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ABSTRACT
Data lakes, increasingly adopted for their ability to store and ana-

lyze diverse types of data, commonly use columnar storage formats

like Parquet and ORC for handling relational tables. However, these

traditional setups fall short when it comes to efficiently managing

graph data, particularly those conforming to the Labeled Property

Graph (LPG) model. To address this gap, this paper introduces

GraphAr, a specialized storage scheme designed to enhance exist-

ing data lakes for efficient graph data management. Leveraging

the strengths of Parquet, GraphAr captures LPG semantics pre-

cisely and facilitates graph-specific operations such as neighbor

retrieval and label filtering. Through innovative data organization,

encoding, and decoding techniques,GraphAr dramatically improves

performance. Our evaluations reveal that GraphAr outperforms

conventional Parquet and Acero-based methods, achieving an aver-

age speedup of 4452× for neighbor retrieval, 14.8× for label filter-

ing, and 29.5× for end-to-end workloads. These findings highlight

GraphAr’s potential to extend the utility of data lakes by enabling

efficient graph data management.
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1 INTRODUCTION
Data lakes have quickly become an essential infrastructure for

organizations looking to store and analyze diverse datasets in their

raw formats [27, 33, 48, 55, 56, 63, 74]. As centralized repositories,

they offer unparalleled flexibility in accommodating a wide array

of data types, from structured relational tables to unstructured logs
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Dad:Person 
{labels:Asian & Enrollee}

Child:Person
{labels:Asian & Enrollee}

Mom:Person 
{labels:Asian & Enrollee}

:Disease
{name:Hypertension}

:Diagnosed
{date>=2020-01-01}

:IsParent:Diagnosed
Query pattern

Disease
(did, name)

Person
(labels, pid)

Diagnosed
(pid, date, did)

IsParent
 (sid, date, oid)

PersonDisease

…

Diagnosed IsParent

Data lake

Schema of 
an example LPG

!

 Query on data lake
1. Hard to express LPG;
2. Inefficient to implement. 

… … … …

No label 
filtering

:Disease<-[:Diagnosed]-:Person
⋈⋈

Figure 1: A graph-related query within the data lake.

and text files. Crucially, they serve as a cost-effective solution for

archiving data at scale while still allowing for queries on archived

or rarely accessed data. This dual utility makes them invaluable for

both real-time analytics and long-term datamanagement. Columnar

storage formats like Parquet [7] and ORC [6] have become standard

for storing tabular data in data lakes due to their robust compression

and efficient query capabilities.

In sync with these trends, graph data has become increasingly

importance, especially for modeling complex relationships. Lead-

ing graph-related systems like Neo4j [19], TigerGraph [36], Janus-

Graph [16] and GraphScope [38] leverage the Labeled Property

Graph (LPG) model [25, 26, 28] for this purpose. The recent ISO

SQL:2023 standard includes a SQL/PGQ extension that not only

facilitates querying LPGs but also enables the creation of LPG

views from relational tables [1]. This groundbreaking inclusion

highlights the growing convergence of relational and graph data

models and emphasizes the need to integrate LPGs into data lakes.

Consequently, LPGs are making their way into data lakes for multi-

ple uses, from backups and archives for existing graph databases to

natural extensions of transactional, log, and tabular data.

Managing and analyzing LPGs in data lakes offers several sig-

nificant benefits. Graph-specific queries are often more naturally

articulated in languages like Cypher [42], Gremlin [65], GQL [41],

or SQL/PGQ, providing an intuitive framework for conducting com-

prehensive analysis of entity relationships, facilitating the discovery

of valuable insights. Data lakes also provide computational flexibil-

ity for running complex graph algorithms, enabling the exploration

of intricate patterns. Additionally, they offer cost-effective storage

solutions, allowing organizations to utilize more affordable and

colder storage options without sacrificing query performance. Most

530

https://doi.org/10.14778/3712221.3712223
https://github.com/apache/incubator-graphar/tree/research
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712223
https://www.acm.org/publications/policies/artifact-review-and-badging-current


notably, data lakes enable seamless querying across both graph and

relational data, ushering in a holistic approach to data analytics.

As shown in Figure 1, the example workload illustrates a sce-

nario of immense relevance to public health researchers. The query

aims to count the number of families—comprising a father, mother,

and child—each labeled as Asian and Enrollee (indicating their

participation in a health study), and diagnosed with hypertension

since 2020. Such queries hold significant utility for public health

studies as they allow for the analysis of correlations between fa-

milial relationships, racial groups, and specific health conditions

like hypertension among study participants. Understanding these

relationships can be critical for targeted health interventions and

for identifying possible social or genetic factors contributing to

disease prevalence. Within the context of this research query, data

lakes offer an economical and scalable solution for storing diverse,

multi-source, and often historical health-related data. More impor-

tantly, the intricate relationships andmultiple attributes required by

this research are more naturally and efficiently captured through

property graph queries than through traditional SQL. However,

integrating LPGs into data lakes introduces unique challenges:

Challenge 1: There is no standardized way to encapsulate an LPG

within the existing data lake architecture. While columnar for-

mats like Parquet and ORC excel at storing individual tables, they

fall short in representing the complex relationships and semantics

across these tables, which are inherent to LPGs.

Challenge 2: Graph-specific operations can be highly inefficient

in this setup. The foundational operation, neighbor retrieval, might

require multiple joins, significantly impacting performance.

Challenge 3: Label filtering, another essential graph-specific oper-
ation, also introduces inefficiency due to the lack of native support

in columnar formats.

GraphAr. To address these challenges, we introduce GraphAr1, an
efficient storage scheme for graph data in data lakes. It is designed

to enhance the efficiency of data lakes utilizing the capabilities

of existing formats, with a specific focus on Parquet in this paper.

GraphAr ensures seamless integration with existing tools and in-

troduces innovative additions specifically tailored to handle LPGs.

Firstly, Parquet provides flexible and efficient support for various

datatypes, including atomic types (e.g., bools and integers), and

nested and/or repeated structures (e.g., arrays and maps). Lever-

aging Parquet as its fundamental building block, GraphAr further
introduces standardized YAML files to represent the schema meta-

data for LPGs, alongside a hierarchical data layout to store the data.

This innovative combination of data organization with metadata

management enables the complete expression of LPG semantics,

while ensuring compatibility with both data lake ecosystems and

existing graph-related systems, addressing Challenge 1.
GraphAr incorporates specialized optimization techniques to im-

prove the performance of critical graph operations, which are not

inherently optimized in existing formats. To address Challenge
2, GraphAr facilitates neighbor retrieval by organizing edges as

sorted tables in Parquet to enable an efficient CSR (Compressed

1
Apache GraphAr is an effort undergoing incubation at the Apache Software Founda-

tion (ASF), sponsored by the Apache Incubator.

Sparse Row) or CSC (Compressed Sparse Column)-like representa-

tion, and leveraging Parquet’s delta encoding to reduce overhead

in data storage and loading. GraphAr also introduces an innovative

decoding algorithm that utilizes instruction sets such as BMI (Bit

Manipulation Instructions) and SIMD (Single Instruction, Multiple

Data), along with a unique structure named PAC (Page-Aligned

Collections), to further accelerate the neighbor retrieval process.

In addressing Challenge 3 of label filtering, GraphAr adapts the
RLE (Run-Length Encoding) technique from Parquet and introduces

a novel interval-based decoding algorithm. Through integrating

proven methods (CSR/CSC, delta encoding, RLE) with novel decod-

ing algorithms, GraphAr delivers a comprehensive and efficient

solution for optimizing LPG-specific operations.

Our key contributions can be summarized as follows:

• Elucidation of challenges and limitations in existing tabular

formats for managing LPGs in data lakes (Section 2).

• A strategic choice of Parquet compatibility, a standardized

YAML to fully express LPG semantics, and detailed specifi-

cation for organizing LPGs in Parquet (Section 3).

• Development of specialized optimization techniques for en-

hancing performance in neighbor retrieval and label filtering

operations (Sections 4 and 5). These are built upon Parquet’s

advanced encoding features and are complemented by two

innovative and efficient decoding algorithms.

