
E�icient Top-: Frequent Subgraph Mining Using Tight Upper and
Lower Bounds

Seonho Lee
Seoul National University
shlee2@theory.snu.ac.kr

Yeunjun Lee
Seoul National University
yjlee@theory.snu.ac.kr

Kunsoo Park
Seoul National University
kpark@theory.snu.ac.kr

ABSTRACT
Frequent subgraph mining is an important and well-studied prob-
lem with numerous applications such as the prediction of protein
functionalities and graph indexing. Many studies use the minimum-
image-based support (MNI) to measure the frequency of subgraphs
in single graph mining. Given a graph⌧ and an integer : , top-: fre-
quent subgraph mining is to �nd top-: frequent subgraphs in the
graph ⌧ based on MNI. However, there are two main challenges
in top-: frequent subgraph mining. (1) Computing MNI is time-
consuming. (2) The number of subgraphs for which MNI should
be computed is large. In this paper, we propose a novel algorithm
Minting to address these challenges. We propose a method to sig-
ni�cantly reduce the number of subgraphs for which MNI compu-
tation is required by using a tight upper bound of the MNI value.
We also improve the computation of MNI itself by utilizing both a
lower bound and an upper bound of the MNI value. Experiments
shows that our algorithm outperforms the state-of-the-art algo-
rithms by up to three orders of magnitude in terms of the elapsed
time. Our algorithm is also a feasible solution for this challenging
problem, even for large : .

PVLDB Reference Format:
Seonho Lee, Yeunjun Lee, and Kunsoo Park. E�cient Top-: Frequent
Subgraph Mining Using Tight Upper and Lower Bounds. PVLDB, 18(3):
557 - 570, 2024.
doi:10.14778/3712221.3712225

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/SNUCSE-CTA/Minting.

1 INTRODUCTION
Graphs can model complex relationships between objects and they
are widely used in many �elds such as bioinformatics, social net-
works, and chemistry. Mining frequent subgraphs is an important
and well-studied problem, which has numerous applications, in-
cluding the prediction of protein functionalities in computational
biology [13, 37, 45], graph indexing [61], classi�cation [16], cluster-
ing [21], and recommender systems [6].

Frequent subgraph mining can be categorized into two types:
transactional mining, which focuses on mining in a graph database
(of typically small graphs), and single graph mining, which is to �nd

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.
doi:10.14778/3712221.3712225

(a) Graph⌧

(b) subgraph (1

(c) subgraph (2

(d) subgraph (3

(e) subgraph (4

Figure 1: A graph ⌧ and its subgraphs (1, (2, (3, (4. Top-: fre-
quent subgraphs in ⌧ when : = 2 are (3 and (4.

frequent subgraphs within a single large graph [28, 30]. Between
these two types, single graph mining is a generalized version of
transactional mining, as a set of small graphs can be viewed as
components of a large graph. Additionally, single graph mining is
more challenging because multiple instances of identical subgraphs
may overlap [17].

Recently, considerable research has been done on frequent sub-
graph mining in a single large graph. Many studies [17, 26, 64] use
the minimum-image-based support (called MNI) [9] to measure the
frequency of subgraphs instead of counting the number of isomor-
phisms. The image set of a vertex D in a subgraph (is the set of
vertices in the given graph ⌧ that D is mapped to. The MNI of a
subgraph (is the size of the smallest image set among the vertices
of (. Our work also uses MNI to measure subgraph frequency. In
this paper, we deal with the top-: frequent subgraph mining prob-
lem: Given a graph ⌧ and an integer : , top-: frequent subgraph
mining is to �nd top-: frequent subgraphs in the graph⌧ based on
MNI. Given a data graph⌧ in Figure 1 and : = 2, the result of top-2
frequent subgraph mining is the subgraphs (3 and (4 in Figure 1.
Existing Works and Challenges. GRAMI [17], Peregrine [26],
and FastPat [64, 65] address problems related to top-: frequent sub-
graph mining. GRAMI �nds subgraphs whose frequency is greater
than or equal to a user-de�ned frequency threshold g . Peregrine
takes a threshold g and an integer< as input, and �nds subgraphs
with< edges that have an MNI greater than or equal to g . Thus
both of them require some prior knowledge to set the frequency
threshold g . FastPat �nds top-: frequent patterns extended from
an input core pattern in a knowledge graph. It speci�cally targets
knowledge graphs and needs a core pattern as an input.

The framework used in many frequent subgraph mining algo-
rithms consists of subgraph generation and computing MNI [17, 59,

557

https://doi.org/10.14778/3712221.3712225
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712225
https://www.acm.org/publications/policies/artifact-review-and-badging-current

64]. Subgraphs of the given graph are generated through an edge-
growing method [59]. MNI is computed for the subgraphs to deter-
mine whether each subgraph is frequent.

There are two main challenges in top-: frequent subgraph min-
ing. The �rst challenge is the computation of MNI, which is time-
consuming because it is an NP-hard problem [17, 20, 29]. Thus, it
is a bottleneck in frequent subgraph mining. Although GRAMI em-
ploys constraint satisfaction problems and FastPat utilizes join op-
erations for computing MNI, they still take a considerable amount
of time for MNI computation, thus occupying a major portion of
the time in �nding frequent subgraphs.

The second challenge is the large number of subgraphs for which
MNI should be computed. For any given graph, the number of
subgraphs can be exponentially large, leading to a huge search space
requiring exploration [42, 64]. Since the computation of MNI is a
time-consuming process, the large number of subgraphs for which
MNI computation is required leads to an exceedingly large amount
of time to �nd frequent subgraphs. Although FastPat employs an
upper bound in its process, this bound is not tight, still resulting in
the generation of a large number of subgraphs. Therefore, frequent
subgraph mining is a doubly hard problem, both in generating
subgraphs of the given graph in the form of a lattice [28] and in
computing MNI for the subgraphs.
Contributions. In this paper, we propose a novel algorithm Minting
(Mining top-k patterns in graph) to address the aforementioned
challenges. The contributions of our work are as follows.

(1) We introduce a new data structure called marked CS (Candidate
Space) where each candidate vertex is marked as con�rmed,
invalid, or undetermined. A candidate vertex is called valid if it
is con�rmed or undetermined. Based on this data structure, we
propose key concepts minVL(() and minCF(().
• For a subgraph (of the given graph, the valid candidate set
+!(D) for each vertex D of (is the set of valid candidates for
D in the marked CS. We de�ne minVL(() to be the minimum
size among valid candidate sets, and prove that minVL(() is
an upper bound of the MNI value of (, denoted by MNI(().

• For a subgraph (of the given graph, the con�rmed candidate
set ⇠� (D) for each vertex D of (is the set of con�rmed candi-
dates for D in the marked CS. We de�ne minCF(() to be the
minimum size among con�rmed candidate sets, and prove
that minCF(() is a lower bound of MNI(().

(2) We reduce the number of subgraphs for which MNI computation
is required. We do this using the upper bound minVL(() and a
�ltering algorithm on the marked CS. The �ltering algorithm
repeatedly selects (using a queue) a candidate vertex which is
newly marked as invalid and checks whether the candidates ad-
jacent to it satisfy safety conditions. The safety conditions used
here are connectivity-safety and neighbor-safety. If a candidate
becomes invalid by violating one of safety conditions, it is in-
serted into the queue. Since a candidate newly marked as invalid
can cause adjacent candidates to become invalid, our method is
more e�ective in �ltering candidates than DAG-DP (a �ltering
technique in DAF and VEQ [22, 29]) which proceeds top-down
and bottom-up on a DAG, thus checking unnecessarily all parts
of the marked CS repeatedly.

As candidates in the marked CS are �ltered out, minVL(() de-
creases. As soon as minVL(()  g (smallest MNI value among
the current top-: subgraphs), subgraph (cannot be one of top-
: results, and so it is pruned out without computing its MNI
value. By this method, we signi�cantly reduce the number of
subgraphs for which MNI computation is required.

(3) We improve the computation of MNI itself. We do this by a
novel algorithm forMNI computation utilizing both lower bound
minCF(() and upper bound minVL((). If we �nd an embedding
of (in ⌧ that maps a vertex D of (to a vertex E of ⌧ , |⇠� (D) |
increases, and thus minCF(() may increase. If there is no such
embedding, E 2 ⇠ (D) becomes invalid. We apply our �ltering
algorithm from the invalid candidate, which can make other
undetermined candidates invalid. Thus minVL(() can decrease.
When the two bounds converge (i.e., are the same), the same
value is MNI((). This method signi�cantly reduces the number
of subgraph isomorphism checks (i.e., �nding an embedding of
(in ⌧), making the computation of MNI e�cient.
Additionally, we have improved the process of checking whether
a DFScode [59] is canonical for certain subgraphs. This improve-
ment reduces the time required from a potentially exponential
to constant.

(4) We conduct extensive experiments with the state-of-the-art algo-
rithms on six real-world datasets. When contributions (2) and (3)
are combined together, they produced signi�cant performance
improvements in our experiments. Experiments shows that our
algorithm outperforms the existing algorithms by up to three
orders of magnitude in terms of elapsed time. Our algorithm is
also a feasible solution for this challenging problem, top-: fre-
quent subgraph mining, even for large : .

2 PRELIMINARIES
In this paper, we focus on undirected simple graphs with labeled
vertices. Our techniques can be extended to directed and edge-
labeled graphs. A graph ⌧ = (+ (⌧), ⇢ (⌧), !⌧) consists of a set of
vertices + (⌧), a set of edges ⇢ (⌧), and a labeling function !⌧ :
+ (⌧) ! ⌃ that assigns labels to vertices where ⌃ is a set of labels.
A graph is non-trivial if a graph has at least one edge.

