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ABSTRACT
Disaggregation—the separation of database components into inde-
pendently managed and scalable services—has emerged as a foun-
dational architecture for cloud-native databases. It enables key
benefits such as elasticity, resource pooling, and cost efficiency.
This paper offers a perspective on the disaggregation trend, tracing
its evolution, and presents a set of research efforts that redesign
and optimize distributed databases in this new architecture. Finally,
the paper outlines future directions and open challenges, highlight-
ing disaggregation as a rich and still largely unexplored area for
database research.
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1 INTRODUCTION
Databases are transitioning from on-premises deployments to the
cloud. Modern cloud databases adopt a disaggregation architec-
ture where different system components, such as computation and
storage layers, are managed as physically separated services. Dis-
aggregation enables independent scaling and billing of resources,
as well as resource pooling, which significantly improves cost effi-
ciency and elasticity of cloud databases.

Disaggregation represents a fundamental architectural shift that
departs from traditional assumptions in database systems. It ex-
tends distributed databases from a single tightly coupled cluster
to multiple loosely coupled clusters, each responsible for a subset
of database functions. This shift opens a vast new design space:
rethinking classic database protocols, redistributing traditional data-
base functions across disaggregated components, introducing new
disaggregated components to enable novel features, and beyond.
Optimizations for the disaggregation architecture have been ex-
plored in both research and production systems in recent years, but
many challenges and research opportunities remain, especially as
cloud platforms and cloud databases continue to evolve.

This paper aims to offer a perspective on how disaggregation is
reshaping the database landscape today and potential directions for
the future. The paper begins by briefly describing the key charac-
teristics of the disaggregation architecture and its evolution, from
storage disaggregation to more general disaggregation (Section 2).
It then highlights several research projects from our lab that intro-
duce new techniques to optimize for the architecture (Section 3).
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Finally, the paper discusses several future directions from the au-
thor’s perspective (Section 4), followed by a conclusion (Section 5).

2 THE EVOLUTION OF DISAGGREGATION
ARCHITECTURE

A key advantage of the cloud over on-premises systems is on-
demand scalability—the capability for users to dynamically allocate
and release resources and pay only for what they use. Classic data-
base architectures, such as shared-nothing, struggle to fully exploit
this feature. As a result, cloud-native databases have begun to adopt
a new disaggregation architecture.

2.1 Storage disaggregation
Early cloud-native databases, such as Snowflake [9, 22] and Au-
rora [20, 21], adopt a storage-disaggregation architecture, where
compute and storage clusters are physically separated. The two clus-
ters can scale independently and often use different cluster sizes
and machine types.

The disaggregation of storage and compute is driven by the fun-
damental mismatches between these two services: (1) Compute is
significantly more expensive than storage in modern cloud envi-
ronments. (2) Compute demands fluctuate more drastically while
storage demands change slowly. (3) Compute can often be stateless
and thus easier to scale in contrast to the inherently stateful storage
service. By decoupling these two services, the expensive compute
layer can quickly scale up/down and out/in to accommodate work-
load changes, while the cheaper storage service can stay relatively
stable with less frequent reconfigurations.

Storage disaggregation resembles the traditional on-premises
shared-disk architecture in that both physically separate the com-
pute and storage components. However, cloud storage services
offer richer capabilities, such as built-in high availability, multi-
region durability, built-in horizontal scalability, and advanced APIs.
These capabilities enable new use cases beyond what traditional
shared-disk systems could support. Moreover, the principle of dis-
aggregation can be generalized beyond compute and storage, as
discussed in the next subsection.