• Comprehensive performance evaluation of GraphAr com-

pared to Parquet and Acero-based implementations, high-

lighting substantial speed gains: on average 4452× for neigh-

bor retrieval, 14.8× for label filtering, and 29.5× for end-to-

endworkloads. And the potential for integratingGraphAr into
existing graph systems (Section 6).

2 BACKGROUND AND KEY CHALLENGES
In this section, we discuss the limitations of using tabular file for-

mats like Parquet and ORC in data lakes for LPGs, a common graph

data model. We explore how these formats inadequately support

LPG representation and efficient graph queries, laying the ground-

work for the challenges that GraphAr tackles.

2.1 Tabular Formats in Data Lakes
Tabular data is key to data lakes, aiding efficient organization, anal-

ysis, and data extraction from large sets. Columnar formats like

Parquet [7] and ORC [6] are popular due to their robust features.

Unlike row-based formats such as CSV, they allow faster queries by

enabling selective column reading, avoiding unnecessary data. Ad-

ditionally, they offer diverse and efficient compression and encoding

strategies, such as delta encoding to compress the variance between

consecutive values, and run-length encoding to compress repeti-

tive values. These techniques not only reduce storage needs but

also enhance processing speeds. Another advantage of Parquet and

ORC is predicate pushdown, which enhances query performance

by moving filters closer to the storage layer, thus minimizing reads.

The combination of selective column reading, efficient compres-

sion, and predicate pushdown positions Parquet and ORC as the

go-to choices for managing tabular data in data lakes. Previous

studies have demonstrated the importance of leveraging their ca-

pabilities for optimizing relational data management [27, 40, 47].

Recent research [10, 52, 70–73] has also explored enhancements to
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Figure 2: The internal structure of a Parquet file for a logical
table with 𝐶 columns and 𝑅 row groups.

tabular formats, utilizing CPU instruction sets like BMI and SIMD.

In this paper, we will focus on Parquet, but the techniques discussed

can be seamlessly adapted to other columnar formats such as ORC.

Parquet. Figure 2 illustrates the internal structure of a Parquet

file. Structurally, a Parquet file represents a table, organized into

row groups for logical segmentation. Within a row group, the data

of a column is stored in a column chunk, which is guaranteed to

be contiguous in the file. Column chunks are further divided into

pages, the indivisible units for compression and encoding. These

pages, which can vary in type, are interleaved in a column chunk.

Parquet files contain three layers of metadata: file metadata, col-

umn metadata, and page header metadata. The file metadata directs

to the starting points of each column’s metadata. Inside the column

chunks and pages, the respective column and page header metadata

are stored, offering a detailed description of the data. This includes

data types, encoding, and compression schemes, facilitating effi-

cient and selective access to data pages within columns.

2.2 Labeled Property Graphs
Labeled Property Graphs (LPGs) [25, 26, 28] excel at representing

complex relationships and semantics in a natural manner. Their

flexible schema allows for accommodating the diverse and evolving

nature of big data within repositories, making them integral to

data lakes. LPG serves as the canonical data model in many graph

systems [19, 36, 43] and graph query languages [11, 35, 41, 42, 65,

69], enabling queries and analytics to uncover valuable insights

and patterns. Formally, an LPG is defined as𝐺 = (𝑉 , 𝐸,𝑇𝑉 ,𝑇𝐸 , 𝑃, 𝐿),
where𝑉 is a set of vertices, 𝐸 a set of edges,𝑇𝑉 and𝑇𝐸 the types of

vertices and edges respectively, 𝑃 the properties, and 𝐿 the labels.

For each vertex 𝑣 ∈ 𝑉 and edge 𝑒 ∈ 𝐸, they are associated with

a type 𝑡𝑣 ∈ 𝑇𝑉 and 𝑡𝑒 ∈ 𝑇𝐸 respectively, and can have optional

properties. A property 𝑝 ∈ 𝑃 is specific to a vertex or an edge type,

with a unique identifier within its type and a pre-defined datatype

for its values. This implies that vertices or edges of the same type

share the same set of properties, and can be stored in a tabular

format, as shown in Figure 3a.

Furthermore, each label 𝑙 ∈ 𝐿 has a unique identifier, usually a

string. Each vertex type 𝑡𝑣 is linked with a set of candidate labels

𝐿(𝑡𝑣) ⊆ 𝐿, allowing each vertex of this type to be assigned zero

or more labels. Labels hold significant importance in LPGs as

they represent classifications and characteristics of entities, while

properties serve as attributes to store additional information. LPGs

allow vertices to have multiple labels, offering a flexible and expres-

sive way to describe entities. For instance, Figure 3b illustrates an

inheritance hierarchy of labels within the Person vertices, where a

MATCH (a:Asian:Enrollee)-[e1:Diagnosed]->(d), 
      (b:Asian:Enrollee)-[e2:Diagnosed]->(d),  
      (c:Asian:Enrollee)-[e3:Diagnosed]->(d),
      (b)-[:IsParent]->(a)<-[:IsParent]-(c),
WHERE d.name = Hypertension AND b.pid <> c.pid AND e1.date >= 2020-01 
      AND e2.date >= 2020-01 AND e3.date >= 2020-01
RETURN COUNT(DISTINCT a) AS count

980 36[Asian]
50991[White]
………

933[Asian, Enrollee] 34
agepidlabels

952 2019-09 572
5942021-03933
………

2020-01933 501
diddatepid

594

Hypertension

…
Obesity

Hepatitis

did

509
…

501
name

OSS://bucket/Person.parquet S3://bucket/Diagnosed.parquet
DiagnosedPerson

OSS://bucket/Disease.parquet
Disease

(a) Execution workflow of the query on tabular formats.
Person

Ethnicity

Asian White Black

Status

Enrollee

Occupation

Student Employee

Vertex Type

Vertex Labels

(b) Inherent multi-labeling characteristics inside Person vertices.

Figure 3: An example of querying LPGs on tabular formats.

vertex can be labeled as both Asian and Enrollee. Although edge

types could technically also be labeled, we focus solely on vertex

labels in this paper, aligning with common graph query practice
2
.

While Parquet is highly effective for storing individual vertex

and edge types 𝑇𝑉 and 𝑇𝐸 along with their associated properties

due to the columnar structure and data compression capabilities,

it falls short in capturing the interconnected schema essential for

linking vertices with edges, e.g., to express the relationships across

the three tables of Figure 3a, which represent two vertex types and

one edge type. This limitation is crucial for efficient graph traversal

and pattern matching. Moreover, Parquet lacks native support for

the multi-labeling capability of LPGs, resulting in a loss of complex

semantics and relationships inherent to LPGs.

2.3 Querying Labeled Property Graphs
The core feature shared among graph query languages is the facility

for pattern matching [11, 35]. This capability allows for in-depth

analysis of the relationships between entities, uncovering valuable

insights and patterns that may not be readily apparent in other

data models. Given the fact that a LPG consists of topology, labels,

and properties, a graph pattern is then defined as vertices and their

connections through edges, filtered based on labels and property

values [41]. Figure 3a illustrates the example workload mentioned

in Figure 1, expressed in Cypher. And the steps for matching (a:

Asian:Enrollee)-[e1:Diagnosed]->(d) are highlighted in the figure.

When it comes to properties, a viable approach is to use native

tabular data, leveraging existing formats for efficient storage and

property-related operations. However, this approach struggles with

two crucial aspects of pattern matching.

Firstly, tabular formats lack native support for representing

graph topology, making it difficult to efficiently fetch the neighbor-

ing vertices and edges for a given vertex. A common workaround

is to store edge endpoints as properties and use the join operations

across multiple tables to retrieve neighbors, as shown in Figure 3a.

However, this approach is often inefficient due to the computational

overhead of multiple joins.

2
Graph query languages like Cypher and Gremlin typically adhere to the convention

that an edge can have only one classification, corresponding to the edge type in LPG

model. Nevertheless, the strategies for vertex labels discussed in this paper can be

seamlessly extended to support edge labels.
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Secondly, label filtering is a unique feature in graph queries, to

enable the selection of specific subsets of vertices, making it an

essential element in all graph query languages [11, 41, 65, 69]. Exist-

ing formats do not natively accommodate this flexibility and do not

provide a foundation for label-based optimizations. Encoding labels

as ordinary properties and performing filtering by string matching,

as seen in the initial step of Figure 3a, limits the expressive power

of vertex representation and hampers efficient label handling.

