can then estimate the bene"ts of these demonstra-
tions when they are selected for a given input query. Motivated by
[35], such improvable demonstrations are supposed to be more use-
ful for the LLM to output improving rewrite suggestions, compared
to using any degraded rewrite queries as demonstrations. In addi-
tion, the more “similar” the improving demonstration query is to
the input query, the better output the LLM will generate. However,
di#erent from natural language inputs’ simple textual similarity, the
similarity between SQL queries is indeedmore complicated. To iden-
tify if the pool we collected truly contains high-quality and “similar”
demonstrations for new input queries and re"ne the demonstration
pool, we designed three heuristic demonstration-selection methods
based on di#erent levels of similarity as follows.
• Random Selection: A random demonstration query is selected

from the candidate demonstrations for a given input query,
where the similarity level lies on the same input category.

• Tree Selection: Query tree is an important structural feature
for the queries, therefore, it is natural to align similarity with
the query tree structure. We "rst compute the query trees of all
the candidate demonstration queries, with operators as the tree
nodes. Given an input query, we select the demonstration with
the minimum tree edit distance from the input query tree within
the candidate demonstrations.

• SentTrans Selection: At the textual level, we observe that
queries are always considered as sentences for the language
models to process. Based on the observation, we treat input
queries as sentences and select the candidate demonstration
query whose embedding is the most similar to the input query.
Most of the e#ective LLMs are closed-sourced, which means we
are not able to obtain the query embeddings of such LLMs. How-
ever, similar to LLMs, some small pre-trained language models

share the same sequence-to-sequence mechanism, that the input
text is "rst encoded by an encoder before feeding to the model.
Using such encoders, like Sentence Transformers [28], we can
obtain an embedding of a given sentence.

With the three demonstration selection methods above, we can
prompt our LLM-R2 system with the one-shot demonstration to
obtain various rewrite results on the same training set. These new
rewrite queries from the one-shot LLM-R2 system are then eval-
uated in the same way as in Stage-1. Speci"cally, when we adopt
one-shot demonstration to rewrite an input query𝐿𝑄 , we are able to
estimate the bene"t obtained from the demonstration by construct-
ing the rewrite tuples (T) as (𝐿𝑄 ,𝑉,𝑁𝑄 ,𝑋), where 𝐿𝑄 represents a
training query, 𝑉 is the demonstration ↔𝐿𝑃 ,𝑁𝑃 ↗ selected for 𝐿𝑄 ,
𝑁𝑄 denotes the adopted rules for𝐿𝑄 , and 𝑋 represents the improved
margin obtained by the query rewrite. In particular, given the origi-
nal query cost 𝑇0 and the cost of rewritten query 𝑇𝑅 , we de"ne the
improved margin as 𝑋 = 𝑇0/𝑇𝑅 , where the larger margin the better
rewrite result and larger bene"t we have.

In addition, a set of training triplets is generated using the rewrite
tuples obtained in preparation for training a contrastive representa-
tion model. For a given query 𝐿𝑄 in the rewrite tuple (𝐿𝑄 ,𝑉,𝑁𝑄 ,𝑋),
we consider the demonstration query 𝐿𝑃 adopted as an improve
query 𝐿𝑃+ for 𝐿 , if the improved margin 𝑋 > 1. In contrast, we
denote the demonstration query as a degrade query 𝐿𝑃≃ if 𝑋 < 1.
If there are multiple improve(degrade) queries, we only select the
one with the largest(smallest) improved margin. Since we have
adopted multiple one-shot selection methods, now we are able to
construct a training triplet for a given query as ↔𝐿𝑄 ,𝐿𝑃+,𝐿𝑃≃↗. A
set of training triplets can be further constructed if we enumerate
the whole training query set.

4.2 Pool Generator
Apart from the training triplets, we also hope to prepare an e#ective
demonstration pool so that our learned demonstration selection
model can select demonstrations from it during online inference.
The rewrite tuple generated by the Bene"t Estimator module, record-
ing the e#ectiveness of a sequence of rewrite rules 𝑁𝑄 on an input
query 𝐿𝑄 , naturally "ts our need for a high-quality rewrite demon-
stration.

In particular, given the set of rewrite tuples generated by 𝑂 input
queries, we "rst separate them into 𝑂 groups {𝑌𝑀 }1⇐𝑀⇐𝐿 based on
their corresponding input queries. Therefore, each group 𝑌𝑀 can be
represented as the tuple set {(𝐿𝑄

𝑀 ,𝑉
𝑀
1,𝑁

𝑀
1,𝑋

𝑀
1), (𝐿𝑄

𝑀 ,𝑉
𝑀
2,𝑁

𝑀
2,𝑋

𝑀
2), · · · }.

Since we have adopted various methods, multiple tuples have the
same input query, and we only need the optimal rewrite rule se-
quence to form a demonstration for the query. Therefore, for each
training query 𝐿𝑄

𝑀 and its corresponding tuple group 𝑌𝑀 , we only
select the tuple with the largest improved margin, and the order is
denoted as →, which can be formulated as follows:

→ = 𝑍𝑀𝑎𝑏𝑍𝑐 𝑆↑ [1, |𝑇𝐿 |]𝑋
𝑀
𝑆

𝑑 .𝑒 .𝑌𝑀 = {(𝐿𝑄
𝑀 ,𝑉

𝑀
1,𝑁

𝑀
1,𝑋

𝑀
1), (𝐿𝑄

𝑀 ,𝑉
𝑀
2,𝑁

𝑀
2,𝑋

𝑀
2), · · · }

(2)

Next, we construct the demonstration containing the input query
and rules as the pair ↔𝐿𝑄

𝑀 ,𝑁
𝑀
→↗, and then add the demonstration to the

pool. As shown in Figure 5, when the largest improved margins 𝑋11
and 𝑋𝑀2 are identi"ed for input queries𝐿

𝑄
1 and𝐿

𝑄
𝑀 , the corresponding

58

demonstrations ↔𝐿𝑄
1,𝑁

1
1↗ and ↔𝐿𝑄

𝑀 ,𝑁
𝑀
2↗ are selected with the rewrite

rules 𝑁11 and 𝑁
𝑀
2 adopted.

5 DEMONSTRATION SELECTION
Motivation. Addressing the challenge of enhancing system per-
formance, the selection of an optimal rewrite demonstration to
guide the LLM for any given input query is required and remains
uncertain. Intuitively, the greater the “similarity” between the input
and demonstration queries, the more applicable the rewrite rule,
thereby enhancing the LLM’s output e!cacy. Therefore, to capture
such “similarity”, we design a contrastive model to learn the repre-
sentations of queries in this Demonstration Selection module, where
better demonstration queries are to have more similar representa-
tions to the input query. Consequently, the demonstration query
that exhibits the highest resemblance to the input query is selected
for the LLM, optimizing the generation of more e#ective outputs.
Overview. In order to learn a contrastive representation model
e!ciently and e#ectively, the selection module consists of two
main components: our contrastive model and a curriculum learn-
ing pipeline to improve the model training. We will "rst outline
the representation model and its contrastive learning structure in
Section 5.1, followed by a detailed discussion of the whole model
learning pipeline in Section 5.2.

