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ABSTRACT
Dynamic graph management (DGM) systems are designed to effec-
tively handle changing graph data, which is a fundamental prob-
lem for many graph-based applications. Recently, researchers have
designed GPU-based solutions for DGM and its downstream ap-
plications, thanks to GPUs’ massive parallelism power. However,
there is a lack of universal models that summarize the features
and design principles of GPU-accelerated DGM systems. Addition-
ally, existing studies test GPU-based DGM systems without unified
metrics and workloads. Under this circumstance, we propose a con-
ceptual model for GPU-accelerated DGM to demonstrate a DGM
system’s components, key primitives, and optimization choices.
Next, we evaluate six representative systems, testing their update
and query performance with unified metrics and workloads of dif-
ferent algorithmic behaviors. We also extend existing systems to
seek insight to fill the current research gap in multi-GPU support,
concurrency control, resource utilization, and so on. Our evaluation
yielded new insights on the pros and cons of different systems: (1)
Hashing-based systems perform best for graph updates but may
not be suitable for all applications. (2) Finding a system that fits all
workloads is challenging, and hybrid data storage may be a solution.
(3) To select the most suitable DGM system for a specific workload,
it is essential to consider hardware-related metrics. Finally, we pro-
vide recommendations and suggestions for future studies based on
our experimental results and observations.
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1 INTRODUCTION
In recent years, the analysis of massive graphs, which are powerful
representations of entities and their interconnections, has become
increasingly important in academic and industrial domains. This
field encompasses research and applications in areas such as the
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Internet of Things [2], social network analysis [22], and protein
property prediction [36]. However, the management of graph data
remains a challenge for two reasons: Firstly, the scale of graph
data can be immense, often containing tens of millions of edges
or more [11, 39]. Secondly, graphs are typically dynamic, with
edges and vertices undergoing frequent and rapid updates. For
instance, X processes over 500 million new posts and numerous
user interactions daily [3].

To address the challenges associated with massive and dynamic
graph data [41, 48, 59], various Dynamic GraphManagement (DGM)
frameworks have emerged, including Aspen [18], Livegraph [70],
Sortledton [25], Terrace [50], and Teseo [44]. These systems dif-
ferentiate themselves from static frameworks by their ability to
perform analytical algorithms such as Breadth-First Search (BFS),
Single Source Shortest Path (SSSP), and PageRank (PR), while con-
currently handling graph updates with accuracy and efficiency.
Nevertheless, DGM systems continue encountering difficulties in
managing large data volumes and high update velocities, which
calls for improvement in dynamic data storage and parallel updates.
Furthermore, leveraging hardware-related optimizations, such as
cache utilization, I/O patterns, and workload balancing, is instru-
mental in performance enhancement.

Graphics Processing Units (GPUs) have experienced a substan-
tial increase in computing power and accessibility, making them
a viable option for addressing the challenges of DGM [58]. Perfor-
mance improvements are unsustainable due to the physical and
power limitations of manufacturing as transistor growth plateaus.
However, the expansion of data volume continues to surpass the
advancement in hardware, highlighting the importance of paral-
lel computing as a potential resolution to this dilemma. Unlike
CPUs, GPUs allocate more on-chip resources to computation rather
than cache management and flow control. A modern GPU con-
tains thousands of cores that, although less powerful individually,
work together through a Single Instruction Multiple Thread (SIMT)
architecture. The achievement of parallelism is crucial in graph an-
alytics, particularly for managing large-scale data, as many graph
algorithms entail simple, yet independent operations such as tag-
ging, filtering, and intersection across numerous vertices or edges
[49]. Therefore, existing graph libraries are either augmented with
GPU-based extensions or specifically crafted for GPU environments
[13, 14, 51, 62, 67] to exploit GPUs for enhanced throughput.