2.4 Key Challenges Addressed by GraphAr
The development of GraphAr is motivated by the specific limita-

tions of existing tabular formats for both representing LPGs and

supporting efficient graph queries.

Challenge 1: Effective LPG representation. LPGs use type-based
organization and specific label/property definitions to form a co-

hesive graph structure. This enables precise and targeted query-

ing. Existing tabular formats fall short of capturing these intricate

semantics, necessitating a specialized solution. This challenge is

addressed in Section 3.

Challenge 2: Efficient neighbor retrieval. A fundamental as-

pect of graph queries is the operation known as neighbor retrieval.
This is vital for quick access to adjacent vertices and edges, thus

accelerating graph traversal. Existing tabular formats, however, do

not natively or efficiently support this crucial operation. This issue

is tackled in Section 4.

Challenge 3: Optimized label filtering. Label filtering is a pri-

mary filtering mechanism in graph queries, allowing for the early

elimination of irrelevant data. Existing tabular formats do not na-

tively support this operation, making it a ripe area for optimization.

This is the focus of Section 5.

Each of these challenges represents a gap in the capabilities of

current tabular formats for graph data, which serve as the focus

areas for the technical contributions of GraphAr.

3 REPRESENTING LPGS IN GRAPHAR
This section provides an overview of how GraphAr customizes the

representation of LPGs in data lakes. It begins by outlining its goals

and non-goals, providing clarity on the rationale behind its design.

Next, it explains the strategies employed for data organization

and layout. Lastly, the section describes how GraphAr seamlessly

integrates into the data lake ecosystem.

3.1 Goals and Non-Goals
Goals.GraphAr’s primary goal is to provide an efficient storage and

management scheme for LPGs in data lakes, specifically targeting

the three main challenges outlined in Section 2.

GraphAr also seeks compatibility with both data lake and graph

processing ecosystems for smooth integration with a variety of

existing tools and systems.

Non-Goals. GraphAr does not intend to replace existing data lake

formats like Parquet and ORC, but to maximize their benefits and

offer additional features for LPGs.

In line with the established practices of data warehousing and lake

house architectures, both Parquet/ORC andGraphAr adhere to data
immutability norms, treating batch-generated data as immutable

once created. Higher-level systems such as graph databases manage

mutation (e.g., adding, deleting, or updating vertices) through spe-

cialized, non-standardized file and in-memory versioning methods.

GraphAr itself is not a graph computing engine; rather, it can be

non-intrusively integrated with graph processing systems, either

serving as the archival format or acting as a data source.

3.2 Data Organization and Layout
In GraphAr, vertices and edges are organized according to their

types, which aligns with the principles of the LPG model. Parquet is

utilized as the payload file format for storing the data in the physical

storage, while YAML files are used to capture schema metadata.

Schemametadata.A YAML file (Figure 4a) stores the metadata for

a graph. It specifies important attributes such as file path prefixes

and vertex/edge types. This file serves as a nimble yet effective way

to capture metadata that is not accommodated by Parquet, while

Parquet files include specific details about properties and labels

within their internal schemas. It can optionally include partition

sizes, allowing for data to be segmented into multiple physical

Parquet files, thereby enabling parallelism at the file level.

Vertex table. As depicted in Figure 4b, each row in the vertex table

represents a unique vertex, identified by a 0-indexed internal ID,

stored in the <Internal ID> column. When partitioning is enabled,

for the 𝑖-th partition, its internal IDs start at partition_size × 𝑖 , and

within each partition, IDs are sorted in ascending order. Bubbles
3

are allowed at the end of each partition, meaning the actual number

of rows can be less than or equal to the partition size.

Property columns (pid and age) are named after their respec-

tive properties and hold the corresponding values with specified

datatypes. In terms of labels, a set of candidate labels is defined for

each vertex type. Then a vertex can have an arbitrary number of

labels from the corresponding set. For example, the vertex type Per-
son may have labels to represent ethnicity. For efficient storage and

filtering of labels,GraphAr uses a binary representation to maintain

each label in an individual column named with angle brackets, e.g.,

<Asian> and <Enrollee>. Additionally, advanced encoding/decoding

techniques are applied, which will be discussed in Section 5.

Edge table. Edges are also organized and stored in Parquet files,

similar to vertices. Figure 4c showcases the layout of the edge ta-

ble for type Person-Diagnosed-Disease, where Person and Disease
represent the source and destination vertex types, while Diagnosed
signifies the classification of the relationships. Each edge is asso-

ciated with the internal IDs of its source and destination vertices,

stored in columns named <src> and <dst>. Edge properties, and

optional partitioning, are handled in the same way as vertices.

Optimized access patterns for neighbor retrieval. The layout
strategy in GraphAr leverages the columnar storage capabilities of

Parquet to facilitate efficient graph traversal. Edges are sorted first

by source vertex IDs and then by destination vertex IDs. This sorting

strategy optimizes various access patterns. For row-wise access, the

layout closely resembles the Coordinate List (COO) format, making

it well-suited for edge-centric operations. On the other hand, an aux-

iliary index table, denoted as <offset>, is introduced to enable more

efficient vertex-centric operations. The <offset> table aligns with
the partitions in the vertex table, and when applied to the source

3
“Bubbles” refer to the allowance for some ranges of internal IDs or edge segments

not to correspond to any vertices or edges.
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example.graph.yml

name: example
path_prefix: s3://bucket/exp
vertices:

- type: Person
partition_size: 16384
path: Person/

- type: Disease
…
edges:

- type: Person-Diagnosed-Disease
format: CSR
path: Diagnosed/

…

(a) Metadata.

Disease
agepid<Enrollee>…<Asian><Internal ID>
349331…10
289350…01
………………
619520…116384
……………...
509910…032767

Person/person_*.parquet

Person

partition0

partition1

…

(b) Vertex table of Person (and Disease).

date<dst><src>
2020-0100
2021-0340
2021-0990
………

2020-02112421
………

2021-0422832767

<offset>
00
41
……

9067232767
90673end

Diagnosed/offset(diagnosed)_csr.parquet

(c) Edge table of Person-Diagnosed-Disease.

Figure 4: The metadata and data layout for the example graph in GraphAr.

vertices, facilitates retrieval patterns similar to Compressed Sparse

Row (CSR). Likewise, a similar approach can be applied to enable

Compressed Sparse Column (CSC)-like access. GraphAr allows for
efficient bidirectional neighbor retrieval through two sorted tables

for the same edge type. CSR, CSC, and COO are widely adopted

for representing graphs, thus GraphAr ensures compatibility with

existing graph-related systems.

These layout strategies are complemented by encoding and de-

coding optimizations (Section 4). Collectively, these strategies en-

hance both the data management and query capabilities of GraphAr.

3.3 Incorporation with Data Lakes
The design of GraphAr makes it especially well-suited for integra-

tion with data lakes, largely due to its reliance on widely adopted

standards such as Parquet and YAML.

Data transformation and construction. The GraphAr format

is essentially a specialized layout of Parquet files accompanied

by a YAML metadata file. This enables the use of existing data

processing frameworks like Apache Spark, Acero, and Hadoop,

which can access various graph systems like Neo4j, TigerGraph and

Nebula, or other types of database systems through their respective

connectors. These frameworks can also ingest a multitude of data

formats including logs, relational tables, JSON, and more. Such

flexibility provides users with the ability to construct, transform,

and store LPGs in data lakes from a wide array of data sources.

Downstream system integration. Since GraphAr is fundamen-

tally based on Parquet and YAML, it is straightforward to use it as

a data source for downstream systems. Many systems already have

the capability to ingest Parquet files, making GraphAr a convenient
and efficient data storage scheme.

Graph-specific optimizations. In addition to serving as a flexible
storage format, GraphAr is also optimized for graph-specific op-

erations. These optimizations, include advanced query pushdown

techniques and other performance enhancements that are particu-

larly useful for graph-specific tasks and queries within data lakes

(see more from Sections 4 and 5).