5.1 Contrastive Representation Model
As shown in Figure 6, our representation model 𝑊 is constructed as
a query encoder to encode the information describing a query, and
a contrastive training structure to further train the encoder given
training data. In particular, the information of a query tree is "rst
encoded by nodes into node embeddings. A tree-biased attention
layer will then compute the "nal representation of the query given
the node embeddings. Such an encoder 𝑊 is then trained using the
contrastive learning structure drawn below it.
Query encoder. The representation of a query should focus on
various key attributes, like the query tree structure and columns
selected. Therefore, we design an encoder following [42] to take
the query trees generated by DBMS’ query analyzer as inputs. It
is notable that the original encoding in [42] utilizes the physical
query plan which contains richer information, so that the objective
of estimating query cost can be successfully achieved. Since we
aim to capture the similarity between queries, we refer to [44] and
separately encode the following information for each query tree
node instead in our encoder, as shown in the top half of Figure 6:
• Operator type: We use one-hot encoding to encode the opera-

tor types into one vector, with value one for the current node
operator type and zero for the rest positions.

• Operator conditions: Within each node, the details for the
operator are explained in parentheses, including sort order for
“Sort” operator, selected column for “Scan” operator etc. Di#erent
from the physical plans used in [42], such information has no
uni"ed form for encoding.We consider the conditions as text and
encode using a pre-trained Sentence Transformers encoder [28].
Such an encoder can capture the textual di#erences between
conditions e#ectively and have uni"ed embedding dimensions
to simplify further analysis.

Training Triplets
Representation

Model
Representation

Model

(2) Generate Curriculum

(5) Continue Training

(4) Train

Contrastive Query Tuples

(1) Generate

(3) Select
Easy Data

Figure 7: The overall curriculum learning pipeline to train
the contrastive selector using generated training triplets.

• Cardinality and cost: From [43] we observe that the estimated
cardinality and cost are important in describing a query. We
collect the row count and estimated cumulative cost values and
normalise them through an MLP layer.

We simply concatenate the three information vectors together to
be the encoded embedding for a node in the given query tree. We
use the same tree Transformer model in [42] to get the "nal rep-
resentation of a query given its tree nodes’ embeddings. The "nal
representation of the whole query will be computed by the tree-
biased attention module.
Contrastive learning structure.Due to the necessity of executing
queries, the volume of training triplets produced by our demonstra-
tion preparation module is limited. Unlike the query representation
model in [42], which is trained directly on abundant labeled data,
our approach requires a more sophisticated training framework to
e#ectively capture query representation with the generated train-
ing data. Inspired by SimCSE [15], we design a contrastive learning
structure to train our query representation model on the limited
training data. In a training batch containing 𝑓 tuples, we consider
each original query’s improved query as its “positive” query, its
degraded query as its “hard negative” query, and the remaining
improved and degraded queries within the same batch as “negative”
queries. This allows us to pull close distances between original
queries and their improved versions while pushing apart those
with degraded queries. Following such setting, the loss 𝑔𝑀 for the
𝑕𝑄𝑈 tuple (𝐿𝑀 , 𝐿+

𝑀 , 𝐿
≃
𝑀) can be computed as

𝑔𝑀 = ≃ log
𝑖sim(𝑈𝐿 ,𝑈+

𝐿)/𝑉

ω𝑊𝑆=1 (𝑖
sim(𝑈𝐿 ,𝑈+

𝑀)/𝑉 + 𝑖sim(𝑈𝐿 ,𝑈≃
𝑀)/𝑉)

(3)

where 𝑗 is a temperature hyper-parameter, 𝑘𝑀 , 𝑘+𝑀 and 𝑘≃𝑀 stand for
the representation of 𝐿𝑀 , 𝐿+

𝑀 and 𝐿≃
𝑀 respectively, and the function

sim(𝑘1,𝑘2) is the cosine similarity 𝑈𝑁1 𝑈2
⇒𝑈1 ⇒ ·⇒𝑈2 ⇒ .

As an example in a training batch of size 2, for the "rst original
query 𝐿1 shown in the bottom part of Figure 6, the positive query
will be its corresponding improve query 𝐿+

1 , and other in-batch
improve or degrade queries 𝐿≃

1 , 𝐿
+
2 and 𝐿≃

2 are all regarded as
negative queries. The "nal loss for the batch will be the sum of the
losses for the two tuples.

5.2 Curriculum Learning Pipeline
Motivation. Although we have developed a representation-based
demonstration selector, training the contrastive model presents
several challenges. First, unlike the original SimCSE approach used
in natural language inference tasks, which bene"ts from abundant

59

data [12], our model’s training is constrained by data scarcity. Our
contrastive query tuples, derived from a limited variety of training
triplets, face scalability issues due to the high computational cost
of query execution. Furthermore, the complexity of query represen-
tations in our model surpasses the simplicity of word embeddings
used in SimCSE. Given these constraints—limited data and a com-
plex training target—we propose adopting a curriculum learning
pipeline. This approach is designed to enhance the learning e!-
ciency and e#ectiveness of our contrastive representation model.

Algorithm 1 Contrastive Training under Curriculum Scheduler
Require: Total training data 𝑋0, Number of iterations 𝑌
Require: Initialized model 𝑍0
1: 𝑊0 = 𝑎𝑏𝐿 (𝑋0) 𝐿 Total number of training data
2: 𝑊 = ⇑ (𝑊0/𝑌) ⇓ 𝐿 Each iteration incremental data size
3: 𝑇𝑅0 = ⇔ 𝐿 Initial training data
4: 𝑀 = 1 𝐿 Initial iteration
5: while 𝑀 ⇐ 𝑌 do
6: if 𝑎𝑏𝐿 (𝑊) > 𝑎𝑏𝐿 (𝑋𝐿≃1) then 𝐿 If less than N data left
7: 𝑇𝑅𝐿 ↖ 𝑋𝐿≃1 𝐿 Select all the data left
8: 𝑇𝑅𝐿 = 𝑇𝑅𝐿≃1 +𝑇𝑅𝐿 𝐿 Append to training data
9: Train 𝑍𝐿≃1 on𝑇𝑅𝐿 and get 𝑍𝐿 𝐿 Continue training
10: else
11: 𝑐𝐿 ↖ 𝑇𝑑𝑒𝑂 (𝑋𝐿≃1) based on 𝑓𝑑𝐿𝑔𝑃𝐿≃1 (·) 𝐿 Select N easy data

following curriculum from the unvisited dataset
12: 𝑋𝐿 = 𝑋𝐿≃1 ≃ 𝑐𝐿 𝐿 Deduct them from unvisited data
13: 𝑇𝑅𝐿 = 𝑇𝑅𝐿≃1 +𝑐𝐿 𝐿 Append them to training data
14: Train 𝑍𝐿≃1 on𝑇𝑅𝐿 and get 𝑍𝐿 𝐿 Train the model
15: 𝑀 = 𝑀 + 1 𝐿 Move to next iteration
16: end if
17: end while
18: Use the "nal 𝑍𝑄 for inference