Challenges. However, managing large-scale and dynamically
evolving graph data on GPUs remains challenging, with the follow-
ing issues prevalent:

First, optimizing GPU performance requires in-depth knowledge
of workload characteristics such as memory access patterns. How-
ever, DGM operations and graph algorithms frequently involve

599

https://doi.org/10.14778/3712221.3712228
https://github.com/pkumod/GPU_DGM
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712228
https://www.acm.org/publications/policies/artifact-review-and-badging-current


unpredictable memory allocations and random accesses to neigh-
bor lists. For instance, the continuous insertion of edges may trigger
the extension of data structures that disrupt GPU processing. Addi-
tionally, irregular memory access patterns emerge when algorithms
enumerate vertices through their neighbors. The prediction of the
next data access location becomes difficult due to the low spatial
and temporal locality inherent in analytic workloads. As a result,
many existing systems opt to pre-allocate a significant amount of
memory, organizing it into fixed-sized blocks or pages. Moreover,
various strategies for neighbor list storage have been proposed to
facilitate rapid access to adjacent vertices. Nevertheless, optimiza-
tions that improve locality in static graphs may not be effective in
DGM contexts. For example, vertex ordering, a common technique
to enhance the locality of graph algorithms [32, 34, 63], incurs
additional overhead with ongoing graph updates.

Second, maintaining a balance between update performance and
query efficiency for DGM on GPUs presents a significant challenge.
For instance, utilizing a well-constructed hash table for neighbor
lists allows for the updating or the existence verification for edges
in approximately constant time. Still, this approach sacrifices the
efficiency of list enumeration due to the overhead of preserving
extra space and keeping unordered elements. Conversely, although
a continuously stored sorted array improves enumeration efficiency,
inserting new elements is expensive, triggering extra data move-
ment. Consequently, when designing DGM systems, considering
the trade-off between update and query performance as workloads
vary is important. This experimental study offers insights and rec-
ommendations regarding the most appropriate designs for different
applications.

Third, the design of a fully optimized DGM framework should
comply with the inherent characteristics of GPUs. Mere transplan-
tation of CPU-based systems onto GPUs is insufficient for achiev-
ing optimal performance. Instead, GPU-specific optimizations are
essential. For instance, branch statements may result in warp diver-
gence, a phenomenon where certain threads become idle because
all threads within a warp must execute the same instruction simul-
taneously. Moreover, skewed data graphs can exacerbate issues of
memory locality. Shared memory, a user-visible, high-speed, and
configurable on-chip memory resource, can act as a user-defined
cache to minimize off-chip memory accesses. Additional critical fac-
tors include memory access coalescing, managing out-of-memory
situations, and achieving workload balance.

Contributions. To address the identified challenges, we con-
ducted an extensive experimental study on GPU-based DGM sys-
tems, focusing on their design choices and performance across
various workloads. Our contributions are as follows:

• We conducted an evaluation of six state-of-the-art GPU-
based DGM systems: cuSTINGER [29], Hornet [9], faim-
Graph [65], Gunrock [62], GPMA [56], and LPMA [71]. We
assessed the systems’ performance metrics, including up-
date latency, query throughput, and resource utilization.
Additionally, we evaluated the system’s proficiency across
different analytical workloads, utilizing datasets that ranged
in scale.

• To facilitate a comprehensive understanding, we introduce
a universal model for GPU-based DGM, which provides a

structured overview of GPU-based DGM systems by delin-
eating them into three distinct dimensions: system com-
ponents, critical operations, and design decisions. To our
knowledge, this work is the first attempt to propose a co-
herent conceptual model for GPU-based DGM.

• We identify the most appropriate GPU-based DGM solution
for various applications. Our experiments substantiate pre-
vious experimental results, extend new observations, and
discover possible future directions.

