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ABSTRACT
Stream processing systems (SPSs) provide processing guarantees

to ensure reliability under failure. However, no related work ex-

ists that empirically validates these guarantees. In this paper, we

present PGVal, a tool that can end-to-end validate guarantees of

SPSs. Additionally, we introduce new metrics for SPSs, such as

reliability, reliable throughput, and failure cost, in addition to a

refined definition of latency that results in improved measurements.

We benchmark three popular SPSs, namely Kafka Streams, Apache
Storm, andApache Flink. Our results show that the reliability of SPSs

depends on many characteristics, such as data rate, data partitions,

processing topology, and parallelism factor. An SPS configuration

may not continue to provide reliable outputs when any of these

characteristics vary. PGVal can also inject faults into SPSs to ob-

serve their impact on reliability and performance. We provide a

comprehensive failure model for fault-tolerance benchmarking of

SPSs and report on the impact of faults on the reliability and per-

formance of SPSs. Our experiments show that SPSs’ reliability and

performance drop varies by fault. Lastly, we provide suggestions to

increase the reliability and performance of these systems.
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1 INTRODUCTION
Stream processing systems (SPSs) have emerged as a pivotal tech-

nology in the era of real-time analytics, addressing the critical need

for processing high-velocity and high-volume data streams gener-

ated by various sources such as social media, sensors, and financial

transactions. Unlike batch processing systems, which handle high-

volume data in discrete chunks, SPSs process and analyze data in
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real-time to provide insights such as trending information, air qual-

ity index, and stock market trends [22, 41]. The state-of-the-art

SPSs can horizontally scale to parallelize the processing of large

data streams. As faults are a common occurrence in any computing

infrastructure [48], SPSs offer fault tolerance and provide various

processing guarantees (PG), claiming reliable processing of data.

The reliability of SPS outputs is of paramount concern, as SPSs

are increasingly being used to make consequential decisions, for

example, fraud detection and healthcare monitoring [12, 16].

The correctness verification in SPSs is scarce. CSRBench and

YABench are correctness benchmarks for RDF stream engines [19,

27]. However, these systems are not distributed systems, and the

distributed nature of SPSs can affect their correctness. Correctness

in SPSs is generally left to theoretical models and lacks empirical

validation [36, 42]. Akidau et al. argued that configuring an SPS

for latency, throughput, and correctness is a zero-sum game [2].

Furthermore, infrastructure faults are prone to cause data losses [3],

yet no correctness evaluation of SPSs under faults exists to the best

of our knowledge. Lastly, correct outputs do not ensure reliability, as

we demonstrate the difference between correctness and reliability

in Section 2.3.

Performance benchmarking of SPSs is an active research area,

given their widespread adoption in the industry [1, 4, 8, 14, 26, 40,

46, 47]. Some of the related works provide fault-tolerance evalua-

tions of SPS [32, 47, 49], but their failure model is limited to process

failures, which, in reality, is just wishful thinking. Empirical studies

have shown that network failures are a common occurrence in a

compute infrastructure [23, 35, 48]. Additionally, network parti-

tions are a given in any distributed system [9, 10]. Accurate perfor-

mance measurement is another challenging task in the SPS context.

Throughput can not be easily defined for SPSs as there exists a

many-to-one mapping between inputs and outputs. Additionally,

we show that the current definition of SPS throughput may give

inaccurate measurements [26]. Also, latency measurement in a dis-

tributed system is a challenge due to the non-availability of a global

clock.

In this paper, we present a tool called PGVal. It benchmarks SPSs

for end-to-end processing-guarantee validation and performance

under failures. It divides benchmarks into three phases: control,

failure, and recovery. It establishes a baseline in the control phase

and records SPS reliability and performance under the failure and

recovery phase for comparative analysis. PGVal measures reliabil-

ity by comparing the produced outputs with the correct outputs

provided by an oracle. Furthermore, PGVal measures end-to-end
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performance to provide a common ground for evaluations instead

of relying on system-reported metrics. We propose a failure model

for SPSs that can be used in further research to exhaustively assess

SPSs’ fault tolerance capabilities. We introduce new metrics for

SPSs, such as reliability and failure cost, and refine the definitions

of throughput and latency of SPSs. Lastly, we benchmark Kafka
Streams, Apache Storm, and Apache Flink for reliability and perfor-

mance during failures using PGVal. Our experiments show that, in

practice, SPS reliability is sensitive to characteristics such as data

rate, data partitions, processing topology, and parallelism factor.

Furthermore, a fault’s reliability and performance impact varies

with SPSs, and SPSs handle process crashes better than network

faults. The contributions of this paper are:

(1) Failure model for SPSs. The current failure model for SPSs is

limited to process failures only. We provide a comprehen-

sive failure model for SPS fault-tolerance benchmarking

that covers process and network failures. Our experiments

show that SPSs may behave differently during network fail-

ures compared to process failures, highlighting the need

for network failures in the model.

(2) Definition of reliability, reliable throughput, latency, and fail-
ure cost in the SPS context. We introduce new metrics for

SPSs to quantify reliability and failure cost. Reliability repre-

sents the percentage of data reliably processed, and failure

cost helps practitioners configure time-outs for their sys-

tems. Our refined definitions of throughput and latency

result in an accurate performance depiction of SPSs.

(3) Reliability and performance benchmarking of SPSs under fail-
ures. We comprehensively benchmark three widely-used

SPSs for reliability and performance under failures. This

work is the first of its kind to empirically validate PGs

of SPSs. Our experiments helped us find a bug in Apache

Storm
1
. Additionally, we provide suggestions for different

SPSs to increase reliability. Lastly, we provide an extended

version of the paper hosted on the artifact’s GitHub reposi-

tory for complete results [38].

(4) PGVal.We release our open-source processing-guarantee

validation and performance benchmarking suite for SPSs [39].

Due to its modular architecture, it can be extended to fur-

ther datasets and topologies by implementing an oracle to

provide correct outputs. It can help practitioners measure

the reliability and performance of their SPS configuration.

The rest of this paper is structured as follows. Section 2 provides

a background on SPSs, fault tolerance, and reliability. Section 3

discusses PGVal system design. Section 4 summarizes our experi-

mental results. Section 5 summarizes our insights, and Section 6

describes the related work.

2 BACKGROUND
2.1 Stream Processing Systems
SPSs abstract the data to a flow of events and can parallelize the

processing topology to cater to high-volume and high-velocity data.

The number of parallel topology instances is called the parallelism

factor. A topology is a blueprint of processing logic and is defined

1
https://issues.apache.org/jira/browse/STORM-4000

Table 1: Stream operator classification

State No. of inputs No. of outputs Operator
Stateless Single Single Transformation

Stateless Single Multiple Group-by

Stateless Multiple Single Union

Stateless Multiple Multiple Custom

Stateful Single Single Window

Stateful Single Multiple Custom

Stateful Multiple Single Join

Stateful Multiple Multiple Custom

by a directed acyclic graph of stream processing operators. Oper-

ators define the processing logic for incoming events. Operators

have three attributes: state, number of input streams, and num-

ber of output streams. Table 1 lists all possible combinations of

state capability and the number of input and output streams, and it

shows the corresponding operators. A transformation operator is a

stateless single-input, single-output (SISO) operator. Map and filter

operators are examples of transformation operators. Group-by is a

stateless single-input, multi-output (SIMO) operator as it can create

multiple streams based on different values of group-by attribute.