4 EFFICIENT NEIGHBOR RETRIEVAL
In this section, we address the critical challenge of efficient neighbor

retrieval in graphs. We leverage Parquet’s data pages and introduce

page-aligned collections (PAC) for streamlined neighbor identifi-

cation. Additionally, we utilize delta encoding and introduce an

innovative decoding strategy that leverages BMI and SIMD.

4.1 Workflow of Neighbor Retrieval
Parquet use data pages to match the data storage with the access

granularity of underlying storage, where a page is the minimum

unit of data that can be read from or written to the storage layer

(Figure 2). Encoding and decoding are applied at the page level.

For LPG queries, a common operation is to retrieve specific prop-

erty values of neighboring vertices, given a queried vertex, e.g.,

obtaining the name values of Disease vertices connected to a partic-
ular Person vertex. Assuming the CSR format utilized for storing

edge table Person-Diagnosed-Disease, the typical workflow for this

operation involves: 1) Using the <offset> index and <dst> column

of the edge table to identify and fetch the first relevant page from

the target vertex table (a page from the name column in the Disease
table). This page contains at least one neighboring vertex perti-

nent to the query, and may also include other irrelevant vertices; 2)

Selectively fetching the property values corresponding to the neigh-

boring vertices within that page. This step is repeated iteratively

for each subsequent page containing the targeted neighbors.

This workflow highlights the two primary steps during neighbor

retrieval. The first is to identify which pages in the vertex table

contain the neighboring vertices relevant to the query. The second

is to fetch the relevant property values within each of these pages

efficiently. Firstly, we formalize the neighbor retrieval operation:

Definition 1 (Neighbor Retrieval). Given a vertex 𝑣 , the operation

of neighbor retrieval returns a data structure C representing the

internal IDs of the neighboring vertices connected to 𝑣 .

Requirement of C. The data structure C should facilitate the

retrieval of the relevant property values of neighboring vertices,

while minimizing space and processing overhead. Accordingly, we

introduce the concept of page-aligned collections (PAC).

4.2 Page-Aligned Collections
Definition 2 (Page-aligned collections (PAC)). Given a column in

vertex table that includes𝑚 pages, the PAC C = [𝐶0, . . . ,𝐶𝑚−1] is
a list of up to𝑚 collections. Each 𝐶𝑖 stores a set of internal IDs in

the corresponding page. Non-empty collections in C are retained,

while empty ones are omitted.

Intuition. Each collection𝐶 in PAC returned by neighbor retrieval

corresponds to a data page of the target vertex table. To save space

and avoid unnecessary processing, empty collections are omitted.

This is based on the sparsity and locality of real-world graphs,

which often results in irrelevant pages. Subsequently, the internal
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IDs within each collection enable the retrieval of only the relevant

property values through a selection process. The remaining chal-

lenges then involve 1) optimizing each collection’s representation

for quick value retrieval and 2) efficiently generating the PAC C.
A pioneering solution [52] underscores the transformation of

indices into a bitmap representation to enable selection pushdown

in columnar storages. To adopt this approach to efficiently retrieve

the properties of neighbors, which addresses the first challenge, we

adopt a bitmap representation 𝐵 for each non-empty collection 𝐶

in PAC, where 𝐵 [𝑖] = 1 indicates the existence of 𝑖-th element.

Figure 5a illustrates the neighbor retrieval of a source vertex

to obtain a PAC, and Figure 5b demonstrates the usage of PAC to

get the properties of its neighbors. For this illustrated example,

only 𝐶0 is non-empty, and 𝐵0 is the bitmap representation of 𝐶0.

The bitmap representation can be used to facilitate the selection

pushdown of vertex properties or labels, e.g., fetching the properties

of name in the target vertex tableDisease, for the neighbors of Person
vertex0. For the second challenge of efficiently generating PAC (i.e.,

Figure 5a), we utilize Parquet’s delta encoding and a novel decoding

strategy, which we detail in the following.

4.3 Delta Encoding
To compute the PAC C, the encoded internal IDs of neighboring

vertices need to be loaded, sourced from the edge table. In a data lake

scenario, where data can be stored remotely, the loading process

can be more time-consuming than processing due to I/O limitations.

To address this issue, we investigate the use of delta encoding for

data compression, consequently reducing data load volume.

Delta encoding. Previous research [68, 77] has demonstrated that

real-world graphs often exhibit both sparsity and locality. This

means that while a vertex’s neighbors might be spread across

the entire graph, they are more likely to cluster within certain

ID ranges. Such patterns arise from various factors, such as the in-

herent clustering in real-life graphs, where vertices within a cluster

are more interconnected, and the methods used for data collection

(e.g., crawlers or the organic/viral growth patterns of social net-

works like Facebook or TikTok). Systems [31, 77] have utilized such

sparsity and locality to enable efficient partitioning or compression.

In GraphAr, such inherent locality, reinforced by our meticulous

dual-key sorting of edges in the carefully designed layout, to enable

incremental arrangement of internal IDs for a vertex’s neighbors,

serves as the basis for delta encoding, which is highly effective

for both the <src> and the <dst> columns in the edge table. Delta

encoding works by storing the deltas between consecutive values

rather than each value separately. The deltas, which often have

small values, can be stored more compactly, requiring fewer bits.

Implementations. We utilize Parquet’s built-in support for delta

encoding [50], which is implemented based on miniblocks. Each

miniblock (with a size of 32 values) is binary packed using its own

bit width, which should be a power of 2 for data alignment purposes.

This design allows us to adapt to changes in the data distribution, as

the bit width of each miniblock is dynamically adjusted to minimize

storage consumption. According to our evaluation across various

real-world graphs, as detailed in Section 6.2, the delta encoding

technique can reduce the expected loaded data volume by 58.1% to

81.0% compared to without delta encoding. As a result, it brings an

individual speedup of 2.7× for neighbor retrieval.
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(a) Neighbor retrieval of a source vertex to obtain PAC.
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(b) Using the PAC to get the properties of its neighbors.

Figure 5: An example of PAC and its usage.

4.4 BMI-based Decoding
Challenges. Whiles delta encoding effectively reduces loading

costs, it introduces additional decoding computation. Some exist-

ing works [50, 52, 59–61, 71] have explored the use of BMI (Bit

Manipulation Instructions) and SIMD (Single Instruction, Multiple

Data) to accelerate the data compression, decoding, scanning, or

management. However, delta encoding involves data dependencies

that make vectorization challenging. The decoding of the (𝑖 + 1)-th
neighbor depends on the prior decoding of the 𝑖-th neighbor.

In our context, the critical challenge is to generate the bitmap rep-

resentation of PAC efficiently from the delta-encoded neighbor IDs,

which are stored in the <dst> column of the edge table (as shown in

Figure 6a). Existing techniques are not suitable for our context due

to the data dependencies involved. However, by taking advantage of

the sophisticated instruction sets offered by modern CPUs, we can

exploit the functionalities of BMI together with SIMD operations to

overcome this challenge, through an innovative decoding strategy.

Intuition. To ensure clarity, we initially consider a simplified sce-

nario where each delta value is compressed to a 4-bit size. Conven-

tionally, a two-step approach is used to decode the delta-encoded

data, in which the current encoded value is added to the previ-

ously decoded ID to obtain the current ID, and then the bitmap is

updated bit by bit based on the decoded IDs. However, our analy-

sis reveals that this two-step process is redundant. By leveraging

the bit-shifting encoding 1 << (𝑑 − 1) for each delta value 𝑑 , we

can generate the bitmap by concatenating the bit-shifting encod-

ings: 1 << (𝑑𝑛−1 − 1) | | . . . | |1 << (𝑑1 − 1) | |1 << (𝑑0 − 1), where
𝑑0, 𝑑1, . . . , 𝑑𝑛−1 represent 𝑛 delta values, and | | represents the con-
catenation operator. This principle is visually depicted in Figure 6a.