As depicted in Figure 7, the essence of this pipeline is to strategi-
cally implement an e#ective curriculum. Starting with the provided
training triplets, we initially train our contrastive representation
model on a smaller, simpler subset, progressively incorporating
easier subsets from the remaining dataset and retraining the model
until all training data is utilized. The methodology for generating
our curriculum is detailed in Algorithm 1. This algorithm begins
with an empty model; each iteration involves selecting a subset of
training data on which the current model performs with the highest
con"dence, followed by model retraining to incorporate this new
subset (lines 5-17). This iterative retraining process continues until
the entire training dataset has been incorporated.

In particular, we sample the easier subset of remaining training
data by the con"dence of the model to the data. Suppose we get the
embeddings of two queries using our contrastive model to be 𝑐 and
𝑙, we can compute their similarity scores using the cosine similarity
to keep consistency with the training objective in Equation 3. For
each contrastive query tuple ↔𝐿,𝐿+,𝐿≃↗, since we expect to have
the sim(𝑊 (𝐿), 𝑊 (𝐿+)) = 1 and sim(𝑊 (𝐿), 𝑊 (𝐿≃)) = 0, we de"ne a
con"dence score of the contrastive model 𝑊 to a given tuple as:

𝑚𝑅𝑂𝑛𝑍 (𝐿) = sim(𝑊 (𝐿), 𝑊 (𝐿+)) ≃ sim(𝑊 (𝐿), 𝑊 (𝐿≃)) + 1 (4)

Therefore, at each iteration 𝑕 , given our trained model 𝑊𝑀≃1, previ-
ous training dataset 𝑌𝑀≃1 and the unvisited dataset 𝑉𝑀≃1, we can
generate the current tuples (denoted as 𝑜𝑀) with the highest con-
"dence score in 𝑉𝑀≃1. They are then moved into the training set,

resulting in the new training set𝑌𝑀 = 𝑌𝑀≃1+𝑜𝑀 and the new unvisited
dataset 𝑉𝑀 = 𝑉𝑀≃1 ≃ 𝑜𝑀 .

6 EXPERIMENT
In this section, we evaluate our proposed system’s e#ectiveness,
e!ciency, and generalization capabilities.

6.1 Experimental Setup
6.1.1 Dataset. We use three datasets from di#erent domains for
our evaluations:
IMDB (JOB workload) [21]: The IMDB [25] dataset consists of
data on movies, TV shows, and actors. It’s utilized in conjunction
with the Join Order Benchmark (JOB) to test a database manage-
ment system’s e!ciency in executing complex join queries, and it
comprises 5,000 queries.
TPC-H [5]: A benchmark dataset for evaluating database man-
agement systems, generated using the o!cial toolkit to include
approximately 10 GB of data and 5,000 queries.
Decision Support Benchmark (DSB) [13]: This benchmark is
developed to evaluate traditional database systems for modern
decision support workloads. It is modi"ed from the TPC-DS to
include complex data distributions and challenging query templates,
and it contains a total of 2,000 queries.

6.1.2 Rewrite Rules. To enhance the e!ciency of the rule proposal
and rewriting process for subsequent experiments, we integrate
Apache Calcite [8] as our rewrite platform, alongside its comprehen-
sive set of rewrite rules by following previous work [45]. Examples
of utilized rewrite rules and their functions are illustrated in Table
1, with a complete enumeration available on the o!cial website
[1]. Speci"cally, we introduce a rule termed “EMPTY” to signify
instances where the query remains unchanged, thereby standardiz-
ing LLM outputs with an indicator for scenarios that do not require
query rewrite.

6.1.3 LLM Se"ing. We leverage the GPT-3.5-turbo version [10]
within the ChatGPTAPI [2] as the default LLM setting. Furthermore,
we assess our system’s generalizability across other LLMs (e.g., the
leading closed-source model GPT-4 and the leading open-source
models Llama3 and Granite), as detailed in Section 6.5.

6.1.4 Baseline Methods. We compare our systemwith two baseline
methods:
LearnedRewrite (LR) [45]: This approach, recognized as the state-
of-the-art query rewrite method, incorporates a cost estimation
model for predicting the performance of rewritten queries. It further
employs a Monte Carlo Tree-based search algorithm to identify the
optimal query.
LLM only [23]: This method straightforwardly generates a rewrit-
ten query from the input, incorporating task instructions, schema,
and a "xed demonstration as prompts to the LLM. when the rewrit-
ten queries are not executable or equivalent to the original queries,
we use the original queries to ensure a fair comparison.

6.1.5 Training Se"ing. In the demonstration preparation phase,
we exclude any training queries already present in the demonstra-
tion pool from being selected as demonstrations to mitigate poten-
tial bias. For the development of our query representation-based

60

Table 2: Execution time v.s. di#erent query rewrite methods
Execution time(sec) TPC-H IMDB DSB

Method Mean Median 75th 95th Mean Median 75th 95th Mean Median 75th 95th
Original 70.90 22.00 37.01 300.00 6.99 1.86 5.12 32.49 60.55 6.64 26.55 300.00
LR 39.40 22.00 32.21 159.95 6.20 1.62 4.74 32.45 59.21 5.14 53.78 300.00
LLM only (GPT-3.5) 70.67 22.00 37.01 300.00 6.96 1.86 5.10 32.49 61.60 6.53 26.40 300.00
LLM-R2 (GPT-3.5) 37.23 17.40 29.80 164.12 3.91 1.33 3.52 18.16 24.11 2.16 12.61 196.61
% of Original 52.5% 79.1% 80.5% 54.7% 56.0% 71.3% 68.7% 55.9% 39.8% 32.5% 47.5% 65.5%
% of LR 94.5% 79.1% 92.5% 102.6% 63.1% 82.0% 74.3% 56.0% 40.7% 42.0% 23.4% 65.5%
% of LLM only 52.7% 79.1% 80.5% 54.7% 56.2% 71.3% 69.0% 55.9% 39.1% 33.1% 47.8% 65.5%
LLM only (Llama3) 70.80 22.00 37.01 300.00 6.98 1.86 4.99 32.49 62.02 6.62 26.55 300.00
LLM only (Granite) 65.06 20.73 36.25 300.00 6.03 1.85 4.91 32.49 60.55 6.64 26.55 300.00
LLM-R2 (Llama3) 38.47 18.99 31.55 161.03 5.94 1.83 4.88 29.69 51.35 6.12 27.07 300.00
LLM-R2 (Granite) 37.89 19.75 28.62 157.37 4.71 0.97 3.65 21.56 26.58 3.46 13.15 300.00

Table 3: The rewritten queries’ number
Counts TPC-H/IMDB/DSB

Method Rewrite # Improve # Improve %
LR 258/203/456 192/197/193 74.42/97.04/42.32
LLM only 197/102/210 68/67/8 34.5/65.68/3.81
LLM-R2 323/302/341 305/292/222 94.43/96.69/65.10

Table 4: Query execution time including
the rewrite latency

Total (Latency) TPC-H IMDB DSB
LR 40.98(1.58) 7.24(1.04) 60.99(1.78)
LLM only 75.37(4.70) 7.58(1.38) 64.21(6.00)
LLM-R2 40.63(3.40) 6.81(2.90) 27.40(3.29)

Table 5: The average monetary cost, average number of to-
kens and time cost of training LLM-R2.