Union is a stateless multi-input, single-output (MISO) operator as

it redirects multiple input streams to one output stream. There

isn’t an individual operator for stateless multi-input, multi-output

operations (MIMO), but a custom operator can be implemented by

concatenating a union and group-by operators. A window opera-

tor is a stateful SISO operator that performs operations on events

collected over a time window. Aggregators are a form of window

operators. There isn’t an individual operator for stateful SIMO oper-

ations, but a custom operator can be implemented by concatenating

a window and group-by operators. A join operator joins multiple

input streams into one over a time window and is a stateful MISO

operator. There is no individual operator for stateful MIMO opera-

tions, but a custom operator can be implemented by concatenating

a join with a group-by operator. Additionally, SPSs also provide

special operators called source and sink to read and write data from

external systems, respectively. Source and sink are stateful MISO

and SIMO operators, respectively as they read from and write to

multiple data partitions.

Stateful operators may have temporal constraints to keep the

state size manageable. To specify temporal constraints, SPSs typ-

ically support two types of temporal semantics: event time and

processing time. Event time is the notion of time at the event genera-

tion. On the other hand, processing time is the notion of time at the

event processing. Event-time semantics allow the processing results

to be deterministic and reproducible. SPSs keep track of event time

using watermarks, where watermarks are the progression of event

time during processing. The results of processing time semantics

are neither deterministic nor reproducible. Hence, all topologies

used in this work operate on event time semantics.

Events generally arrive at a data source from multiple data pro-

ducers, and events generated at one global instant of time may

arrive at the data source out-of-order. Furthermore, events coming

from one data source may also arrive at an SPS out-of-order due

to the distributed nature of SPS. In event time semantics, this situ-

ation may cause temporal operators (windows, joins) to produce

586

https://issues.apache.org/jira/browse/STORM-4000


an incomplete output. To counter this issue, these operators can

be configured to wait for a fixed delay before emitting an output.

However, this configuration does not ensure correct results as the

delay is set heuristically, and events may still arrive after the delay.

Some SPSs provide an option to configure a side stream so that all

late events can be collected and processed separately [37].

2.2 Fault tolerance of SPSs
It is essential to distinguish between faults and failure. A fault is

an event that can induce an abnormal behavior, or a failure, in a

system [24]; in other words, a fault is a cause and the failure is its

effect. Many types of faults can occur in a computer system, ranging

from network delays to node crashes. Consequently, SPSs employ

failure recovery mechanisms to provide fault tolerance. Failure

recovery depends on the type of operator. In the case of a stateless

operator, such as transformation or filter, the operator is simply

restarted, and it starts processing the new events. Stateful operators,

such as window or join, require a sophisticated approach to recover

from failures. SPSs store the operator state in an external system

to properly handle failures in stateful operators. The operator is

restarted when it encounters a failure, and it restores the last stored

state to ensure correct results. Here, we explain the two stateful

recovery mechanisms the benchmarked systems utilize.

Replaying state updates: In this technique, the state updates are

stored chronologically, forming a changelog. Any operation that

updates the state will result in a new entry in the changelog. In

case of a failure, all the state update operations are reapplied to

reach the state just before the failure.

Snapshotting: In this technique, a state snapshot is taken at regu-

lar intervals (also called checkpoints) and the snapshot is stored in

an external system. In case of a failure, the last persisted snapshot

is reapplied, and the system’s state is restored to the state before

the failure [13, 30].

2.3 Correctness vs. Reliability
Correctness, in the SPS context, refers to the correctness of the

outputs, and reliability refers to the correctness of processing. An

SPS may produce a correct output without processing all input

events. Take the trending topic topology in DSPBench as an ex-

ample [8]. This topology computes trending topics from tweets.

It consumes a stream of tweets, extracts topics from the tweets,

counts the occurrences of topics in a time window, ranks these

topics, and outputs the trending topics. Assume 𝑒 ⟨𝑖𝑑, 𝑡𝑠, 𝑡⟩ repre-
sents a tweet with 𝑖𝑑 about topic 𝑡 created at timestamp 𝑡𝑠 , and

𝑜 ⟨𝑤, 𝑡, 𝑟, 𝑐⟩ represents the output that ranks topic 𝑡 at rank 𝑟 with
𝑐 occurrences in a time window of 𝑤 . Now, consider a scenario

where an SPS running this topology experiences a failure such

that it omits event 𝑒 ⟨𝑖𝑑1, 𝑡𝑠1, 𝑡1⟩ and processes event 𝑒 ⟨𝑖𝑑2, 𝑡𝑠2, 𝑡1⟩
twice to produce an output 𝑜 ⟨𝑤, 𝑡1, 𝑟 , 𝑐⟩, where 𝑡𝑠1 and 𝑡𝑠2 ∈ 𝑤 .

Let us also assume that we have an oracle that provides us with

the correct output 𝑠 ⟨𝑤, 𝑡1, 𝑟
′, 𝑐′⟩. Now, if we compare the produced

output 𝑜 ⟨𝑤, 𝑡1, 𝑟 , 𝑐⟩ with its correct output 𝑠 ⟨𝑤, 𝑡1, 𝑟
′, 𝑐′⟩, we can

misconstrue that the SPS reliably processed all input events under

the failure as 𝑟 = 𝑟 ′ and 𝑐 = 𝑐′, although the system did not process

𝑒 ⟨𝑖𝑑1, 𝑡𝑠1, 𝑡1⟩ and processed 𝑒 ⟨𝑖𝑑2, 𝑡𝑠2, 𝑡1⟩ twice. To ensure reliabil-
ity, we need to observe which inputs were processed to compute an

output. We can solve this problem by augmenting the output with

a list of all input IDs 𝑙 that were processed to generate that output,

which can be represented as 𝑜 ⟨𝑤, 𝑡, 𝑟, 𝑐, 𝑙⟩ and 𝑠 ⟨𝑤, 𝑡, 𝑟 ′, 𝑐′, 𝑙 ′⟩. Now,
if one compares 𝑙 and 𝑙 ′, the list of input IDs that should be pro-

cessed to generate the correct output, we can accurately determine

the reliability of the SPS.

SPSs offer PGs to ensure reliable processing under failures. At
most once (M1) is the weakest PG as it tries to process every event

but some events may not be processed. Applications that can toler-

ate a few missing events, such as calculating an air quality index

from sensor measurements [41], may use M1. At least once (A1)
is a more restrictive guarantee than M1. It implies that no event

is unprocessed, but an event may be processed more than once.

Applications that can tolerate a few duplicate events, such as a

notification system [7], may use A1. Exactly once (E1) is the most

restrictive PG. Exactly once implies that every event will affect the

output exactly once, and there are no unprocessed events. Applica-

tions that cannot tolerate duplication and missed events, such as

fraud detection [12], use E1.

It is important to note that these PGs do not guarantee cor-

rect outputs. Instead, these PGs just guarantee the correct pro-

cessing of input events. To ensure end-to-end correct outputs, data

sources and sinks must also provide corresponding delivery guaran-

tees. For example, an SPS consuming events from a non-replayable

source (taking measurements directly from a sensor) may not be

able to provide A1 or E1 as the events during the failure-recovery

phase may not be available to the SPS after the recovery.

3 SYSTEM DESIGN
In this section, we discuss the topologies designed for PGVal. After

that, we explain our benchmarking methodology, the failure model,

and our synthetic dataset. Finally, we explain important system

metrics that we collect in our benchmarks.