Acceleration via BMI and SIMD. In practical implementation,

the bit-shifting encoding ismaintained using a fixed-length datatype,

characterized by zero-padding on the left side. In our example, 16

bits are sufficient to accommodate the 4-bit deltas. The bit-shifting

encodings of 4 values are stored in a 64-bit register, allowing for par-

allel generation and processing using SIMD instructions. Then, the

focus shifts to the compaction of these encodings. Fortunately, the

Parallel Bit Extract (PEXT) operation, a specialized CPU instruction

in BMI, facilitates efficient aggregation of discrete bits from source
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Figure 6: An example of accelerating decoding via BMI.

positions into contiguous bits within the destination, governed by

a selector mask. This process is illustrated in Figure 6b.

The subsequent challenge is to generate the required mask,

achieved by deriving the 𝑖-th mask 𝑚𝑖 from the 𝑖-th bit-shifting

encoding 𝑠𝑖 using the equation𝑚𝑖 = (𝑠𝑖 << 1) − 1. The advantage

of this operation is its potential for convenient parallel execution,

facilitated by direct manipulation of the mask sequence residing

within a 64-bit register. Specifically,𝑀 can be acquired via the fol-

lowing steps: 1) a bitwise (in our example, 16 bits) shift of each

𝑠𝑖 to the left by 1 bit, parallelized through SIMD instructions like

_mm_slli_epi16; and 2) a bitwise subtraction of 1 from the result of

the previous step, which can be accelerated via instructions like

_mm_sub_epi16. All these SIMD instructions utilized in our imple-

mentations are widely available in modern CPUs, included in SSE2

(which we use) and more recent sets such as AVX2 and AVX-512.

In general, vectorization demonstrates greater efficiency when

the bit width is smaller, as it allows for more significant parallelism.

Our extensive evaluations have confirmed that the BMI-based de-

coding approach outperforms the default decoding approach in

Parquet when the bit width is within 4 bits, with performance im-

provements ranging from 3.3% to 110%. Therefore, we utilize this

BMI-based approach for miniblocks with a bit width of 1 to 4 bits,

while resorting to the default delta decoding of Parquet for larger

bit widths. The combination of data layout, delta encoding, and

this adaptive decoding strategy results in an advanced topology

management paradigm, enabling efficient neighbor retrieval.

5 OPTIMIZED LABEL FILTERING
Labels serve as a representation of the classification or character-

istics of vertices in a graph. Filtering vertices by labels is a fun-

damental syntax in graph query languages, as it allows querying

specific subsets of vertices. Existing approaches [12, 21] of fitting

graphs into tabular data often treat labels as regular properties,

encapsulating them within a string or list, as seen in Figure 3a. This

approach overlooks the inherent differences between labels and

properties, leading to inefficient label filtering, due to the need for

decoding string representations and conducting string matching.

Recognizing the widespread use of labels as filter conditions

and their unique nature, we develop a specialized format for labels

leveraging binary representation and run-length encoding (RLE),

for handling simple conditions. To support complex conditions

introduced by user-defined functions that involves multiple labels,

we enhance our methodology with a novel merge-based decoding

algorithm, further improving efficiency and adaptability.

5.1 Handling Simple Conditions
We start by considering the simple condition that focuses on the

existence of a single label. In essence, the existence or absence of a

label can be effectively represented using binary notation, where

the value 1 indicates the existence of the label and 0 indicates its

absence, as demonstrated in Figure 4b. This binary representation

offers two significant advantages: 1) it reduces the computational

burden associated with decoding and matching as well as simplifies

the filtering process as follows; 2) it enables efficient compression.

Definition 3 (Simple Condition Filtering). Given a label 𝑙 and an

existence/absence indicator 𝑒 , the simple condition label filtering

returns the PAC C, where{︃
𝑣 ∈ C, if 𝑣 .𝑙𝑎𝑏𝑒𝑙 [𝑙] = 𝑒

𝑣 ∉ C, if 𝑣 .𝑙𝑎𝑏𝑒𝑙 [𝑙] ≠ 𝑒
(1)

Encoding. To compress consecutive runs of 0s or 1s, we utilize the

technique of run-length encoding (RLE), which represents them as

a single number. This run-length format naturally transforms the

binary representation of a label into an interval-based structure.

We then adopt a list 𝑃 to define the positions of intervals. The 𝑖-th

interval is represented by [𝑃 [𝑖], 𝑃 [𝑖 + 1]), where 𝑃 [𝑖] refers to the

𝑖-th element within 𝑃 . Besides, it is required to record whether

the vertices of the first interval [𝑃 [0], 𝑃 [1]) contain the label or

not, i.e., the first value. By leveraging this technique, the storage

consumption of labels can be significantly reduced.

Decoding. Beyond efficient compression, the RLE approach seam-

lessly accommodates the decoding requirements for filter condi-

tions. Specifically, to filter vertices with (or without) a specific label,

we can simply select all odd intervals or all even intervals from

the list 𝑃 , based on the condition and the first value, instead of

evaluating each vertex individually. It reduces the time complexity

from𝑂 (𝑛) to𝑂 ( |𝑃 |), where 𝑛 represents the number of vertices and

|𝑃 | represents the size of the interval list 𝑃 . In real-world graphs,

|𝑃 | ≪ 𝑛 is often observed, due to the sparsity of labels and natural

clustering of vertices with similar labels.

5.2 Extending to Complex Conditions
Expanding beyond the realm of simple label existence, we encounter

the intricacies of dealing with complex conditions involving mul-

tiple labels. Consider a scenario where we need to find vertices

with specific label combinations, such as the GQL pattern MATCH (

person:Asian&Enrollee) (or in Cypher, MATCH (person:Asian:Enrollee)), which

retrieves vertices labeled as Asian and Enrollee. A more complex

pattern can be MATCH (person:(Asian&!Enrollee)|Student), which retrieves

vertices labeled as Asian but not Enrollee, or labeled as Student. To

handle such scenarios, we employ user-defined functions (UDFs)

to represent complex filter conditions. The UDF 𝑓 takes a vertex

𝑣 as input and returns a boolean value 𝑓 (𝑣), indicating whether

the vertex satisfies the condition or not. Formally, we define the

complex condition filtering as follows.
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Definition 4 (Complex Condition Filtering). Given a UDF 𝑓 , the

filtering returns the PAC C, where{︃
𝑣 ∈ C, if 𝑓 (𝑣) = true

𝑣 ∉ C, if 𝑓 (𝑣) = false

(2)

The intuitive approach would be to tackle each vertex indepen-

dently, decoding RLE into the binary representation. However, di-

rectly evaluating the UDF for every vertex proves impractical, as it

retains the same complexity as the most straightforward approach.

Intuition. Inspired by the concept of discretization, two key ques-

tions arise: 1) Can we solely evaluate the condition for one repre-

sentative vertex within each interval? 2) How can we efficiently

identify these intervals where the encompassed vertices share the

same labels? The affirmative answer to the first question emerges

through the following theorem:

Theorem 1. Consider 𝑘 interval lists 𝑃0, 𝑃1, . . . , 𝑃𝑘−1, where the
vertices in [𝑃𝑖 [ 𝑗], 𝑃𝑖 [ 𝑗 + 1]) share the same value for the 𝑖-th label. If
an iterval [𝑠, 𝑒) is not broken by any position, i.e.,

∄𝑖 ∈ [0, 𝑘), 𝑗 ∈ [0, |𝑃𝑖 |) 𝑠 < 𝑃𝑖 [ 𝑗] < 𝑒, (3)

the vertices within the interval [𝑠, 𝑒) have the same labels, i.e.,

∀𝑢, 𝑣 ∈ [𝑠, 𝑒), 𝑙 ∈ [0, 𝑘) 𝑢.𝑙𝑎𝑏𝑒𝑙 [𝑙] = 𝑣 .𝑙𝑎𝑏𝑒𝑙 [𝑙] . (4)

Consequently, it is sufficient to call the UDF for the vertex 𝑠

alone, as for any vertex 𝑣 in the interval [𝑠, 𝑒), 𝑣 and 𝑠 share the

same labels, thus 𝑓 (𝑣) = 𝑓 (𝑠).
Merge-based algorithm. Partitioning an interval into multiple

segments proves unnecessary and counterproductive as it would

escalate complexity. Therefore, our focus narrows down to inter-

vals formed by existing positions, which also addresses the second

question. To obtain the exact intervals, we can sort the positions

in all interval lists 𝑃0, 𝑃1, . . . , 𝑃𝑘−1. This sorting can be accelerated

by leveraging the inherent order within the 𝑘 lists, allowing for

seamless merging of 𝑘 sorted lists into one list 𝑃 . Figure 7 demon-

strates an example of interval determination for a complex condi-

tion containing two labels, Asian and Enrollee. Within the interval

[𝑃 [𝑖], 𝑃 [𝑖 + 1]), the vertices share identical labels, necessitating the
UDF to be invoked solely for one representative vertex. Addition-

ally, the presence of position 𝑃 [6] for both labels underscores the

importance of merging to avoid redundant computations.