Method Dataset Avg_Cost Avg_Tk._In Avg_Tk._Out Training_T.

LLM Only
TPC-H 0.0017 2844.16 161.54 -
IMDB 0.0012 1371.36 49.76 -
DSB 0.0028 5571.82 417.73 -

LLM-R2
TPC-H 0.0006 1167.5 20.31 4061
IMDB 0.0006 1188.36 21.35 3305
DSB 0.0008 1299.67 7.00 6571

demonstration selector, we adopt a curriculum learning strategy
encompassing four iterations (𝑆 = 4). Each iteration involves further
training our contrastive representation model with a learning rate
of 10≃5, a batch size of 8, over three epochs, utilizing a Tesla-V100-
16GB GPU.

6.1.6 Evaluation Metrics. For the evaluation of rewrite methods,
two key metrics are employed: query execution time and rewrite
latency, which are respectively employed to evaluate the executing
e!ciency and the computational e!ciency. To mitigate variability,
each query is executed "ve times on a 16GB CPU device, with the
average execution time calculated after excluding the highest and
lowest values. To address the challenge posed by overly complex
queries that exceed practical execution times, a maximum time limit
of 300 seconds is imposed, with any query exceeding this duration
assigned a default execution time of 300 seconds. This approach
facilitates a broader range of experimental conditions. For assessing
rewrite latency—the time required to complete a query rewrite—a
custom Python script is utilized to invoke both rewrite methods,
capturing the average rewrite latency across all test queries on the
same hardware platform.

6.2 Executing E!ciency Evaluation
As shown in Table 2, we compare our proposed method LLM-R2

with two baselines, documenting the mean, median, 75th, and 95th
percentile execution times. The mean and median indicate general
e!cacy, while the 75th and 95th percentiles highlight performance
in long tail cases. Our analysis reveals several key observations:
(1) LLM-R2 signi"cantly reduces query execution time across the
TPC-H, IMDB, and DSB datasets, outperforming all baseline meth-
ods. Speci"cally, LLM-R2 reduces execution time to 94.5%, 63.1%,
and 40.7% compared to LR, and to 52.7%, 56.0%, and 33.1% rela-
tive to LLM only, with further reductions to 52.5%, 56.0%, and
39.8% compared to the original query. This performance enhance-
ment is due to optimized demonstration selection for prompting
the LLM’s input, allowing our method to suggest superior rewrite

rules. Additionally, LLM-R2 o#ers more adaptable and tailored rule
suggestions compared to the LR baseline.
(2) The bottom section of Table 2 indicates that LLM-R2 using
di#erent LLM backbones can also outperform both LLM Only and
LR, showcasing the e#ectiveness of our LLM-R2 for both closed-
source and open-source LLMs.
(3) The margin of improvement over LR is signi"cantly greater in
the IMDB and DSB datasets compared to the TPC-H dataset. This is
due to two reasons: (1) Most of the e#ective rewrite rules for TPC-H
queries can already be applied by existing methods, limiting LLM-
R2’s potential for enhancements; (2) TPC-H’s reliance on only 22
query templates results in limited query diversity, constraining the
demonstration of LLM-R2’s superior generalization abilities.
(4) LR’s underperformance on the DSB dataset is due to its greedy
search algorithm. The Monte Carlo tree search in LR struggles with
the complex and costly query trees of DSB, retaining only a few
best options at each step. This limitation hampers the selection of
e#ective rules, explaining its poor performance.
(5) LLM only has the worst performance. The direct generation
of SQL with LLMs results in non-executable or non-equivalent
rewrites, and hence many rewritten queries remain identical to the
original across datasets.

Furthermore, we evaluate the performance by collecting statistics
on the number of successful rewrites performed by each method
across three datasets. As shown in Table 3, we observe that:
(1) LLM-R2 excels with the most e!ciency-enhancing rewrites,
achieving the largest improvement percentage upon rewriting.
Compared to the baseline, LLM-R2 has both a higher number
of rewrites and a signi"cant improvement in query execution e!-
ciency across all the evaluated datasets.
(2) LLM only often fails in its rewrite attempts. For instance, in
the TPC-H dataset, 119 out of 129 rewrites either do not match
the original query results or contain execution errors. Even in the
simpler IMDB dataset, LLM only fails in 31 out of 102 attempts and
makes limited e#ective rewrites due to a lack of database knowledge.
In contrast, our LLM-R2 successfully rewrites more queries and
achieves a higher improvement rate across all datasets.

6.3 Computational E!ciency Evaluation
To evaluate the computational e!ciency, we rigorously assess the
average rewrite latency for input queries across all datasets for the
LLM-R2 framework as well as the LR and LLM only baselines.
Moreover, to ascertain if query time reduction adequately compen-
sates for the rewriting latency, we combine the execution cost and

61

Table 6: Execution time v.s. data scales.

Execution time(sec) TPC-H 1G TPC-H 5G TPC-H 10G TPC-H 100G

Method Mean Median 75th 95th Mean Median 75th 95th Mean Median 75th 95th Mean Median 75th 95th
Original 52.02 0.57 1.39 300.00 53.90 3.27 11.53 300.00 70.90 22.00 37.01 300.00 1296.85 54.35 3000.00 3000.00
LLM-R2 15.19 0.56 1.14 55.20 19.34 3.20 7.97 34.70 37.23 17.40 29.80 164.12 963.13 32.60 1330.72 3000.00
LR 25.40 0.57 1.14 213.81 20.10 4.02 9.02 32.14 39.40 22.00 37.21 159.95 1037.02 44.68 2265.75 3000.00
LLM only 52.73 2.14 4.49 300.00 54.13 3.62 11.56 300.00 70.67 22.00 37.01 300.00 1304.37 54.15 3000.00 3000.00

