
MSGNN: Masked Schema based Graph Neural Networks
Hao Liu

Fudan University
Zhuhai Fudan Innovation Institute

Shanghai Key Laboratory of Data Science
liuhao20@fudan.edu.cn

Qianwen Yang
Fudan University

qwyang22@m.fudan.edu.cn

Taoyong Cui
Tsinghua University

cuitaoyong2022@gmail.com

Wei Wang
Fudan University

weiwang1@fudan.edu.cn

ABSTRACT
Heterogeneous graph representation learning aims to extract low-
dimensional node representations from complex networks with
different types of entities and relationships. With the prevalence
of heterogeneous information networks (HINs) in real-world sce-
narios, it is of vital significance for a network embedding model to
handle heterogeneity and capture as much semantic information
as possible. Existing works can be roughly categorized into meta-
path-based and adjacent matrix-based methods depending on their
definition of node neighborhoods. Meta-path-based methods aim to
capture semantic similarities but require manual design. Adjacent
matrix-based methods focus on structural information but may risk
losing semantic context. In this work, we propose using schema
instances representing node minimal complete contexts to embed
HINs, aiming to integrate the advantages of both methods and
avoid their deficiencies. We introduce Masked Schema based Graph
Neural Networks (MSGNN), which combines schema instances
with bi-level self-supervised learning and mask technique to ac-
quire effective context representations. Furthermore, we propose a
decomposition-reconstruction schema instance retrieval strategy
to ensure efficient instance searching. Comprehensive experiments
demonstrate that MSGNN outperforms state-of-the-art models. In
the link prediction task, the F1-score has improved by up to 16.08%
compared to the suboptimal method.

PVLDB Reference Format:
Hao Liu, Qianwen Yang, Taoyong Cui, and Wei Wang. MSGNN: Masked
Schema based Graph Neural Networks. PVLDB, 18(3): 571 - 584, 2024.
doi:10.14778/3712221.3712226

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/liuhao33/MSGNN.

1 INTRODUCTION
The graph is an intuitive data structure that effectively models
complex relationships among numerous objects. However, graph

Wei Wang is the corresponding author. This work is licensed under the Creative
Commons BY-NC-ND 4.0 International License. Visit
https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of this license. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights licensed
to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.
doi:10.14778/3712221.3712226

Figure 1: A toy example of HINs and relative illustrations of
adjacency matrix, meta-path, schema, and schema instance.

data, being high-dimensional, needs to be transformed into low-
dimensional representations through graph representation learn-
ing before being applied to downstream tasks. The emergence of
graph neural networks [39] and their variants [11, 35] has signifi-
cantly enhanced the performance of graph representation learning.
While early network embedding methods focused on homogeneous
graphs, the prevalence of heterogeneous information networks
(HINs) [30] in real-world scenarios, such as citation networks [25],
biomedical networks [31], and social networks [23], necessitates
capturing rich semantic information and addressing the challenges
posed by the interconnections of heterogeneous entities and rela-
tions in HINs. Given this, how to handle the heterogeneity of HINs
to capture as much semantic information as possible has always
been a top priority in HIN research and yet not properly solved.

In HIN representation learning research, the mainstream idea
of obtaining node representations can be described as updating
target nodes’ embeddings with information aggregated from their
neighboring nodes. Based on different approaches to defining node
neighborhoods, we categorize current methods primarily into two

571

https://doi.org/10.14778/3712221.3712226
https://github.com/liuhao33/MSGNN
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712226
https://www.acm.org/publications/policies/artifact-review-and-badging-current


classes: meta-path-based methods [7, 29, 36] and adjacent matrix-
based methods [21, 43]. Meta-path-based methods utilize meta-
paths to capture semantic similarities between target nodes and
thus identify meta-path-based neighborhoods. A meta-path is a
specific path in HINs that connects two entities with a composite
relation [32] and is considered to represent one specific semantic
similarity. For example, Figure 1(a) illustrates a social HIN consist-
ing of four types of nodes and three types of edges, and its two
types of meta-paths are shown in Figure 1(c): UPU and UPTPU.
The semantic similarities in UPU can be described as "two users
interacted with the same post", indicating they might both be con-
cerned about the topic so that both users should be neighbors based
on meta-path UPU. Adjacent matrix-based methods refer to those
that mainly focus on the structural information between nodes,
as they utilize the adjacent matrices, as shown in Figure 1(b), or
other sampling methods, to propagate node features and aggregate
information from structural neighborhoods.

However, both types of methods have certain limitations. Meta-
path-based methods face the challenge of designing appropriate
meta-paths. According to the definition of meta-paths [32], any path
in an HIN can be considered a meta-path since it represents compos-
ite relations between nodes. However, the meta-paths used to guide
representation learning are not arbitrarily chosen. That is because:
1) Semantic similarities are implicit, making it difficult to determine
which meta-path contributes to representation learning; 2) The
search space for meta-path grows exponentially as the complexities
of meta-path patterns increase, making it impractical for training
purposes [26]. Typically, experts are needed to identify the most
valuable meta-paths to ensure the abundance and diversity of cap-
tured semantic information. However, considering the complexities
in real-world scenarios, it is still challenging to design appropriate
meta-paths as semantic carriers for models to meet performance
expectations. In contrast, adjacency matrix-based methods do not
require manual designs. However, they focus solely on extracting
information from structural neighborhoods, neglecting the rich
semantic information presented in HINs. Although the HIN adja-
cency matrix can be regarded as a composition of 1-hop meta-paths,
the adjacency matrix-based methods lack an effective semantic car-
rier such as meta-paths to help identify semantic neighborhoods,
thus making it difficult to extract the implicit semantic information
explicitly.

To address the aforementioned challenges, we propose to utilize
schema instances [48] to guideHIN representation learning. Being
the template for HIN [32], the network schema is often mentioned
in data management and occasionally introduced as a high-order
graph structure in graph neural networks (GNNs) [48]. Figure 1(d)
provides an example schema. However, we observe the semantic
property of schema for GNNs remains to be explored. Considering
an HIN is a semantic network, and it is constructed according to
the description of its schema, we assume that schema provides
all necessary semantic information in an HIN. An instance of a
schema is defined as the smallest subgraph in the HIN that matches
all the types and relationships in the schema [48]. For example,
Figure 1(e) shows two schema instances. Thus an HIN can be re-
garded as an outcome of concatenations of all schema instances.
Since the schema instance encompasses all kinds of categories and

relationships of nodes, providing comprehensive foundational in-
formation for nodes within the instance, we define the information
represented by schema instances as the minimal complete se-
mantic context. More specifically, because the schema describes
how the HIN elements interact mutually, as the minimal structure
that matches the schema, a schema instance is the smallest struc-
ture that contains all semantic information needed to define its
inside nodes. Consequently, schema instances can be defined as
schema neighborhoods of nodes inside of them, and the nodes
inside an instance are schema neighbors to each other under the
context represented by the instance.

In this work, we propose to use schema instances as a novel
semantic carrier to aggregate semantic information for HIN em-
bedding. Compared with meta-paths, experts or domain knowl-
edge is no longer required to determine network schema because
the schema is a unique structure for a certain HIN[48]. Moreover,
schema instances contain more semantic information than meta-
paths because meta-paths were initially defined as paths on the
network schema [32]. More specifically, schema instances include
all types of nodes and relations as well as complete node context,
whereas one meta-path only incorporates a limited number of node
and relation types and captures one kind of predefined semantic
information only. Compared with adjacency matrices, schema in-
stances contain rich semantic information explicitly. Meanwhile,
schema neighbors are natural 1- to multi-hop graph structure neigh-
bors depending on schema structure, implying that schema in-
stances incorporate structural information as well. In summary,
schema instances integrate the advantages of both meta-paths and
adjacency matrices, thus exploring an approach to exploit schema
instances for network embedding is non-trivial.

In this work, we propose the Masked Schema based Graph
NeuralNetworks (MSGNN) for graph representation learning based
on schema instances in a self-supervised manner. The MSGNN con-
sists of three main components: schema instance retrieval, node
minimal complete context representation generation, and bi-level
masked schema instances training. We prove the superiority of the
proposed method on link prediction and node classification tasks
in Section 5.

The contributions of this paper can be summarized as follows:

• To the best of our knowledge, we are the first to explore
and define the semantic information represented by schema
instances in HINs. In addressing the deficiencies of different
approaches for heterogeneous networks, we elucidate the
strength of exploiting schema instances and present a novel
HIN embedding model MSGNN based on the schema.

• We devise a framework for schema based HIN representa-
tion learning, which includes schema induction, schema in-
stance retrieval, and schema instance based training, among
which an efficient strategy is proposed for schema instance
retrieval.

• We conducted comprehensive comparative experiments to
verify the effectiveness of MSGNN, and the results consis-
tently demonstrate that our method outperforms all base-
line models, achieving state-of-the-art performance.

572



2 RELATEDWORKS
Heterogeneous Network Embedding.Many studies use meta-
paths [4, 6, 8, 28, 29, 36] to learn node embeddings based on meta-
path neighborhoods. Metapath2vec [4] leverages meta-path based
random walks to produce node sequences and uses skip-gram
for embedding. HERec [29] filters node sequences based on type
constraints to capture information from homogeneous neighbors.
HAN [36] combines attention mechanism with meta-paths in a
bi-level architecture, but it discards all intermediate nodes along
the meta-paths by only considering two end nodes, leading to in-
formation loss. MAGNN [8] solves this problem by encoding whole
meta-path instances. These works make impressive performances,
but they fail to answer the question about how to design meta-paths
as mentioned in Section 1.