By employing innovative label treatment, interval-based encod-

ing/decoding, and complex condition handling, GraphAr is able to
achieve highly efficient label filtering.

6 EVALUATION
In this section, we evaluate GraphAr on various graphs, through

micro-benchmarks and end-to-end graph query workloads. We also

highlightGraphAr’s potential to enhance performance and broaden

the applicability of current graph processing systems.

Table 1: Statistics of the graphs in our evaluation.

Abbr. Graph |V | |E |
A5 Alibaba synthetic (scale 5) 75.0M 4.93B

A7 Alibaba synthetic (scale 7) 100M 6.69B

AR arabic-2005 [34] 22.7M 1.27B

BL bloom [20] 33.0K 29.7K

CF com-friendster [51] 65.6M 1.81B

CI citations [20] 264K 221K

CL cont1-l [66] 1.92M 7.03M

DM degme [66] 659K 8.13M

G8 Graph500-28 [14] 268M 4.29B

G9 Graph500-29 [14] 537M 8.59B

HW hollywood-2009 [34] 1.14M 113M

OL icij-offshoreleaks [20] 1.97M 3.27M

PP icij-paradise-papers [20] 163K 364K

IC indochina-2004 [34] 7.41M 384M

NM network-management [20] 83.8K 181K

AX ogbn-arxiv [46] 169K 1.17M

MA ogbn-mag [46] 736K 21.1M

OS openstreetmap [20] 71.6K 76.0K

PO pole [20] 61.5K 105.8K

SF30 SNB Interactive SF-30 [37] 99.4M 655M

SF100 SNB Interactive SF-100 [37] 318M 2.15B

SF300 SNB Interactive SF-300 [37] 908M 6.29B

TP tp-6 [66] 1.01M 10.7M

TT twitter-trolls [20] 281K 493K

U2 uk-2002 [34] 18.5M 589M

U5 uk-2005 [34] 39.5M 1.85B

WB webbase-2001 [34] 118M 2.01B

WK wiki [49] 13.6M 437M

6.1 Experimental Setup
Platform. If not otherwise mentioned, our experiments are con-

ducted on an Alibaba Cloud r6.6xlarge instance, equipped with a

24-core Intel(R) Xeon(R) Platinum 8269CY CPU at 2.50GHz and

192GB RAM, running 64-bit Ubuntu 20.04 LTS. The data is hosted

on a 200GB PL0 ESSD with a peak I/O throughput of 180MB/s.

Additional tests on other platforms and S3-like storage yield similar

results. For timing metrics, we use single-threaded executions and

report either average or distribution times based on multiple runs

for accuracy. Exceptionally, the integration experiments utilize a

cluster of 8 separate instances to emulate a distributed environment.

Baselines. GraphAr is developed in C++ on Apache Arrow [3],

an open-source, high-performance library that supports colum-

nar formats like Parquet and ORC. For the micro-benchmarks, we

compare GraphAr against Arrow/Parquet (version 13.0.0), due to

the popularity and high-performance of Parquet. Both GraphAr
and the baseline follow Parquet’s default configurations, which

include a row group length of 1024×1024 and a 1MB page size. For

end-to-end workloads, we compare GraphAr against widely-used
frameworks including Apache Acero [2], Apache Pinot [8] and

Neo4j (Community 5.21.0) [19]. In the integration experiments, we

incorporate GraphAr into GraphScope [38], a widely-used graph

processing system, and compare its integrated performance against

GraphScope’s original implementation.

Datasets. Table 1 summarizes the graphs we used, which span

different sizes and domains. We also use synthetic graphs generated

by data generators of the LDBC SNB [37] and Graph500 [14], both of

which are widely recognized benchmarks. Additionally, we utilize

graphs (A5 and A7) generated that mimic the characteristics of

graphs in Alibaba’s e-commerce production environment.
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Figure 8: Micro-benchmark of neighbor retrieval.

6.2 Micro-Benchmark of Neighbor Retrieval
We evaluate GraphAr’s optimizations in neighbor retrieval through

micro-benchmarks on selected graphs characterized by a large edge

set (|𝐸 |). Our results substantiate its efficacy in enhancing storage

efficiency and retrieval performance.

Storage efficiency.We compare GraphAr with baseline methods

by measuring the storage consumed by encoded Parquet files that
store the graph’s topological data. Two baseline approaches are

considered: 1) “plain”, which employs plain encoding for the source

and destination columns, and 2) “plain + offset”, which extends the

“plain” method by sorting edges and adding an offset column to

mark each vertex’s starting edge position. As Figure 8a depicts, the

inclusion of offsets results in a modest increase in storage require-

ments, with space usage growing by 0.5% to 14.8%, as the number

of vertices is typically much smaller than the number of edges.

GraphAr leverages delta encoding for source and destination

columns and plain encoding for offsets. The result is a notable

storage advantage: on average, it requires only 29.2% of the storage

needed by the baseline “plain + offset”. This efficiency in storage is

particularly beneficial for query performance, as data lake queries

are often I/O-bound. The transition from storage efficiency to re-

trieval performance is elaborated further in the next experiment.

Performance of neighbor retrieval. To evaluate GraphAr’s ef-
ficiency in neighbor retrieval, we query vertices with the largest

degree in selected graphs, maintaining edges in CSR-like or CSC-

like formats depending on the degree type. Figure 8b shows that

GraphAr significantly outperforms the baselines, achieving an aver-

age speedup of 4452× over the “plain” method, 3.05× over “plain +

offset”, and 1.23× over “delta + offset”. These gains are attributed to

the offset integration and delta encoding, as well as our BMI-based

decoding. The offset integration alone accounts for an average

speedup of 1993×, and delta encoding provides an additional 2.48×
speedup. Our innovative decoding method, which leverages BMI

and SIMD, further enhances performance within this optimized

context, achieving a 1.23× speedup on top of “delta + offset”.

Performance of data transformation. Given that GraphAr is
designed for storing LPGs in data lakes, the efficiency of convert-

ing original graph data into the GraphAr format is crucial. Graphs

generally have significantly more edges than vertices and GraphAr
employs CSR/CSC-like layouts requiring edge sorting. Thus, gen-

erating topological data becomes the most time-intensive part. To

assess the overhead, we analyze the time to convert four real-world

graphs (U2, AR, WB, and U5), each initially in the form of Arrow

Tables, a standardized in-memory format in big data systems. Fig-

ure 8c illustrates the time breakdown. The process involves three

steps: 1) sorting the edges, using Arrow’s order_by operator, labeled

as “sort (Arrow)”; 2) generating vertex offsets, labeled as “offset”;

and 3) writing the sorted and offset data into Parquet files with

specific encoding, labeled as “write”. The sorting step is most time-

consuming, which has an average time complexity of 𝑂 ( |𝐸 |𝑙𝑜𝑔 |𝐸 |)
when executed sequentially, while the steps of generating offset

and writing with encoding both have a lower time complexity of

𝑂 ( |𝐸 |). For further optimization, we leverage the parallel sorting

algorithms provided by Intel(R) Threading Building Blocks [15],

which significantly reduces the sorting time, labeled as “sort (TBB)”.

By employing 24 threads in our test setup, the sorting time is only

8.9% of the original, on average. Given this transformation is a

one-time, offline operation that substantially reduces future data re-

trieval times, the associated overhead—which is within 1 minute for

generating topological data for over 1 billion edges—is acceptable.

6.3 Micro-Benchmark of Label Filtering
This section evaluates GraphAr’s efficiency in storing and filtering

vertex labels. We employ datasets from OGB [46], Neo4j [20] and

Alibaba’s synthetic data generator, which feature property graphs

with multiple vertex labels, with the number of labels (ranging from

3 to 349) indicated under the graph name in Figure 9a.