2 PRELIMINARIES
2.1 Problem definition
We first briefly review the terminology we use to define the DGM
problem.

A graph 𝐺 is a tuple 𝐺 = {𝑉 , 𝐸}, where 𝑉 (𝐺) is a set of vertices,
𝐸 (𝐺) ⊂ 𝑉 (𝐺) × 𝑉 (𝐺) is an edge set. A dynamic graph is defined
by an initial graph 𝐺 = (𝑉 , 𝐸), and an infinite series of operation
batches𝑂 = {Δ𝐺0,Δ𝐺1, ...Δ𝐺𝑡 ...}, where each batch consists of two
kinds of operations: insertion and deletion. 𝑡 denotes a timestamp.
The batches are ordered by their issued timestamps.

In this study, we define graph updates as edge insertions and dele-
tions, as vertex insertion/deletion can be implemented through edge
operations. We prioritize batch updates over real-time processing,
consistent with existing DGM systems on GPUs[9, 29, 56, 62, 71].
During batch execution, updates arrive continuously and are pro-
cessed once a full batch is accumulated, without overlap between
batches. This ensures sufficient data to leverage GPUs’ parallel pro-
cessing capability and optimize bandwidth between GPU memory
and computational kernels.

Table 1: Frequently Used Notations

Notation Description
𝐺 (𝑉 , 𝐸) A graph consisting of vertices 𝑉 and edges 𝐸
Δ𝐺 A batch of updates on 𝐺
𝑉 (𝐺) The set of vertices in 𝐺
𝐸 (𝐺) The set of edges in 𝐺
𝑑 (𝑣) The degree of a vertex 𝑣
𝑁 (𝑣) The neighbor list of vertex 𝑣
𝑑 Average degree

We categorize the fundamental workloads of DGM into two
types: updates and queries. An update alters the data graph by
adding or removing edges. A query executes computations on the
graph and yields results, ranging from simple, such as verifying the
presence of an edge, to complex, like identifying frequent patterns.
Consequently, with ongoing edge insertions and deletions, the
results of queries keep changing.

2.2 Basic graph structure
This subsection introduces three primary graph data structures:
the adjacency matrix, adjacency list, and Compressed Sparse Row
(CSR) format. These are the most prevalent layouts for static graph
data and are widely adopted by existing systems to handle dynamic
graphs.
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2.2.1 Adjacency matrix. An adjacency matrix,𝑀 ∈ R |𝑉 |× |𝑉 | , is a
data structure that captures the edges of a graph, where 𝑀 (𝑢, 𝑣)
signifies the presence or records the weight of the edge between 𝑢
and 𝑣 . Updating or querying an edge can be done in constant time
on average with an adjacency matrix. A significant drawback, how-
ever, is the quadratic space complexity𝑂 ( |𝑉 |2) which leads to high
memory costs. For large graphs with a power-law degree distribu-
tion, the adjacency matrix tends to be sparse, as most vertices have
a small number of neighbors. This sparsity results in a memory
inefficiency issue because we must still allocate space for numerous
zero entries in a dense matrix. One solution is using sparse matrix
representations, which store only the non-zero elements and their
indices. Nevertheless, computations involving sparse matrices can
be more complex due to the irregular data layouts they introduce
[35].

2.2.2 Adjacency list. An adjacency list consists of |𝑉 | neighbor
lists and structures to index these lists (e.g., a pointer array). Each
vertex 𝑢 ∈ 𝑉 has a neighbor list 𝑁 (𝑢) implemented as an array, a
hash table, or a tree-based structure. These neighbor lists are often
sorted to facilitate edge searches and set intersections. However,
maintaining sorted lists using arrays can incur overhead during
insert operations. When inserting a new edge, one must locate
the appropriate position for the new entry and potentially reor-
ganize the list by shifting elements. Therefore, existing systems
reserve extra space within data structures to accommodate new
insertions and develop strategies to dynamically manage reserved
space during runtime according to current and former workloads.