De�nition 2.1. For a graph (= (+ ((), ⇢ ((), !() and a graph⌧ =
(+ (⌧), ⇢ (⌧), !⌧), an embedding of (in ⌧ is an injective function
5 : + (() ! + (⌧) satisfying (i) !((D) = !⌧ (5 (D)) for all vertices
D 2 + ((), and (ii) (5 (D), 5 (D0)) 2 ⇢ (⌧) for all edges (D,D0) 2 ⇢ (().

2.1 Problem Statement
Frequent subgraph mining is the problem of �nding subgraphs with
a large support in a graph, where the support refers to how fre-
quently a subgraph appears in the graph. The most straightforward
way to measure the support of a subgraph is to count its embed-
dings. For instance, in the graph shown in Figure 1, the number of
embeddings of the subgraph (1 and its extension (2 are 3 and 6, re-
spectively. A support is anti-monotone if the support of a graph ⌧
is always less than or equal to the support of any subgraph ⌧ 0 of
⌧ . However, the number of embeddings does not satisfy the anti-
monotone property because the support of subgraph (2 is greater
than the support of its subgraph (1. The anti-monotone property
is crucial in frequent subgraph mining because it allows pruning

558

of the search space: If a subgraph is infrequent, any subgraph ex-
tended from that subgraph will also be infrequent [18]. There are
several supports satisfying the anti-monotone property, such as
minimum-image-based support [9], minimum instance [35], and
maximum independent set [30]. In this paper, we use the minimum-
image-based support (called MNI) as the support since MNI is com-
monly used in many previous studies [17, 64, 65]. The problem of
computing MNI is NP-hard because subgraph isomorphism, which
is NP-complete [20], can be reduced to it in polynomial time.

De�nition 2.2. Let 51, 52, . . . , 5= be the set of embeddings of a
subgraph (in a graph ⌧ . For a vertex D 2 + ((), the image set of D,
denoted by � (D), is the set that contains the vertices E in ⌧ such
that a function 58 maps the vertex D to E .

De�nition 2.3. The minimum-image-based support (MNI) of (in
⌧ , denoted by MNI((), is de�ned as minD2+ (() |� (D) |.

Example 2.4. For a graph ⌧ and a subgraph (3 in Figure 1, there
are 6 embeddings of (3 in ⌧ . For the vertices D1,D2 of (3, we have
their image sets as � (D1) = {E1, E2, E6, E7} and � (D2) = {E3, E5, E8}.
So, MNI((3) in⌧ ismin{4, 3} = 3. Similarly, MNI((1) ismin{3, 2} =
2, MNI((2) is min{4, 3, 2} = 2, and MNI((4) is min{4, 3, 4} = 3.

De�nition 2.5. Given a graph ⌧ and an integer : , the top-: fre-
quent subgraph mining problem is to �nd a set � = {(1, (2, . . . , (: }
of non-trivial, connected subgraphs of⌧ such that MNI((8) for any
1  8  : is larger than or equal to MNI((0) for any other non-
trivial, connected subgraph (0 of ⌧ that is not in �.

2.2 Related Work
Transactional mining focuses on mining frequent subgraphs in a
database of many small graphs, typically mining subgraphs whose
support is greater than or equal to a user-de�ned threshold g . Nu-
merous solutions [24, 53, 59] have been proposed for this problem.
gSpan [59] introduced the DFS canonical form, which enables the
generation of subgraphs without generating duplicates. For approx-
imate frequent subgraph mining, algorithms such as APGM [27]
and REAFUM [33] have been developed. In distributed settings,
Pre�xFPM [57] and PFSM [55] are proposed for parallel solutions.
MARGIN [51] focuses on identifying maximal frequent subgraphs,
while CloseGraph [60] targets closed frequent subgraphs. Beyond
frequent subgraph mining, various studies conduct on di�erent
subgraph mining. LEAP [58] and GraphSig [44] are dedicated to
�nding signi�cant patterns. RESLING [39] �nds representative sub-
graph patterns. Additionally, TKG [19] returns the top-: frequent
subgraphs in a graph database.

Single graph mining focuses on �nding frequent subgraphs in a
single large graph. Many works in single graph mining use the MNI

Table 1: Frequently Used Notations
Symbol De�nition
⌧, (Graph and subgraph

+ (⌧), ⇢ (⌧), !⌧ Vertices, edges, and labels of a graph ⌧
#⌧ (D) Neighbors of D in a graph ⌧
⇠ (D) Set of candidate vertices for D

⇠ (D= | D, E) Set of candidate neighbors of (D, E) to D=
+!(D) Set of valid candidates in ⇠ (D)
⇠� (D) Set of con�rmed candidates in ⇠ (D)

(a) subgraph ((b) Marked CS

Figure 2: A subgraph (, and the marked CS (blue for con-
�rmed vertices, red for invalid, and white for undetermined)
on (and ⌧ from Figure 1, after �nding an embedding
{(D1, E6), (D2, E5), (D3, E7), (D4, E8)} and determining that there
is no embedding mapping D2 to E3.

as the support metric. Several algorithms [17, 30, 40] have been pro-
posed for mining subgraphs in a single large graph whose support
is greater than or equal to a user-de�ned threshold g . GRAMI [17]
uses a constraint satisfaction problem to compute MNI. For approx-
imate frequent subgraph mining, algorithms such as AGRAMI [17]
and MANIACS [43] have been developed. In distributed settings,
DISTGRAPH [49] o�ers solutions for very large graphs that are too
large to �t in memory. ScaleMine [4] provides a parallel frequent
mining system. For dynamically changing graphs, TIPTAP [38]
and IncGM+ [5] have been developed. WeGrami [31] specializes
in weighted subgraphs, and fanta [12] �nds frequent subgraphs in
uncertain graphs. CSM-E [42] targets �nding correlated subgraphs
in a single graph. FastPat [64, 65] �nds top-: frequent patterns
extended from an input core graph in knowledge graphs, dealing
with directed graphs and requiring a core graph. FastPat employs
a combination of meta-indexing and bounds to selectively prune
out patterns. It also employs a two-pass join method for the com-
putation of MNI. GsFSM [67] addresses geo-social frequent pattern
mining in geosocial networks, considering spatial and label con-
straints along with core patterns. APRTOPK [56] �nds k frequent
patterns that maximize an interestingness value.

In system research related to graph mining, several systems have
been developed, including RStream [54], Arabesque [50], ASAP [25],
G-miner [10], Sandslash [11], and Peregrine [26]. These systems are
designed to support a wide range of graph mining problems, such
as clique detection, motif �nding, and frequent subgraph mining.

Frequent subgraph mining is closely related to subgraph match-
ing because subgraph matching is used to compute MNI. Extensive
research has been conducted on subgraph matching [7, 8, 14, 22, 23,
29, 36, 41, 46–48, 62] . Many practical solutions, such as DAF [22],
VEQ [29], BICE [14], and GuP [7], are based on Ullmann’s back-
tracking framework [52]. They adopt a �ltering-backtracking ap-
proach, reducing the candidate set size in the �ltering phase and
employing techniques to prune the search space during backtrack-
ing. Some algorithms [36, 48] utilize a join-based framework.

3 OVERVIEW OF OUR ALGORITHM
In this section, we introduce an auxiliary data structure called
the marked CS and outline our top-: frequent subgraph mining
algorithm.

559

Algorithm 1: top-: Frequent Subgraph Mining
input :A single graph G, an integer :
output : top-: frequent subgraphs based on MNI

1 �A4@⇢364 Compute frequent edges
2 Initialize �0=B with �A4@⇢364
3 if �A4@⇢364 .B8I4 () � : then
4 g :-th largest MNI in �A4@⇢364

5 else
6 g 0
7 foreach 4 2 �A4@⇢364 do
8 ⇢GC4=B8>=(4, 4 .CS)
9 while �20=3 < ; and �20=3 .C>? .D1 > g do
10 (, CS �20=3 .?>? ()
11 (MNI((),CS) ⇠><?DC4"#� ((,CS)
12 if MNI(() > g then
13 Update �0=B by ((, MNI(())
14 Update g
15 ⇢GC4=B8>=((,CS)

16 return �0=B

3.1 Marked CS
The candidate space (CS) is an auxiliary data structure used to solve
the subgraph matching problem, proposed by [22] and extended by
[29]. The candidate space comprises the set of candidates along with
edges between them, ensuring that all embeddings are preserved
within CS. We extend this de�nition of CS by adding marking
information to compute the MNI of a subgraph quickly.

De�nition 3.1. A marked CS on a subgraph (and a graph ⌧
consists of the candidate set ⇠ (D) with marking information for
each vertex D 2 + (() and edges between the candidates as follows:
• For each D 2 + ((), there is a candidate set ⇠ (D), which is a set

of vertices in ⌧ that D can be mapped to. A vertex E 2 ⇠ (D) can
have one of the following three states:
– con�rmed if E is in the image set � (D);
– invalid if E is not in the image set � (D);
– undetermined if it is not determined whether E is in the

image set � (D) or not.
• There is an edge between E 2 ⇠ (D) and E 0 2 ⇠ (D0) if and only if

(D,D0) 2 ⇢ (() and (E, E 0) 2 ⇢ (⌧).
Example 3.2. Consider the graph ⌧ in Figure 1 and the sub-

graph (in Figure 2a. After �nding an embedding {(D1, E6), (D2, E5),
(D3, E7), (D4, E8)} and �nding that there is no embedding in which
D2 is mapped to E3, the marked CS on ⌧ and (is shown in Fig-
ure 2b. Four candidates E1, E2, E6, E7 are in ⇠ (D1), and there is an
edge between E6 in ⇠ (D1) and E5 in ⇠ (D2). The vertex E3 in ⇠ (D2)
is marked red (invalid) because there is no embedding that maps
D2 to E3. The vertices E6 in ⇠ (D1), E5 in ⇠ (D2), E7 in ⇠ (D3) and E8
in ⇠ (D4) are marked blue (con�rmed) because there is an embed-
ding {(D1, E6), (D2, E5), (D3, E7), (D4, E8)}. All remaining candidates
are marked white (undetermined).