Recent studies [5, 5, 14, 20, 40, 42, 44] attempt to address this prob-
lems posed by meta-paths. RHINE [20] distinguishes heterogeneous
relations as either one-centered-by-another or peer-to-peer, and
uses different models for two relations. SR-RSC [44] adopts multi-
hop message passing to extract relation-based neighbor-graphs for
HIN embeddings, thereby avoiding the use of meta-paths. GTN [42]
learns meta-paths automatically and operates graph convolution
on the learned meta-path graphs. MHGCN [40] proposes an auto-
matic meta-path learning mechanism through a graph convolution
module. Based on MHGCN, BPHGNN [5] defines combinations of
relations as behavior patterns and learns representations from local
and global perspectives. These works attempt to use partial graph
structures to describe the semantic relationship between nodes and
define node neighborhoods, and therefore avoid designing meta-
paths explicitly. However, they either lack a clear definition of the
semantic information represented by the proposed structures or
cannot guarantee the completeness of captured semantic informa-
tion.

There are some other approaches [2, 43, 47] for graph represen-
tation learning. HetGNN [43] samples a fixed number of neigh-
bors and fuses their features using Bi-LSTMs. SimpleHGN [21]
enhances GAT [35] by adding edge type vectors to the attention
layer and aggregates structural neighbors. NSHE [48] learns rep-
resentations by preserving node-level and schema-level proximity.
SchemaWalk [26] uses schema to guide random walk to obtain
more informative node sequences and employ skip-gram to em-
bed the network. These methods mainly focus on graph structural
information, neglecting semantic infomation.

Masked Modeling. Graph autoencoders (GAEs) [3, 16, 24] are
a family of self-supervised learning models that take the graph
input as self-supervision and learn to reconstruct the graph struc-
ture. MGAE [33] and GMAE [46] perform masking strategies on
graph structure and node attributes as part of their self-supervised
learning paradigm. MaskGAE [18] adopts masked graph modeling
(MGM) to mask a portion of edges and aims to reconstruct the miss-
ing part with a partially unmasked graph structure. Instead of edge
masking, SimSGT [19] introduces noise to the graph by random
nodemasking which samples a random subset of nodes and replaces
their features with a special token. GCMAE [37] combines masked
autoencoder and contrastive learning to reconstruct the entire adja-
cency matrix, capturing global graph structures, rather than solely
focusing on masked edges as in existing works. These works mainly

focus on graph structure masking, and few of them attempt to mask
networks from a semantic perspective. Considering the advanced
performance achieved by this technique, we attempt to design a
masked semantic model (MSM) for HIN representation learning to
learn semantic information within the minimal complete context.

Algorithm 1: Schema Induction
Input :An HIN G = {V, E, 𝜙,𝜓 }, 𝜙 : V → A,𝜓 : E → R

A threshold 𝑡
Output :Schema O

1 Q ← ∅
2 for each node type pair (A𝑖 ,A 𝑗 ),A𝑖 ∈ A,A 𝑗 ∈ A do

// iterate all combinations of A
3 𝐶𝑛𝑡 ← 0
4 for each node pair (𝑢, 𝑣), 𝜙 (𝑢 ) = A𝑖 , 𝜙 (𝑣) = A 𝑗 do
5 if ∃ edge (𝑢, 𝑣) ∈ G then
6 𝐶𝑛𝑡 ← 𝐶𝑛𝑡 + 1

// accumulate connectivity of pair (A𝑖 ,A 𝑗 )
7 continue

8 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ← 𝐶𝑛𝑡

|VA𝑖 |

9 if 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 > 𝑡 then
10 Q.𝐴𝑝𝑝𝑒𝑛𝑑 ( (A𝑖 ,A 𝑗 ) )

11 O ← 𝐶𝑟𝑒𝑎𝑡𝑒𝐺𝑟𝑎𝑝ℎ (O |VO = A, EO = ∅)
12 for each edge 𝑒 ∈ Q do
13 O.𝐴𝑑𝑑𝐸𝑑𝑔𝑒 (𝑒 )
14 return O

3 PRELIMINARIES
Heterogeneous Information Network (HIN) [30] is a network
model that contains multiple types of nodes and edges as well as
rich semantic information. An HIN can be formally defined as G =

{V, E, 𝜙,𝜓 }, whereV denotes the set of nodes and E represents
the set of edges. 𝜙 is a node type mapping function 𝜙 : V → A
and𝜓 is an edge type mapping function𝜓 : E → R, where A and
R denote the set of node types and edge types respectively. When
|A| = |R | = 1, the network degenerates into a homogeneous graph.

Graph Neural Networks (GNNs) [39] are neural network mod-
els designed to handle graph-structured data, aiming to learn low-
dimensional representations of nodes that capture structural in-
formation within the graph. The mechanism behind GNNs is to
aggregate information from neighboring nodes and then update
the information of target nodes. In the 𝑙-th layer, the representation
of node 𝑢, denoted as h(𝑙 )𝑣 ∈ R𝑑𝑙 , can be calculated as follows:

h(𝑙 )𝑢 = UPDATE
(︂
h(𝑙−1)𝑢 , AGGREGATE

(︂
{h(𝑙−1)𝑣 | 𝑣 ∈ N𝑢 }

)︂)︂
. (1)

where N𝑢 denotes the set of neighboring nodes of 𝑢.
The Schema [9] is a formal representation of a set of concepts

and their relationships within a domain. In an HIN, schema repre-
sents the meta-structure of the graph and records the connectivity
of different types of nodes. Given the HIN G = {V, E}, the schema
is denoted as O = {A,R}, which preserves all the node types A
and edge types R inside G.

573



Schema instances, denoted as O𝑖 , are the smallest subgraphs in
the HIN that match all the types and relationships in the schema[48]
and contain minimal complete semantic contexts of nodes inside.
Given this, an HIN can also be represented as a complex network
composed of plenty of schema instances, i.e., G =

⋃︁𝑁
𝑖=1 O𝑖 . Here,

The subscript 𝑖 is the index of the instance and 𝑁 denotes the total
number of instances. We denote the set of schema instances as
Osub = {O1, . . . ,O𝑁 }, containing all schema instances of the HIN.

Algorithm 2:Main chain searching𝑚𝑆𝑒𝑎𝑟𝑐ℎ(O, 𝑀)
Input :A schema graph O = {VO , EO }, a main chain𝑀

initialized 𝑒𝑚𝑝𝑡𝑦 by default.
Output :All main chain candidates𝑀𝑎𝑖𝑛𝑠

1 if 𝑀 is 𝑒𝑚𝑝𝑡𝑦 then
2 𝑁 ← O.𝑛𝑜𝑑𝑒𝑠
3 else
4 𝑁 ← O.𝑛𝑜𝑑𝑒𝑠 ∩ 𝑆𝑒𝑡 (𝑀 )
5 𝑀𝑎𝑖𝑛𝑠, 𝑃𝑎𝑡ℎ𝑠 ← ∅, ∅ // 𝑀𝑎𝑖𝑛𝑠 contains main chain

candidates

6 for each node 𝑢 ∈ 𝑁 do
7 𝑝𝑎𝑡ℎ ← ∅ // 𝑝𝑎𝑡ℎ is a node sequence

8 𝑝𝑎𝑡ℎ.𝐸𝑥𝑡𝑒𝑛𝑑 (𝑢 )
9 𝑃𝑎𝑡ℎ𝑠.𝐴𝑝𝑝𝑒𝑛𝑑 (𝑝𝑎𝑡ℎ)

10 while 𝑃𝑎𝑡ℎ𝑠 is not 𝑒𝑚𝑝𝑡𝑦 do
11 𝑃𝑎𝑡ℎ𝑠𝑛𝑒𝑥𝑡 ← ∅
12 for each 𝑝𝑎𝑡ℎ in 𝑃𝑎𝑡ℎ𝑠 do
13 N ← O.𝐺𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑝𝑎𝑡ℎ.𝑡𝑎𝑖𝑙 )
14 if N ⊆ 𝑆𝑒𝑡 (𝑝𝑎𝑡ℎ.𝑛𝑜𝑑𝑒𝑠 ) then
15 𝑀𝑎𝑖𝑛𝑠.𝐴𝑝𝑝𝑒𝑛𝑑 (𝑝𝑎𝑡ℎ)
16 else
17 for each node 𝑖 ∈ N/𝑆𝑒𝑡 (𝑝𝑎𝑡ℎ.𝑛𝑜𝑑𝑒𝑠 ) do
18 𝑝𝑎𝑡ℎ𝑛𝑒𝑥𝑡 ← 𝑝𝑎𝑡ℎ.𝐸𝑥𝑡𝑒𝑛𝑑 (𝑖 )
19 𝑃𝑎𝑡ℎ𝑠𝑛𝑒𝑥𝑡 .𝐴𝑝𝑝𝑒𝑛𝑑 (𝑝𝑎𝑡ℎ𝑛𝑒𝑥𝑡 )

20 𝑃𝑎𝑡ℎ𝑠 ← 𝑃𝑎𝑡ℎ𝑠𝑛𝑒𝑥𝑡

21 𝑀𝑎𝑖𝑛𝑠 ← 𝑀𝑎𝑖𝑛𝑠.𝑆𝑜𝑟𝑡 ( ) descending by length
22 return𝑀𝑎𝑖𝑛𝑠

4 METHODOLOGY
In this section, we described the details of Masked Schema based
Graph Neural Networks. MSGNN consists of three main compo-
nents: schema instance retrieval, node minimal context representa-
tions generation, and bi-level masked schema training. The overall
framework of the algorithm is illustrated in Figure 2.