3.1 Topology
There exist many topologies for SPS performance benchmarking,

such as fraud detection, word count, and trending topics on social

media [8, 26, 45]. However, these topologies are inadequate for PG

validation as they don’t preserve the IDs of all input events that

were processed to generate the output (𝑙). This raises the need for

a new topology that generates outputs enriched with 𝑙 so outputs

can be mapped to inputs. We modified the trending topics topology

to create a new resource demand monitoring topology to cater to a

new use case (Figure 1). We call it a single-stream topology (SST) as

this topology processes one event stream. However, SST lacks multi-

stream processing to make it representative of complex queries. We

modify SST further to create a multi-stream topology (MST) that

includes multi-stream operators shown in Table 1. SST consumes

Get Transformation

Window

Ingress

EgressOutput

Source

Topology

Sink

Group by

Figure 1: Single-stream topology (SST)
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Get

Post

Transformation

Transformation

Join

Window

Ingress

Ingress

EgressOutput

Source

Topology

Sink

Group by

Figure 2: Multi-stream topology (MST)

the event log of a web server that serves web resources (pictures,

videos, web pages). The server receives GET requests for web re-

sources, and SST computes the number of GET requests received

in a time window for each resource to monitor the demand for web

resources. We removed the ranking operator as it works as a filter

and it produces only top-k elements. If we don’t receive an input

event in 𝑙 , we cannot ascertain whether it is caused by filtering or

PG violation. The topology consumes GET events through a source

operator (ingress) from a data source. The ingress operator doubles

as a union operator, merging streaming data from multiple data

partitions into one stream. The transformation operator performs

marshaling on input events. These events are then grouped by re-

sources and are fed to a window operator that counts the number

of requests of each resource over a specific time period. These coun-

ters are then forwarded to a sink operator (egress) that emits this

information to a data sink. The stateful operators are darkly shaded

in the figure.

The second topology,MST, employs a join operator and processes

multiple streams tomake our benchmarking broader (Figure 2). This

topology lacks only a stateless MIMO operator. MST consumes and

processes two event streams (GET and POST requests). Then, it

joins these streams on a web resource in a time window. This joined

stream is then grouped by web resources and sent to a window

operator that counts the number of times a web resource is accessed

and updated in a time window. These insights are then forwarded

to a sink operator that emits this information to a data sink.

The topologies use a Kafka cluster as a data source and sink.

Kafka is a performant, scalable, fault-tolerant, and distributed event

streaming platform [21]. Events in Kafka are logically stored in

topics, which can be partitioned to be distributed among Kafka

instances for load balancing. These partitions can also be replicated

to provide fault tolerance. Kafka tags events with ingress time, the

time of insertion in Kafka. We create two topics, get and post, to

store web requests. We create three partitions of the topics and

PG
ValidationOracle

SPS

Fault
injector

Kafka
Cluster

Data
generatorData
generator

Data
generator

Latency
calculator

PGVal

Figure 3: PGVal architecture

replicated them thrice, which is the minimum number of replica-

tions required to provide fault tolerance in Kafka. Kafka supports

M1, A1, and E1 delivery guarantees, which are required by SPSs

to provide corresponding PGs as explained in Section 2.3. Kafka

provides data localization such that all inputs and outputs of one

resource may be stored in one partition.

3.2 Benchmark Methodology
We separate SPS from PGVal to mitigate the effects of benchmark

processing on stream processing and to modularize the PGVal ar-

chitecture. This design decision allows for extending PGVal to other

SPSs and topologies. The system architecture is shown in Figure 3.

Components developed for PGVal are highlighted with a white

background, while off-the-shelf components are marked with pink.

The data generator persists events in a Kafka cluster, which the SPS

consumes. The SPS processes these events and writes the results

back to the same Kafka cluster. We configure the data generator,

Kafka cluster, and our topology so that input events and their out-

puts for a given resource are sent to the same Kafka instance. The

oracle consumes input events to compute expected outputs and

share them with the PG Validation module. This module reads the

produced outputs and compares them with their expected outputs

to measure reliability and throughput. The latency calculator reads

inputs and the produced outputs to measure latency. Lastly, the

fault injector injects configured faults into the SPS.

3.2.1 Oracle. To verify reliable data processing, the produced out-

puts 𝑜 must be compared with the correct outputs 𝑠 . We cannot

assume SPS outputs are correct for benchmarking. Therefore, we im-

plemented a reference SPS called Oracle to provide correct outputs.

Oracle lacks standard SPS functionalities, such as parallelization,

fault tolerance, sliding windows, and late-event processing. Instead,

it uses a single process with fixed time windows. A single pro-

cess ensures no synchronization errors, assuming no faults exist

in Oracle. It consumes input events and processes them according

to the defined topology logic. Unlike SPSs with sliding windows,

we use fixed-time windows for input events. Orcale shares correct

output with the PG Validation module to measure reliability. Or-

acle’s correctness is ensured by defining test cases. PGVal can be

extended by implementing an oracle to calculate expected outputs

𝑠 and modifying the topology to include input IDs 𝑙 in the output.

Data generators can be extended for further datasets. Note that

implementing Oracle is challenging, and we spent considerable

time developing test cases to ensure the correct implementation of

topologies.

3.2.2 Dataset. Several datasets for web server logs exist [5, 15, 29,
33, 50]. However, these datasets are unsuitable for PG validation as

the correct outputs of these events are not known a priori. Instead,

we used a synthetic dataset designed to mimic real-world datasets.

This synthetic dataset aids in developing test cases for Oracle. We

curate a web server log dataset so that the outputs are deterministic

and are compared with Oracle’s output for correctness. Our dataset

consists of two types of events: GET events and POST events. Each

event contains a unique ID, an event timestamp, an ingress times-

tamp, and the resource’s name. The event timestamp in GET events

corresponds to web resource access times, while in POST events, it
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Table 2: Distribution of get and post requests in datasets

Dataset Get requests Post requests

Zaker et al. [50] 99% 1%

Lagopoulos et al. [29] 99.5% 0.5%

Maňásek et al. [33] 97% 2%

Chodak et al. [15] 95% 4%

Our dataset 99.5% 0.5%

corresponds to web resource update times. The ingress timestamp

shows the timestamp at which the event is persisted on the data

source.

This dataset is disseminated by a configurable data generator.

An SPS may consume a stream faster than its slowest operator

processes it, causing event queues that grow over time, increasing

latency. To counter this, we throttle data generator rate 𝑅𝑎𝑡𝑒𝐷𝐺
to the optimum ingestion rate (OIR), the maximum rate at which

latency remains stable [26]. Multiple generator instances can be

spawned to mimic real-world scenarios, analogous to event logs

of a load-balanced application. Events’ timestamps generated by

one generator are monotonically increasing. The generator can

be configured to generate GET and POST requests for a config-

ured number of resources, with all resources equally represented.

However, the distribution of GET and POST events is skewed, as

observed in real-world datasets (Table 2). We configure our dataset

such that POST events make up 99.5% of the dataset, comparable

to other real-world datasets. The datasets produced by Zaker et

al. [50] and Chodak et al. [15] are server logs of e-commerce stores,

whereas those by Lagopoulos et al. [29] and Maňásek et al. [33] are

from the academic domain.

3.2.3 Selected Frameworks. Various SPSs cater to different use

cases.We shortlisted threewidely-used, open-source SPSs for bench-

marking: Kafka Streams (KStreams), Apache Storm (Storm), and

Apache Flink (Flink). Their differences are tabulated in Table 3.