De�nition 3.3. For a vertex D in + (() and candidate E in ⇠ (D),
the candidate E in ⇠ (D) is valid if the state of the candidate E is
con�rmed or undetermined.

Algorithm 2: Extension
input :A subgraph (, a marked CS of (

1 foreach D 2 + (() and 4 = (D,D0) 2 �A4@⇢364 do
2 if MNI(4) > g then
3 Let (0 be the extension of (with the new edge 4
4 Build CS0 from CS
5 (8B⇠0=3⌧A0?⌘,CS0) ⇠(=>34�8;C4A8=6((0,CS0, 4)
6 if 8B⇠0=3⌧A0?⌘ then
7 *⌫0 minVL((0)
8 �20=3 .insert((0,CS0,*⌫0)

De�nition 3.4. For E 2 ⇠ (D) and D= 2 #((D), the candidate
neighbors of (D, E) to D= , denoted by ⇠ (D= | D, E), is de�ned as the
set of candidate E= 2 ⇠ (D=) that is adjacent to E 2 ⇠ (D).

Example 3.5. For the marked CS in Figure 2b, ⇠ (D3 | D2, E5) is
{E6, E7} and ⇠ (D2 | D3, E2) is {E3}.

De�nition 3.6. For a subgraph (of ⌧ and a marked CS on (and
⌧ , the valid candidate set +!(D) is the set of valid candidates in
⇠ (D) for each vertex D 2 + (().

De�nition 3.7. For a subgraph (of ⌧ , <8=+!(() is the mini-
mum size of valid candidates set +!(D) among D 2 + ((), i.e.,
minD2+ (() |+!(D) |.

T������ 3.8. For a subgraph (of ⌧ , minVL(() is an upper bound
of MNI(().

P����. By de�nition of the marked CS, all embeddings of (
in ⌧ are in the marked CS. Furthermore, each embedding con-
sists of only valid candidates. It means that for every D 2 + ((),
the image set � (D) is a subset of +!(D), i.e., |� (D) |  |+!(D) |.
Hence minD2+ (() |� (D) |  minD2+ (() |+!(D) | = minVL((). Since
MNI(() isminD2+ (() |� (D) |, minVL(() is an upper bound ofMNI(().

⇤

3.2 Top-: frequent subgraph mining
Algorithm 1 shows the overview of our algorithm that outputs the
top-: frequent subgraphs in a given graph⌧ . It follows the general
framework to solve top-: frequent subgraph mining [19, 64, 65].
On top of this framework, our algorithm reduces the number of
subgraphs for which MNI computation is required by a �ltering
process, and uses both lower and upper bounds of MNI to compute
the MNI of a subgraph e�ciently. The framework uses two data
structures: a min-heap �0=B , and a max-heap �20=3 . The min-heap
�0=B keeps the current top-: subgraphs along with their MNIs,
while the max-heap �20=3 holds subgraphs for which MNI com-
putation is needed, along with the marked CS and the MNI upper
bound (i.e., minVL). The algorithm starts by computing the top-
: frequent edges based on their MNIs to form the set of frequent
edges, �A4@⇢364 (line 1). The top-: frequent edges become the cur-
rent top-: results, and the subgraphs extended from these edges can
become subgraphs for which MNI computation is needed. So, �0=B
is initialized using the top-: frequent edges from �A4@⇢364 (line 2).
g is the smallest MNI value among the current top-: results, and it
is 0 if the size of �A4@⇢364 is less than : (lines 3-6). �20=3 is initial-
ized by adding subgraphs extended from the edges in �A4@⇢364 via
Extension. Extension takes a subgraph and its marked CS as inputs,

560

Algorithm 3: Filtering
input :A subgraph (, a marked CS of (, a new edge

4 = (D,D0)
output : (whether (is a subgraph for which MNI

computation is needed, re�ned CS)
1 � ⇠><?DC4�=8C80;(4C ((,CS, 4)
2 (8B⇠0=3⌧A0?⌘,CS) ⇠(=>34�8;C4A8=6((,CS, �)
3 return (8B⇠0=3⌧A0?⌘,CS)

generates extended subgraphs, and adds to the max-heap �20=3
the subgraphs for MNI computation is needed (lines 7-8).

We pop a subgraph (with the largest MNI upper bound (i.e.,
minVL(()) from �20=3 (line 10). We �nd the embeddings of (in
⌧ and mark the candidates in the marked CS. Using this marking
information, we compute MNI(() (line 11). If this MNI(() is greater
than g , then the subgraph (becomes one of the current top-: results.
Thus, the subgraph (is added to�0=B , and the value of g is updated.
Additionally, new subgraphs are generated by adding an edge to the
subgraph (, and subgraphs for which MNI computation is needed
are added to�20=3 via Extension (lines 12-15). This iteration repeats
until either �20=3 is empty or the largest MNI upper bound of
subgraphs in �20=3 is less or equal to g .

Algorithm 2 shows Extension, which is the process of generating
extensions of a subgraph (using the edge-growing method and
adding to the max-heap �20=3 the subgraphs for which MNI com-
putation is needed. The edge-growing method, frequently used in
prior studies [17, 59, 64, 65], extends a subgraph by adding an edge.
Instead of every edge, the edges added to the subgraph (are from
�A4@⇢364 and have an MNI value greater than g (lines 1-2). This is
due to the anti-monotone property of MNI. If the MNI of the edge
is not greater than g , then the MNI of the extended subgraph is also
not greater than g , which is the smallest MNI value of the current
top-: subgraphs. We employ gSpan’s DFScode canonical form [59]
to prevent generating duplicate subgraphs.

For each subgraph (0 extended from the subgraph (, we build a
marked CS on the extended subgraph (0 and⌧ . To build the marked
CS on (0 and ⌧ , the candidates are copied from the marked CS on
the subgraph (and ⌧ excluding invalid candidates. Subsequently,
all marking information is initialized to undetermined. If a new
vertex D0 is created, the candidate set ⇠ (D0) is initialized as the set
of vertices in graph⌧ that have the same label as D. In addition, the
neighborhood label frequency (NLF) �lter [23] is applied (line 4).
After the marked CS on (0 and ⌧ is constructed, a �ltering process
computes a tight upper bound of MNI((0) and outputs whether
the subgraph is a subgraph for which MNI computation is needed,
along with re�ned marked CS (line 5). If the subgraph (0 needs MNI
computation, then (0 is added to the max heap �20=3 (lines 6-8).

4 REDUCING THE NUMBER OF SUBGRAPHS
In this section, we propose a method to reduce the number of sub-
graphs for which MNI computation is required. We present a �l-
tering algorithm on the marked CS to make minVL(() a tight up-
per bound. Additionally, we describe two conditions, connectivity-
safety and neighbor-safety, which are used in the �ltering process.

Computing a tight MNI upper bound reduces the number of sub-
graphs for which MNI should be computed. For example, consider

Algorithm 4: CSnodeFiltering
input :A subgraph (, a marked CS of (, an initial set �
output : (false, re�ned marked CS) if 9 D s.t. |+!(D) |  g

(true, re�ned marked CS) otherwise
1 for (D, E) 2 � do
2 mark E 2 ⇠ (D) as invalid
3 if |+!(D) |  g then
4 return (false, CS)
5 & .8=B4AC (D, E)
6 while Q is not empty do
7 (D, E) & .?>?
8 for each pair (D=, E=) adjacent to (D, E) do
9 if E= 2 ⇠ (D=) is marked as invalid then
10 continue
11 E8>;0C43 5 0;B4

// update and check connectivity-safety
12 #1A⇠=C (D=, E=,D)��
13 if #1A⇠=C (D=, E=,D) = 0 then
14 E8>;0C43 CAD4

15 else
// update and check neighbor-safety

16 Update #1A⇠((D=, E=, !((D))
17 if neighbor-safety is violated then
18 E8>;0C43 CAD4

19 if E8>;0C43 is CAD4 then
20 Mark E= 2 ⇠ (D=) as invalid
21 if |+!(D=) |  g then
22 return (false, ⇠()
23 & .8=B4AC (D=, E=)

24 return (true, CS)

the graph ⌧ in Figure 3a and the subgraph (in Figure 3b, with g
set to 1. Without the �ltering process, the marked CS on (and⌧ is
shown in Figure 3c. The MNI upper bound, minVL((), is computed
as 2, which exceeds g . Thus, we compute MNI((). However, since
MNI(() is 1, subgraph (cannot be added to the top-: results. In
contrast, when we apply the �ltering process, the resulting marked
CS is shown in Figure 3h and the subgraph has an MNI upper bound
of 1. Since this is equal to g , we can ignore the subgraph without
computing its MNI.

To obtain a tight MNI upper bound, we use a �ltering process to
get a compact valid candidate set. Following are the two conditions
used in the �ltering process. One is connectivity-safety condition
and the other is neighbor-safety condition which is proposed in
VEQ [29].