2.2 Generalized Disaggregation
Besides enabling independent scalability, disaggregation can also
improve the modularity of complex systems and facilitate shar-
ing and pooling of resources, leading to higher efficiency. Driven
by these salient features, modern cloud databases are being disag-
gregated into even more components, beyond just compute and
storage. The list below shows several examples but is by no means
exhaustive.
Further Disaggregated Storage.: Socrates [3] adopts a design
similar to Aurora but further disaggregates the storage layer into
(1) a logging service, (2) a page cache, and (3) a durable page store.
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These services have different storage footprint, performance, and
cost tradeoffs that can be better optimized when they are physi-
cally separated. For example, the logging service has a small data
footprint but stringent write-latency requirements, and therefore
can be deployed over more advanced storage technologies.
Computation Pushdown.: Both Redshift Spectrum [6] and S3
Select [1] introduce a serverless layer close to the storage service
to process a subset of query operators, such as filtering and aggre-
gation. Remote Compaction in RocksDB [11] pushes compaction in
LSM tree to a dedicated host. The pushdown layer can execute these
operators in a serverless manner with massive parallelism and high
cost-efficiency. It can significantly reduce the network traffic sent
to the compute layer, which improves the overall performance.
Intermediate Data Caching.: Snowflake introduces a Distributed
Ephemeral Storage layer for spilling intermediate results [22]; the
insight is that intermediate query results do not require strong
durability but prefer lower access latency. Instead of using S3, a
storage service specifically designed for intermediate results can
make better performance and cost tradeoff.
Metadata Layer in Lakehouse.: The lakehouse architecture [5] in-
troduces ametadata layer that sits between the compute and storage
layers. The metadata layer can support various database functions,
including transaction management [4], data quality enforcement,
and data governance features, etc. Similar to the computation push-
down layer, this middle layer can handle operations that are closely
tied to storage but cannot be easily pushed into the storage service
itself.
Memory Disaggregation.: PolarDB [8] goes beyond storage dis-
aggregation and further disaggregates a shared pool of remote
memory. This design allows memory to be provisioned, scaled, and
shared independently from compute, improving overall resource
utilization and reducing memory over-provisioning. High-speed
network technology such as RDMA or CXL can mitigate the in-
creased memory access latency.

2.3 Design Tradeoff in Disaggregation
Architecture

Disaggregation enables rich design flexibility and optimizations
that were not possible in traditional monolithic database architec-
tures. Each component in a disaggregated system can itself be a
complex distributed system, offering rich functionalities. Given the
large number of functions in a typical database, there exists an
enormous design space for partitioning these functions into physi-
cally separated system components. Today, we are still in the early
stages of exploring this design space. As cloud platforms continue
to evolve, this space will likely expand further, opening up new
opportunities for research and system development.

One important tradeoff in disaggregated databases is the degree
of disaggregation vs. performance. Since disaggregated components
are physically separated, communication between components can
incur significant overhead. In general, the more aggressively a sys-
tem is disaggregated, the higher performance overhead it needs
to pay. In fact, with sufficient optimizations, traditional shared-
nothing architecture can incur less network traffic and offer better
performance than disaggregation architectures [19]. As a result,

disaggregation should be applied judiciously and we should avoid
disaggregating components when the resulting communication
overhead cannot be justified. At the same time, this tradeoff moti-
vates new research opportunities that can reduce communication
costs between disaggregated components.

3 EXPLORING THE DESIGN SPACE OF
DISAGGREGATION

In this section, I present several projects from my lab that explore
the design space of disaggregated databases. These efforts revisit
fundamental protocols (Section 3.1), re-architect core database func-
tions (Section 3.2), and demonstrate how disaggregation can enable
new system capabilities (Section 3.3).

3.1 Rethinking Core Protocols
Many foundational protocols in database systems were designed
with the assumption of a traditional architecture, such as shared-
nothing. As a result, they need to be revisited in the context of
disaggregation. One such example is the two-phase commit (2PC)
protocol.
Cornus. 2PC is a protocol for a distributed transaction to reach a
final decision (i.e., commit or abort) across participating servers.
Each participant logs its own vote (i.e., VOTE-YES or VOTE-NO)
locally, and a coordinator logs the final decision, which determines
the transaction’s outcome. If any participant votes no, the transac-
tion must abort. Even if all participants vote yes, the outcome may
still be an abort under certain failure scenarios—for example, if the
coordinator times out while waiting for votes.