4.1 Schema Instance Retrieval
This section presents an efficient schema instance retrieval strategy,
which obtains all possible instances by steps of schema decomposi-
tion, schema chain matching, and schema instance reconstruction.
Details are illustrated in Figure 3. The goal of this section is to
obtain the set of schema instances Osub defined in Section 3.

4.1.1 Schema Decomposition.
As mentioned in Section 1, the schema is a unique structure for a
certain HIN[48]. In most cases, schema is either prior knowledge

or easy to recognize from graph data when the graph is simple.
For cases where the schema is unknown, we prepare an effective
approach to rapidly recognize the schema, shown in Algorithm 1.
The core idea of the algorithm is to extract and keep type pairs
that exhibit significant co-occurrence from the network, which
can be regarded as the expected relationships in the schema. More
specifically, this method examines the connectivity between every
possible pair of node types by counting connected node pairs and
then preserves the node type pair as an edge in the schema graph of
which connectivity exceeds the predefined threshold. For a cleaned
graph, the threshold can be set to zero.

Based on schema O, to achieve the purpose of learning mini-
mal node context representations, finding out all schema instances
contained in G is of utmost importance. However, due to the het-
erogeneity, a complex graph could include various types of nodes
and edges, which makes the direct search of schema instances very
challenging. In this work, we present a decompose-reconstruct
strategy to narrow down the search space. We recursively decom-
pose the schema into two types of chains and one residual compo-
nent, namely main chain, subordinate chain, and residual. A chain
is a simple path in schema, i.e. a sequence of node types without
repeating. Chains are considered as middle targets of instance re-
trieval in the following steps to reduce search spaces. Below is a
detailed explanation of the three components:

• Main Chain: Unique in each recursion layer, typically the
longest path in the schema. A proper main chain should
cover as many elements of O as possible to reduce the
number of subordinate chains and residuals. Main chain
instances serve as the foundation in the following recon-
struction step, i.e. all other retrieved component instances
are eventually appended to main chain instances. During
each recursion, we should first identify the main chain.

• Subordinate Chain: Zero to multiple chains in each recur-
sion layer. If the schema O has circles, we split a circle into a
main chain and a subordinate chain during main chain iden-
tification, if necessary. Subordinate chains refer to 1-hop
paths in O and are characterized by both ends intersecting
the main chain. The head and tail of a subordinate chain is
arbitrarily selected among two ends.

• Residual: Zero to multiple subgraphs in each recursion
layer. After a main chain and subordinate chains are deter-
mined, the remaining elements form several disconnected
subgraphs. Decomposing each subgraph recursively until
no element remains.

The schema O is usually a small graph, so we can limit the depth of
recursion for acceleration. In this work, we set the maximum depth
to 3. Moreover, considering all chain instances will be eventually
concatenated together, we should choose a decomposition plan with
the least number of chains to lower the number of concatenation
operations and thus ensure efficiency. We search all possible main
chains using Algorithm 2. In Algorithm 2, main chain searching
starts from all nodes (line 6-9) and each route keeps visiting the
neighboring nodes of its end. For each route, if all neighbors have
been visited, stop walking and save this route as a main chain
candidate (line 12-15). If not, adding the node to the end of the route
to extend it and keep walking (line 17-19). Then, we iterate each

574



Figure 2: Overall framework of MSGNN. Including three parts: schema instance Retrieval, Node Context Representations
Generating, and Bi-level Masked Schema Training.

main candidate to find a decomposition plan with the minimum
number of chains using Algorithm 3. In Algorithm 3, a dictionary is
defined to record and update the plan during the process. For each
main chain candidate, we remove its edges to identify subordinate
chains from the graph (line 5-10) then remove subordinate chains
to identify residuals. If the graph is empty, finish decomposition
and update the dictionary (line 13-18). If the residual graphs exist,
decompose each subgraph recursively (line 20-25), and update the
dictionary if a better plan (a plan with a smaller total number
of chains) is found (line 27-34). Note that during recursion, the
main chain candidates searching only starts from nodes that are
contained in the iterated main chain candidate of the last recursion
(Algorithm 2 line 3-4).

For better demonstration, we denote the main chain and its corre-
sponding subordinate chain set as𝑚 (𝑖 )

𝑗,𝑘
and 𝑠 (𝑖 )

𝑗
, respectively, where

𝑖 refers to the recursive depth (or layer), 𝑗 is the index of the main
chain, i.e., the index of the corresponding residual graph (denoted
as 𝑟𝑒𝑠 (𝑖−1)

𝑗
) as the main chain is unique in each decomposition, and

𝑘 stands for the index of the main chain in (𝑖 − 1)-th recursion that

produces 𝑟𝑒𝑠 (𝑖−1)
𝑗

. Figure 3(a) illustrates an example of the decom-
position on a subset of a large medical knowledge graph with seven
node types. In Figure 3(a), a main chain𝑚 (0)0,0 in red is selected, and

thus two subordinate chains 𝑠 (0)0 in blue are split from circles. A
residual graph in green is further decomposed as a main chain𝑚 (1)0,0
in the next recursion. Take𝑚 (1)0,0 as an example, the superscript 1

means𝑚 (1)0,0 is a main chain of the 2nd recursion, the first subscript

0 is the index of𝑚 (1)0,0 , also indicating it is decomposed from 𝑟𝑒𝑠
(0)
0 ,

and the second subscript 0 is the index of main chain that produce
𝑟𝑒𝑠
(0)
0 in last recursion, i.e.,𝑚 (0)0,0 .

4.1.2 Schema Chain Matching.
In this step, we query the HIN G with schema chains obtained
in Section 4.1.1 for corresponding chain instances. A chain in-
stance is a specific node sequence, aka. a path, whose type se-
quence matches the query. To further enhance the efficiency of
chain instance matching, we break chains into node type triplet
sequences [(𝑡𝑦𝑝𝑒1 → 𝑡𝑦𝑝𝑒2), (𝑡𝑦𝑝𝑒2 → 𝑡𝑦𝑝𝑒3) ...], see Figure 3(a)
dotted boxes. The tail of a triplet is the head of the subsequent triplet.

575



Algorithm 3: Schema Decomposition 𝑑𝑐𝑚𝑝 (O, 𝑑, 𝑀)
Input :A schema graph O = {VO , EO }, a depth limitation

𝑑𝑒𝑝𝑡ℎ, a chain𝑀 initialized as empty variable by default.
Output :A decomposition plan 𝐷 with four attributes

𝐷.𝑐𝑛𝑡, 𝐷.𝑚,𝐷.𝑠, 𝐷.𝑟𝑒𝑠

1 𝐷.𝑚,𝐷.𝑠, 𝐷.𝑟𝑒𝑠 ← ∅, ∅, ∅
2 𝐷.𝑐𝑛𝑡 ← 𝐶𝑜𝑢𝑛𝑡 (O.𝑒𝑑𝑔𝑒𝑠 )
3 𝑀𝑎𝑖𝑛𝑠 ←𝑚𝑆𝑒𝑎𝑟𝑐ℎ (O, 𝑀 ) // Algorithm 2

4 for each 𝑚 ∈ 𝑀𝑎𝑖𝑛𝑠 do
5 𝑠, 𝑟𝑒𝑠 ← ∅, ∅
6 G ← O.𝐶𝑜𝑝𝑦 ( )
7 G.𝑅𝑒𝑚𝑜𝑣𝑒𝐸𝑑𝑔𝑒𝑠 (𝑚.𝑒𝑑𝑔𝑒𝑠 )
8 for each edge (𝑢, 𝑣) ∈ G.𝑒𝑑𝑔𝑒𝑠 do
9 if 𝑢 ∈ 𝑚 and 𝑣 ∈ 𝑚 then
10 𝑠.𝐴𝑝𝑝𝑒𝑛𝑑 ( (𝑢, 𝑣) )
11 G.𝑅𝑒𝑚𝑜𝑣𝑒𝐸𝑑𝑔𝑒𝑠 ( (𝑢, 𝑣) )

12 G.𝑅𝑒𝑚𝑜𝑣𝑒𝐼𝑠𝑜𝑙𝑎𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 ( )
13 if G is 𝑒𝑚𝑝𝑡𝑦 then finish decomposition
14 𝑐𝑛𝑡 ← 𝐶𝑜𝑢𝑛𝑡 (𝑠 ) + 1 // 1 is count of 𝑚

15 if 𝑐𝑛𝑡 < 𝐷.𝑐𝑛𝑡 then update 𝐷
16 𝐷.𝑚,𝐷.𝑠, 𝐷.𝑐𝑛𝑡, 𝐷.𝑟𝑒𝑠 ←𝑚,𝑠, 𝑐𝑛𝑡, 𝑟𝑒𝑠

17 else
18 continue

19 else
20 if 𝑑𝑒𝑝𝑡ℎ > 0 then
21 𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ − 1
22 G𝑟𝑒𝑠 ← 𝐺𝑒𝑡𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (G)
23 for each G𝑠𝑢𝑏 in G𝑟𝑒𝑠 do
24 𝐷𝑟𝑒𝑠 ← 𝑑𝑐𝑚𝑝 (G𝑠𝑢𝑏 , 𝑑𝑒𝑝𝑡ℎ,𝑚) // recursion

25 𝑟𝑒𝑠.𝐴𝑝𝑝𝑒𝑛𝑑 (𝐷𝑟𝑒𝑠 )
26 𝑐𝑛𝑡𝑟𝑒𝑠 ← 0
27 if 𝐶𝑜𝑢𝑛𝑡 (𝑟𝑒𝑠 ) > 0 then accumulate 𝐷𝑟𝑒𝑠 .𝑐𝑛𝑡

28 for each 𝐷𝑟𝑒𝑠 in 𝑟𝑒𝑠 do
29 𝑐𝑛𝑡𝑟𝑒𝑠 ← 𝑐𝑛𝑡𝑟𝑒𝑠 +𝐷𝑟𝑒𝑠 .𝑐𝑛𝑡

30 𝑐𝑛𝑡 ← 𝐶𝑜𝑢𝑛𝑡 (𝑠 ) + 1 + 𝑐𝑛𝑡𝑟𝑒𝑠
31 if 𝑐𝑛𝑡 < 𝐷.𝑐𝑛𝑡 then update 𝐷
32 𝐷.𝑚,𝐷.𝑠, 𝐷.𝑐𝑛𝑡, 𝐷.𝑟𝑒𝑠 ←𝑚,𝑠, 𝑐𝑛𝑡, 𝑟𝑒𝑠

33 else
34 continue

35 else
36 continue

37 return 𝐷

For each chain, we query all its type triplets and sequentially con-
catenate the returned node triplets to obtain chain instances, as
shown in Figure 3(a)(b). Because each type triplet involves only a
1-hop relation, each type triplet query only requires a single lookup
operation based on the adjacency matrix.