De�nition 4.1. For vertex D 2 + ((), E 2 ⇠ (D), and its neighbor
D= 2 #((D), #1A⇠=C (D, E,D=) is the number of valid candidates
in the candidate neighbor set ⇠ (D= |D, E), i.e., |{E= |E= 2 ⇠ (D= |D, E)
and E= 2 ⇠ (D=) is E0;83}|.
De�nition 4.2. Given a subgraph (of ⌧ and a marked CS on

(and ⌧ , E 2 ⇠ (D) is connectivity-safe if #1A⇠=C (D, E,D=) > 0 for
every neighbor vertex D= 2 #((D).

561

(a) Graph⌧ (b) Subgraph ((c) Initial marked CS (d) After marking initial candi-
dates

(e) After the �rst iteration (f) After the second iteration (g) After the third iteration (h) Upon completion of �ltering
process

Figure 3: Filtering process for a given graph⌧ and a subgraph (created by adding a new edge (D4,D5). Among the candidates for
D4 and D5, candidate E6 2 ⇠ (D4) is marked as invalid for violating connectivity-safety. Then, E1 2 ⇠ (D1), E1 2 ⇠ (D3), and E4 2 ⇠ (D2)
are marked as invalid in this order.

De�nition 4.3. For each vertexD 2 + (() and a label ; 2 ⌃, a neigh-
bor set#1A((D, ;) is the set of neighbors ofD labeled with ; . For each
vertex E 2 ⇠ (D) and a label ; 2 ⌃, a neighbor set #1A⇠((D, E, ;) is de-
�ned as[D=2#1A((D,;) {E= |E= 2 ⇠ (D= |D, E) and E= 2 ⇠ (D=) is E0;83}.

De�nition 4.4. Given a subgraph (of ⌧ and a marked CS on (
and ⌧ , E 2 ⇠ (D) is neighbor-safe if |#1A((D, ;) |  |#1A⇠((D, E, ;) |
for every label ; 2 ⌃.

These conditions are necessary conditions for the existence of
an embedding that maps D to E . During the �ltering process, a
candidate E 2 ⇠ (D) violating any of two conditions is marked as
invalid. Thus, after the �ltering process, all embeddings are still
preserved in the marked CS and consist of only valid candidates.

For each vertex D in + (() and each candidate E in ⇠ (D), the
"(D, E) pair" represents a node in the marked CS. For a (D, E) pair
and a (D0, E 0) pair, we say (D, E) is adjacent to (D0, E 0) if and only if
there is an edge between E 2 ⇠ (D) and E 0 2 ⇠ (D0) in the marked
CS. Our algorithm runs over these (D, E) pairs.

In Extension, a new subgraph is created by adding an edge 4 =
(D,D0). This new edge 4 may cause certain candidates E of vertex D
(also certain candidates E 0 of vertex D0) to violate connectivity-safe
or neighbor-safe conditions. The (D, E) pairs for such E (also (D0, E 0)
pairs for such E 0) form the initial set � for the �ltering process, and
the �ltering begins with the pairs in the set � .

Algorithm 3 shows the overview of this �ltering process. It com-
putes the initial set � for �ltering (line 1). Then, CSnodeFiltering
computes a compact valid candidate set, starting by marking candi-
dates E 2 ⇠ (D) as invalid for each (D, E) pair in the initial set � . This
returns whether subgraph (is a subgraph for which MNI computa-
tion is needed along with the re�ned CS (line 2).

Algorithm 4 shows CSnodeFiltering, which is the process of com-
puting a compact valid candidate set by marking the candidates
that violate any of the connectivity-safety or neighbor-safety con-
ditions as invalid from the (D, E) pairs in the initial set � . During the
process, the algorithm checks whether the size of +!(D) for a ver-
tex D is less than or equal to g . If this is the case, indicating that the

upper bound of MNI, minVL(S), cannot exceed g , the algorithm ter-
minates early and returns false, along with the re�ned marked CS.
Conversely, if the �ltering process completes without such early
termination, indicating that the upper bound of MNI exceeds g , it
returns true, along with the re�ned marked CS.

The algorithm uses a queue & to store (D, E) pairs, where the
state of candidate E in ⇠ (D) has recently transitioned from valid to
invalid due to violating any condition.

Initially, for each (D, E) pair in the initial set � , the candidates
E 2 ⇠ (D) are marked as invalid, and the algorithm checks the size
of +!(D). After checking the size of +!(D), the (D, E) pair is added
into the & (lines 1-5). A (D, E) pair is popped from Q (line 7). The
changed state of the candidate E 2 ⇠ (D) to invalid triggers update
in the #1A⇠=C and #1A⇠(for candidates E= 2 ⇠ (D=) adjacent to
E 2 ⇠ (D). If these updates cause E= 2 ⇠ (D=) to violate any of
the connectivity-safety or neighbor-safety condition, then E= 2
⇠ (D=) is marked as invalid and the algorithm updates the size of
+!(D=). After checking the size of+!(D=) against g , this candidate
E= 2 ⇠ (D=) is added into the queue & (lines 8-23). The algorithm
continues this process until the queue & is empty.

Example 4.5. Figures 3(c)-(h) show �ltering process when con-
sidering the new edge (D4,D5) for a graph ⌧ and a subgraph (
in Figure 3. Among the candidates of D4,D5, which are the end-
points of the new edge (D4,D5), the candidate E6 2 ⇠ (D4) violates
the connectivity-safety. Thus, the initial set � is {(D4, E6)}. Then,
E6 2 ⇠ (D4) is marked as invalid and the pair (D4, E6) is inserted
into the queue & . Subsequently, the pair (D4, E6) is popped from &
and for candidates adjacent to E6 2 ⇠ (D4), their #1A2=C and #1A⇠(
are updated. The candidates E1 2 ⇠ (D1) and E1 2 ⇠ (D3) violate
connectivity-safety and thus are marked as invalid and added into
& . Subsequently, E4 2 ⇠ (D2) is also marked as invalid.

In dense graphs, marking (D, E) pairs as invalid tends to a�ect
more pairs. In our implementation, we apply the �ltering process
when the average degree of the graph ⌧ is greater than or equal to
3 and we erase the invalid candidates in the marked CS.

562

Algorithm 5: ComputeMNI(basic)
input :A subgraph (, a marked CS of (
output :max(MNI((), g), re�ned marked CS

1 <=8 +1
2 for D 2 + (() do
3 2>D=C 0
4 for E 2 ⇠ (D) do
5 if E 2 ⇠ (D) is already marked as con�rmed then
6 2>D=C++
7 continue
8 Find an embedding that maps D to E
9 if there is such an embedding 5 then
10 mark E 0 2 ⇠ (D0) as con�rmed for all mappings

(D0, E 0) in 5
11 2>D=C++
12 else
13 mark E 2 ⇠ (D) as invalid

14 if 2>D=C  g then
15 return (g , CS)
16 <=8 min(<=8, 2>D=C)
17 return (<=8 , CS)

5 IMPROVING MNI COMPUTATION
In the previous section, we showed that minVL serves as an upper
bound of MNI. In this section, we will de�ne a lower bound of MNI
and propose an algorithm to compute the exact MNI using both the
upper and lower bounds.

Algorithm 5 shows the basic process of computing MNI of the
subgraph (. For each vertex D 2 + (() and each candidate E 2
⇠ (D), the algorithm checks if there exists an embedding in which
D is mapped to E . If such an embedding exists, for every mapping
(D0, E 0) in that embedding, E 0 2 ⇠ (D0) is marked as con�rmed (lines
9-11). These con�rmed candidates E 0 2 ⇠ (D0) are then skipped
in subsequent checks for the existence of embeddings (lines 5-7).
Conversely, if there is no such embedding, then E 2 ⇠ (D) is marked
as invalid (lines 12-13). After checking all candidates for D, the size
of the image set � (D) becomes equal to the number of candidates
marked as con�rmed, so if this size is less than or equal to g , the
algorithm terminates early, as the MNI of the subgraph cannot
exceed g (lines 14-15). After candidates for all vertices in + (() are
marked, the algorithm returns the MNI of the subgraph (line 17).

In the basic algorithm, every candidate is marked as con�rmed
or invalid to compute the MNI. In contrast, our algorithm use lower
bound and upper bound of the MNI, enabling the computation of
the MNI without the need to mark all candidates as con�rmed or
invalid.

De�nition 5.1. For a subgraph (of ⌧ and a marked CS on (
and ⌧ , the con�rmed candidate set ⇠� (D) is the set of con�rmed
candidates in ⇠ (D) for each vertex D 2 + (().

De�nition 5.2. For a subgraph (of⌧ ,<8=⇠� (() is the minimum
size of con�rmed candidate set ⇠� (D) for each D 2 + ((), which is
<8=D2+ (() |⇠� (D) |.

Algorithm 6: ComputeMNI
input :A subgraph (, a marked CS of (
output :max(MNI((), g), re�ned marked CS

1 foreach D 2 + (() do
2 20=3�3G [D] 0
3 while minCF < minVL do
4 choose vertex D in + (() based on |+!(D) | and |⇠� (D) |
5 while 20=3�3G [D] < |⇠ (D) | do
6 if (D, E) is marked as con�rmed or invalid then
7 20=3�3G [D]++
8 continue
9 E ⇠ (D) [20=3�3G [D]]

10 Find an embedding that maps D to E
11 20=3�3G [D]++
12 if there is such an embedding f then
13 mark E 0 2 ⇠ (D0) as con�rmed for all mappings

(D0, E 0) in 5

14 else
15 (BD224BB,CS) ⇠(=>34�8;C4A8=6((,CS, (D, E))
16 if BD224BB is false then
17 return (g , CS)

18 break

19 return (minCF, CS)

T������ 5.3. For a subgraph (of ⌧ , minCF(() is a lower bound
of MNI(().