2.2.3 Compressed Sparse Row(CSR). CSR concatenates neighbor
lists into a contiguous edge array. An index of offsets, denoted as
𝑂𝑓 𝑓 𝑠𝑒𝑡 , records the beginning position of each list, allowing for
quick location of a required neighbor list. For example, to locate
𝑁 (𝑣𝑜 ), we should read 𝑂𝑓 𝑓 𝑠𝑒𝑡 [0] and 𝑂𝑓 𝑓 𝑠𝑒𝑡 [1]. 𝑂𝑓 𝑓 𝑠𝑒𝑡 [0] de-
notes the position of the first element of 𝑁 (𝑣𝑜 ) in the edge array,
and 𝑜 𝑓 𝑓 𝑠𝑒𝑡 [1] − 𝑜 𝑓 𝑓 𝑠𝑒𝑡 [0] indicates the length of 𝑁 (𝑣𝑜 ). CSR in-
troduces less random memory access, making it a popular choice
for static graph processing. However, since CSR is compact, up-
dates lead to heavy overhead in moving data in the edge list and
modifying 𝑂𝑓 𝑓 𝑠𝑒𝑡 .

2.3 Related Work
CPU-based DGM: Various DGM systems have been proposed on
CPUs, in which CSR is a popular choice as a basic representation.
A common idea is dividing neighbor lists into fixed-size blocks for
ease of memory management and future insertion [21, 24, 46, 66].
Livegraph [70] suggests a Transactional Edge Log and correspond-
ing concurrency control mechanism for efficient list scanning. Teseo
[44] balances the sparse neighbor array using a fat tree. GraphIn
[55], GraphOne [43], and Evograph [54] buffer the graph update in
an edge list and conduct batch processing.

Adjacency-list-based structures focus on designing data layout
for a neighbor list [1, 10, 16, 17, 19, 27, 37, 38, 47, 61]. For instance,
GraPU [57] utilizes reorganization techniques in the update buffer
to minimize conflicts during concurrent updates. Risgraph [23]
proposes Indexed Adjacency Lists using sparse arrays to improve
inter-update parallelism. Terrace [50] applies appropriate structures

for vertices of different degrees. Sortledton [25] uses an unrolled
skip list to store blocks of edges.

CPU-based DGM v.s. GPU-based DGM: Among the various
existing DGM systems, GPUs are the most preferred hardware due
to their massive parallelism power [9, 29, 56, 62, 65, 71]. Migrat-
ing state-of-the-art CPU-based systems to a GPU environment is
challenging due to inherent differences between the two types of
hardware. Firstly, many of the leading CPU-based systems rely on
tree-based structures that involve pointer jumping, which results
in a random memory access pattern. This pattern is less efficient
on GPUs and does not leverage the benefits of GPUs’ coalesced
memory access. Secondly, GPU-based DGM research has not ad-
equately addressed issues prominent in CPU environments, such
as isolation, consistency, contention control, and freshness. Most
existing GPU-based DGM systems prioritize overall throughput
and typically support update-only or query-only batches. Further-
more, in the current paradigm, multiple batches do not overlap,
leading to systems that pre-eliminate duplicate updates in advance.
In essence, current research efforts have made use of parallelism
and throughput advantages of GPUs in idealized scenarios to some
extent, often disregarding the complexities of isolation, consistency,
and freshness. However, these factors remain crucial for develop-
ing GPU-based DGM systems suitable for real-world applications.
Although it is beyond the scope of this paper to explore the imple-
mentation of consistency and contention control for GPU-based
DGM, it is an open and important problem that needs further in-
vestigation.

Two recent surveys [12, 26] have analyzed and evaluated GPU-
based DGM systems and databases. Our paper offers unique and
complementary insights as well as experimental findings that stand
apart from these prior studies. Cao et al. [12] conducted a perfor-
mance and resource utilization analysis of current GPU database
systems, delivering micro-architectural insights that are missing in
previous research. Their findings reveal that many queries in GPU-
based databases do not fully utilize available GPU resources. This
has guided our use of the roofline model to identify performance
bottlenecks, filling a gap in the existing literature on GPU-based
DGM systems. Gao et al. [26] provided a detailed overview of vari-
ous systems and discussed their design distinctions. In addition, we
introduce a conceptual model for GPU-based DGM and evaluate
existing systems within this model, offering a novel and high-level
perspective. Additionally, while [26] is a technical survey, our con-
tribution is an experimental effort that presents extensive results
to support our observations and offer insights for future directions.