KStreams, a client library built on Apache Kafka, operates on a

peer-to-peer architecture where each instance works independently.

It does not process out-of-order events and discards late events.

KStreams uses idempotent writes and the two-phase-commit proto-

col to provide end-to-end A1 and E1, respectively. In case of failure,

KStreams recovers by reapplying state updates. Storm operates

on a controller-worker architecture, offering out-of-order events

redirection for both join and window operators. It provides A1

using acknowledgments [43] but does not offer end-to-end A1. Al-

though Storm can provide end-to-end E1 through the Trident API,

we did not use it due to its lack of event-time semantics, which

is crucial for deterministic and reproducible outputs. Flink, a dis-

tributed processing engine for streams and batched events, also

uses a controller-worker architecture. Flink’s window operator

can redirect out-of-order events to a side stream, but the join op-

erator discards them. Flink ensures fault tolerance through the

Chandy-Lamport snapshotting algorithm [13]. In case of failure,

Table 3: Selected SPSs

Framework Version Architecture out-of-order events
processing

Fault recovery
mechanism

PGs

Kafka Streams 3.6.1 Peer-to-peer - State updates A1, E1

Apache Storm 2.6.0 Control-worker Window, Join Acknowledgments A1

Apache Flink 1.18.0 Control-worker Join Snapshotting A1, E1

T0 T2T1 T3 T4

Control Failure Recovery

T1 + Deploy Kafka, SPS

Start Data 

gen.

Fault injection Fault removal Stop Data

gen.

Figure 4: Benchmark workflow

Flink redeploys the topology and resets each operator to the last

stored snapshot (checkpoints). Flink provides end-to-end A1 and

E1.

3.2.4 Benchmark Workflow. We perform multiple steps in each

experiment, visualized in Figure 4. We deploy a Kafka cluster and a

topology on a selected SPS at 𝑇0, and start our data generator at 𝑇1.

A fault is injected into the SPS at 𝑇2 and removed at 𝑇3. The data

generator is shut down at 𝑇4, and the SPS runs until there are no

more output events. The experiment is divided into three phases:

The control phase is the period before fault injection (𝑇2). An SPS

needs some time (𝜖) to stabilize. Metrics are collected 𝜖 seconds after

the data generator starts, with 𝜖 observed to be around 5 seconds

for both topologies. The failure phase is when the fault is active in

the SPS. The recovery phase is from 𝑇3, when the fault is removed

until the last output is generated. We configured our workflow such

that 𝑇2 − (𝑇1 + 𝜖) = 𝑇3 −𝑇2 = 𝑇4 −𝑇3 = 90 seconds.

3.3 Failure Model
Coulouris et al. identified processes and networks as fundamental

entities of a distributed system [17]. However, current related works

limit their fault-tolerance evaluations of SPSs to process failures,

ignoring network failures. Our failure model includes both network

and process failures. Network failures can cause packet duplication,

reorder, loss, corruption, and delay [6]. We do not need to evaluate

SPSs against all network failures since they communicate over TCP,

a reliable network transmission protocol [20, 34]. TCP’s congestion

control and error correction mechanisms ensure that applications

receive correct data, albeit with increased delay, unless a network

partition occurs. Thus, network failures in a reliable network reduce

packet delays.

To demonstrate network faults’ effects on TCP, we conducted

chaos experiments on TCP connection time, as shown in Figure 5.

Chaos engineering is a systematic study of a system’s performance

during failures [28]. We used tc, a Linux utility, to emulate network

faults [25]. tc also allows configuring the probability of fault occur-
rence at a given time. Under normal conditions, a TCP connection

takes a fraction of a millisecond to establish. As the probability of

network faults increases, so does the connection time for packet
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loss and corruption, since TCP must run a checksum algorithm

and resend missing or corrupted packets. When the probability ap-

proaches 100%, the connection times out, configured to ten seconds

in our experiments. Packet duplication and reordering do not signif-

icantly affect connection times, as TCP discards duplicate messages

and reorders packets appropriately within a batch without retries.

3.4 Collected Metrics
3.4.1 Reliability. Reliability in the stream processing context is

offered through PGs. We benchmark reliability through end-to-end

PG validation, which not only ensures both correct outputs and

processing. This validation is crucial since SPSs consume data from

external systems. We compare the produced output 𝑜 with its ex-

pected output 𝑠 to measure reliability, as illustrated in Algorithm 1.

The algorithm takes three parameters: (1) a produced output by

an SPS 𝑜 , (2) the expected output computed by the oracle 𝑠 , and

(3) a list of previously processed IDs 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 , initially empty. If

an output is produced more than once, this list will contain the IDs

from previous outputs. The algorithm iterates over the IDs in pro-
duced.list and searches for each ID in the expected.list. If an ID is not

found, it indicates that the input event belongs to another output,

marking the output as incorrect. If found, the ID is checked in the

previously processed list; if it is a duplicate, it is noted; otherwise,

it is added to the list. This algorithm is invoked for each output.

Algorithm 1 Process an output

procedure processOutput (produced, expected, processed)
for id in produced.list do ⊲ From SPS (𝑜)

if id in expected.list then ⊲ From Oracle (𝑠)

if id in processed then
𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 ← 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 + 1

else
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑.𝑎𝑑𝑑 (𝑖𝑑)

else
𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ← 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 1

Out-of-order events may not be processed, and their IDs will not

appear in the produced output. If the system routes these events to

a side stream, we consider it reliable as no data is lost. These late

events can be processed separately using Algorithm 2, which takes

two parameters: (1) the late event, (2) previously processed IDs of

input events contributing to the corresponding output. The algo-

rithm searches the ID of each late event in the previously processed

IDs list. If found, it is a duplicate; otherwise, the ID is added to the

list.

Algorithm 2 Process a late event

procedure processLate (late, processed)
if late.id in processed then

𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 ← 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 + 1
else

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑.𝑎𝑑𝑑 (𝑖𝑑)

Algorithms 1 and 2 identify all input events processed by the

system. To find unprocessed events, we execute Algorithm 3 with

two parameters: (1) the expected output computed by Oracle 𝑠 ,

(2) a list of previously processed input event IDs. This algorithm

iterates over the expected output list and checks each ID against

the previously processed list. If an ID is not found, the event is not

processed. After running these algorithms, we validate end-to-end

PGs. If (𝑢𝑛𝑝𝑟𝑜𝑐𝐶𝑜𝑢𝑛𝑡 = 0∧ 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0), the system provides A1,

indicating no event was left unprocessed and no incorrect outputs

were found. If (𝑢𝑛𝑝𝑟𝑜𝑐𝐶𝑜𝑢𝑛𝑡 = 0 ∧ 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0 ∧ 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 = 0),
the system provides E1, indicating no event was left unprocessed,

no incorrect outputs were found, and no event was processed more

than once.