This step disassembles the process of schema chain instance
matching, which is a path query, into multiple 1-hop queries, signif-
icantly reducing the complexity and time consumption for search-
ing. Moreover, this approach allows parallel querying of all chains
for more flexible and efficient matching.

4.1.3 Schema Instance Reconstruction.
Similar to Section 4.1.1, we denote main chain instances and cor-
responding subordinate chain instances set as 𝑀 (𝑖 )

𝑗,𝑘
, and 𝑆 (𝑖 )

𝑗
, re-

spectively. Once obtaining all instances of the main chain and
subordinate chains, we reconstruct the schema instances through
two steps:

(1) For each subordinate chain instance in 𝑆 (𝑖 )
𝑗

, we first connect

it to corresponding main chain instances in𝑀 (𝑖 )
𝑗,𝑘

according
to the head nodes and tail nodes of the subordinate chain
instances.

(2) For each main chain instance in𝑀 (i)
𝑗,k , we connect it to its

corresponding upper layer main chain instance in𝑀 (i-1)k,𝑙
sequentially until 𝑖 − 1 = 0.

After the 2 steps, schema instances are reconstructed in 𝑀 (0)0,0 .

Thus we obtain O𝑠𝑢𝑏 by creating graph for each instance in𝑀 (0)0,0
based on schema O. Algorithm 4 provides the details of the whole
process of schema instance retrieval (Section 4.1.2 is described in
line 2-17 and Section 4.1.3 is described in line 18-22). An example
of one schema instance reconstruction is provided in Figure 3(b)(c).
We notice that in some datasets, the obtained instances are incom-
plete, i.e., certain nodes are missing. This phenomenon may be
due to a lack of data, meaning the graph is incomplete. Based on
our analysis in Section 1, schema instances represent the minimal
complete contexts for involved nodes. Therefore, an incomplete
schema instance indicates abnormal semantic contexts for all nodes
in this subgraph. In this case, we recommend discarding those in-
complete subgraphs and learning node representations based on
complete semantic context only, to prevent introducing noise dur-
ing the learning process. Alternatively, we could also padding those
incomplete subgraphs if necessary.

Our proposed strategy synchronizes the search of all instances in
a largely reduced search space, with only a few lookup operations
to graph, and it is parallel-friendly. In the implementation, we could
use the table join operation to perform the concatenation operations
mentioned in Section 4.1.2 and Section 4.1.3 to further accelerate
the retrieval. Overall, this staged retrieval strategy significantly
reduces the search space and enhances search efficiency.

4.2 Node Context Representations Generation
Since the schema instances O𝑠𝑢𝑏 have been obtained, the purpose of
this section is to generate minimal complete context representations
of nodes based on O𝑠𝑢𝑏 . The process could be divided into two setps:
intra-schema aggregation and inter-schema aggregation. For each
node, intra-schema aggregation integrates the semantic information
within each context represented by schema instance, while inter-
schema aggregation fuses the information from all contexts. Details
are shown in Figure 2(b).

4.2.1 Intra-schema Aggregation.
Given that heterogeneous nodes in anHIN reside in different feature
spaces, we conduct type-specific projection to map all node features
into the same latent vector space. For a node 𝑢 ∈ V of type 𝐴 ∈ A,
we have:

h(0)𝑢 = 𝑓 (x𝐴𝑢 ,A), (2)

576



Figure 3: Schema Instance Retrieval. Including Schema decomposition, Schema chain matching, and Schema Instance recon-
struction.

Algorithm 4: Schema Instances Retrieval
Input :An HIN G with schema O = {A, R}, the decomposition

plan 𝐷

Output :All O instances O𝑠𝑢𝑏
1 𝑑 ← 𝐺𝑒𝑡𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛𝐷𝑒𝑝𝑡ℎ (𝐷 )
2 𝑀𝑎𝑖𝑛 ← {𝑚 (𝑖 )

𝑗,𝑘
|𝑚 (𝑖 )

𝑗,𝑘
∈ 𝐷, 𝑖 ∈ [0, 𝑑 ] }

3 𝑆𝑢𝑏 ← {𝑠 (𝑖 )
𝑗
|𝑠 (𝑖 )
𝑗
∈ 𝐷, 𝑖 ∈ [0, 𝑑 ] }

4 𝑀,𝑆 ← ∅, ∅ // 𝑀,𝑆 contain chain instances

5 for each 𝑚
(𝑖 )
𝑗,𝑘
∈ 𝑀𝑎𝑖𝑛 do

6 ℎ𝑒𝑎𝑑 ←𝑚
(𝑖 )
𝑗,𝑘

.𝑃𝑜𝑝 ( )
7 𝑡𝑎𝑖𝑙 ←𝑚

(𝑖 )
𝑗,𝑘

.𝑃𝑜𝑝 ( )
8 𝑀

(𝑖 )
𝑗,𝑘
← 𝑄𝑢𝑒𝑟𝑦 (G |𝑒𝑑𝑔𝑒 (ℎ𝑒𝑎𝑑 → 𝑡𝑎𝑖𝑙 ) )

9 while𝑚 (𝑖 )
𝑗,𝑘

≠ ∅ do
10 ℎ𝑒𝑎𝑑 ← 𝑡𝑎𝑖𝑙

11 𝑡𝑎𝑖𝑙 ←𝑚
(𝑖 )
𝑗,𝑘

.𝑃𝑜𝑝 ( )
12 𝑄 ← 𝑄𝑢𝑒𝑟𝑦 (G |𝑒𝑑𝑔𝑒 (ℎ𝑒𝑎𝑑 → 𝑡𝑎𝑖𝑙 ) )
13 𝑀

(𝑖 )
𝑗,𝑘
← 𝐼𝑛𝑛𝑒𝑟 𝐽 𝑜𝑖𝑛 (𝑀 (𝑖 )

𝑗,𝑘
,𝑄 ) on head of𝑄

14 𝑀.𝐴𝑝𝑝𝑒𝑛𝑑 (𝑀 (𝑖 )
𝑗,𝑘
)

15 for each 𝑠
(𝑖 )
𝑗
∈ 𝑆𝑢𝑏 do

16 𝑆
(𝑖 )
𝑗
← 𝑄𝑢𝑒𝑟𝑦 (G |𝑒𝑑𝑔𝑒 (𝑠 (𝑖 )

𝑗
.ℎ𝑒𝑎𝑑𝑠 → 𝑠

(𝑖 )
𝑗

.𝑡𝑎𝑖𝑙𝑠 ) )
17 𝑆.𝐴𝑝𝑝𝑒𝑛𝑑 (𝑆 (𝑖 )

𝑗
)

18 for each (𝑀 (𝑖 )
𝑗,𝑘

, 𝑆
(𝑖 )
𝑗
) ∈ 𝑍𝑖𝑝 (𝑀,𝑆 ) do

19 𝑀
(𝑖 )
𝑗,𝑘
← 𝐼𝑛𝑛𝑒𝑟 𝐽 𝑜𝑖𝑛 (𝑀 (𝑖 )

𝑗,𝑘
, 𝑆
(𝑖 )
𝑗
) on head and tail of 𝑆 (𝑖 )

𝑗

20 while 𝑑 > 0 do
21 𝑀

(𝑑−1)
𝑘,𝑙

← 𝐼𝑛𝑛𝑒𝑟 𝐽 𝑜𝑖𝑛 (𝑀 (𝑑−1)
𝑘,𝑙

, 𝑀
(𝑑 )
𝑗,𝑘
) on head of𝑀 (𝑑 )

𝑗,𝑘

22 𝑑 ← 𝑑 − 1

23 O𝑠𝑢𝑏 ← ∅
24 for each instance 𝑜𝑖 ∈ 𝑀 (0)0,0 do
25 O𝑖 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝐺𝑟𝑝𝑎ℎ (𝑜𝑖 |A, R)
26 O𝑠𝑢𝑏 .𝐴𝑝𝑝𝑒𝑛𝑑 (O𝑖 )
27 return O𝑠𝑢𝑏

where h(0)𝑢 represents the type-specific projection vector of node
𝑢, x𝑢 is the original node feature, and the function 𝑓 (·) represents
a linear transformation with a nonlinear activation.