Motivated by the literature review above, we extract a conceptual
model that discusses components, primitives, and optimization
chances of existing GPU-based DGM systems in Section 3, followed
by a detailed discussion of these systems in our model in Section 4.

3 MODELING GPU-BASED DGM
To thoroughly evaluate current GPU-based DGM systems under
a wide range of workloads, it is imperative to develop a universal
model that identifies and establishes common abstractions across
them. This section introduces a conceptual model that encapsulates
the shared characteristics of GPU-based DGM systems. This model
includes system components, basic primitives, and prevalent design
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decisions. We also explore various strategies and considerations for
performance optimization. Our research represents the first effort to
develop a universal model for analyzing and understanding existing
GPU-based DGM systems.

3.1 System components and primitives
3.1.1 System components. Fig. 1 shows common components of
existing GPU-based DGM systems, including a CPU host, GPU
kernels, topology structure, attribute storage, and optional auxiliary
structures that speed up specific operations. Fig. 1 also demonstrates
interactions between these components and how they adapt to GPU
memory hierarchy and multi-GPU scenarios.

GPU NGPU N
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GPU 1GPU 1

Auxiliary

Index

Host

CPUGraph 

data

 Update

Stream

GPU 0

KernelKernel
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Structure

Data 
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Storage
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 (Preprocessed)
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Cross-device data 

transfer

Figure 1: A universal model for GPU-based DGM systems.
Solid rounded rectangles indicate necessary components and
dashed ones represent optional structures.

CPU host: A typical DGM system is controlled by a CPU host
that handles system initialization and data pre-processing. A CPU
host also manages GPU kernels by issuing or terminating computa-
tion tasks. Besides, a CPU host controls memory allocation and data
transfer between CPUs and GPUs. This can result in performance
loss due to inter-device synchronization and limited cross-device IO
bandwidth. In the context of multiple GPUs, an important task for
a CPU host is partitioning a data graph and distributing data parti-
tions and batches of updates to kernels running on different GPUs.
We highlight graph partitioning because storing an entire copy on
every GPU may not be wise, which brings redundant updates and
cannot handle data graphs larger than GPU memory. This is also a
common concern for GPU-accelerated graph analysis[15, 30, 68].

GPUkernels: GPU kernels perform computations at the behest
of the CPU host, and their design must be carefully crafted to
avoid low parallelism and inefficient resource utilization. This paper
assumes that the GPU is a discrete device, working alongside the
CPU. As a result, GPU kernels usually do not have direct access to
the machine’s main memory. Instead, modern GPUs are equipped
with device memory, which has a different architecture than the
main memory and features higher parallel access bandwidth. A
GPU also has a hierarchical memory layout that includes registers,
layers of cache, shared memory, and device memory (a.k.a., GPU
memory).

The roles of GPU kernels can vary; some are tasked with up-
dating graph data, while others are responsible for implement-
ing specific algorithms. However, all kernels require some level

of access to device memory. Many prevalent graph algorithms are
characterized by straightforward computational logic but entail
extensive memory requests. Consequently, the efficiency of GPU
kernels is frequently constrained by memory bandwidth, making
their performance largely IO-bounded. [7].

Topology structure: The topology structure maintains edges
and vertices. The neighbor lists, which represent the connections
between vertices, can be stored in two primary ways: either as
separate adjacency lists for each vertex or concatenated into a con-
tinuous space known as Compressed Sparse Row (CSR) format.
Another alternative approach is to store edges in a dense matrix,
which allows for constant-time edge insertions. However, it is not
common in existing GPU-based DGM systems due to its poor mem-
ory efficiency. In real-world applications, graphs often contain a
large number of edges that are subject to frequent updates. As a
result, the topology structure tends to be the most accessed data
structure within a DGM system, which can lead to performance
bottlenecks, given the high frequency of access and potential con-
tention.