A well-known limitation of 2PC is the blocking problem, which
occurs when the coordinator fails before broadcasting the final deci-
sion. In a shared-nothing architecture, where compute and storage
are tightly coupled, the coordinator’s log becomes inaccessible after
a failure. As a result, the system cannot determine the transaction’s
outcome or even whether a decision was made. This uncertainty
forces all participants of the pending transaction to hold their locks,
potentially blocking other transactions indefinitely until the failed
coordinator recovers and replays its log.

Fundamentally, the blocking problem exists because a failed
node’s log cannot be accessed by other servers in the system. While
this is true in shared-nothing systems, it is no longer the case in a
storage disaggregation architecture, where storage is provided as a
separate, highly available service. Even if a compute server fails, its
log is stored in the storage service and remains accessible to other
active servers in the system.

Cornus [13] is a 2PC protocol specifically optimized for storage
disaggregation, leveraging the insight above.While the full protocol
is described in detail in the original paper, its core idea is simple:
Cornus allows active nodes to vote NO on behalf of failed nodes
by directly writing to the failed node’s log in the disaggregated
storage service. It uses a compare-and-swap-like API to ensure that
only one decision can be recorded, preserving correctness. Another
benefit of Cornus is that the critical execution path of 2PC is reduced
from two logging events to one logging event. This optimization
is viable because the ground truth of a distributed transaction is
no longer determined by the coordinator’s log but the collective
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votes from all participants’ log files; this allows the removal of the
coordinator’s log which reduces latency.
Marlin. The disaggregation in modern cloud databases mostly
focus on the data planes. For the control plane, many disaggregated
systems still rely on external, centralized coordination services,
such as ZooKeeper [15] and etcd [2]. These coordination services
lack elasticity, thereby introducing operational complexity and
performance bottleneck.

Marlin [14] is a cloud-native coordination mechanism (i.e., the
control plane) that is specifically designed for the storage disag-
gregation architecture. Marlin eliminates the need for external
coordination services by consolidating coordination functionality
into the existing cloud-native database it manages. Specifically, it
stores coordination state (e.g., cluster membership, data mapping)
in the disaggregated storage layer and performs coordination logic
using compute-layer transaction managers. This design enables
scalable, cost-efficient coordination for disaggregated databases.

To ensure correctness and efficiency, Marlin adopts a new 2PC
protocol that further extends Cornus. In Marlin’s commit protocol,
a participant does not have to be a compute node; instead, it can be
either a compute node or a log instance in the disaggregated storage.
This allows different compute nodes to initiate a reconfiguration,
and enforce a global decision across multiple log files.

3.2 Disaggregating The Query Engine
One limitation of disaggregation architecture is the network over-
head between different components. In our earlier study [19], we
found that disaggregation can impose a 10× throughput degrada-
tion compared to a highly-optimized shared-nothing database due
to excessive network traffic. Therefore, an important goal in disag-
gregated database design is to develop optimizations to mitigate
the network bottleneck.

Computation pushdown is a well-established technique to reduce
data traffic to the compute engine, especially when the pushdown
operators are selective. The idea has been extensively explored in
the context of database machines [12, 23], Smart Disk/SSD [10],
processing-in-memory (PIM) [16], and cloud databases [6]. In fact,
the pushdown idea fits even better in the storage disaggregation
context compared to computational storage devices (e.g., Smart
Disk/SSD, PIM). This is because cloud storage, as a service, has
richer support for resource management, security, and data consis-
tency, compared to hardware devices [7, 27].
PushdownDB. We have developed PushdownDB [28], a database
engine that uses S3 Select [1], a serverless layer in front of S3, to
pushdown basic operators (e.g., filter, aggregation) that are natively
supported in S3 Select, and more advanced operators (e.g., group-by,
top-K, probe in hash join) that we built by leveraging existing filter
and aggregation support. PushdownDB can reduce query runtime
by 6.7× and cost by 30%, validating the potential of the idea.
FlexPushdownDB (FPDB). One issue of pushdown is its inherent
tension with data caching in the compute layer—another technique
to reduce network traffic; most systems implement only one of
these two ideas. In FlexPushdownDB (FPDB) [24], we aim to com-
bine these two techniques in a single design. The key observation
is that many common operators—such as filtering, aggregation,