Storage efficiency. We assess storage efficiency by measuring the

size of encoded Parquet files used for storing vertex labels. Two

baseline methods serve for comparison: The first, termed “string”,

concatenates all labels of a vertex into a single string column using

BYTE_ARRAY datatype and plain encoding. The second, named

“binary (plain)”, represents each label in a separate binary column

using BOOLEAN datatype and plain encoding. Our approach, de-

noted as “binary (RLE)”, further optimizes this by utilizing RLE.

As shown in Figure 9a, our RLE-based method substantially

outperforms the baselines, requiring on average only 2.5% and 8.4%

of the storage space compared to the “string” and “binary (plain)”

methods, respectively. We exclude dictionary encoding of Parquet

despite its potential storage gains over the “string” baseline, because

it can slow down decoding by up to 10×.
Performance of simple condition filtering. Recognizing that

filtering based on simple conditions represents the cornerstone

operation in graph query languages, we prioritize evaluating this

operation. For each graph, we perform experiments where we con-

sider each label individually as the target label for filtering, and
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Figure 9: Micro-benchmark of label filtering.

determine the vertices with that label. For accuracy, each experi-

ment is repeated 100 times and the total execution time is reported.

Figure 9b illustrates the results, demonstrating that GraphAr’s
method significantly improves the performance of label filtering

based on simple conditions. The most straightforward approach,

“string”, which involves decoding the string of labels and conduct-

ing matching for each vertex, is the slowest. The “binary (plain)”

method separates labels into individual columns and utilizes a bi-

nary representation, while the ‘binary (RLE)” method further opti-

mizes the encoding by using RLE. However, both of these methods

still require evaluating each vertex. In contrast, our method of

“binary (RLE) + interval”, simply selects all satisfied intervals.

For each graph, we report the middle value of the execution

time among filtering each label as the height of the bar, with the

error bar representing the range of execution time. Our method

may have a large range on some graphs (AX, MA) due to the vary-

ing encoding efficiency (i.e., the number of intervals generated)

for different columns. However, since the number of intervals is

not larger than the number of vertices in any case, our method

consistently outperforms the baselines. On average, it achieves a

speedup of 14.8× over the “string” method, 8.9× over the “binary

(plain)” method, and 7.4× over the “binary (RLE)” method.

Performance of complex condition filtering. We also assess

the performance of label filtering based on complex conditions.

For graphs obtained from Neo4j, we first refer to the provided

documentation to identify a filtering operation that involves two

labels. If not provided, we create a condition by combining two

related labels using either the logical AND operator (if there are

vertices satisfying the condition) or OR (otherwise) to reflect real-

world semantics. For other graphs, we combine the first two labels

by OR as the filtering condition. Figure 9c presents the performance

of different methods, measured as the total execution time of 100

runs. The results demonstrate that GraphAr performs the best for

all test cases. Further analysis reveals that this improvement is

attributed to the binary representation (as seen in the comparison

between “binary (plain)” and “string”), and utilization of RLE (as

seen in the comparison between “binary (RLE)” and “binary (plain)”).

The merge-based decoding method yields the largest gain, where

“binary (RLE) + merge” outperforms “binary (RLE)” by up to 60.5×.
Scale up the number of labels. Figure 9d illustrates the average

execution time of filtering conditions with varying numbers of

labels, focusing on BL and MA, which are selected from different

datasets (Neo4j and OGB) and have a relatively large number of la-

bels. We test the filtering with 𝑖 labels by combining the first 𝑖 labels

through OR as the condition. As shown in the figure, GraphAr con-
sistently outperforms others on BL. While on MA, it performs best

when the number of involved labels is no more than 40. As the num-

ber of labels continuously increases, it performs worse than the

baseline “binary (RLE)”, which is due to the number of merged in-

tervals also increasing. In the worst case, the UDF is called for each

vertex, means any two consecutive vertices have different labels.

Considering the overhead of merging intervals, our method may

perform worse than directly evaluating each vertex. Fortunately,

our investigation of real-world workloads reveals that the number

of filtered labels in user-written queries is often limited, e.g., in the

Neo4j documentation examples [20], the filtering involves at most

5 labels. This suggests that our method is highly promising.

6.4 Storage Media
We assess the efficiency of GraphAr across various storage media:

local in-memory tmpfs, ESSD (an Alibaba Cloud virtualized elastic

block device), and S3-like Object Store Service (OSS). The graph
used is SF100, with specifically focus on the comment vertex type
and comment_hasTag_tag edge type. Table 2 encapsulates the ef-

ficiency of GraphAr across different storage media. These results

demonstrates that GraphAr is not only efficient but also robust,

delivering consistently high performance, with speedups of 88× to

154× for neighbor retrieval and 2.7× to 11× for label filtering.
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Table 2: Performance comparison across storage media.

Neighbor Retrieval (s) Label Filtering (s)

Storage Plain GraphAr String GraphAr
tmpfs 6.446 0.053 3.984 1.489

ESSD 16.41 0.106 19.06 1.746

OSS 189.4 2.145 252.8 26.22

6.5 End-to-end Graph Query Workloads
To demonstrate the practicality of GraphAr in real-world scenarios,

we conduct a performance evaluation using end-to-end workloads

from the LDBC SNB benchmark [37, 67]. Although the benchmark

specifies vertex/edge types, it does not explicitly define the labels.

However, we are able to identify certain vertex types that are static
(e.g., tagclass and place), which have a fixed and very small vertex

set size that does not scale with the graph size. On the other hand,

vertex types like comment and person are considered dynamic. Based
on this observation, we can treat information related to static types
as labels for dynamic types in GraphAr, for example, all tag classes

of a comment are attached as labels for the corresponding comment
vertex. Similar strategies are also adopted by graph databases [44].

For evaluation, graphs at different scales (listed in Table 1) are

generated using the LDBC SNB data generator. These graphs are

then converted intoGraphAr format, with the vertex labels attached

as described above. Upon investigating the benchmark, including

7 short and 14 complex interactive queries, as well as 20 business

intelligence queries, we find that neighbor retrieval is frequently

encountered, involved in approximately 90% of the queries. Consid-

ering the aforementioned label organization, label filtering is also

common, involved in approximately 50% queries.

Query implementations. The evaluation focuses on three repre-

sentative queries, with the required parameters set according to the

reference implementations [17, 18]. IS-3 (interactive-short-3) aims

to find all the friends of a given person and return their information.

It exemplifies the common pattern of querying neighboring vertices

and retrieving associated properties. IC-8 (interactive-complex-8) is
more complex as it involves traversing multiple hops from the start-

ing vertex. Lastly, the BI-2 (business-intelligence-2) query involves

finding and counting the messages associated with tags within a

specific tag class, thus requiring vertex filtering by labels.

We develop hand-written implementations for each query based

on GraphAr, which utilize the data organization and specifically

prioritize two essential operations: neighbor retrieval and label

filtering. Our implementation adheres to the official reference im-

plementations [17, 18] to ensure equivalence to the original queries.

We then implement these queries in Acero [2], which is a pow-

erful C++ library integrated into Apache Arrow for analyzing large

streams of data. It offers a comprehensive set of operators such as

scan, filter, project, aggregate, and join, among others. Moreover,

Acero supports taking Parquet as the data source and enables the

pushdown of predicates, making it a strong baseline for comparison

with GraphAr. Despite our best efforts to optimize it, we do not per-

form data re-organization or utilize GraphAr’s encoding/decoding
optimizations for this implementation based on Acero.

We also include two additional baselines: Apache Pinot [8], a real-

time OLAP datastore used by LinkedIn for processing and querying

large social networks, and Neo4j [19], a main graph database utiliz-

ing the Cypher query language. While both are widely-used, they

Table 3: Query execution times (in seconds), with the format
of Pinot (P), Neo4j (N), Acero (A), GraphAr (G). “OM” denotes
failed execution due to out-of-memory errors.