Attribute storage: To run analytical workloads, a DGM sys-
tem is expected to support different types of attributes. When only
simple attributes are needed, such as a numerical weight or a fixed-
length label, a DGM system can merge attribute storage with its
topology structure. However, according to existing studies [60],
using attribute storage independent from topology data is recom-
mended for complex attributes consisting of multiple data. Attribute
storage separates the memory footprints of attribute data from a
topology structure, thereby reducing costs from updates that trig-
ger expansion or self-balancing where data movement leads to
overhead.

In existing GPU-based DGM systems, attribute storage attracts
less design effort than a topology structure for two reasons. First,
only simple attributes are needed for many commonly used graph
analytical workloads like Breath-First-Search (visited flags), Single
Source Shortest Path (edge weights), and PageRank (PageRank val-
ues and edge weights). In these cases, attributes are usually attached
to a topology structure. Second, even when attribute storage inde-
pendent from a topology layout is necessary, developers can adapt
existing GPU-based indexing techniques like key-value stores and
hash tables, which are well-studied topics on GPUs [5, 6, 33, 45, 69].
By contrast, optimizations for a topology structure are inadequate
because it is more sensitive to data graphs and workloads, hence
more challenging.

Auxiliary structures: Auxiliary structures have been intro-
duced to speed up computation and mitigate IO costs. By examining
the current literature, we classify these structures into two main
categories: (1) Data buffers are designed to store frequently accessed
data during computation, reducing the need for costly topology
structure access. These buffers can leverage shared memory, which
is a fast but limited resource shared among threads within a warp,
analogous to caches in CPUs. (2) Data indices retain metadata to
facilitate quicker graph updates. For example, faimgraph [65] main-
tains a queue that tracks data pages available for reuse. Similarly,
Hornet [9] utilizes a B+ tree and a bit tree to accelerate identify-
ing available slots for insertions. As the design of these auxiliary
structures is highly dependent on specific implementations, a more
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in-depth exploration of the auxiliary structures employed in various
systems will be provided in Section 4.

3.1.2 Basic primitives. DGM systems provide a comprehensive set
of primitive APIs tailored for various downstream tasks. These APIs
facilitate operations such as updating and querying graphs, which
are succinctly summarized in Table 2. For conciseness, we have
excluded straightforward get/set functions, such as those used for
retrieving edge weights.

Update: All DGM systems offer edge update primitives that
insert, delete, or modify edges. Vertex insertion and deletion can be
conducted by inserting or deleting all adjacent edges. The process
of edge insertion within DGM systems is known to be a bottleneck
and has consequently become a critical area for performance op-
timization across the board. When inserting an edge, the system
must identify an appropriate storage location, verify its availabil-
ity and validity, and store the data. This can entail searching in
neighbor lists, reallocating memory, and sometimes reconstructing
a partition or the entire data structure. In contrast, edge deletion
can be performed more efficiently through a lazy strategy, which
simply marks deleted data as invalid. Current systems handle in-
valid data by reusing it during new insertions or reclaiming the
space through checkpoints and reorganization. As a result, dele-
tion primarily involves locating affected data slots within a data
structure.

Query: In the design of DGM systems, query operations are
occasionally overlooked to prioritize higher update throughput. For
example, some systems maintain unsorted neighbor lists, enabling
the efficient appending of incoming neighbors to the list’s end. How-
ever, this design choice complicates finding a specific neighbor (i.e.,
verifying the existence of an edge) and can hinder the computation
of list intersections. Analyzing existing systems and queries from
prominent graph benchmarks [20, 31, 52], we have identified five
representative low-level queries, detailed in Table 2. These queries
include: (1) Edge Existence Check: determines whether there is an
edge that connects two specified vertices. (2) 1-Hop Neighborhood
Scan: provides a list of all vertices directly neighboring a given
vertex. (3) 2-Hop Neighborhood Scan: computes the union of the
neighbor lists of all neighbors of a given vertex. (4) Cycle Detection:
verifies the presence of at least one cycle between two vertices. (5)
Clique Search: identifies all cliques composed of unique vertices
that include a specified vertex. In actual systems, there is usually a
parameter 𝑘 to constrain the size of cliques.