The type-specific projection aligns heterogeneous nodes into the
same space, and for the subsequent aggregation process, we will
utilize the projected vectors h(0)𝑢 as input for the first layer.

Next, we adopt the attention mechanism to perform the intra-
schema aggregation. For each target node 𝑢 ∈ V , its schema neigh-
borhood is denoted as N𝑢 = {O𝑖 |𝑢 ∈ O𝑖 ,O𝑖 ∈ O𝑠𝑢𝑏 }, while each
O𝑖 represents a context of 𝑢. The attention coefficients of the 𝑙-th
layer between node 𝑢 and its neighbor 𝑣 within a certain schema
instance O𝑖 can be calculated by:

˜︁𝛼O𝑖 ,(𝑙 )𝑢𝑣 =

exp
(︂
𝜎

(︂
𝑎
𝑇
[︂
h(𝑙−1)𝑢 ∥h(𝑙−1)𝑣

]︂ )︂)︂
∑︁

𝑤∈O𝑖 exp
(︂
𝜎

(︂
𝑎
𝑇
[︂
h(𝑙−1)𝑢 ∥h(𝑙−1)𝑤

]︂ )︂)︂ , (3)

where 𝑎 is attention vector, ∥ denotes the vector concatenation
operator, 𝜎 (·) is the activation function.

Since the schema instances only represent local information,
we introduce a global representation, denoted as h𝑔 , via vector
concatenation. In this way, both local and global information can
be taken into account when calculating the attention coefficients.
Therefore, Eq. 3 is updated to:

˜︁𝛼O𝑖 ,(𝑙 )𝑢𝑣 =

exp
(︂
𝜎

(︂
𝑎
𝑇
[︂
h(𝑙−1)𝑢 ∥h(𝑙−1)𝑣 ∥h(𝑙−1)𝑔

]︂ )︂)︂
∑︁

𝑤∈O𝑖 exp
(︂
𝜎

(︂
𝑎
𝑇
[︂
h(𝑙−1)𝑢 ∥h(𝑙−1)𝑤 ∥h(𝑙−1)𝑔

]︂ )︂)︂ , (4)

where h(𝑙−1)𝑔 is obtained by a readout function:

h(𝑙−1)𝑔 = ReadOutglobal (H(𝑙−1) ), (5)

where H(𝑙−1) is the embedding matrix of 𝑙 − 1-th layer and the
average pooling is employed as the global readout function in this
work.

Then, we update the attention coefficients via the skip-connection [17],
which makes the updating process more stable and improves the
generalization ability of the model:

𝛼
O𝑖 ,
𝑢𝑣 (𝑙) = (1 − 𝛽)˜︁𝛼O𝑖 ,(𝑙 )𝑢𝑣 + 𝛽𝛼O𝑖 ,(𝑙−1)𝑢𝑣 , (6)

where 𝛽 ∈ [0, 1] is a hyperparameter.

577



Next, we further perform skip-connection to update the repre-
sentation of 𝑢:

hO𝑖 ,𝑢 (𝑙) = 𝜎
⎛⎜⎝
∑︂
𝑣∈O𝑖

𝛼
O𝑖 ,(𝑙 )
𝑢𝑣 · h(𝑙−1)𝑣 +W(𝑙−1)𝑟𝑒𝑠 · h(𝑙−1)𝑢

⎞⎟⎠ , (7)

where hO𝑖 ,(𝑙 )𝑢 is the intra-aggregation of the target node 𝑢 with
respect to 𝑂𝑖 of 𝑙-th layer, and W(𝑙−1)𝑟𝑒𝑠 is the learnable matrix. The
whole process is shown in Figure 2(b).

4.2.2 Inter-schema Aggregation.
Since each schema instance O𝑖 of the target node 𝑢 generates an
intra-aggregation representation, we need to further fuse all seman-
tic information provided by each schema instance inN through the
inter-schema aggregation. Generally, a dual-layer attention mecha-
nism is commonly used in such scenarios; however, we observed its
effectiveness to be unsatisfactory. According to [15], the dual-layer
attention structure fails to distinguish the importance of different
semantic sources, which leads to severe overfitting. Therefore, we
turn to use the max pooling function to aggregate the semantic
information between schema instances:

h(𝑙 )𝑢 = Pooling({hO𝑖 ,(𝑙 )𝑢 | ∀O𝑖 ∈ Osub, 𝑢 ∈ O𝑖 }) (8)

We adopt multi-head attention following GAT [35], the inde-
pendent attention mechanisms are executed via Eq. 4, and then
the results of multiple attention layers are concatenated as the
representation:

h(𝑙 )𝑢 = Concat(𝜎 (h𝑘,(𝑙 )𝑢 )), (9)
where 𝑘 is the number of attention heads, Concat(·) denotes the
concatenation of vectors.

We regard Equation 3 to 9 as anMSGNN layer. Themodel extracts
deeper information by stacking layers. Notice in the last layer, the
representation is obtained by averaging operation:

h(𝐿)𝑢 =
1
𝐾

∑︂
𝑘

h𝑘,(𝐿)𝑢 . (10)

Finally, through a linear layer followed by L2 normalization [21],
we obtain the inter-aggregation representation of node 𝑢, denoted
as h𝑢 :

h𝑢 =
Wh𝑘,(𝐿)𝑢∥︁∥︁∥︁Wh𝑘,(𝐿)𝑢

∥︁∥︁∥︁ (11)

where h𝑢 is the context representation of 𝑢.

4.3 Bi-level Masked Schema Training
To strengthen the capability of capturing schema intrinsic semantic
information, we adopt the masking technique for schema instance
masking and designed two specific tasks to distinguish masked
instances from both node-level and graph-level. The bi-level masked
schema training is shown in Figure 2(c).

4.3.1 Schema Instance Masking.
In this section, we improve the masking operation on schema in-
stances to generate negative samples required for self-supervised
tasks. Initially, we attempt the widely used all-zero mask, which
substitutes node embeddings with zero vectors, but the effect is not
satisfactory, as shown in Table 4. Inspired by [15] using random
graphs as noise distributions, we turn to employ a random mask

by sampling nodes in the graph to corrupt the instance by replace-
ment, which leads to some improvement. Considering the large
difference of information carried by nodes of different types, using
random nodes for replacement will make the corrupted samples
more different from the positive samples, which in turn reduces
the difficulty of the task and lowers model performance. Therefore,
we further improve the strategy by replacing nodes with homoge-
neous nodes to construct difficult negative samples to strengthen
the model performance on minimal contexts learning. The exper-
iment and discussion on the different masking strategies can be
found in section 5.5.

As shown in Figure 2(c), we take schema instances Osub obtained
in Section 4.1 as positive samples and randomly replace nodes in
Osub with those of the same type as masks to corrupt the instance
meanwhile preserve a certain level of semantics similarity. In Fig-
ure 2 (c), the masked nodes are marked with diagonal lines. If the
masked instances are not included in Osub, it is labeled as a negative
sample (otherwise it is still a positive sample) and denoted as O𝑚

𝑖
.

All negative samples are denoted as O𝑚sub.
Next, we stack all positive and negative samples and shuffle, then

readout each sample to obtain graph-level representations of O𝑗 :

hO𝑗

𝐺
= ReadOutgraph ({h𝑢 | ∀𝑢 ∈ O𝑗 ,O𝑗 ∈ Osub ∪ O𝑚sub}) (12)

Here, we employ a max pooling with a linear transformation as the
readout function.

4.3.2 Graph-level Discrimination.
For graph-level training, we design a graph discriminator to deter-
mine whether the subgraph has been masked:

ypred,𝐺 = Discriminator𝐺
(︂
hO𝑗

𝐺

)︂
(13)

where ypred,𝐺 stands for the predicted labels of the graph-level task,
indicating whether the instance is corrupted. In this work, we use
a full connection layer as the graph discriminator.

Then we calculate the cross-entropy loss:

L𝐺 =
∑︂
𝑂 𝑗

CrossEntropy
(︂
ypred,𝐺 , ytrue,𝐺

)︂
, (14)

4.3.3 Node-level Discrimination.
For node-level training, we design a node discriminator to predict
which nodes in a subgraph are masked:

ypred,𝑁 = Discriminator𝑁
(︂
hO𝑗

𝐺

)︂
(15)

where ypred,𝑁 is the predicted labels of the node-level task, indicat-
ing which node is corrupted. In this work, the node discriminator
is implemented as a reshape layer, which reshapes the embedding
hO𝑗

𝐺
to a matrix with |A| rows, with a full connection layer.

Considering the label of node-level task is usually unbalanced
because in most cases the number of masked nodes is smaller than
that of all nodes, i.e., most node labels are negative, we employ
focal loss to alleviate the potential influence:

L𝑁 =
∑︂
𝑂 𝑗

FocalLoss
(︂
ypred,𝑁 , ytrue,𝑁

)︂
, (16)

Finally, we conduct joint training of both tasks, enabling our
model to learn minimal context semantics from both graph-level

578



and node-level. We optimize our model by minimizing the final
objective function:

L = 𝛾 · L𝑁 + (1 − 𝛾) · L𝐺 , (17)

where 𝛾 ∈ [0, 1] is a balance scalar.

5 EXPERIMENTS
In this section, we conduct an extensive set of experiments to eval-
uate the effectiveness of our proposed method, MSGNN, on node
classification and link prediction tasks by comparing it with existing
state-of-the-art (SOTA) methods. In particular, we perform addi-
tional experiments to verify the efficiency of the schema instance
retrieval strategy and the effectiveness of the masking approaches.
Furthermore, we provide a comprehensive model analysis, includ-
ing an ablation study and parametric experiments, to gain insights
into the key components and hyperparameters of MSGNN.