Algorithm 3 Count unprocessed events

procedure countUnprocessed (expected, processed)
for id in expected.list do ⊲ From Oracle (𝑠)

if id not in processed then
𝑢𝑛𝑝𝑟𝑜𝑐𝐶𝑜𝑢𝑛𝑡 ← 𝑢𝑛𝑝𝑟𝑜𝑐𝐶𝑜𝑢𝑛𝑡 + 1

3.4.2 Latency. Latency is generally calculated by subtracting the

input record’s ingress timestamp from its corresponding output

record’s ingress timestamp. However, accurate latency calculation

in a distributed system is a challenge due to the non-availability of

a global clock and clock synchronization issues. Modern computer

systems use NTP to synchronize their clock [30], but this does

not eliminate the clock skew problem. The clock skew may be

negligible if computers are colocated, but as the deployment of an

SPS can span over continents, the clock skew can reach the order

of tens of milliseconds [11]. In an SPS, an event can be ingested

by one machine, and its output can be generated by a different

machine. If two computers cannot agree on the same time, their

timestamps cannot be correlated to measure accurate latency. We

side-stepped this issue by exploiting the data localization feature

of Apache Kafka. The input and output events of one web resource

are sent to the same broker in the Kafka cluster. We can subtract

the input event’s ingress timestamp from the output event’s ingress

timestamp to calculate the latency, as these timestamps are taken

at the same machine.
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Figure 6: Latency measure-
ments with varying date rate

Another questionwe have

to answer is which input

event’s timestamp should

we subtract from the out-

put’s timestamp for latency

calculation? Our topology

has aggregation operators

(windows), so there is a

many-to-one mapping be-

tween input and output

events. If we subtract the

timestamp of the first input

event of a window from its

output’s timestamp, i.e., min𝑡𝑠 (𝑖𝑛𝑝𝑢𝑡 .𝑡𝑠 ≥ 𝑜𝑢𝑡𝑝𝑢𝑡 .𝑤𝑖𝑛𝑑𝑜𝑤.𝑠𝑡𝑎𝑟𝑡),
the latency would contain the time it took to fill the window, which

can vary by 𝑅𝑎𝑡𝑒𝐷𝐺 . Karimov et al. [26] suggested that the last

input event’s timestamp should be subtracted from the output’s

timestamp for accurate latencymeasurement, i.e., max𝑡𝑠 (𝑖𝑛𝑝𝑢𝑡 .𝑡𝑠 ≤
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𝑜𝑢𝑡𝑝𝑢𝑡 .𝑤𝑖𝑛𝑑𝑜𝑤.𝑒𝑛𝑑). However, our experiments on KStreams show

that this method may still contain window filling times (Figure 6).

Window operators do not start processing events when they con-

sume the last event of the window. Instead, they start processing

the events when they consume the first element of the next output,

i.e., min𝑡𝑠 (𝑖𝑛𝑝𝑢𝑡 .𝑡𝑠 > 𝑜𝑢𝑡𝑝𝑢𝑡 .𝑤𝑖𝑛𝑑𝑜𝑤.𝑒𝑛𝑑). For each output event,

PGVal gets the timestamp of the first input event whose timestamp

is greater than the output’s window end. This insertion time is then

subtracted from the output’s insertion time to calculate the latency.

PGVal helps to eliminate the effects of 𝑅𝑎𝑡𝑒𝐷𝐺 on the latency mea-

surements, as shown in Figure 6. Karimov’s algorithm is affected by

𝑅𝑎𝑡𝑒𝐷𝐺 and may reduce the accuracy of measurements at a lower

data generation rate.

3.4.3 Reliable throughput. Throughput is generally defined as the

number of items a system processes per unit of time. However, ag-

gregate operations make throughput calculation non-trivial. Simply

tallying the outputs produced doesn’t give a full picture because

it overlooks the number of input events that were processed to

produce those outputs. Since it takes multiple input events to gen-

erate a single output, relying solely on output count can lead to a

misleading understanding of the system’s performance. Karimov

et al. measured throughput as the events consumed by an SPS [26].

However, if we count events consumed, an SPS that consumes input

events at a high rate but does not produce any output would report

a high but incorrect throughput as it did not produce anything

at all. We define reliable throughput as the unique input events

processed per unit of time, i.e.,

∑𝑜∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠 {𝑜.𝑙𝑖𝑠𝑡}/𝑡 . For all output
events per unit of time, we count the unique IDs in their ID lists.

We don’t include duplicates in our throughput measurement as an

SPS that repeats only one output would have a high throughput,

even though it has only processed a few input events.

3.4.4 Failure cost and others. A system may have to perform cer-

tain tasks during the failure recovery that may hamper its process-

ing, resulting in an increased latency. We define failure cost as the

maximum increase in latency by a failure. This metric may help

practitioners define an upper bound on time-outs for their systems.

Furthermore, we collect all SPS and node metrics, such as CPU and

memory consumption.

4 RESULTS
In this section, we present the results obtained from our experi-

ments. For each SPS, we first run control experiments where the

metrics are observed with no faults. All SPSs are comparably con-

figured, such as state and heap size, and every instance of an SPS is

run on a dedicated node. Every node contains 8 cores of Intel Xeon

E5-2630, 20 GBs of RAM, and 35 GBs of SSD storage. These nodes

are connected with a 10 Gbps network link. We run the SPS with

varying degrees of parallelism factors and the number of data pro-

ducers. We run the single-stream topology (SST) and multi-stream

topology (MST) with the available PGs for all SPSs. We configure

the data generator to operate at the OIR of the SPS. We then run

chaos experiments where a specified fault is injected into one in-

stance of the SPS through Pumba, which is a fault injection tool for

containers [31]. We evaluate SPSs for fault tolerance with process

crashes and packet delays. Furthermore, packet delays (PD) can

be either higher than the configured time-outs (TO), i.e., PD > TO,

or they can be smaller than the configured time-outs (PD < TO).

Every experiment is performed multiple (at least three) times to

mitigate the effect of instantaneous aberrations, and the average

is reported. For each experiment, we report the reliability percent-

age (the percentage of input events reliably processed), reliable

throughput (which we will refer to as throughput in the following

sections), and latency. Lastly, we provide an extended version of the

paper hosted on GitHub which contains the results of additional

experiments (Section 4.4) [38]. In this paper, we present only the

most interesting results.

4.1 Kafka Streams
4.1.1 Control experiments. The results of control experiments are

shown in Figure 7.

Reliability. Our experiments revealed that KStreams provides

reliability for SST only and fails to ensure reliability for MST under

any parallelism. This unreliability stems from its inability to pro-

cess late events. Events may arrive out-of-order from two streams,

and KStreams discards late events, which produces outputs with

missing data. Increasing parallelism improves KStreams’ reliability,

as shown in Figures 7a to 7c. This improvement occurs because data

is distributed across different instances, reducing the probability of

out-of-order events. However, increasing parallelism from three to

four did not enhance reliability further (Figures 7c and 7d) due to

the number of data partitions. KStreams scales with the number of

data partitions, leaving any extra worker idle. We also benchmarked

topologies with single and multiple producers to assess their impact

on performance and reliability. Experiments with parallelism of
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(d) Parallelism 4
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(e) Single producer
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(f) Multiple producers

Figure 7: KStreams performance and reliability across vari-
ous configurations in control experiments
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Table 4: Failure cost of SPSs under various faults

Topology PG Fault Failure cost (s)

KStreams Storm Flink

SST A1 PD < TO 28 164 54

SST A1 PD > TO 3 168 71

SST A1 Process crash 2 427 78

SST E1 PD < TO 27 - 54

SST E1 PD > TO 3 - 66

SST E1 Process crash 4 - 65

MST A1 PD < TO 29 168 67

MST A1 PD > TO 2 178 71

MST A1 Process crash 3 440 81

MST E1 PD < TO 27 - 58

MST E1 PD > TO 2 - 69

MST E1 Process crash 3 - 75

three, offering the best performance, showed KStreams fails to pro-

vide correct results with multiple producers, even in SST. This drop

in reliability is again due to out-of-order events, with reliability

decreasing proportionally to the probability of out-of-order events.