P����. For everyD 2 + ((), the con�rmed candidate set ⇠� (D) is
the subset of the image set � (D). So minCF(() =<8=D2+ (() |⇠� (D) |
 <8=D2+ (() |� (D) | = MNI((). Thus, minCF(() is the lower bound
of MNI((). ⇤

By Theorems 3.8 and 5.3, the MNI lies between minCF and
minVL. Our algorithm employs a lower bound (minCF) and an up-
per bound (minVL) to optimize the computation of the MNI. For
E 2 ⇠ (D), if an embedding in which D is mapped to E exists, then
the size of ⇠� (D) increases. Consequently, minCF increases over
time. Conversely, if no such embedding is found, then the size of
+!(D) decreases. Consequently, minVL decreases over time. As the
algorithm progresses, the gap between the two bounds narrows.
When these two bounds become equal, the converged value is the
MNI of the subgraph, as the MNI of the subgraph lies between the
lower and upper bounds. Therefore, our algorithm continues until
the two bounds converge, and then it outputs the converged value
as the MNI of the subgraph.

The basic algorithm sequentially selects a vertex D and check
all candidates in ⇠ (D) before proceeding to the next vertex. Our
algorithm selects each (D, E) pair and checks the candidate E 2
⇠ (D) at each iteration. Our algorithm selects a vertex D such that
|+!(D) | < |⇠� (D) |, as the equal sizes of the two sets indicate that
all candidates in ⇠ (D) are checked.

The selection of vertex D depends on the ratio of the current
number of candidates for which no embedding exists to the total
number of candidates checked. If the ratio is high, implying that

563

(a) Graph⌧ (b) Subgraph ((c) Marked CS before MNI computation

(d) After checking candidates E6, E8 2 ⇠ (D2) (e) After checking candidate E9 2 ⇠ (D4) (f) Upon completion of MNI computation

Figure 4: Process of computing MNI for subgraph (in graph ⌧ . After �nding two embeddings {(D1, E1), (D2, E6), (D3, E17), (D4, E7)}
and {(D1, E2), (D2, E8), (D3, E18), (D4, E7)}, the marked CS is shown in Figure (d). Subsequently, upon �nding that there is no embed-
ding that maps D4 to E9, the �ltering process marks E3 2 ⇠ (D1) and E3 2 ⇠ (D3) as invalid (Figure (e)). This process continues until
the lower bound and upper bound converge, with the �nal value of MNI being 4 (Figure (f)).

the graph might have fewer embeddings, we select D with the
smallest |+!(D) | to quickly reduce the upper bound. If multiple
vertices tie with the same minimum |+!(D) |, we further break the
tie by choosing the vertex among these with the smallest |⇠� (D) |.
Conversely, if the ratio is low, we selectD by prioritizing the smallest
|⇠� (D) | to increase the lower bound, and use |+!(D) | to break ties
in a similar manner.

Algorithm 6 shows the process of computing MNI((). Since
a vertex D is selected in each iteration, we maintain 20=3�3G [D],
which stores the index of the next candidate to be checked in the
candidate set⇠ (D). Initially, for every vertex D 2 + ((), 20=3�3G [D]
is set to 0 (lines 1-2). The vertex D is chosen based on the method
previously described (line 4). We then check the �rst undetermined
candidate E 2 ⇠ (D) (lines 5-10). If an embedding in which D is
mapped to E exists, each candidate in the embedding is marked
as con�rmed (lines 12-13). Otherwise, CSnodeFiltering is invoked,
with the initial set � consisting of the pair (D, E) (lines 14-17). The
algorithm proceeds until the lower and upper bounds converge
(lines 3-18). If the upper bound is less than or equal to g , indicating
the subgraph is infrequent, the algorithm terminates early (lines
16-17).

Example 5.4. Consider a graph and a subgraph (in Figure 4. First,
vertex D2 is selected because all vertices D 2 + (() have the same
|⇠� (D) |, and D2 has the smallest |+!(D) |. We �nd an embedding
{(D1, E1), (D2, E6), (D3, E17), (D4, E7)}, and then select D2 again and
�nd an embedding {(D1, E2), (D2, E8), (D3, E18), (D4, E7)}. Next, D4 is
selected because D4 has the smallest |⇠� (D) |. We �nd that no em-
bedding exists for the candidate E9 2 ⇠ (D4). Consequently, CSnode-
Filtering is invoked, and candidates E3 2 ⇠ (D1) and E3 2 ⇠ (D3) are
alsomarked as invalid. This process continues until the lower bound
and upper bound converge, with the �nal value of MNI(() being 4.

We employ the searching process from VEQ [29] to �nd an
embedding. During this searching process, each vertex D 2 + (()

is �rst mapped to an undetermined candidate in ⇠ (D), prioritizing
undetermined ones over con�rmed ones to mark undetermined
candidates as quickly as possible. For MNI computation, graph
automorphism is used. We compute the automorphism of graph (
using nauty&Traces [34]. As the implementation disregards labeled
edges, automorphism is only applied to graph without labeled edge.
DFScode. We use gSpan’s canonical DFScode [59] to avoid gener-
ating duplicate subgraphs. A DFScode is constructed from a depth-
�rst search (DFS) traversal [15] of a graph. Among DFScodes, the
canonical DFScode is the smallest one in lexicographical order.

After extending a subgraph (to create a new subgraph (0, we
construct the DFScode of (0 by adding the new edge to the end of
the canonical DFScode of (. If this DFS code is not canonical, (0 is
disregarded, and we continue to generate other subgraphs.

If a vertex of a subgraph is adjacent to only leaf vertices with an
identical label during a DFS traversal, these vertices will generate
the same DFScodes, even though there are an exponential number
of DFS traversal orders. In such cases, therefore, we produce just
one DFScode instead of generating the DFScode from every possible
traversal order.

6 THEORETICAL ANALYSIS
Table 2 shows the time and space complexities of CSnodeFiltering
(Algorithm 4) and MNI computation (Algorithm 6) for each sub-
graph S. Here, the time complexity of CSnodeFiltering is the sum
of the complexity of �ltering (line 2 in Algorithm 3) to obtain the
tight upper bound minVL(S) (line 7 of Algorithm 2) just after cre-
ating the subgraph S and the complexity of �ltering during MNI
computation (line 15 in Algorithm 6).

By Theorem 6.1, the time complexity of CSnodeFiltering is$ (|⇢ (() |
|⇢ (⌧) |). MNI computation is an NP-hard problem, thus requiring
exponential time to compute [17, 20, 29]. Since both CSnodeFilter-
ing and MNI computation use the marked CS, the space complexity

564

Table 2: Time and space complexities of CSnodeFiltering and
MNI computation of Minting

Time Space

CSnodeFiltering $ (|⇢ (() | · |⇢ (⌧) |) $ (|⇢ (() | · |⇢ (⌧) |)
MNI computation $ (|+ (() | · |+ (⌧) | |+ (() |) $ (|⇢ (() | · |⇢ (⌧) |)

is proportional to the size of the marked CS, which is bounded by
$ (|⇢ (() | · |⇢ (⌧) |).

T������ 6.1. For a subgraph (, the total time complexity of Al-
gorithm 4 for (is $ (|⇢ (() | · |⇢ (⌧) |).

P����. Apair (D, E), whereD 2 + (() and E 2 ⇠ (D), is added to&
when the state of E 2 ⇠ (D) transitions from undetermined to invalid.
Since this transition happens at most once for each candidates E 2
⇠ (D), each pair (D, E) is added into & at most once. Consequently,
each pair (D, E) is also popped from & at most once. Within the
for loop (lines 8-23), each operation takes $ (1) time. Thus, each
iteration for a candidate E 2 ⇠ (D) takes time proportional to the
number of candidates adjacent to E 2 ⇠ (D). The overall runtime is
then bounded by the sum of the number of candidates adjacent to
E 2 ⇠ (D) for all vertices D 2 + (() and their candidates E 2 ⇠ (D).
This sum is twice the number of edges in ⇠(. Since the number
of edges in ⇠(is bounded by $ (|⇢ (() | · |⇢ (⌧) |), the total time
complexity of algorithm 4 is $ (|⇢ (() | · |⇢ (⌧) |). ⇤

7 EXPERIMENTAL EVALUATION
In this section, we conduct experiments to evaluate the e�ective-
ness of the proposed algorithm Minting for top-: frequent sub-
graph mining. We compare our algorithm with three state-of-the-
art algorithms, GRAMI [17], Peregrine [26], and FastPat[64, 65].
In subsection 7.1, we describe our experimental setting. Then, we
compare our algorithm with GRAMI and Peregrine in subsection
7.2 and with FastPat in subsection 7.3. We present the size distribu-
tion of top-: subgraphs in subsection 7.4. Finally, we evaluate the
e�ectiveness of our techniques in subsection 7.5.

7.1 Experimental Setting
Experiments are conducted on six real-world datasets, which are
MiCo, Patents, Human, WCGoals, Yeast and Phy-Cit used in previ-
ous works [17, 29, 43, 64, 65]. MiCo [17] is a graph that models the
co-authorship information in the Microsoft academic. Patents [32]
is a citation network of U.S. patents. Human and Yeast [23] is a
protein-protein interaction network. WCGoals [66] is a graph about
the FIFAWorld Cup events. Phy-Cit [32] is a citation network cover-
ing e-print arXiv HEP-PH papers. The characteristics of the datasets
are summarized in Table 3. Since most data graphs have edge la-
bels, we extended our algorithm to handle graphs with edge labels.