rewrite latency to formulate a comprehensive metric in Table 4. In
order to further analyse the e!ciency of LLM-R2, we also compute
the monetary cost and LLM-R2’s model training time in Table 5.
From the evaluations, our analysis yields signi"cant insights:
(1) LLM-R2 incurs additional latency compared to LR, speci"cally
requiring an average of 1.82, 1.86, and 1.51 seconds more to rewrite
queries from the TPC-H, IMDB, and DSB datasets, respectively.
This heightened latency is due to our system’s complexity. Notably,
LLM-R2 employs a demonstration selection model and leverages
the online LLM API, which together account for the increased
rewrite latency.
(2) However, the increased rewrite latency in our system LLM-R2

is justi"able given that the sum of rewrite latency and execution
time is lower than that of baseline methods, especially for the most
complicated DSB queries. This indicates that the complex queries
bene"t more from our method.
(3) The LLM only approach exhibits considerable latency as the
LLM endeavors to directly generate a rewritten query, underscoring
the complexity of direct SQL query generation for LLMs. Since we
have included information like table and cardinality in the demon-
stration selection module, LLM-R2’s input to LLM is much shorter
than that of LLM only, where we also need to include the basic
information like schema and query’s execution plan as inputs. The
details of the input and output length di#erence can be found in
Table 5. We also observe that this di#erence becomes more pro-
nounced with the complexity of the query and database, notably in
the TPC-H and DSB datasets. The comparison between our LLM-
R2 framework and the LLM only approach demonstrates that our
methodology, which focuses on generating rewrite rules, is more
e#ectively processed by LLMs.
(4) We also present the monetary cost and training time of our
method using one Tesla-V100-16G GPU on all three datasets in
seconds. As shown in Table 5, we observe that the averagemonetary
cost per query for our LLM-R2 is less than 0.001 USD for all datasets,
which can be considered to be cost-e!cient even processing large
number of queries. In addition, using LLM only takes around 2 to
3 times of LLM-R2’s monetary cost. Although the average cost per
query for LLM only is still not too high, the e!ciency for using
LLMs along is still much lower than our method. Moreover, training
our model does not cost too much time. A single time training for
less than two hours will ensure the model to be capable of dealing
with all kinds of input queries querying the database.

6.4 Robustness Evaluation
We next evaluate the robustness of our LLM-R2 framework, fo-
cusing on two critical dimensions: transferability and $exibility.
Transferability evaluates the system’s ability to generalize across

Table 7: Training on TPC-H and Testing on IMDB
Execution time(sec) Mean Median 75th 95th
Original 6.99 1.86 5.12 32.49
LLM-R2 4.41 1.35 3.57 17.84
LR - - - -
LLM only 6.99 1.86 5.12 32.49

diverse datasets, while $exibility examines whether LLM-R2 main-
tains its high performance as the volume of data increases. These
aspects are crucial for understanding the adaptability and e!ciency
of LLM-R2 in varied environments.

6.4.1 Transferability across di#erent datasets. In order to evaluate
our method’s transferability, we used the demonstration selection
model trained on the TPC-H dataset to rewrite queries in the IMDB
dataset. As shown in Table 7, the results reveal our method’s trans-
ferred performance is comparable with the in-distribution trained
method and highly superior over LLM only when applied to a dif-
ferent dataset. LLM only fails to make e#ective rewrites given the
"xed demonstration from the TPC-H dataset, where most rewrites
lead to meaningless changes like removing table alias. Since LR’s
cost model lacks cross-dataset transfer capability, its results are
not available. These "ndings suggest the potential to develop a
robust model by combining multiple datasets, enhancing its ability
to address a wide array of unseen queries and datasets.

6.4.2 Flexibility across di#erent data scales. To further analyze the
$exibility of our method, we regenerate the TPC-H dataset using
di#erent scale factors. We additionally generate TPC-H dataset
using scale factor 1 (around 1GB data), 5 (around 5GB data) and 100
(around 100GB data) apart from 10 in the main results to simulate
a change of database size. From scale factor 1 to 100, we can see in
Table 6 the e!ciency of queries rewritten by our method increases
consistently and surpasses the baseline methods, indicating the
overall e!cacy of our method.

6.5 Ablation Studies
We conduct an ablation study to evaluate our method’s performance
along two distinct dimensions: di#erent selection approaches and
speci"c settings in the selection model. At "rst, we explore alternative
selection approaches by substituting the learned selection model
with di#erent approaches to gauge their impact. Subsequently, we
delve into the intricacies of the selection model by replacing indi-
vidual components of the model.

6.5.1 Di#erent selection approaches. We design the following ap-
proaches to replace the contrastive selection model in our system:

- Zero-shot: This method employs the LLM-R2 to rewrite input
queries without any preliminary demonstrations.

62

Table 8: Execution time v.s. di#erent selection approaches.
Execution time TPC-H IMDB DSB

Method Mean Median 75th 95th Mean Median 75th 95th Mean Median 75th 95th
Original 70.90 22.00 37.01 300.00 6.99 1.86 5.12 32.49 60.55 6.64 26.55 300.00
Zero-shot 46.15 21.95 33.26 300.00 6.98 1.85 5.12 32.49 34.53 3.35 11.52 300.00
Random 40.50 21.63 32.22 165.63 5.45 1.70 4.50 25.03 45.88 5.43 17.41 300.00
Tree 39.21 18.97 30.89 164.10 4.40 1.24 3.40 18.89 26.10 3.86 13.54 240.74
SentTrans 40.19 19.21 32.21 164.99 6.05 1.70 4.49 30.01 24.68 3.95 13.18 197.23
LLM-R2 37.23 17.40 29.80 164.12 3.91 1.33 3.52 18.16 24.11 2.16 12.61 196.61

Table 9: Ablation on curriculum, number of
shots and LLM backbone.
Execution time(sec) Mean Median 75th 95th
LLM-R2 (1-shot) 37.23 17.40 29.80 164.12
w/o Curriculum 38.73 19.70 32.17 164.98

LLM-R2 (3-shots) 54.08 19.67 37.01 300.00
LLM-R2 (GPT-4) 38.58 20.32 32.27 167.26
LLM-R2 (Llama3) 38.47 18.99 31.55 161.03
LLM-R2 (Granite) 37.89 19.75 28.62 157.37

- Few-shots: Building on insights from Section 4, we re"ne
the demonstration pool with three intuitive methods for one-shot
demonstration selection: Random, Tree, and SentTrans.

As shown in Table 8 we make the following observations:
(1) E#ectiveness of the LLM-enhanced system: The Zero-shot
approach outperforms the original queries signi"cantly, which in-
dicates that the LLM-R2 component within our rewrite system is
capable of enhancing original queries, showcasing the underlying
potential of the LLM to o#er viable query rewrite suggestions.
(2) E#ectiveness of introducing demonstrations:We observe
that approaches incorporating demonstrations into the rewrite sys-
tem consistently surpass the Zero-shot setting across all datasets.
This observation underscores the signi"cance of leveraging demon-
strations to enhance the rewrite system. Furthermore, the improve-
ment across diverse datasets highlights the universal applicability
and e#ectiveness of demonstration-based prompting in re"ning
rewrite outcomes.
(3) E#ectiveness of the contrastive selection model: Our com-
parative analysis underscores the signi"cance of selecting high-
quality demonstrations for query rewriting. The "ndings reveal
that superior demonstrations directly contribute to the generation
of more e#ective rewritten queries.