Doubling the number of producers in Figure 7f resulted in a 50%

reliability drop.

Throughput. KStreams increases system throughput by increas-

ing parallelism. Our benchmarks showed that KStreams increased

throughput by 55% (14.5K vs. 22.5K) and 284% (2.5K vs. 9.6K) for SST

and MST, respectively, by increasing parallelism from one to three.

The significant throughput increase in MST is also attributed to

increased reliability. In contrast, SST reliability remained constant

(100%), resulting in a less steep increase. The throughput difference

between SST and MST was at least 57% (22.5K vs. 9.6K in Figure 7c).

E1 may cause throughput to drop by up to 10% (22.5K vs. 20K in Fig-

ure 7c) compared to A1 due to the synchronous two-phase-commit

protocol. Lastly, multiple producers decrease KStreams’ throughput

due to the drop in reliability.

Latency. Increasing parallelism reduced latency by up to 25%

(1.25 vs. 0.9 s) and 83% (4.16 vs. 0.7 s) for SST and MST, respec-

tively, as shown in Figures 7a to 7d. This reduction highlights the

computational expense of join operators. Both topologies exhibit

similar latency at the highest parallelism, but MST has significantly

higher latency at lower parallelism levels. Additionally, E1 increase

latency by 50% (2.35 vs. 1.24 s in Figure 7a) due to the synchronous

two-phase-commit protocol. Lastly, the number of producers did

not significantly affect latency.

4.1.2 Chaos experiments. We benchmarked KStreams for reliabil-

ity and performance under the defined faults with parallelism three,
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Figure 8: KStreams perfor-
mance and reliability un-
der faults
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Figure 9: KStreams input
rate under faults. Faults
injection and removal are
marked.

as it offers the best performance. The results of our benchmarking

can be seen in Figure 8 and Table 4. The following observations can

be drawn from our results.

Reliability. Reliability results are similar to the control experi-

ments. KStreams provides reliability for SST only, and faults may

cause the reliability of MST to drop by half (Figure 8c). Another

counterintuitive observation is the reliability drop for PD > TO and

process crash faults (Figures 8b and 8c) is higher than the reliabil-

ity drop in PD < TO. This drop can be investigated by observing

the input rate of KStreams (Figure 9). The input rate of the nodes

where we inject failure, 𝐼𝑅
affected

(dashed line), and the input rate

of the rest of the system, 𝐼𝑅
unaffected

(solid line), are measured sepa-

rately. When we inject PD < TO, the affected node does not timeout

and continues processing events but fails to perform significant

processing (Figure 9a). However, when we inject PD > TO and pro-

cess crashes, KStreams detects a failure and transfers the failed

nodes’ tasks to unaffected nodes, which is observed by an increase

in the 𝐼𝑅
unaffected

(Figures 9b and 9c). In this scenario, KStreams

has fewer workers than data partitions, and a worker may have

to process two data partitions, which increases the probability of

out-of-order events. Hence, lower reliability is observed when we

inject PD > TO and process crashes.

Latency. Latency increases 2-3 folds in the failure phase for all

faults. Latency increase in the recovery phase is conditioned on

the fault induced. For PD < TO, the latency is observed to increase

up to 11 folds. Comparatively, a negligible increase in latency is

experienced for PD > TO and process crashes. This behavior can be

understood by looking at KStreams input rates during their respec-

tive failures (Figure 9). For PD < TO, unaffected nodes continue

to consume inputs and produce outputs at the optimal rate in the

failure phase, but the affected node throttles consuming inputs and

producing outputs. Hence, a slight increase in latency in the failure

phase. The unaffected nodes continue to perform optimally in the

recovery phase, and the affected nodes resume producing outputs

in the recovery phase of events produced during the failure phase.

It causes latency to increase proportionally to the duration of the

failure phase. It also explains the comparatively higher failure cost

for PD < TO in Table 4. As the failure phase is 30 seconds long,

KStreams may produce outputs with latency as high as 30 seconds.

For PD > TO and process crashes, the tasks of affected nodes are

transferred to the unaffected nodes, causing a slight increase in

latency. KStreams rebalances tasks after the fault is removed and
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continues to perform optimally, resulting in a slight increase in

latency.

Throughput. Throughput is also observed to follow the latency

trend. For PD > TO and process crashes, a slight decrease (3% -

7%) in throughput is experienced in the failure phase due to the

rebalancing of tasks and lower compute resources. In the recovery

phase, KStreams rebalances the tasks and continues to perform

optimally, causing the throughput to recover quickly. For PD < TO,

the affected nodes neither process events nor release control of the

tasks to allow rebalancing. Hence, the data of the affected nodes is

simply not processed in the failure phase. It also causes an increase

in throughput in the recovery phase, as the events in the failure

phase are also processed in the recovery phase.

4.1.3 Takeaways. KStreams provides reliable data processing as

long as the topology does not contain a join operator. KStreams

scales with data partitions and offers the highest reliability and

performance when the parallelism factor is equal to the number of

data partitions. Furthermore, it can not appropriately handle out-

of-order events. Fault-tolerance evaluations show that the instance

experiencing network delay should be removed to achieve the best

possible reliability and performance.

4.2 Apache Storm
4.2.1 Control experiments. Storm allows late events to be pro-

cessed through a side channel. We experienced a system crash

whenever Storm received an out-of-order event. We investigated

this issue and found a bug in the Storm source code. We reported

this bug to the Storm community. The bug has not been resolved,

and we have not used this side channel in our topologies. All ex-

periments use A1, the only PG provided by Storm.

Reliability. Our experiments to determine the OIR of Storm re-

vealed that its reliability varies with 𝑅𝑎𝑡𝑒𝐷𝐺 (Figures 10a to 10c).

Storm demonstrated the highest reliability, 98%, at 𝑅𝑎𝑡𝑒𝐷𝐺 of 16K.

Reliability decreased as 𝑅𝑎𝑡𝑒𝐷𝐺 increased, even though throughput
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(c) Rate𝐷𝐺 = 92𝐾
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(d) Parallelism 1
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(e) Parallelism 2
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(f) Parallelism 3
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(h) Single partition

Figure 10:
Storm perfor-
mance across
various config-
urations

increased. At 𝑅𝑎𝑡𝑒𝐷𝐺 of 66K, Storm achieved its highest throughput

with 86% and 70% accuracy for SST and MST, respectively, which

we adopted as the OIR for further experiments. Increases in 𝑅𝑎𝑡𝑒𝐷𝐺
reduced reliability and throughput, with reliability dropping to 19%

and 0.1% at 92K for SST and MST, respectively. This decrease in

reliability by increasing data rate is caused by out-of-order events.

The higher data rate causes the ingestion operator to read larger

batches, which contain events from multiple windows. Once a time

window of one resource crosses the watermark, all windows of the

same time period of other resources are processed even though their

events are still behind the watermark. This phenomenon increases

the number of out-of-order events and reduces the reliability.

We also vary the parallelism levels of the topologies (Figures 10d

to 10f). Reliability increases with parallelism due to data partition

distribution among different machines, reducing event intermin-

gling and out-of-order events. SST reliability increases from 84%

to 93%, and MST reliability from 70% to 86%. We use parallelism of

three for chaos experiments, as it offers the best reliability and per-

formance. Unlike KStreams, Storm did not achieve 100% reliability

with parallelism three. We investigated this issue and found that

Storm and KStreams use different hashing algorithms. KStreams re-

lies on the murmur2 hashing algorithm, and Storm uses the SHA256
hashing algorithm. This results in events from different partitions

being processed at one machine, causing out-of-order events and re-

ducing reliability. Storm did not provide 100% reliability in any con-

trolled experiment due to multiple partitions. Having multiple par-

titions causes the events to arrive out of order at an instance. Storm

only provided 100% reliability when we replaced multi-partitioned

data with single-partition data (Figures 10g and 10h).