Table 2: Key query primitives for DGM

Primitive Complexity Category Input
𝑖𝑛𝑠𝑒𝑟𝑡𝐸 (𝑢, 𝑣) 𝑂 (𝑙𝑜𝑔(𝑑 (𝑣))) update edge
𝑖𝑛𝑠𝑒𝑟𝑡𝑉 (𝑣) 𝑂 (𝑙𝑜𝑔( |𝑉 |)) update vertex
𝑑𝑒𝑙𝑒𝑡𝑒𝐸 (𝑢, 𝑣) 𝑂 (𝑙𝑜𝑔(𝑑 (𝑢))) update edge
𝑑𝑒𝑙𝑒𝑡𝑒𝑉 (𝑣) 𝑂 (𝑑 (𝑣) ∗ 𝑙𝑜𝑔(𝑑 (𝑣)) update vertex
𝑔𝑒𝑡1ℎ𝑜𝑝 (𝑣) 𝑂 (𝑑 (𝑣)) query vertex
𝑔𝑒𝑡2ℎ𝑜𝑝 (𝑣) 𝑂 (𝑑 (𝑣) ∗ 𝑑) query vertex

𝑓 𝑖𝑛𝑑𝐶𝑙𝑖𝑞𝑢𝑒 (𝑣) NP-hard query vertex
𝑓 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑒 (𝑢, 𝑣) 𝑂 ( |𝑉 |)) query vertex pair
𝑓 𝑖𝑛𝑑𝐸𝑑𝑔𝑒 (𝑢, 𝑣) 𝑂 (𝑙𝑜𝑔( |𝑑 (𝑢) |)) query vertex pair

3.2 Design Choices and Optimization
In Section 3.1, we explore the commonalities among existing GPU-
based DGM systems. Therefore, in this subsection, we will dis-
cuss what makes specific GPU-based DGM systems stand out. We
summarize design choices and optimization directions into three
perspectives: data structures, memory management, and tailored
optimization.

3.2.1 Data structures. Choosing effective structures for topology
and attribute data is a primary goal for DGM developers. An ideal
data structure incorporates an optimal data layout and implementa-
tion of primitives to facilitate quick updates and efficient querying
within acceptable memory usage. However, trade-offs are inevitable
among these factors. For instance, using a dense matrix format for
graph data allows for constant-time edge insertion but results in
more memory consumption. Alternatively, adopting sorted arrays
for neighbor lists increases its insertion overhead due to the need to
maintain sequential storage. Finding a one-size-fits-all solution ap-
pears challenging. Instead, the optimal choice varies with different
workloads.

3.2.2 Memory management. Optimizing memory allocation and
management is crucial due to the evolving and unpredictable vol-
ume of dynamic graphs in real-world scenarios. When a system
exhausts its pre-allocated space, it must expand its data storage, and
similarly, contract when excess space is available. However, the fre-
quent allocation and freeing ofmemory necessitate time-consuming
synchronization between the CPU host and GPU kernels. Moreover,
relocating existing data incurs additional costs. Therefore, devel-
oping appropriate mechanisms for memory resource management
has been another key focus of prior GPU-based DGM systems.

3.2.3 Tailored optimization. Detailed optimization of bottleneck
operations, such as edge updates and list intersections, requires
analyzing both algorithmic behaviors and hardware capabilities.
Certain systems employ auxiliary indices to quicken essential oper-
ations, such as determining an insertion point [9]; others implement
advanced concurrency control strategies to minimize read/write
conflicts [71]; while others take advantage of GPU-specific features
such as shared memory to buffer frequently accessed data [4].