Table 3: Datasets and their characteristics

Dataset |+ | |⇢ | # vertex
labels

edge
labels

Avg
degree

MiCo 100K 1.08M 29 10 21.606
Patents 2.93M 13.96M 419 5 9.504
Human 4K 86K 44 - 36.920
WCGoals 49K 158K 11 13 6.443
Yeast 3K 13K 71 - 8.041

Phy-Cit 31K 347K 6 - 22.736

Figure 5: Elapsed time of GRAMI, Peregrine, and Minting.
Points not shown indicate cases where an algorithm did not
�nish within the time limit.

We obtained the source codes of GRAMI, Peregrine, and FastPat
online [1–3]. GRAMI and FastPat are implemented in Java, while
Peregrine is implemented in C++. Our algorithm, employing the
search process of VEQ, is implemented in C++. The experiments
are conducted on a CentOS machine equipped with dual Intel Xeon
E5-2680 v3 2.5GHz CPUs and 256GB of memory. The source code of
Minting is available at https://github.com/SNUCSE-CTA/Minting.

We vary the parameter : from 5 to 50 in increments of 5 and
measure the elapsed time for each algorithm. We set a time limit of
15 minutes for Minting and Peregrine, and set it to 30 minutes for
GRAMI and FastPat, considering their implementations in Java.

7.2 Comparison with GRAMI and Peregrine
In this subsection, we conduct a comparison of Minting with
GRAMI and Peregrine. While our algorithm takes : as input and
�nds the top-: frequent subgraphs, GRAMI takes a threshold value
g as input and �nds subgraphs with an MNI greater than or equal to
g . Peregrine takes a threshold g and an integer< as input, and �nds
subgraphs with< edges that have an MNI greater than or equal to
g . To conduct a comparison, we �rst run Minting to get the mini-
mum MNI among the top-: results, and then run GRAMI and Pere-
grine using this minimum MNI as the threshold g . The number<
of edges (input for Peregrine) was set to the maximum number of
edges among the top-: results from Minting. Since Peregrine does
not handle edge labels, experiments for Peregrine were conducted
only on datasets without edge labels (Human, Yeast, and Phy-Cit).

Figure 5 shows the elapsed time of the algorithms. Minting shows
better performances than the other algorithms on all datasets.
Minting always �nishes within the time limit, while GRAMI fails to
do so for large: in all datasets. In cases where both algorithms �nish
within the time limit, Minting outperforms GRAMI by up to three
orders of magnitude (in Human when : is 20). Peregrine �nished
within the time limit only on the Yeast and Phy-Cit datasets when
: = 5, and failed to complete within the time limit in other cases.

565

https://github.com/SNUCSE-CTA/Minting

Figure 6: Breakdown of the overall time taken by Minting.
‘Init’ for graph reading and initial preprocessing, ‘Gen’ for
generating subgraphs and constructing data structures, ‘TU’
for computing tight MNI upper bound, and ‘MNI’ for com-
puting the MNI.

When Peregrine completed within the time limit, Mintingwas hun-
dreds of times faster. Considering that Peregrine’s elapsed time sig-
ni�cantly exceeded the 15-minute time limit when it failed to com-
plete, Minting demonstrated a performance di�erence of over a
thousand times.

Both GRAMI and Peregrine take g as an input, which is the min-
imum MNI from the top-: results of Minting. This means g con-
tains more information than : , the input of Minting. Despite this,
our algorithm still achieves signi�cant performance improvements
compared to GRAMI and Peregrine. This is because we reduce the
number of subgraphs for which MNI computation is required and
improve MNI computation itself.

GRAMI takes a substantial amount of time for MNI computa-
tion. The elapsed time for GRAMI consists of three components:
initialization, subgraph generation, and MNI computation. In most
cases with large : , MNI computation accounts for more than 70%
of GRAMI’s processing time, which leads to longer time to solve
the problem. In contrast, Minting signi�cantly reduces the time
for MNI computation. Figure 6 shows the breakdown of the over-
all time taken by Minting into four components: ‘Init’ for graph
reading and initial preprocessing, ‘Gen’ for generating subgraphs
and constructing data structures such as marked CS, ‘TU’ for com-
puting tight MNI upper bound, and ‘MNI’ for computing the MNI.
In the Patents, Human, and Yeast datasets, MNI computation is
a major part of the processing time. For other datasets, subgraph
generation is the dominant part because Minting reduces the MNI
computation time. Overall, Minting reduces the MNI computation
time, so much as to make it faster than GRAMI.

Figure 7 compares the number of subgraphs for which MNI
computation is required for the algorithms. For Minting, this is the
number of calls to ‘computeMNI’ in Algorithm 1. Minting computes
the MNI for fewer subgraphs than GRAMI and Peregrine in all

Figure 7: Number of subgraphs for which MNI computation
is required for GRAMI, Peregrine and Minting

Figure 8: Elapsed time of FastPat and Minting. Points not
shown indicate cases where an algorithm did not �nish
within the time limit.

datasets. This is due to our tight MNI upper bound, thus leading to
a decrease in the overall time to solve the problem.

7.3 Comparison with FastPat
In this subsection, we conduct a comparison of Minting with Fast-
Pat. FastPat takes a directed graph, a core graph, and: as inputs, and
it �nds the top-: frequent subgraphs extended from the core graph.
Since FastPat requires a directed graph as its input, we convert undi-
rected graphs (MiCo, Human, Yeast) into bidirectional graphs for
FastPat’s input. To compare our algorithm with FastPat, we modify
our algorithm to take a core graph and to �nd the top-: frequent sub-
graphs that are extended from this core graph. In our experiments,
the core graph is the edge with the largest MNI in the data graph.

566

Figure 9: Number of subgraphs for which MNI computation
is required for FastPat and Minting

Figure 8 shows the elapsed time of the algorithms. Minting �n-
ishes within the time limit except for the Patents dataset, whereas
FastPat cannot �nish in most cases of MiCo, Patents, Human, WC-
Goals, and Phy-Cit. In cases where both algorithms �nish within
the time limit, Minting outperforms FastPat by up to three orders
of magnitude (in Human when : is 5, and inWCGoals when : is 20).

FastPat also takes a substantial amount of time for MNI compu-
tation. The elapsed time for FastPat consists of three components:
initialization, subgraph generation, and MNI computation. In most
cases with large : , MNI computation accounts for more than 90% of
FastPat’s processing time. In contrast, Minting e�ectively reduces
the time for MNI computation. Figure 9 compares the number of
subgraphs for which MNI computation is required for Minting and
FastPat. Minting consistently computes the MNI for fewer sub-
graphs than FastPat due to our tighter MNI upper bound.

For the Patents dataset, our algorithm �nishes in Figure 5 where
we �nd top-: frequent subgraphs, but it cannot �nish in many cases
in Figure 8 where we �nd top-: frequent subgraphs extended from
the core graph. In Figure 8, our algorithm starting from the core
graph needs a deeper exploration into the subgraph lattice, which
results in encountering subgraphs (cycles with 13 or 14 edges) that
demand a large amount of time for MNI computation. In contrast,
in Figure 5 where our algorithm starts from many frequent edges,
these time-consuming subgraphs are not encountered, allowing the
algorithm to complete the task within the time limit.

7.4 Size Distribution of Top-: Subgraphs
Figure 10 shows the size (number of edges) distribution of top-50
frequent subgraphs for MiCo and Patents. In general, the sizes of
top-: subgraphs are small when : is small, and they get larger
as : increases. Particularly, in the Patents dataset until : reaches
10, every top-: frequent subgraph consists of a single edge only.
To �nd more interesting subgraphs, it is necessary to increase the
value of : , e.g., when : = 50, we �nd larger frequent subgraphs.
In graph mining, therefore, mining top-: frequent subgraphs for

Figure 10: Size (number of edges) distribution of top-50 fre-
quent subgraphs for MiCo and Patents, where top-50 sub-
graphs are listed in descending order of MNI values in G-axis.

Figure 11: Elapsed time of our algorithm and its variants

large : values is important. The varying sizes of the subgraphs
can bene�t visual query interfaces by providing a diverse set of
subgraph patterns for formulating a graph query [63].

7.5 Evaluation of Techniques
In this subsection, we evaluate the e�ectiveness of our individual
techniques in reducing the elapsed time to solve top-: frequent
subgraph mining. To measure the performance gains achieved by
each technique, we run our algorithm and its variants as follows:
• Minting–B: a baseline version that excludes the method for

reducing the number of subgraphs and uses the basic method
for computing MNI;

• Minting–R: a version that reduces the number of subgraphs by
�ltering and uses the basic method for computing MNI;

• Minting: our algorithm that reduces the number of subgraphs
by �ltering, computes MNI using lower and upper bounds of
MNI, and optimizes the checking of the DFScode canonical form.
Figure 11 shows the elapsed time of these algorithms for top-:

frequent subgraph mining. In all datasets, Minting–R consistently
outperforms Minting–B, and Minting consistently outperforms
Minting–R.

Our contributions on performance are 1) reducing the num-
ber of subgraphs (performance di�erence between Minting–B and
Minting–R) and 2) improving MNI computation (performance dif-
ference between Minting–R and Minting), and when these two

567

(a) Number of subgraphs for
which MNI computation is re-
quired

(b) Number of (D, E) pairs to �nd
an embedding that maps D to E.

Figure 12: Number of subgraphs and (D, E) pairs

techniques are combined together, they produced the signi�cant
performance improvements shown in our experiments. In Figure 11,
the performance di�erence between Minting–B and Minting–R is
big in MiCo, Human, WCGoals, and the performance di�erence be-
tween Minting–R and Minting is big in Patents, WCGoals, Yeast,
Phy-Cit.