Throughput. Storm’s throughput increases with 𝑅𝑎𝑡𝑒𝐷𝐺 up to a

point (Figures 10a and 10b). Beyond that, higher out-of-order events

lead to discarded events, reducing throughput (Figure 10c). This

experiment highlights the advantage of using reliable throughput.

Using Karimov et al.’s definition [26], our measurements would re-

port higher throughput, even though Storm produced minimal out-

puts and most input events consumed were discarded. Throughput

is increased by increasing parallelism. This increase in throughput

is attributed to increased reliability.

Latency. Storm demonstrated the lowest latency (180ms) among

all SPSs. The latency of SST does not change by varying 𝑅𝑎𝑡𝑒𝐷𝐺
(Figures 10a to 10c), as expected by our definition of latency. How-

ever, the latency of MST is affected by varying data rates. We in-

vestigated this issue and found it is caused by two consecutive

window operators in MST. For MST, Storm first joins two streams

over a time period, and once it reaches its watermark, the join op-

erator produces an output. However, this output does not cross the

watermark of the second window operator. The window operator

waits for the second output from the join operator that crosses

its watermark, i.e., the outputs of Storm are two windows behind

the input events. As our latency measurements subtract one win-

dow length, the latency contains the window-filling time. Hence,

the latency of MST is varied by 𝑅𝑎𝑡𝑒𝐷𝐺 . No effect is observed on

latency by varying parallelism. Latency increases by 35% (300 vs.

190ms) when consuming data from a single partition as compared

to multi-partitioned data.
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(c) Process crash

Figure 11: Storm performance
and reliability under faults

4.2.2 Chaos experiments. The results of our chaos testing of Storm
are shown in Figure 11 and Table 4. Storm has the highest failure

cost among all benchmarked SPSs.

Reliability. Storm did not provide 100% reliability for any control

experiment. Unsurprisingly, similar behavior is observed for all

chaos experiments, and all faults impact the reliability (Figure 11).

Storm reported a drop of 20% (from 91% to 72%) for SST and 22%

(from 86% to 68%) for MST.

Throughput. Storm’s throughput dropped by 90% (60K vs. 6K)

in the failure phase for PD < TO, and even more severely by 98%

(60K vs. 1K) for PD > TO and process crashes. During the recov-

ery phase, Storm showed a slight improvement, reaching 10K for

PD < TO and PD > TO, while for process crashes, it hovers around

5K. This behavior can be explained by Storm’s output rate (Fig-

ure 12). Storm’s throughput drops significantly in the failure phase.

A fault causes the reshuffling of tasks. After the fault is removed,

Storm resumes processing, but events being processed just before

the fault must first time out, leading to a long tail of outputs and

extending the recovery phase, which reduces throughput. Storm

doesn’t immediately resume processing after fault resolution (Fig-

ure 12c), taking over six minutes to restart worker processes. This

delay also contributes to a high failure cost for process crashes

(Table 4).

Latency. Storm reported about a 90x increase (14 vs. 0.16 s) in

latency for SST and about a 12x increase (18.70 vs. 1.45 s) for MST

in the failure phase. However, it pales in front of the latency we

experience in the recovery phase. The average latency observed in
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Figure 12: Storm output
rate under faults. Fault in-
jection and removal are
marked.

the recovery phase was around 230 seconds for process crashes, a

whopping 1400X increase in latency. For PD < TO and PD > TO, the

latency increase was comparatively better at 600X. These inflated

latencies are attributed to a slow restart of the worker process and

acknowledgment timeouts.

4.2.3 Takeaways. Storm offers the lowest latency, making it ideal

for low-latency streaming applications. However, its reliability is

among the lowest we tested, primarily due to the bug we discovered.

If resolved, this could improve Storm’s reliability. Additionally,

Storm performs better when ingesting unpartitioned data. Fault-

tolerance evaluations reveal a high failure cost for Storm.

4.3 Apache Flink
4.3.1 Control experiments. Control experiment results are shown

in Figure 13.

Reliability. Varying parallelism in Flink has no effect on its relia-

bility, in contrast to KStreams and Storm (Figure 13). Flink produces

correct outputs for all topology-PG combinations with a single pro-

ducer. We also benchmarked the topologies with multiple producers

to see the effects of out-of-order events on performance and reli-

ability. Out-of-order events do not cause a drop in SST reliability,

but they reduce correctness. Out-of-order data may cause a win-

dow operator to process its events prematurely, causing incorrect

outputs. However, Flink provides the functionality to reroute out-

of-order events to a side channel. We collect these events and mark

them against their input events. This allows Flink to process com-

plete data even for out-of-order events. However, the reliability of

MST with multiple producers is reduced. This behavior is expected
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(c) Parallelism 3
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(d) Parallelism 4
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(e) Single producer
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Figure 13: Flink performance and reliability across various
configurations in control experiments
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as the additional join operator does not offer a side channel for late

events.

Throughput.The parallelism configuration doesn’t affect through-

put, which remains constant at 92K events per second, even at

higher parallelism levels. However, this doesn’t mean Flink fails to

scale with parallelism. This is due to the 𝑅𝑎𝑡𝑒𝐷𝐺 limit, as a single

data generator can produce only 92K events per second. Even with

a parallelism factor of 1, Flink operates faster than the maximum

𝑅𝑎𝑡𝑒𝐷𝐺 . A faster data generator would result in higher through-

put. Flink processes events concurrently, unlike KStreams, which

processes events sequentially, resulting in higher throughput for

Flink. SST’s throughput increases with multiple producers, showing

that Flink can handle more data than a single producer generates.

Additionally, Flink’s side channel reroutes out-of-order events, fur-

ther increasing throughput. SST in Flink achieved 160K events

per second, the highest among all benchmarks. MST saw a slight

drop in throughput due to the absence of a side channel for out-of-

order events in join operators, causing premature window firing

and more late events.

Latency. The latency remains constant at around 1.5 seconds in

all our experiments. Even changing the PG to E1 does not increase

the latency, as Flink relies on an asynchronous snapshotting algo-

rithm to provide E1. The latency is observed to drop for multiple

producers. However, this drop is not due to high performance. In

fact, this drop in latency is attributed to premature processing of

window operators due to out-of-order events.

4.3.2 Chaos experiments. Flink achieved peak performance with

multiple producers but did not provide full reliability. It demon-

strated reliability only with a single producer. Hence, we conduct

all chaos experiments with a single producer to study reliabil-

ity. Insights for throughput and latency can be scaled for a high-

performance producer. The results of our chaos testing are shown

in Figure 14 and Table 4.

Reliability. Flink provides the highest reliability across all faults.

However, in PD > TO and process crash (Figures 14b and 14c), re-

liability is not 100%. We observed that Flink restarts the current

processing job for these faults. After the restart, we experienced

duplicate events in the first few outputs, violating E1 and reduc-

ing reliability (Figures 15b and 15c). We configured PGVal to read
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(c) Process crash

Figure 14: Flink perfor-
mance and reliability under
faults
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Figure 15: Flink output
rate under faults. Fault in-
jection and removal are
marked.

only committed outputs, so any uncommitted output at fault injec-

tion is not read. This implies that Flink consumed, processed, and

produced some events multiple times despite correct checkpoint

restoration.