6.5.2 E#ectiveness of specific se"ings in the selection model. In
this experiment, we assess three critical aspects of the contrastive
selection model:
- The Curriculum Learning pipeline:We compare the e!cacy
of the curriculum learning pipeline with a baseline model trained
on the TPC-H dataset using all training triplets simultaneously.
- Demonstration Quantity: We evaluate the impact of varying
the number of demonstrations, focusing on 1-shot and 3-shot con-
"gurations to understand their e#ect on model performance.
- Di#erent LLMs:We explore the integration of GPT-4, Llama3-8B
[32] and Granite [26] into our rewriting system. Due to the cost of
the GPT-4 API, we limit its use to the test dataset rewrite process,
using GPT-3.5-turbo for demonstrations and models.

Table 9 shows the evaluation results and we obtain the following
key insights:
(1) Our query representation model outperforms the baseline ap-
proaches in selecting optimal demonstrations, especially when
curriculum-based training is adopted. Direct training on the full
dataset reduces execution costs by an average of 32.17 seconds and
a median of 2.3 seconds. Curriculum learning further enhances
e!ciency, with average reductions of 1.5 seconds and median de-
creases of 2.3 seconds. These results underscore the e!cacy of our
proposed query representation model and the curriculum learning
framework.

Table 10: Ablation on di#erent information factors sorted by
Mean value.
TPC-H Execution time Counts
Method Mean/Median/75th/95th Total/ Improve/%
LLM-R2 37.23/17.40/29.80/164.12 323/305/94.43
LR 39.40/22.00/32.21/159.95 258/192/74.42
Full_schema+Value 38.09/19.08/30.82/160.19 334/313/93.71
Filtered_schema 50.36/1.27/32.66/300.00 178/155/87.08
Full_schema 50.52/20.56/32.61/300.00 179/158/88.27
Filtered_schema+Value 53.81/20.73/31.53/300.00 222/198/89.19
Full_schema+Value+Plan 54.93/22.00/37.01/300.00 135/121/89.63
Full_schema+Plan 55.24/22.00/37.01/300.00 119/93/78.15
Full_schema+Card 56.23/22.00/37.01/300.00 56/33/58.93
Plan 57.20/22.00/7.01/300.00 44/42/95.45
Full_schema+Value+Card 68.67/22.00/37.01/300.00 48/43/89.58
Card 70.90/22.00/37.01/300.00 0/0/-

(2) Using a 3-shot approach instead of 1-shot degrades performance.
The 3-shot method generated only 255 rewrite proposals, with 235
improving query execution e!ciency, despite a 92.16% success rate.
The reduced number of suggestions is due to inconsistent guidance
from three demonstrations, higher rewrite costs, and longer in-
context texts for LLM analysis. Thus, 1-shot prompting is more
e!cient and e#ective under current conditions.
(3) we use the leading Llama3 from the Llama family [32] and
Granite [26] as the LLM backbones for both our LLM-R2 and the
baseline LLM Only method. We evaluate them on all three datasets
and record the results in Table 2. We observe that changing the LLM
backbone into Llama3 or Granite decreases both LLM-R2’s and LLM
Only’s performance. Moreover, the performance of LLM-R2 using
Llama3 and Granite still outperforms all the baselines, showcasing
the e#ectiveness of our method.
(4) Despite GPT-4’s enhanced capabilities and Llama3 or Gran-
ite’s strong instruction-following ability, transitioning to a di#erent
model for inference adversely impacts the e!cacy of our method.
This observation underscores the complexity of optimizing perfor-
mance within our proposed framework and suggests that consis-
tency in model usage throughout the process may be pivotal for
achieving optimal selection.

6.5.3 Additional Information in LLM Prompts. Including data dis-
tribution and cardinality factors in demonstrations and the inputs
of LLM is also worth discussing as they are widely adopted in txt-
to-SQL methods [6, 23]. We design the following information that
can be included in demonstrations and the LLM’s inputs together
with the queries as another ablation study:
Full_schema: The information of the database schema, including
table names, column names and column types;
Filtered_schema: The "ltered information of the database schema,
where only the tables and columns queried are included;

63

QueryCL Result
Rules applied: []

QueryCL Result
Rules applied: ['FILTER_INTO_JOIN', 'JOIN_EXTRACT_FILTER', 'PROJECT_TO_CALC',
'FILTER_INTO_JOIN']
New query cost: 26.90622425

LR Result
Rules applied: []

QueryCL Result
Rules applied: ['FILTER_INTO_JOIN']
New query cost: 17.65797496

Original Query
Original query: select s_acctbal, ... , s_comment from part, supplier, ..., region where
p_partkey = ps_partkey and ... and ps_supplycost = (select min(ps_supplycost) from
partsupp, supplier, nation, region where p_partkey = ps_partkey and ... and r_name =
'AMERICA') order by s_acctbal desc, ..., p_partkey;
Query cost: 0.789705753

Original Query
Original query: select l_orderkey, sum(l_extendedprice * (1 - l_discount)) as revenue, o_orderdate,
o_shippriority from customer, orders, lineitem where c_mktsegment = 'AUTOMOBILE' and ... group
by l_orderkey, o_orderdate, o_shippriority order by revenue desc, o_orderdate;
Query cost: 33.2621007

Original Query
Original query: select l_shipmode, sum(case when o_orderpriority = '1-
URGENT' or o_orderpriority = '2-HIGH' then 1 else 0 end) as high_line_count,
sum(case when o_orderpriority <> '1-URGENT' and o_orderpriority <> '2-
HIGH' then 1 else 0 end) as low_line_count from orders, lineitem where
o_orderkey = l_orderkey and ... group by l_shipmode order by l_shipmode;
Query cost: 21.63845666

LR Result
Rules applied: ['AGGREGATE_JOIN_TRANSPOSE',
'SORT_PROJECT_TRANSPOSE', 'JOIN_EXTRACT_FILTER']
New query cost: 17.40275009

LR Result
Rules applied: ['FILTER_INTO_JOIN', 'PROJECT_TO_CALC', 'JOIN_EXTRACT_FILTER']
New query cost: 33.1077284

Figure 8: Examples of the rewrite results of baseline Learned Rewrite method and out LLM-R2 method.

Table 11: The variety of rules in terms of unique rules and
total applications.