Figure 12a shows the number of subgraphs for which MNI com-
putation is required, which is the number of calls to ‘computeMNI’
in Algorithm 1, for Minting–B and Minting–R. Theoretically, the
number of subgraphs that need to be checked is$ (: ·:!·3<0G

(:�1)),
where 3<0G is the maximum degree of graph⌧ . The initial : sub-
graphs are the most frequent single edges. The number of new
subgraphs that can be generated from each subgraph (is at most
|+ (() | ⇤3<0G . Due to the anti-monotone property of MNI, the max-
imum number of vertices in a subgraph is :+1. Since the number
of subgraphs generated from a single edge is$ (2 · 3<0G · 3 · 3<0G ·
... · : · 3<0G) = $ (:! · 3<0G

(:�1)), we get the bound above.
However, the actual number of subgraphs for which MNI needs

to be computed is smaller than this complexity. For the baseline
Minting–B on the MiCo dataset with : = 50, the number of sub-
graphs to computeMNIwas 790.With �ltering applied, Minting–R re-
duced the number of subgraphs for MNI computation to 60 (Fig-
ure 12a). Thus, our �ltering using the upper bound minVL(S) re-
duced the number of subgraphs to approximately 1/13th.

The most time-consuming part in Algorithm 6 (that computes
MNI of a subgraph (in⌧) is to �nd an embedding that maps D to E
(line 10), so it is important to reduce the number of times this is done.
Figure 12b shows the number of (D, E) pairs to �nd an embedding
that maps D to E . This count is the number of calls to line 8 in Algo-
rithm 5 for Minting–R and line 10 in Algorithm 6 for Minting. The-
oretically, the number of (D, E) pairs that need to be checked for em-
beddings is$ (|+ (() | · |+ (⌧) |). However, the actual number of (D, E)
pairs checked for embeddings is smaller than this complexity. In the

(a) Memory usage of GRAMI,
Peregrine, and Minting

(b) Memory usage of FastPat and
Minting

Figure 13: Memory usage of algorithms

WCGoals dataset when : is 50, the basic MNI computation method
(Algorithm 5, i.e., Minting–R) checks 4,055,287 (D, E) pairs for em-
beddings. Our algorithm utilizing the upper and lower bounds of
MNI (Algorithm 6, i.e., Minting) reduces the number of (D, E) pairs
checked for embeddings to 68,217 (Figure 12b). That is, our MNI
computation using upper and lower bounds reduces the number of
(D, E) pairs checked for embeddings to approximately 1/60th.

Figure 13a shows the memory usage of GRAMI, Peregrine, and
Minting, and Figure 13b shows the memory usage of FastPat and
Minting. Minting consistently uses less memory than both GRAMI
and FastPat across all datasets. Peregrine uses less memory than
Minting on Yeast when : = 5. In other cases, however, Peregrine
failed to complete within the time limit. In general, the memory
usage of Minting remains competitive.

Overall, our algorithm Minting is a feasible solution for top-:
frequent subgraph mining, even for large : .

8 CONCLUSION
In this paper, we have introduced a new data structure calledmarked
CS, and proposed key concepts minVL(() and minCF(() based on
the data structure, which work as an upper bound and an lower
bound of the MNI value of a subgraph (, respectively. Using these
concepts, we designed an algorithm Minting for top-: frequent
subgraph mining, which outperforms state-of-the-art algorithms
in both time and space. It will be an interesting future work to
�nd more applications of these concepts. Developing an e�cient
parallel algorithm for top-: frequent subgraph mining is also an
interesting future work.

ACKNOWLEDGEMENTS
S. Lee, Y. Lee, and K. Park were supported by Institute of Informa-
tion communications Technology Planning Evaluation (IITP) grant
funded by the Korea government (MSIT) (No. 2018-0-00551, Frame-
work of Practical Algorithms for NP-hard Graph Problems).

568

REFERENCES
[1] 2024. FastPat-KG. Retrieved 2024-12-17 from https://github.com/DBGroup-

SUSTech/FastPat-KG
[2] 2024. GraMi. Retrieved 2024-12-17 from https://github.com/ehab-abdelhamid/

GraMi
[3] 2024. Peregrine. Retrieved 2024-12-17 from https://github.com/pdclab/peregrine
[4] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair Khayyat, and Fuad

Jamour. 2016. Scalemine: Scalable parallel frequent subgraph mining in a single
large graph. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 716–727.

[5] Ehab Abdelhamid, Mustafa Canim, Mohammad Sadoghi, Bishwaranjan Bhat-
tacharjee, Yuan-Chi Chang, and Panos Kalnis. 2017. Incremental frequent sub-
graph mining on large evolving graphs. IEEE Transactions on Knowledge and
Data Engineering 29, 12 (2017), 2710–2723.

[6] Isam A Alobaidi, Jennifer L Leopold, and Ali A Allami. 2019. The Use of Frequent
Subgraph Mining to Develop a Recommender System for Playing Real-Time
Strategy Games. In Industrial Conference on Data Mining. 146–160.

[7] Junya Arai, Yasuhiro Fujiwara, and Makoto Onizuka. 2023. GuP: Fast Subgraph
Matching by Guard-based Pruning. In Proceedings of ACM SIGMOD International
Conference on Management of Data. 1–26.

[8] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. E�cient
subgraph matching by postponing cartesian products. In Proceedings of ACM
SIGMOD International Conference on Management of Data. 1199–1214.

[9] Björn Bringmann and Siegfried Nijssen. 2008. What is frequent in a single
graph?. In Proceedings of Paci�c-Asia Conference on Knowledge Discovery and
Data Mining. 858–863.

[10] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James Cheng.
2018. G-miner: an e�cient task-oriented graph mining system. In Proceedings of
the Thirteenth EuroSys Conference. 1–12.

[11] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, Loc Hoang, and Keshav Pingali.
2021. Sandslash: a two-level framework for e�cient graph pattern mining. In
Proceedings of the ACM International Conference on Supercomputing. 378–391.

[12] Yifan Chen, Xiang Zhao, Xuemin Lin, Yang Wang, and Deke Guo. 2018. E�cient
mining of frequent patterns on uncertain graphs. IEEE Transactions on Knowledge
and Data Engineering 31, 2 (2018), 287–300.

[13] Young-Rae Cho and Aidong Zhang. 2009. Predicting protein function by frequent
functional association pattern mining in protein interaction networks. IEEE
Transactions on Information Technology in Biomedicine 14, 1 (2009), 30–36.

[14] Yunyoung Choi, Kunsoo Park, and Hyunjoon Kim. 2023. BICE: Exploring Com-
pact Search Space by Using Bipartite Matching and Cell-Wide Veri�cation. Pro-
ceedings of the VLDB Endowment 16, 9 (2023), 2186–2198.

[15] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cli�ord Stein.
2022. Introduction to algorithms. MIT press.

[16] Mukund Deshpande, Michihiro Kuramochi, NikilWale, and George Karypis. 2005.
Frequent substructure-based approaches for classifying chemical compounds.
IEEE Transactions on Knowledge and Data Engineering 17, 8 (2005), 1036–1050.

[17] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis.
2014. GraMi: frequent subgraph and pattern mining in a single large graph.
Proceedings of the VLDB Endowment 7, 7 (2014), 517–528.

[18] Mathias Fiedler and Christian Borgelt. 2007. Subgraph support in a single large
graph. In Seventh IEEE International Conference on Data Mining Workshops. IEEE,
399–404.

[19] Philippe Fournier-Viger, Chao Cheng, Jerry Chun-Wei Lin, Unil Yun, and R Uday
Kiran. 2019. Tkg: E�cient mining of top-k frequent subgraphs. In Proceedings of
Big Data Analytics. 209–226.

[20] Michael R Garey and David S Johnson. 1979. Computers and intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co.

[21] Valerie Guralnik and George Karypis. 2001. A scalable algorithm for clustering
sequential data. In Proceedings of IEEE International Conference on Data Mining.
179–186.

[22] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin
Han. 2019. E�cient subgraph matching: Harmonizing dynamic programming,
adaptive matching order, and failing set together. In Proceedings of ACM SIGMOD
International Conference on Management of Data. 1429–1446.

[23] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: towards
ultrafast and robust subgraph isomorphism search in large graph databases. In
Proceedings of ACM SIGMOD International Conference on Management of Data.
337–348.

[24] Jun Huan, Wei Wang, and Jan Prins. 2003. E�cient mining of frequent subgraphs
in the presence of isomorphism. In Proceedings of IEEE International Conference
on Data Mining. 549–552.

[25] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, ShivaramVenkataraman, Vladimir
Braverman, and Ion Stoica. 2018. ASAP: Fast, approximate graph pattern mining
at scale. In Proceedings of 13th USENIX Symposium on Operating Systems Design
and Implementation. 745–761.

[26] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. 2020. Peregrine: a pattern-
aware graph mining system. In Proceedings of the Fifteenth European Conference

on Computer Systems. 1–16.
[27] Yi Jia, Jintao Zhang, and Jun Huan. 2011. An e�cient graph-mining method

for complicated and noisy data with real-world applications. Knowledge and
Information Systems 28 (2011), 423–447.

[28] Chuntao Jiang, Frans Coenen, and Michele Zito. 2013. A survey of frequent
subgraph mining algorithms. The Knowledge Engineering Review 28, 1 (2013),
75–105.

[29] Hyunjoon Kim, Yunyoung Choi, Kunsoo Park, Xuemin Lin, Seok-Hee Hong,
and Wook-Shin Han. 2021. Versatile equivalences: Speeding up subgraph query
processing and subgraph matching. In Proceedings of ACM SIGMOD International
Conference on Management of Data. 925–937.

[30] Michihiro Kuramochi and George Karypis. 2005. Finding frequent patterns in a
large sparse graph. Data Mining and Knowledge Discovery 11, 3 (2005), 243–271.