Throughput. Flink’s highly synchronized architecture halts the

entire system even when only part is affected (Figure 14). Through-

put drops by 90% (90K vs. 9K) for PD < TO, while for PD > TO, Flink

stops processing completely. Examining the input rate Figure 15

explains this behavior. For PD < TO, the affected worker halts, but

others continue at a throttled rate, causing a 90% throughput drop

(Figure 15a). For other faults, even unaffected workers stop, causing

throughput to drop to zero (Figures 15b and 15c). Flink restarts the

job during recovery and quickly restores optimal throughput. This

restart time is visible in Table 4.

Latency. Flink exhibited high latency during the failure phase for

PD < TO. Despite only a 500 ms delay, latency increased 15x (from

1.6 to 25.6 seconds), driven by a drop in throughput. While Flink

achieves optimal performance in the recovery phase, events gener-

ated during the failure phase are processed later, raising the average

latency. For PD > TO and process crashes, latency is undefined in

the failure phase since no output is produced.

Flink supports over-provisioning and configuring standby work-

ers for fault tolerance. We provisioned one extra worker beyond

the parallelism factor to determine if standby workers could take

over tasks from failed ones. As shown in Figure 16, the results for

PD < TO remained unchanged. However, for PD > TO, Flink reas-

signed the failed worker’s task to the standby worker, limiting the

throughput drop to 4% (92K vs. 88K) and ensuring uninterrupted

processing during failures. Process crashes yielded similar results

to PD > TO.
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Figure 16: Flink performance and reliability under faults
with standby workers
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4.3.3 Takeaways. Flink delivers the highest throughput and reli-

ability among all evaluated SPSs. However, Flink lacks reliability

for multi-stream topologies. Fault-tolerance evaluations show that

Flink halts processing entirely even if part of the infrastructure fails.

To ensure uninterrupted processing during failures, Flink should

be provisioned with more workers than the defined parallelism fac-

tor, allowing standby workers to replace faulty ones. Alternatively,

deploying Flink with a resource provider like Kubernetes ensures

continuous processing, as Kubernetes automatically replaces failed

pods [47].

5 DISCUSSION
Our experiments show that SPS reliability depends on many factors

such as data partitions, data rate, parallelism, and topology. An SPS

that delivers reliable outputs may fail to do so if any of these factors

change, as it may cause events to be out-of-order. Our experiments

highlight the need to process late events as there are a plethora of

reasons why events may arrive out-of-order. Therefore, all SPSs

should implement side channel functionality to prevent data loss.

Additionally, join operators in a topology often result in unreliable

outputs. Our results also indicate that each system has pros and

cons, and the functional and non-functional requirements—such as

correctness, throughput, latency, parallelism, data partitions, data

rate, and fault profile—should be considered when selecting an SPS.

Lastly, all SPSs achieve the highest reliability when the parallelism

matches the number of partitions.

Our work also raises the need to consider network faults in the

failure model instead of only relying on process crashes. We ob-

served that SPSs respond to process and network failures differently.

Additionally, our work raises the need for end-to-end PGs. SPSs do

not exist independently and always integrate with other external

systems. A system is as reliable as it outputs. Results produced by

a system that generates incomplete or incorrect outputs cannot

be relied on for data-sensitive applications. Furthermore, our ex-

periments highlight the benefits of our refined metric definitions.

The reliable throughput correctly pointed out a throughput drop

at a higher data rate for Storm. We would have observed a high

throughput if we had used the previous definitions. Similarly, our

latency metric definition helped us get fine-grained latency mea-

surements at all data rates. Lastly, had we relied on just correctness,

we would have reported that Flink produced correct results. Our

reliability metric helped us capture PG violations.

To conclude, we cross-compare selected frameworks to highlight

their unique strengths for specific use cases. KStreams demon-

strates the lowest failure cost, making it well-suited for fault-prone

infrastructures. Storm excels in delivering minimal latency, which

is ideal for low-latency applications, though it sacrifices reliability.

Flink offers the highest throughput and reliability, positioning it

as the optimal choice for data-intensive applications where both

performance and fault tolerance are critical.

Future direction. Despite our earnest efforts to make our evalua-

tion as representative as possible, the results are inherently limited

to the specific topologies and the dataset used in this study. To this

end, PGVal can be extended to benchmark additional topologies by

implementing an oracle and modifying the existing topologies to

track input events.

6 RELATEDWORK
The work related to this paper falls in two categories: verification

and performance benchmarking. The verification of SPSs’ outputs

is scarce in the literature. Most of the work relies on theoretical

models to verify correctness [36, 42]. CSRBench and YABench em-

pirically measure the correctness of SPSs [19, 27]. However, they

benchmarked previous-generation SPSs, which are not able to scale

horizontally. No work has been done to verify the correctness of

distributed SPSs. Furthermore, failures can also cause data loss and

corruption, and yet no work has been done to verify the correctness

of SPSs under failure. Lastly, empirical PG validation has never been

tried before.

Performance benchmarking of SPSs is an active research area.

Lopez et al. [32] benchmarked SPSs for throughput. They also

injected machine crashes into SPSs to test their fault-tolerance ca-

pabilities. Karimov et al. [26] benchmarked SPSs for throughput

and latency. They highlighted the importance of SPS separation

from the benchmarking utilities. They also defined several terms,

such as latency and OIR. However, we demonstrated in this paper

that their definitions may result in coarse-grained measurements at

lower data rates. Bordin et al. [8] developed DSPBench, consisting

of 15 topologies to benchmark SPSs. The topologies designed for

PGVerifier are inspired by their trending topic topology. Van Don-

gen et al. [46] developed OSPBench that can measure throughput

and latency. They highlighted the problem of latency measurement

in a distributed environment. They proposed the concept of end-to-

end latency to counter this issue, in which they used one machine

for input and output records. However, they did not exploit data

locality. Hence, their benchmark would produce coarse-grained

measurements in the case of a multi-broker Kafka cluster. In their

subsequent work [44], they also benchmarked various DSPSs under

process crashes. However, their failure model was limited to process

crashes. Tahir et al. [40] developed a benchmark for fault-tolerance

evaluation of streaming solutions submitted for the ACM DEBS

Grand Challenge [18, 22, 41]. Their work is limited to performance

measurement of SPS under faults. Agnihotri et al. [1] developed

PSDP-Bench to benchmark Flink for operator parallelization. Most

recently, Vogel et al. [47] benchmarked SPSs for failure recovery

and measured the impacts of failure recovery on performance in a

cloud-native environment. However, their failure model was still

limited to process crashes, and they measured only performance.

7 CONCLUSIONS
In this work, we developed an open-source benchmarking suit, PG-

Val, that can validate end-to-end PGs and measure the performance

of SPSs. PGVal can also inject faults into SPSs to observe their re-

liability and performance under failures. We benchmarked three

open-sourced SPSs (Kafka Streams, Apache Storm, and Apache

Flink) for performance, reliability, and failure cost. Our experiments

show that the reliability of an SPS relies on many factors, such as

data rate, data partitions, processing logic, and parallelism factor.

Furthermore, every SPS has its own strengths and weaknesses un-

der different failures. Lastly, we provided various suggestions to

improve reliability and decrease failure costs based on our experi-

mental evaluation.
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