SF30 SF100 SF300

P N A G P N A G P N A G

ETL 6024 390 — — 17726 2094 — — OM 9122 — —

IS-3 1.00 0.30 0.16 0.01 6.59 2.09 0.48 0.01 OM 4.12 1.39 0.03
IC-8 1.35 0.37 72.2 3.36 8.43 1.26 246 6.56 OM 2.98 894 23.3

BI-2 125 45.0 67.7 4.30 3884 1101 232 16.3 OM 6636 756 50.0

are not natively designed for data lakes and require an Extract-

Transform-Load (ETL) process for integration.

Performance comparison. Table 3 presents a comparison of end-

to-end performance, clearly demonstrating that the implementation

based on GraphAr significantly outperforms Acero, achieving an

average speedup of 29.5×. A closer analysis of the results reveals

that the performance gains stem from the following factors: 1) data

layout design and encoding/decoding optimizations we proposed,

to enable efficient neighbor retrieval (IS-3, IC-8, BI-2) and label

filtering (BI-2), as demonstrated in micro-benchmarks; 2) bitmap

generation during the two critical operations, which can be utilized

in subsequent selection steps (IS-3, IC-8, BI-2).

As for Pinot and Neo4j, their end-to-end performance is often

dominated by extensive ETL processes, in the context of data lakes,

as the results show. GraphAr performs best on IS-3, which is a

single-hop query, and BI-2, where GraphAr utilizes label filtering
for the early elimination of irrelevant data. While on IC-8, GraphAr
is outperformed by Neo4j due to the query involving traversing

multiple hops, which results in a significant volume of data loading

for both Acero and GraphAr. Nevertheless, GraphAr not only offers
efficient query performance but also eliminates the ETL overhead,

potentially avoids out-of-memory errors that may occur. Thus,

GraphAr provides a more practical solution for data lake scenarios.

6.6 Integration with Graph Processing Systems
One of the advantages of GraphAr is its compatibility with ex-

isting graph processing systems. To demonstrate this, we have

integrated GraphAr into GraphScope [38], a popular distributed

system designed to meet a diverse range of graph computing needs.

GraphAr is utilized as the archive format for persistent storage. It

also serves as an accessible storage backend for executing infre-

quent queries in an out-of-core manner.

Serve as the archive format.We first compare the performance

of building graphs in GraphScope using 8 nodes, from external

storages inGraphAr format against the baseline, where the datasets

are in CSV format, sourced directly from the data providers. The

findings illustrated in Figure 10a indicate thatGraphAr significantly
outperforms the baseline, achieving an average speedup of 4.9×.
This improvement can be attributed toGraphAr’s efficient encoding

strategies that reduce the data volume to be loaded, as well as its

optimized data organization and layout, which facilitate a faster

in-memory graph construction within GraphScope.

Serve as a storage backend. Leveraging the capabilities for graph-
related querying, the graph query engine within GraphScope can

execute queries directly on theGraphAr data in an out-of-core man-

ner. We evaluate the performance of GraphScope with GraphAr
as the storage backend, and compare the average querying time
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Figure 10: GraphScope’s performance w/ and w/o GraphAr.

of BI queries on SF30 with two baseline scenarios wherein Graph-

Scope relies on its native in-memory storage options, specifically

the immutable (“Imm”) and mutable (“Mut”) variants. Figure 10b

demonstrates that although the querying time with GraphAr ex-
ceeds that of the in-memory storages, attributable to intrinsic I/O

overhead, it significantly surpasses the process of loading and then

executing the query, by 2.4× and 2.5×, respectively. This indicates
that GraphAr is a viable option for executing infrequent queries.

Application scenarios. This integration demonstrates the po-

tential benefits of GraphAr in improving the efficiency of graph

processing systems. In summary, its application scenarios include:

1) Data loading: GraphAr can significantly reduce graph loading

times, making it an ideal choice for external storage formats; 2)

Out-of-core queries: GraphAr can serve as a storage backend for

executing graph queries in an out-of-core manner. It is particularly

beneficial for infrequent queries that access only a portion of the

graph data, eliminating the need for full in-memory graph represen-

tation. It also enables querying graphs that exceed the capacity of

available memory. In other scenarios, such as: 1) real-time queries

requiring low latency and frequent execution, or 2) graph analytics

algorithms involving iterative computations across the entire graph

(e.g., PageRank), GraphAr might not be the optimal direct storage

solution and in-memory storage options are more suitable.

Summary. In summary, GraphAr has been demonstrated to be a

highly effective storage scheme for LPGs in data lakes:

• Storage efficiency: GraphAr remarkably reduces storage

requirements, using only 29.2% of the storage compared to

baseline methods for storing topology, and as low as 2.5%

for label storage on average.

• Query performance: GraphAr significantly outpaces the

baselines in retrieval time, achieving an average speedup

of 4452× for neighbor retrieval, and an average speedup

of 14.8× for simple label filtering, as observed in micro-

benchmarks on the ESSD storage.

• Storagemedia: Evaluations indicate seamless compatibility

across various storage layers like tmpfs, ESSD, and oss, all
achieving high speedup of 88× to 154× for neighbor retrieval

and 2.7× to 11× for label filtering.

• Real-world relevance: In end-to-end workloads using the

LDBC SNB benchmark, GraphAr shows an average speedup

of 29.5× over the Acero baseline, substantiating its practical

utility in real-world scenarios.

• Compatibility: GraphAr is seamlessly integrated into a

widely-used graph processing system GraphScope, enhanc-

ing its graph loading efficiency by 4.9×, and accelerating its

infrequent query execution with a speedup of 2.4×.

Collectively, these results validate GraphAr as a robust, storage-
efficient, and high-performance solution for both academic research

and industrial applications.

7 RELATEDWORK
File formats in data lakes. The data lake ecosystem encompasses

various common file formats, including CSV, JSON, Protocol Buffers,

HDF5 [24], AVRO [4], ORC [6], and Parquet [7].While these formats

support various optimizations that benefit both tables and graphs,

they fall short in comprehensively representing LPG semantics and

supporting graph-specific operations.

Data management in data lakes. The popularity of data lakes

has led to efforts aimed at enhancing their architecture and data

management [22, 30, 56, 57, 64]. As for LPG management in data

lakes, LinkedIn uses Apache Gobblin [5] for data ingestion and

employs Apache Spark [75] and Apache Pinot [8] for processing

large graph datasets representing the social network. Graph-specific

querying frameworks like Neo4j [19] and Apache TinkerPop [9]

are also widely-used, and they integrate with data lakes via ETL

processes. These endeavors primarily focus on managing existing

data within data lakes and are distinct from GraphAr. GraphAr, on
the other hand, can be considered as a new storage format with

unique features tailored for LPGs. It can be leveraged by these

works to further extend the utility and capabilities of data lakes.

Graph file formats. Certain formats are designed for graph [13,

29, 32, 45] and RDF (Resource Description Framework) data [23, 53].

However, their primary focus is to describe or exchange data in a

standardized manner, e.g., utilizing XML, and are not optimized for

storage and retrieval purposes. The lack of encoding, compression

and push-down optimizations can lead to far inferior performance,

making them less suitable for managing LPGs in data lakes.

Graph-related databases. Some databases [16, 19, 36, 39] are de-

signed to store and manage graph data. There are also efforts focus

on optimizing graph-related queries [54, 58, 62, 76].While they offer

various graph-related features, they primarily focus on in-memory

mutable data management, operating at a higher level compared to

GraphAr. GraphAr, with its format compatible with the LPG model,

can be utilized as an archival format for graph databases.

Operation pushdown. Some previous works [10, 52, 70–73] aim

to develop high-performance operators on storage formats of either

column-oriented or row-oriented. These works and GraphAr share
the same goal of improving pushdown operators and leveraging

CPU instructions like SIMD and BMI. However, these works mainly

focus on operations related to relational data, such as scan, select,

and filter based on properties. In contrast, GraphAr specifically
focuses on two graph-specific operations.

8 CONCLUSION
In conclusion, this paper introduces GraphAr as an efficient and

specialized storage scheme for graph data in data lakes.GraphAr fo-
cuses on preserving LPG semantics and supporting graph-specific

operations, resulting in notable performance improvements in both

storage and query efficiency over existing formats designed for

relational tables. The evaluation results validate the effectiveness

of GraphAr and highlight its potential as a crucial component in

data lake architectures.
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