5.1 Experimental Setups
5.1.1 Datasets.
For the task of node classification, we evaluate our approach on
four widely-used benchmark datasets, including two academic cita-
tion networks: DBLP [21] and AMiner [34]; and two movie rating
dataset: IMDB-L [22] and Freebase [1]. These datasets cover diverse
domains and provide a comprehensive evaluation of our method’s
performance on different types of heterogeneous information net-
works.

In addition to the above datasets, we also employ Yelp [12] and
IMDB [42] for the task of link prediction. By including these datasets,
we aim to demonstrate the broad applicability and generalizability
of the proposed approach to diverse domains beyond academic and
knowledge graph datasets.

The summary statistics of these datasets are presented in Table 1.

Table 1: Summary of datasets (nTypes: node types, eTypes:
edge types, Target: target node, and Classes: Target classes).

# Nodes # nTypes # Edges # eTypes Target # Classes Task

AMiner 55,783 3 153,676 4 paper 4 LP&NC
DBLP 26,128 4 239,566 6 author 4 LP&NC

Freebase 43,854 4 151034 6 movie 3 NC
IMDB-L 21,420 4 86,642 6 movie 4 NC
IMDB 12,772 3 18,644 2 - - LP
Yelp 3,913 5 38,680 4 - - LP

5.1.2 Baselines.
To comprehensively evaluate the proposed MSGNN against the
SOTA approaches, we compare SOTA methods like Homogeneous
network embedding methods:

• node2vec [10] - node2vec is a representative method for
graph representation by leveraging the random walk to
generate node sequences over graphs.

• SGC [38] - SGC proposes to simplify the graph convo-
lutional networks by removing the non-linear projection
during the information propagation between graph layers.

Meta-path-based Heterogeneous network embedding methods:

• MHGCN [41]-MHGCN can automatically learn useful het-
erogeneous meta-path interactions of different lengths in
multiplexed heterogeneous networks through multilayer
convolutional aggregation.

• BPHGNN [5]- BPHGNN learns multiplexed heterogeneous
network embedding through deep behavioral pattern ag-
gregation and wide behavioral pattern aggregation of mul-
tiplexed heterogeneous networks

• RGCN [27] - RGCN uses weight sharing and coefficient
constraints that take into account the effects of different
edge types on nodes.

• HetGNN [43] - HetGNN samples the fixed-length meta-
paths via recurrent neural networks.

• HAN [36] - HAN applies graph attention network on mul-
tiplex network considering the inter- and intra-network
interactions, which exploit manually selected meta-paths
to learn node embedding.

• MAGNN [7] - MAGNN is a meta-path-based graph neural
network approach that improves results by integrating in-
termediate semantic nodes and information from multiple
meta-paths.

Meta-path-free heterogeneous network embedding methods:
• SR-RSC [45] - SR-RSC proposes a meta-path-free Frame-

work based on self-supervised subgraph contrastive learn-
ing, where the model stacks multiple coding layers to drive
multi-hop message passing.

• simpleHGN [21] - simpleHGN experimentally verifies that
Meta-path is not necessary on most heterogeneous graph
datasets and proposes a simple optimal model based on
GAT [35].

• RSHN [49] - RSHN constructs a Coarsened Line Graph
Neural Network (CL-GNN) to embed nodes and edges with-
out meta-path based on relational structure perception.

• HGT [13] - HGT automatically learns the importance of
implicit meta-paths by decomposing the interaction matrix.

• HINormer [22] - HINormer utilizes Graph Transformers
(GTs) to capture the local structure and heterogeneous re-
lationships.

5.1.3 Experimental Settings.
For the task of link prediction, we classify node pairs present in
graphs as positive pairs and those not as negative pairs. We predict
all types of relation in graphs. For baselines, the datasets are split
into training, validating, and testing sets in a proportion of 85%, 5%,
and 10%, respectively. For the proposed method, we split O𝑠𝑢𝑏 into
training, validating, and testing sets in a proportion of around 85%,
5%, and 10%, respectively. For a fair comparison, we ensure that 10%
of edges exist exclusively in the testing set. We employ the F1 score,
PR-AUC (precision-recall area under the curve), and R-AUC (area
under the ROC curve) as metrics to evaluate the performance of
the link prediction task. For datasets without node features, we use
the one-hot vectors instead. For all baselines, we use their official
implementations to guarantee their performance and search the
learning rate within {0.0001, 0.0005, 0.001, 0.005, 0.01}, hidden di-
mensions within {64, 128, 256, 512}, output dimension within {32, 64,
128, 256}, number of attention heads, if applicable, within {1, 2, 4, 6,
8}, and number of layers within {2, 3, 4, 5} for best hyper-parameter

579



settings. The early stop technique is applied to all baselines. For the
task of node classification, we randomly divide the nodes into train-
ing, validation, and test sets following the standard split from [22].
Micro-F1 and macro-F1 are employed as metrics to evaluate the
classification performance. All involved experiments in both tasks
are repeated ten times, and we report the averaged results with
standard deviations. The experiments are performed on a platform
of Intel i9-14900k CPU with 64 GB memory and an RTX 4090 GPU.

5.2 Link Prediction
We evaluate themodel performance by comparing ourMSGNNwith
SOTA baselines on unsupervised task link prediction. We predict
all types of links and the inner product is adopted. The results
are reported in Table 2. The proposed MSGNN achieves optimal
results on all datasets. Experimental results demonstrate that our
MSGNN achieves a maximum improvement of 9.59%, 9.86%, and
16.08% compared to the suboptimal results in terms of ROC-AUC,
PR-AUC, and F1-score.

Specifically, we make the following observations: Firstly, the two
homogeneous embedding methods (node2vec and SGC) ignore the
rich heterogeneous information and thus are not as effective as
the heterogeneous methods. Among heterogeneous methods, MS-
GNN aggregates information from schema instances that contain
richer and more complete data, thereby outperforming all other
competitors. While the node2vec demonstrates high ROC-AUC and
PR-AUC scores on the Aminer dataset, its performance in terms of
F1-Score and Accuracy (34.20%, not listed in the table) is notably
poor. This discrepancy is attributed to its predicted probabilities
being close to 1. Secondly, across most datasets, simpleHGN demon-
strates competitive performance due to enhanced graph attention
networks, highlighting the efficacy of attention mechanisms in
representation learning. In contrast, MSGNN employs the same
mechanism for intra-schema aggregation but diverges by applying
the attention mechanism to schema instances rather than struc-
tural neighbors. This approach enables MSGNN to capture deeper
semantic information, resulting in significant performance gains:
up to 8.10% in ROC-AUC, 7.00% in PR-AUC, and 8.00% in F1-score
compared to the performance of simpleHGN on the DBLP dataset.
Finally, as a SOTA model, BPHGNN achieves suboptimal results
by effectively utilizing predefined behavioral patterns to aggregate
information from both local and global perspectives. In contrast,
our approach demonstrates significant advantages by searching
schema instances to provide structural and semantic information.
In particular, MSGNN achieves an impressive F1-score performance
of over 98% on the IMDB dataset, surpassing the suboptimal model
BPHGNN by 15.87%.

5.3 Node Classification
For the node classification task, we evaluate the node context rep-
resentations learned by MSGNN to verify its effectiveness in im-
proving the performance of downstream models. The results are
shown in Table 3. The first four baselines are meta-path-based
heterogeneous network methods, the last four are meta-path-free
heterogeneous network methods. We employ MSGNN to gener-
ate node presentations with rich semantic information and utilize
HINormer as a classifier. Experimental results demonstrate that

Figure 4: Time consumption comparison with NSHE. The
larger the dataset, the more significant the improvement in
search efficiency achieved by our proposed MSGNN

.

MSGNN+HINormer significantly outperforms all the baseline mod-
els. Notably, our MSGNN achieves a maximum improvement of
4.55% and 10.82% in terms of Micro-F1 and Macro-F1, respectively,
compared to the SOTA model HINormer. The higher Macro-F1
score indicates that our model performs well across all classes of
target nodes, which is particularly advantageous when dealing
with imbalanced class distributions, such as in the case of Freebase
dataset, where certain classes have significantly more nodes than
others. The improved performance demonstrates that the node con-
text representations obtained by MSGNN are highly effective for
downstream node classification tasks, indicating the significance
of aggregating information from schema neighborhoods.

5.4 Experiment on Efficiency of Instance Search
In this section, we compare the time-consumption of our proposed
instance retrieval strategy with that of NSHE [48], which is a HIN
embedding method using schema as a high-order structure to sup-
plement structure information. Considering NSHE samples only
one instance for each target node during each training epoch, we
remove the sampling operation in NSHE for a fair comparison.
The experimental results are shown in Figure 4, where MSGNN-
P refers to parallel computation-enabled MSGNN. For subgraph
querying, our approach efficiently retrieves schema instances in
various datasets compared to that of NSHE. NHSE searches the
instances in a depth first manner, while our approach significantly
reduces the search space by employing the decomposition and
reconstruction introduced in Section 4.1, remarkably improving
the search efficiency. In particular, on complex datasets such as
DBLP and Aminer datasets, NSHE’s search methods are explosively
time-consuming, taking 10 times longer than ours, and even 1000
times longer than the parallel computing one. The schema instance
retrieval strategy of MSGNN has great potential in dealing with
large-scale datasets.

580



Table 2: Model performance comparison for the task of link prediction on different datasets.

In this table, tabular results are in percent; the best result is bolded and the runner-up is underlined. A dash (-) denotes out of memory.