hash probe, etc.—can execute on both cached data locally and use
pushdown to process remote data simultaneously; the results of
the two execution paths can then be merged. FPDB employs a fine-
grained hybrid execution mode to combine the benefits of caching
and pushdown, and outperforms both techniques alone by 2.2×.
Adaptive Pushdown. By default, a pushdown request does not
consider the pushdown layer’s computational capacity, which can
sometimes be scarce (e.g., due to multi-tenancy), causing pushdown
to underperform. With adaptive pushdown [25], the pushdown
layer can choose to push back the task if it has no resource to
execute it, and the compute layer can directly read the remote
data to execute the task locally. This work also identifies two more
operators that are amenable to pushdown, selection bitmap and
distributed data shuffle, which are common in distributed columnar
databases. These techniques lead to 1.7–3× further speedup.

3.3 Enabling New Capabilities
Modern applications increasingly demand real-time analytics so that
the most up-to-date insights can be extracted from the data. Hybrid
Transactional/Analytical Processing (HTAP) addresses this need
by integrating TP and AP into a single engine. However, existing
HTAP solutions require a compulsory migration—users need to
migrate from existing TP and AP databases to a new HTAP engine,
incurring extra migration cost and complexity.
Hermes.We aim to achieve off-the-shelf real-time analytics on top
of existing TP and AP engines, so that users can enjoy real-time
analytics without migrating away from their existing databases
running in the cloud. The key idea is to introduce a new Hermes
layer [17] that sits between compute and storage, that intercepts
the logging events in the TP engine(s) and the read requests in the
AP engine(s). Hermes will replay the recent transactional logs from
TP engines and merge the updates into the analytical reads from
the AP engines, such that each analytical query can see the latest
updates. In the background, Hermes will merge updates in batches
into the stable analytical storage.

Hermes also supports True HTAP transactions [18], which are
transactions that contain long-running analytical queries within.
We refer to this capability as Transactional Analytics. Hermes allows
the analytical query within a transaction to run in the AP side of the
system, thereby reducing the overall execution time. Hermes can
support different isolation levels for these cross-engine transactions,
such as read committed, snapshot isolation, and serializability.

4 FUTUREWORK
We are still in the early stage in exploring the design space of
disaggregation architecture and tremendous opportunities exist
ahead for the community to explore. Below are few directions that
I find promising. This list is by no means exhaustive, but rather
a set of initial thoughts intended to spark deeper discussion and
inspire new ideas.
Disaggregate More Database Functions. While the disaggrega-
tion of many database functions have been studied as discussed
in earlier sections, many other database functions (e.g., indexing,
concurrency control, query optimization, statistics management,
materialized view, etc.) remain underexplored. Moreover, many of
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these functions can be consolidated into a unified disaggregated
component; for example, the pushdown layer, lakehouse metadata
layer, and Hermes layer are all middle layers between compute and
storage. The design space opens up rich research opportunities.
Multi-Cloud Database. Disaggregation architecture today largely
focuses on a single cloud. When databases expand to a multi-cloud
environment (e.g., multiple public clouds or hybrid public/private
clouds), the cross-cloud communication overhead can be signifi-
cant. This calls for the design ofmulti-disaggregated systems, where
components are disaggregated within each cloud but the communi-
cation between clouds must be a first-class design consideration.
Embrace NewHardware.: Disaggregation naturally facilitates the
adoption of new hardware, such as GPU, FPDB, RDMA, CXL, since
different components can use different hardware for the best perfor-
mance cost tradeoff. This flexibility opens up even further research
and development opportunities. For example, in our own research,
we use GPU to replace the execution engine of DuckDB and achieve
significant speedup by leveraging the massive parallelism of GPU
hardware [26].

5 CONCLUSION
Disaggregation is emerging as the new architectural trend for cloud-
native databases, offering new opportunities and challenges for
performance, cost efficiency, elasticity, and modularity. We are still
in the early stages of exploring this paradigm, and the design space
remains vast and largely unexplored. Now is a great time for the
community to rethink traditional assumptions and build a new
system foundation for disaggregated cloud databases.
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