[31] Ngoc-Thao Le, Bay Vo, Lam BQNguyen, Hamido Fujita, and Bac Le. 2020. Mining
weighted subgraphs in a single large graph. Information Sciences 514 (2020), 149–
165.

[32] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time:
densi�cation laws, shrinking diameters and possible explanations. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining. 177–187.

[33] Ruirui Li and Wei Wang. 2015. REAFUM: Representative approximate frequent
subgraph mining. In Proceedings of SIAM International Conference on Data Mining.
757–765.

[34] Brendan D McKay and Adolfo Piperno. 2014. Practical graph isomorphism, II.
Journal of Symbolic Computation 60 (2014), 94–112.

[35] Jinghan Meng and Yi-cheng Tu. 2017. Flexible and feasible support measures for
mining frequent patterns in large labeled graphs. In Proceedings of ACM SIGMOD
International Conference on Management of Data. 391–402.

[36] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing subgraph queries by
combining binary and worst-case optimal joins. Proceedings of the VLDB Endow-
ment 12, 11 (2019), 1692–1704.

[37] Aida Mrzic, Pieter Meysman, Wout Bittremieux, Pieter Moris, Boris Cule, Bart
Goethals, and Kris Laukens. 2018. Grasping frequent subgraph mining for
bioinformatics applications. BioData Mining 11 (2018), 1–24.

[38] Muhammad Anis Uddin Nasir, Cigdem Aslay, Gianmarco De Francisci Morales,
and Matteo Riondato. 2021. Tiptap: approximate mining of frequent k-subgraph
patterns in evolving graphs. ACM Transactions on Knowledge Discovery from
Data 15, 3 (2021), 1–35.

[39] Dheepikaa Natarajan and Sayan Ranu. 2016. A scalable and generic framework to
mine top-k representative subgraph patterns. In Proceedings of IEEE International
Conference on Data Mining. 370–379.

[40] Lam BQ Nguyen, Bay Vo, Ngoc-Thao Le, Vaclav Snasel, and Ivan Zelinka. 2020.
Fast and scalable algorithms for mining subgraphs in a single large graph. Engi-
neering Applications of Arti�cial Intelligence 90 (2020), 103539.

[41] Yeonsu Park, Seongyun Ko, Sourav S Bhowmick, Kyoungmin Kim, Kijae Hong,
and Wook-Shin Han. 2020. G-CARE: A framework for performance benchmark-
ing of cardinality estimation techniques for subgraph matching. In Proceedings
of ACM SIGMOD International Conference on Management of Data. 1099–1114.

[42] Arneish Prateek, Arijit Khan, Akshit Goyal, and Sayan Ranu. 2020. Mining top-
k pairs of correlated subgraphs in a large network. Proceedings of the VLDB
Endowment 13, 9 (2020), 1511–1524.

[43] Giulia Preti, Gianmarco De Francisci Morales, and Matteo Riondato. 2023. Mani-
acs: Approximate mining of frequent subgraph patterns through sampling. ACM
Transactions on Intelligent Systems and Technology 14, 3 (2023), 1–29.

[44] Sayan Ranu and Ambuj K Singh. 2009. Graphsig: A scalable approach to mining
signi�cant subgraphs in large graph databases. In Proceedings of IEEE Interna-
tional Conference on Data Engineering. 844–855.

[45] Tanay Kumar Saha, Ataur Katebi, Wajdi Dhi�i, and Mohammad Al Hasan. 2017.
Discovery of functional motifs from the interface region of oligomeric proteins
using frequent subgraph mining. IEEE/ACM transactions on Computational
Biology and Bioinformatics 16, 5 (2017), 1537–1549.

[46] Yinglong Song, Huey Eng Chua, Sourav S Bhowmick, Byron Choi, and Shuigeng
Zhou. 2018. BOOMER: Blending visual formulation and processing of p-
homomorphic queries on large networks. In Proceedings of ACM SIGMOD Inter-
national Conference on Management of Data. 927–942.

[47] Shixuan Sun and Qiong Luo. 2020. In-memory subgraph matching: An in-depth
study. In Proceedings of ACM SIGMOD International Conference on Management
of Data. 1083–1098.

[48] Shixuan Sun, Xibo Sun, Yulin Che, Qiong Luo, and Bingsheng He. 2020. Rapid-
match: A holistic approach to subgraph query processing. Proceedings of the
VLDB Endowment 14, 2 (2020), 176–188.

[49] Nilothpal Talukder and Mohammed J Zaki. 2016. A distributed approach for
graph mining in massive networks. Data Mining and Knowledge Discovery 30, 5
(2016), 1024–1052.

[50] Carlos HC Teixeira, Alexandre J Fonseca, Marco Sera�ni, Georgos Siganos, Mo-
hammed J Zaki, and Ashraf Aboulnaga. 2015. Arabesque: a system for distributed
graph mining. In Proceedings of the 25th Symposium on Operating Systems Princi-
ples. 425–440.

569

https://github.com/DBGroup-SUSTech/FastPat-KG
https://github.com/DBGroup-SUSTech/FastPat-KG
https://github.com/ehab-abdelhamid/GraMi
https://github.com/ehab-abdelhamid/GraMi
https://github.com/pdclab/peregrine

[51] Lini T Thomas, Satyanarayana R Valluri, and Kamalakar Karlapalem. 2010. Mar-
gin: Maximal frequent subgraph mining. ACM Transactions on Knowledge Dis-
covery from Data 4, 3 (2010), 1–42.

[52] Julian R Ullmann. 1976. An algorithm for subgraph isomorphism. J. ACM 23, 1
(1976), 31–42.

[53] Saif Ur Rehman, Kexing Liu, Tariq Ali, Asif Nawaz, and Simon James Fong. 2021.
A graph mining approach for ranking and discovering the interesting frequent
subgraph patterns. International Journal of Computational Intelligence Systems
14 (2021), 1–17.

[54] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and Guoqing Harry
Xu. 2018. RStream: Marrying relational algebra with streaming for e�cient
graph mining on a single machine. In Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation. 763–782.

[55] Tongtong Wang, Hao Huang, Wei Lu, Zhe Peng, and Xiaoyong Du. 2018. E�-
cient and scalable mining of frequent subgraphs using distributed graph process-
ing systems. In Proceedings of International Conference on Database Systems for
Advanced Applications. 891–907.

[56] Xin Wang, Zhuo Lan, Yu-Ang He, Yang Wang, Zhi-Gui Liu, and Wen-Bo Xie.
2022. A cost-e�ective approach for mining near-optimal top-k patterns. Expert
Systems with Applications 202 (2022), 117262.

[57] Da Yan,Wenwen Qu, Guimu Guo, and XiaolingWang. 2020. Pre�xfpm: A parallel
framework for general-purpose frequent pattern mining. In Proceedings of IEEE
International Conference on Data Engineering. 1938–1941.

[58] Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S Yu. 2008. Mining signi�cant
graph patterns by leap search. In Proceedings of ACM SIGMOD International
Conference on Management of Data. 433–444.

[59] Xifeng Yan and Jiawei Han. 2002. gspan: Graph-based substructure pattern
mining. In Proceedings of IEEE International Conference on Data Mining. 721–724.

[60] Xifeng Yan and Jiawei Han. 2003. Closegraph: mining closed frequent graph
patterns. In Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 286–295.

[61] Xifeng Yan, Philip S Yu, and Jiawei Han. 2004. Graph indexing: a frequent
structure-based approach. In Proceedings of ACM SIGMOD International Confer-
ence on Management of Data. 335–346.

[62] Zhengwei Yang, Ada Wai-Chee Fu, and Ruifeng Liu. 2016. Diversi�ed top-k
subgraph querying in a large graph. In Proceedings of ACM SIGMOD International
Conference on Management of Data. 1167–1182.

[63] Zifeng Yuan, Huey Eng Chua, Sourav S Bhowmick, Zekun Ye, Wook-Shin Han,
and Byron Choi. 2021. Towards plug-and-play visual graph query interfaces:
data-driven selection of canned patterns for large networks. Proceedings of the
VLDB Endowment 14, 11 (2021), 1979–1991.

[64] Jian Zeng, Xiao Yan, Mingji Han, Bo Tang, et al. 2021. Fast core-based top-k
frequent pattern discovery in knowledge graphs. In Proceedings of IEEE Interna-
tional Conference on Data Engineering. 936–947.

[65] Jian Zeng, Xiao Yan, Yan Li, Mingji Han, Bo Tang, et al. 2024. Extracting Top-:
Frequent and Diversi�ed Patterns in Knowledge Graphs. IEEE Transactions on
Knowledge and Data Engineering 36, 2 (2024), 608–626.

[66] Gensheng Zhang, Damian Jimenez, and Chengkai Li. 2018. Maverick: Discover-
ing exceptional facts from knowledge graphs. In Proceedings of ACM SIGMOD
International Conference on Management of Data. 1317–1332.

[67] Changben Zhou, Jian Xu, Ming Jiang, Donghang Tang, and Sheng Wang. 2023.
Mining Top-k Frequent Patterns in Large Geosocial Networks: A Mnie-Based
Extension Approach. IEEE Access 11 (2023), 27662–27675.

570

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Statement
	2.2 Related Work

	3 Overview of Our Algorithm
	3.1 Marked CS
	3.2 Top-k frequent subgraph mining

	4 Reducing the Number of Subgraphs
	5 Improving MNI Computation
	6 Theoretical Analysis
	7 Experimental Evaluation
	7.1 Experimental Setting
	7.2 Comparison with GRAMI and Peregrine
	7.3 Comparison with FastPat
	7.4 Size Distribution of Top-k Subgraphs
	7.5 Evaluation of Techniques

	8 Conclusion
	References