Method DBLP IMDB Yelp Aminer
R-AUC PR-AUC F1 R-AUC PR-AUC F1 R-AUC PR-AUC F1 R-AUC PR-AUC F1

node2vec 74.61 76.49 68.60 52.83 50.54 48.37 50.62 49.74 50.25 91.87 89.11 50.84
SGC 77.32 79.17 73.00 78.63 81.51 71.13 82.40 83.20 77.98 57.93 60.00 54.50
MAGNN 82.97 80.57 78.91 70.36 72.08 61.52 61.83 67.81 67.72 67.65 67.65 58.64
simpleHGN 84.90 83.32 77.92 87.72 87.51 79.74 80.83 77.63 74.79 86.73 89.47 81.33
SR-RSC 77.47 72.85 70.99 88.94 82.69 80.88 67.57 60.19 64.89 - - -
MHGCN 71.80 72.20 70.30 90.30 90.35 85.84 76.86 77.30 75.84 77.10 75.30 73.00
BPHGNN 84.27 84.18 71.38 92.55 90.44 85.28 77.36 78.40 79.86 - - -

Ours (MSGNN) 93.04 90.26 85.88 99.81 99.36 98.81 86.42 85.36 80.48 97.75 94.14 94.41

Std. 0.12 0.10 0.10 0.01 0.01 0.01 0.36 0.29 0.30 0.26 0.22 0.24

Table 3: Performance evaluation on node classification, with MSGNN as a self-supervised pre-training strategy.

In this table, tabular results are in percent; the best result is bolded and the runner-up is underlined.

Methods DBLP IMDB-L Freebase AMiner
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

RGCN 92.07 91.52 62.95 58.85 60.82 59.08 81.58 62.53
HetGNN 92.33 91.76 51.16 48.25 62.99 58.44 72.34 55.42
HAN 92.05 91.67 64.63 57.74 61.42 57.05 81.90 64.67
MAGNN 93.76 93.28 64.67 56.49 64.43 58.18 82.64 68.60

RSHN 93.81 93.34 64.22 59.85 61.43 57.37 73.33 51.48
HGT 93.49 93.01 67.20 63.00 66.43 60.03 85.74 74.98
SimpleHGN 94.46 94.01 67.36 63.53 67.49 62.49 86.44 75.73
HINormer 94.94 94.57 67.83 64.65 69.42 63.93 88.04 79.88

Ours (HINormer+MSGNN) 95.74 96.06 68.23 66.25 72.58 70.85 89.57 83.08

Std. 0.23 0.45 0.24 0.29 0.29 0.56 0.32 0.38

Table 4: Different mask strategy.

In this table, tabular results are in percent; the best result is bolded.

Methods DBLP IMDB Yelp AMiner
R-AUC PR-AUC F1 R-AUC PR-AUC F1 R-AUC PR-AUC F1 R-AUC PR-AUC F1

Random mask 79.87 82.81 82.78 99.72 99.00 98.65 70.21 71.55 74.70 97.14 94.02 94.04
Zero mask 50.00 75.00 0.00 50.00 75.00 0.00 50.00 75.00 0.00 24.78 35.88 30.88

Ours 93.04 90.26 85.88 99.81 99.36 98.81 86.42 85.36 80.48 97.75 94.14 94.41

Table 5: Ablation study.

In this table, tabular results are in percent; the best result is bolded and the runner-up is underlined.

Methods DBLP IMDB Yelp AMiner
R-AUC PR-AUC F1 R-AUC PR-AUC F1 R-AUC PR-AUC F1 R-AUC PR-AUC F1

w/o graph task 77.68 72.67 70.46 96.80 96.57 90.74 62.80 64.09 64.93 57.81 54.52 54.63
w/o node task 92.62 89.57 85.53 99.67 99.06 98.07 79.52 73.26 73.26 92.28 92.91 94.18
w/o instance 62.52 59.27 58.76 99.01 98.29 95.44 70.21 63.21 68.78 95.45 92.32 89.50
w/o global 92.52 89.63 85.15 99.66 99.06 98.01 79.40 73.22 73.23 96.40 93.25 93.11

all 93.04 90.26 85.88 99.81 99.36 98.81 86.42 85.36 80.48 97.75 94.14 94.41

581



Figure 5: Parameters sensitivity. PR-AUCwith the number of
heads in the attention layers, the learning rate, the number
of layers, and the dropout rate.

5.5 Experiment on Mask Strategy
In this section, we evaluate the masking strategy in MSGNN on
link prediction task, and the results in Table 4 verify its effective-
ness. For the selected schema instance, MSGNN employs a masking
strategy of replacing partial nodes with those of the same type to
generate corrupted samples. For the compared two strategies, one
replaces nodes with random nodes, while the other replaces node
features with zero vectors. The result shows that the performance
of random masking (i.e., random mask in Table 4) is significantly
lower than that of the same-type masking in the DBLP and Yelp
datasets, and slightly lower in IMDB and Aminer datasets. This is
because, by random masking, the features of replacement nodes
may differ significantly from the original nodes, leading the model
to converge prematurely due to the oversimplified task, thus fail-
ing to learn useful information. On the other hand, our strategy
preserves certain semantic similarities, therefore effective node
embeddings can be learned. Moreover, the discriminative ability
of the zero mask strategy (i.e., zero mask in Table 4) for positive
and negative samples is almost negligible and thus fails to learn
any effective information as it destroys the semantic context of the
schema instances.

5.6 Ablation Study
To validate the effectiveness of each component of the proposed
MSGNN, we further conduct experiments on the following varia-
tions:

w/o graph task: This variant considers only node-level training
while ignoring graph-level for self-supervised learning.

w/o node task: In contrast, this variant removes the node-level
training while retaining the graph-level training.

w/o instance: This variant does not employ schema instance to
aggregate node minimal context semantics and the HIN is directly
fed into the model.

w/o global: This variant does not take into account the global
information when computing the attention coefficients.

all: This is the original MSGNN model.
Experimental results of the ablation study are presented in Ta-

ble 5. The observations and conclusions are as follows:

• The model trained with bi-level tasks outperforms vari-
ants trained with either graph-level task or node-level task.
Specifically, the variant without the node-level task yields
suboptimal results in most cases, while the results without
the graph task are substantially lower than the original
model on all four datasets. In particular, the R-AUC, PR-
AUC, and F1 scores are almost halved without the graph-
level task in the Aminer dataset, highlighting the impor-
tance of the subgraph semantics.

• Compared to the model variant without schema instances,
introducing schema instances leads to significant improve-
ments. Specifically, the R-AUC, PR-AUC, and F1 scores have
increased by an average of 11.66%, 11.96%, and 11.02% in
the four datasets, respectively.

• Global concatenate also plays an important role, with the
R-AUC, PR-AUC, and F1 scores increasing by an average
of 1.46%, 1.44%, and 1.77% across all datasets, respectively.

5.7 Parameters Sensitivity
We conduct a thorough evaluation of the sensitivity of several
important hyperparameters in MSGNN, and the impact of these
hyperparameters is illustrated in Figure 5. In terms of the number
of attention heads, we observe that a moderate range, such as [4, 6],
generally leads to better overall performance. Furthermore, we find
that moderate values for learning rates, such as [0.0005, 0.0009],
tend to yield optimal performance. When examining the optimal
number of layers in MSGNN, we have empirically observed that
employing three layers tends to yield improved performance levels.
This can be attributed to the fact that a higher number of layers
enhances the capacity of MSGNN to capture the deeper and more
diverse semantics arising from graph heterogeneity. Additionally,
we investigate the impact of the dropout rate, which determines the
probability of deactivating neurons in MSGNN. When the dropout
rate is set between 0.2 and 0.3, the model achieves better results.

Through systematic testing and careful analysis of these hy-
perparameters, we have determined that MSGNN demonstrates
a high degree of robustness overall. These findings provide valu-
able insights into the optimal configuration of hyperparameters for
MSGNN, contributing to its effectiveness in various graph-related
downstream tasks.

6 CONCLUSION
We have demonstrated that schema instance represents a minimal
complete semantic context for nodes in HINs. By combining schema
instances with self-supervised learning and the masking technique
to enhance the capability of extracting semantic information from
node minimal complete context, our proposed method, MSGNN,
generates informative node representations for downstream tasks.
In future work, we plan to explore the potential of leveraging meta-
paths as pathways to connect different schema instances.

582



REFERENCES
[1] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data. 1247–1250.

[2] Taoyong Cui and Yuhan Dong. 2024. Simple Orthogonal Graph Representation
Learning (Student Abstract). In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 38. 23462–23464.

[3] Taoyong Cui, Chenyu Tang, Mao Su, Shufei Zhang, Yuqiang Li, Lei Bai, Yuhan
Dong, Xingao Gong, and Wanli Ouyang. 2024. Geometry-enhanced pretraining
on interatomic potentials. Nature Machine Intelligence (2024), 1–9.

[4] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable Representation Learning for Heterogeneous Networks. In KDD ’17.
ACM, 135–144.

[5] Chaofan Fu, Guanjie Zheng, Chao Huang, Yanwei Yu, and Junyu Dong. 2023. Mul-
tiplex Heterogeneous Graph Neural Network with Behavior Pattern Modeling.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (, Long Beach, CA, USA,) (KDD ’23). Association for Computing Ma-
chinery, New York, NY, USA, 482–494. https://doi.org/10.1145/3580305.3599441

[6] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. HIN2Vec: Explore Meta-
paths in Heterogeneous Information Networks for Representation Learning.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management (Singapore, Singapore) (CIKM ’17). Association for Computing
Machinery, New York, NY, USA, 1797–1806.