Counts TPC-H IMDB DSB

Method Unique Total Unique Total Unique Total
LR 5 405 1 192 9 707
LLM-R2 56 1824 6 361 37 920

Value: To let the LLMs understand the data distribution and value
range information, we follow existing txt-to-SQL work [6, 23] to
include value descriptions to each column of the database schema;
Plan: We directly include the physical plan obtained from DBMS
on the query as a query tree ;
Card: We specially extract the cardinality information from the
physical plans and formalize a cardinality tree as input.
The results of the experiment are shown in Table 10. From the
results we have a few observations.
(1) Adding more information to demonstrations and LLM inputs
does not help the LLM generate better rewrite suggestions. Our
LLM-R2 outperforms all the other combination of additional in-
formation. We believe that the Occam’s Razor also exists in LLMs,
especially for dealing with complex task like SQL.
(2) Current LLMs still cannot handle structural information well
when directly given such information. When we include Plan or
Card in the inputs, which are in the tree format, the rewrite per-
formance decreases signi"cantly. The performance drop is mainly
due to much fewer rewrite suggestions, where the LLM no longer
considers some queries as ‘need to rewrite and improve’. In the
extreme case where we only include a tree of cardinality values,
none of the input queries are rewritten.
(3) The tuning of the LLM prompt is sensitive and have no obvious
pattern. For example, ‘Full_schema+Value’ can achieve a compara-
ble performance as LLM-R2, but using the "ltered schema instead
results in a much lower performance. This observation is in favor
of the "ndings in [30], that LLMs are sensitive to their prompts.

6.6 Qualitative Analysis
we proceed to present examples to illustrate the rewrite quality
between various methods, focusing particularly on comparisons
between our approach and baseline methods. Notably, due to the
high incidence of erroneous rewrites generated by the LLM-only
method, our analysis primarily compares our method against the
LR baseline. Figure 8 demonstrates our "ndings demonstrate the
superior robustness and $exibility of our model compared to LR.
For instance, in the "rst case study, our LLM-R2 method uncov-
ers rewrite rules that remain undetected by LR. This discrepancy
can be attributed to LR’s potentially ine#ective cost model, which
might erroneously consider the original query as already optimized.

Conversely, our LLM-enhanced system suggests a rewrite that evi-
dences signi"cant potential for cost reduction. In the second case,
LR is observed to occasionally transform an e!cient query into
a less e!cient one. In the third scenario, LLM-R2 outperforms
by modifying the rule sequence and incorporating an additional
“FILTER_INTO_JOIN” operation, transforming a “WHERE” clause
into an “INNER JOIN”, thereby achieving a more e!cient query
rewrite than that o#ered by LR.

Furthermore, we delve into the diversity of rewrite rules sug-
gested by the di#erent methods. Here, the term Unique refers to
the distinct categories of rewrite rules recommended by a method,
whereas Total denotes the aggregate count of all rewrite rule in-
stances proposed. As illustrated in Table 11, it is evident that LLM-
R2 not only recommends a higher quantity of rewrite rules but
also exhibits a broader spectrum of rewrite strategies by employing
a diverse range of rules. This observation underscores LLM-R2’s
enhanced $exibility and robustness, showcasing its capability to
generate more varied and e#ective rewrite plans.

7 CONCLUSION
In this paper, we propose a LLM-enhanced query rewrite pipeline
to perform e!cient query rewrite. By collecting useful demonstra-
tions and learning a contrastive demonstration selector to modify
the rewrite system inputs, we are able to successfully improve the
input queries’ e!ciency across popular datasets. In addition, we
further prove the e#ectiveness of our learning pipeline and the
transferability of our method over di#erent scales, model back-
bones, and datasets, showing that LLM-enhanced methods could
be an e#ective solution for e!ciency-oriented query rewrite. The
current limitation is that our LLM-R2 exhibits higher rewrite la-
tency compared to DB-only methods due to the time consumed
by calling LLM APIs and selecting demonstrations. However, our
experimental results show that this increased latency is o#set by
the larger reduction in execution time achieved by LLM-R2. This
demonstrates the potential of LLMs in database applications, lever-
aging their strong generalization and reasoning capabilities. Future
improvements could include e!cient demonstration selection algo-
rithms like Faiss[14] or "ne-tuning an LLM speci"cally for query
rewriting with more datasets.

ACKNOWLEDGMENTS
This research is supported, in part, by Alibaba Group through Al-
ibaba Innovative Research (AIR) Program and Alibaba-NTU Singa-
pore Joint Research Institute (JRI), and the Ministry of Education,
Singapore, under its Academic Research Fund (Tier 2 Awards MOE-
T2EP20221-0015 and MOE-T2EP20223-0004).

64

REFERENCES
[1] [n.d.]. Apache Calcite Rewrite Rules. https://calcite.apache.org/

javadocAggregate/org/apache/calcite/rel/rules/package-summary.html.
[2] [n.d.]. Introduction of OpenAI Text Generation APIs. https://platform.openai.

com/docs/guides/text-generation.
[3] [n.d.]. LLM As Database Administrator. https://github.com/

TsinghuaDatabaseGroup/DB-GPT.
[4] [n.d.]. PostgreSQL. https://www.postgresql.org.
[5] [n.d.]. TPC-H Toolkit. https://www.tpc.org/tpc_documents_current_versions/

current_speci"cations5.asp.
[6] Arian Askari, Christian Poelitz, and Xinye Tang. 2024. MAGIC: Generating

Self-Correction Guideline for In-Context Text-to-SQL. CoRR abs/2406.12692
(2024).

[7] Qiushi Bai, Sadeem Alsudais, and Chen Li. 2023. QueryBooster: Improving SQL
Performance Using Middleware Services for Human-Centered Query Rewriting.
Proc. VLDB Endow. 16, 11 (2023), 2911–2924.

[8] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources. In SIGMOD. 221–230.

[9] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In ICML, Vol. 382. 41–48.

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Je#rey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. In NeurIPS.

[11] Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, and Vicente Ordonez. 2021.
Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning.
In AAAI. 6912–6920.

[12] Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia
Specia. [n.d.]. SemEval-2017 Task 1: Semantic Textual Similarity Multilingual
and Crosslingual Focused Evaluation. In ACL. 1–14.

[13] Bailu Ding, Surajit Chaudhuri, Johannes Gehrke, and Vivek R. Narasayya. 2021.
DSB: A Decision Support Benchmark for Workload-Driven and Traditional
Database Systems. Proc. VLDB Endow. 14, 13 (2021), 3376–3388.

[14] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Je# Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.
The Faiss library. CoRR abs/2401.08281 (2024).

[15] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple Contrastive
Learning of Sentence Embeddings. In EMNLP. 6894–6910.

[16] Goetz Graefe. 1995. The Cascades Framework for Query Optimization. IEEE
Data Eng. Bull. 18, 3 (1995), 19–29.

[17] Goetz Graefe and David J. DeWitt. 1987. The EXODUS Optimizer Generator. In
SIGMOD. 160–172.

[18] Goetz Graefe and William J. McKenna. 1993. The Volcano Optimizer Generator:
Extensibility and E!cient Search. In ICDE. 209–218.

[19] Yue Han, Guoliang Li, Haitao Yuan, and Ji Sun. 2021. An Autonomous Materi-
alized View Management System with Deep Reinforcement Learning. In ICDE.
2159–2164.

[20] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Yejin Bang, Andrea Madotto, and Pascale Fung. 2023. Survey of Hallucination in
Natural Language Generation. ACM Comput. Surv. 55, 12 (2023), 248:1–248:38.

[21] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9 (2015), 204–215.

[22] Feifei Li. 2019. Cloud native database systems at Alibaba: Opportunities and
Challenges. Proc. VLDB Endow. 12, 12 (2019), 2263–2272.

[23] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li,
Kevin Chen-Chuan Chang, Fei Huang, Reynold Cheng, and Yongbin Li. 2023.
Can LLM Already Serve as A Database Interface? A BIg Bench for Large-Scale
Database Grounded Text-to-SQLs. In NeurIPS.

[24] Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu, Yuan Ni, Guotong Xie,
Xiaoling Wang, and Xipeng Qiu. 2023. Uni"ed Demonstration Retriever for
In-Context Learning. In ACL. 4644–4668.

[25] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis. In
ACL. 142–150.

[26] Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad,
Adriana Meza Soria, Michele Merler, Parameswaran Selvam, Saptha Surendran,

Shivdeep Singh, Manish Sethi, Xuan-Hong Dang, Pengyuan Li, Kun-Lung Wu,
Syed Zawad, Andrew Coleman, Matthew White, Mark Lewis, Raju Pavuluri,
Yan Koyfman, Boris Lublinsky, Maximilien de Bayser, Ibrahim Abdelaziz, Kinjal
Basu, Mayank Agarwal, Yi Zhou, Chris Johnson, Aanchal Goyal, Hima Patel,
S. Yousaf Shah, Petros Zerfos, Heiko Ludwig, Asim Munawar, Maxwell Crouse,
Pavan Kapanipathi, Shweta Salaria, Bob Calio, Sophia Wen, Seetharami Seelam,
Brian Belgodere, Carlos A. Fonseca, Amith Singhee, Nirmit Desai, David D. Cox,
Ruchir Puri, and Rameswar Panda. 2024. Granite Code Models: A Family of
Open Foundation Models for Code Intelligence. CoRR abs/2405.04324 (2024).

[27] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. 1992. Extensible/Rule
Based Query Rewrite Optimization in Starburst. In SIGMOD. 39–48.

[28] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In EMNLP. 3980–3990.

[29] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli,
Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language Models Can Teach Themselves to Use Tools. In NeurIPS.

[30] Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. 2023. Quantifying
Language Models’ Sensitivity to Spurious Features in Prompt Design or: How I
learned to start worrying about prompt formatting. CoRR abs/2310.11324 (2023).

[31] Ruoxi Sun, Sercan Ö. Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha,
Pengcheng Yin, and Tomas P"ster. 2023. SQL-PaLM: Improved Large Language
Model Adaptation for Text-to-SQL. CoRR abs/2306.00739 (2023).

[32] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. 2023. LLaMA: Open and E!cient Foundation Language Models. CoRR
abs/2302.13971 (2023).

[33] CanWang, Sheng Jin, Yingda Guan, Wentao Liu, Chen Qian, Ping Luo, andWanli
Ouyang. 2022. Pseudo-Labeled Auto-Curriculum Learning for Semi-Supervised
Keypoint Localization. In ICLR.

[34] Zhaoguo Wang, Zhou Zhou, Yicun Yang, Haoran Ding, Gansen Hu, Ding Ding,
Chuzhe Tang, Haibo Chen, and Jinyang Li. 2022. WeTune: Automatic Discovery
and Veri"cation of Query Rewrite Rules. In SIGMOD. ACM, 94–107.

[35] Jerry W. Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun
Chen, Hanxiao Liu, Da Huang, Denny Zhou, and Tengyu Ma. 2023. Larger
language models do in-context learning di#erently. CoRR abs/2303.03846 (2023).

[36] Wentao Wu, Philip A. Bernstein, Alex Raizman, and Christina Pavlopoulou.
2022. Factor Windows: Cost-based Query Rewriting for Optimizing Correlated
Window Aggregates. In ICDE. 2722–2734.

[37] Siqiao Xue, Caigao Jiang, Wenhui Shi, Fangyin Cheng, Keting Chen, Hongjun
Yang, Zhiping Zhang, Jianshan He, Hongyang Zhang, Ganglin Wei, Wang Zhao,
Fan Zhou, Danrui Qi, Hong Yi, Shaodong Liu, and Faqiang Chen. 2023. DB-GPT:
Empowering Database Interactions with Private Large Language Models. CoRR
abs/2312.17449 (2023).

[38] Shunyu Yao, Je#rey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R.
Narasimhan, and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in
Language Models. In ICLR.

[39] Seonghyeon Ye, Jiseon Kim, and Alice Oh. 2021. E!cient Contrastive Learning
via Novel Data Augmentation and Curriculum Learning. In EMNLP. 1832–1838.

[40] Haitao Yuan, Guoliang Li, Ling Feng, Ji Sun, and Yue Han. 2020. Automatic
View Generation with Deep Learning and Reinforcement Learning. In ICDE.
1501–1512.

[41] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting
Huang, Enbo Zhao, Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s Song in the AI Ocean: A Survey on
Hallucination in Large Language Models. CoRR abs/2309.01219 (2023).

[42] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A
Tree Transformer Model for Query Plan Representation. Proc. VLDB Endow. 15,
8 (2022), 1658–1670.

[43] Yue Zhao, Zhaodonghui Li, and Gao Cong. 2023. A Comparative Study and Com-
ponent Analysis of Query Plan Representation Techniques in ML4DB Studies.
Proc. VLDB Endow. 17, 4 (2023), 823–835.

[44] Yue Zhao, Zhaodonghui Li, and Gao Cong. 2024. A Comparative Study and Com-
ponent Analysis of Query Plan Representation Techniques in ML4DB Studies.
Proc. VLDB Endow. 17, 4 (2024), 823–835.

[45] Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng. 2021. A Learned
Query Rewrite System using Monte Carlo Tree Search. Proc. VLDB Endow. 15, 1
(2021), 46–58.

[46] Yuhang Zhou, He Yu, Siyu Tian, Dan Chen, Liuzhi Zhou, Xinlin Yu, Chuanjun
Ji, Sen Liu, Guangnan Ye, and Hongfeng Chai. 2023. R3-NL2GQL: A Hybrid
Models Approach for for Accuracy Enhancing and Hallucinations Mitigation.
CoRR abs/2311.01862 (2023).

65