[7] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. Magnn: Metap-
ath aggregated graph neural network for heterogeneous graph embedding. In
Proceedings of The Web Conference 2020. 2331–2341.

[8] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. MAGNN: Metapath
Aggregated Graph Neural Network for Heterogeneous Graph Embedding. In
Proceedings of The Web Conference 2020 (WWW ’20). ACM.

[9] Kaushal Giri. 2011. Role of ontology in semantic web. DESIDOC Journal of
Library & Information Technology 31, 2 (2011).

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. arXiv:1607.00653 [cs.SI]

[11] William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive Representation
Learning on Large Graphs. arXiv:1706.02216 [cs.SI]

[12] Binbin Hu, Yuan Fang, and Chuan Shi. 2019. Adversarial learning on heteroge-
neous information networks. In Proceedings of the 25th ACM SIGKDD interna-
tional conference on knowledge discovery & data mining. 120–129.

[13] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In Proceedings of the web conference 2020. 2704–2710.

[14] Houye Ji, Xiao Wang, Chuan Shi, Bai Wang, and S Yu Philip. 2021. Heteroge-
neous graph propagation network. IEEE Transactions on Knowledge and Data
Engineering 35, 1 (2021), 521–532.

[15] Di Jin, Zhizhi Yu, Dongxiao He, Carl Yang, S Yu Philip, and Jiawei Han. 2021. GCN
for HIN via implicit utilization of attention and meta-paths. IEEE Transactions
on Knowledge and Data Engineering 35, 4 (2021), 3925–3937.

[16] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[17] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. 2020. Deepergcn:
All you need to train deeper gcns. arXiv preprint arXiv:2006.07739 (2020).

[18] Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian, Liang Zhu,
Changhua Meng, Zibin Zheng, and Weiqiang Wang. 2023. What’s Behind
the Mask: Understanding Masked Graph Modeling for Graph Autoencoders.
arXiv:2205.10053 [cs.LG]

[19] Zhiyuan Liu, Yaorui Shi, An Zhang, Enzhi Zhang, Kenji Kawaguchi, Xiang Wang,
and Tat-Seng Chua. 2024. Rethinking Tokenizer and Decoder in Masked Graph
Modeling for Molecules. arXiv:2310.14753 [cs.LG]

[20] Yuanfu Lu, Chuan Shi, Linmei Hu, and Zhiyuan Liu. 2019. Relation Structure-
Aware Heterogeneous Information Network Embedding. arXiv:1905.08027 [cs.SI]

[21] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming
He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we really
making much progress? Revisiting, benchmarking and refining heterogeneous
graph neural networks. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 1150–1160.

[22] Qiheng Mao, Zemin Liu, Chenghao Liu, and Jianling Sun. 2023. HINormer:
Representation Learning On Heterogeneous Information Networks with Graph
Transformer. arXiv:2302.11329 [cs.LG]

[23] J Clyde Mitchell. 1974. Social networks. Annual review of anthropology 3, 1
(1974), 279–299.

[24] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.
2019. Adversarially Regularized Graph Autoencoder for Graph Embedding.
arXiv:1802.04407 [cs.LG]

[25] Filippo Radicchi, Santo Fortunato, and Alessandro Vespignani. 2011. Citation
networks. Models of science dynamics: Encounters between complexity theory and
information sciences (2011), 233–257.

[26] Ahmed E. Samy, Lodovico Giaretta, Zekarias T. Kefato, and Šarūnas Girdzijauskas.
2022. SchemaWalk: Schema Aware Random Walks for Heterogeneous Graph
Embedding. In Companion Proceedings of the Web Conference 2022 (Virtual Event,
Lyon, France) (WWW ’22). Association for Computing Machinery, New York,
NY, USA, 1157–1166. https://doi.org/10.1145/3487553.3524728

[27] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolu-
tional networks. In The semantic web: 15th international conference, ESWC 2018,
Heraklion, Crete, Greece, June 3–7, 2018, proceedings 15. Springer, 593–607.

[28] Jingbo Shang, Meng Qu, Jialu Liu, Lance M Kaplan, Jiawei Han, and Jian Peng.
2016. Meta-path guided embedding for similarity search in large-scale heteroge-
neous information networks. arXiv preprint arXiv:1610.09769 (2016).

[29] Chuan Shi, Binbin Hu, Wayne Xin Zhao, and Philip S. Yu. 2017. Heterogeneous
Information Network Embedding for Recommendation. arXiv:1711.10730 [cs.SI]

[30] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. 2016. A survey
of heterogeneous information network analysis. IEEE Transactions on Knowledge
and Data Engineering 29, 1 (2016), 17–37.

[31] Chang Su, Jie Tong, Yongjun Zhu, Peng Cui, and Fei Wang. 2020. Network
embedding in biomedical data science. Briefings in bioinformatics 21, 1 (2020),
182–197.

[32] Yizhou Sun and Jiawei Han. 2012. Mining heterogeneous information networks:
principles and methodologies. Morgan & Claypool Publishers.

[33] Qiaoyu Tan, Ninghao Liu, Xiao Huang, Rui Chen, Soo-Hyun Choi, and Xia Hu.
2022. MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs.
arXiv:2201.02534 [cs.LG]

[34] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-
Miner: Extraction andMining of Academic Social Networks. In KDD’08. 990–998.

[35] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks.
arXiv:1710.10903 [stat.ML]

[36] XiaoWang, Houye Ji, Chuan Shi, BaiWang, Yanfang Ye, Peng Cui, and Philip S Yu.
2019. Heterogeneous graph attention network. In The world wide web conference.
2022–2032.

[37] Yuxiang Wang, Xiao Yan, Chuang Hu, Fangcheng Fu, Wentao Zhang, Hao Wang,
Shuo Shang, and Jiawei Jiang. 2023. Generative and Contrastive Paradigms
Are Complementary for Graph Self-Supervised Learning. arXiv preprint
arXiv:2310.15523 (2023).

[38] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, et al. 2019.
Simplifying Graph Convolutional Networks. In ICML. 6861–6871.

[39] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[40] Pengyang Yu, Chaofan Fu, Yanwei Yu, Chao Huang, Zhongying Zhao, and Junyu
Dong. 2022. Multiplex Heterogeneous Graph Convolutional Network. In Pro-
ceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD ’22). ACM. https://doi.org/10.1145/3534678.3539482

[41] Pengyang Yu, Chaofan Fu, Yanwei Yu, Chao Huang, Zhongying Zhao, and Junyu
Dong. 2022. Multiplex heterogeneous graph convolutional network. In Pro-
ceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining. 2377–2387.

[42] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.
2019. Graph transformer networks. Advances in neural information processing
systems 32 (2019).

[43] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V
Chawla. 2019. Heterogeneous graph neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
793–803.

[44] Rui Zhang, Arthur Zimek, and Peter Schneider-Kamp. 2022. A Simple Meta-
path-free Framework for Heterogeneous Network Embedding. In Proceedings of
the 31st ACM International Conference on Information & Knowledge Management
(Atlanta, GA, USA) (CIKM ’22). Association for Computing Machinery, New York,
NY, USA, 2600–2609. https://doi.org/10.1145/3511808.3557223

[45] Rui Zhang, Arthur Zimek, and Peter Schneider-Kamp. 2022. A simple meta-
path-free framework for heterogeneous network embedding. In Proceedings of
the 31st ACM International Conference on Information & Knowledge Management.
2600–2609.

[46] Sixiao Zhang, Hongxu Chen, Haoran Yang, Xiangguo Sun, Philip S. Yu,
and Guandong Xu. 2022. Graph Masked Autoencoders with Transformers.
arXiv:2202.08391 [cs.LG]

[47] Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye.
2021. Heterogeneous graph structure learning for graph neural networks. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 35. 4697–4705.

[48] Jianan Zhao, Xiao Wang, Chuan Shi, Zekuan Liu, and Yanfang Ye. 2021. Network
schema preserving heterogeneous information network embedding. In Proceed-
ings of the Twenty-Ninth International Joint Conference on Artificial Intelligence
(Yokohama, Yokohama, Japan) (IJCAI’20). Article 190, 7 pages.

[49] Shichao Zhu, Chuan Zhou, Shirui Pan, Xingquan Zhu, and Bin Wang. 2019.
Relation structure-aware heterogeneous graph neural network. In 2019 IEEE

583

https://doi.org/10.1145/3580305.3599441
https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/2205.10053
https://arxiv.org/abs/2310.14753
https://arxiv.org/abs/1905.08027
https://arxiv.org/abs/2302.11329
https://arxiv.org/abs/1802.04407
https://doi.org/10.1145/3487553.3524728
https://arxiv.org/abs/1711.10730
https://arxiv.org/abs/2201.02534
https://arxiv.org/abs/1710.10903
https://doi.org/10.1145/3534678.3539482
https://doi.org/10.1145/3511808.3557223
https://arxiv.org/abs/2202.08391


international conference on data mining (ICDM). IEEE, 1534–1539.

584


	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Methodology
	4.1 Schema Instance Retrieval
	4.2 Node Context Representations Generation
	4.3 Bi-level Masked Schema Training

	5 Experiments
	5.1 Experimental Setups
	5.2 Link Prediction
	5.3 Node Classification
	5.4 Experiment on Efficiency of Instance Search
	5.5 Experiment on Mask Strategy
	5.6 Ablation Study
	5.7 Parameters Sensitivity

	6 Conclusion
	References