4 COMPARISON OF COMPETING SYSTEMS
We evaluated six GPU-based DGM systems: cuSTINGER [29], Hor-
net [9], Gunrock [62], faimgraph [65], GPMA [56], and LPMA [71].
Among existing systems, they achieve state-of-the-art performance
and succeed in handling workloads in our evaluation. In the follow-
ing section, we introduce data structures, memory management,
and tailored optimization of each system based on our model in
Section 3 and Table 3 summarizes key design decisions mentioned
here.

4.1 cuSTINGER
Data structure: cuSTINGER [29] represents an early exploration of
GPU-based DGM. Specifically, it is an improved version of STINGER
[21] optimized for GPU acceleration using CUDA.Notably, cuSTINGER
adapted the data structure of STINGER to leverage the parallel pro-
cessing capability of GPUs. Illustrated in Fig. 2 (a), cuSTINGER
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Figure 2: Overview of compared systems storing an example graph, where 𝑁 (𝑣0) = {1, 2, 3, 4}, 𝑁 (𝑣1) = {2, 4}, 𝑁 (𝑣2) = {3}, 𝑁 (𝑣3) =
{4}, 𝑁 (𝑣4) = {3}. Pre-allocated parts are in dotted boxes. Preserved space for future insertion is covered by black slashes.

utilizes a semi-dense array to store a neighbor list associated with a
specific vertex, which means that cuSTINGER allocates extra space
within its array to accommodate future data. Structured as a Struc-
ture of Arrays (SOA), this data organization allows for compaction
akin to CSR format, leading to decreased memory demands and
enhanced data locality.

Memory management: Upon reaching the full capacity of
a neighbor list array, the system dynamically allocates additional
space and subsequently transfers existing data to the expanded
area. Users are granted the flexibility in cuSTINGER to specify
the allocated memory size or enable dynamic memory allocation
based on their requirements. To cater to varying application needs,
cuSTINGER can adjust its meta-data modes to optimize GPU space
usage based on specific graph properties.

Tailored optimization: cuSTINGER focuses on improving
edge insertion and deletion. It separates deletion and insertion for
the convenience of parallelization. Receiving a batch of insertion,
the system first conducts a parallel search to eliminate the duplicate
edges and repeated insertion.

4.2 Hornet
Data Structure: Hornet [9] utilizes a series of fixed-size block
arrays to store neighbor lists. This data layout is demonstrated in
Fig. 2 (b). The block sizes are defined as powers of two (e.g., 1, 2,
4, 8, etc.). Hornet ensures that each neighbor list is stored in the
smallest block that accommodates it. For instance, upon inserting a
new edge to a neighbor list of 2 elements, the revised list will be
transferred to a block array with a block size of 4. Hornet maintains
two auxiliary structures to boost insertion. First, Hornet speeds up
the discovery and recovery of empty blocks using a vectorized bit
tree. Second, Hornet maintains a collection of B+ trees to check
the availability of block arrays faster. Each B+ tree is dedicated to
managing a block array of a specific block size.

Memory Management: At the initialization stage, Hornet
reserves substantial memory for block arrays, which is managed by
its memory pool. When an updated list overflows, a new block is
assigned and Hornet must copy old data to this block. If no available
block exists, a new block array will be allocated.

Tailored optimization: Hornet operates under the assumption
of non-overlapping updates and queries, managing them sequen-
tially. For updates, it employs a bulk synchronization approach to
optimize parallelism.

Table 3: Comparison of design decisions

systems Basic structure Pre-alloca Re-orgb Extc
cuSTINGER [29] adj × × ✓
faimGraph [65] adj ✓ × ×
Hornet [9] adj ✓ ✓ ✓
Gunrock [62] hash + adj × × ✓
GPMA [56] CSR + PMA × ✓ ✓
LPMA [71] CSR + PMA × ✓ ✓
a pre-allocate a large amount of memory
b move data on-the-fly for reorganization
c extension when overflow

4.3 Gunrock
Data structure: Originally, Gunrock [62] works as a GPU-based
graph processing framework designed for static graphs. The de-
velopers integrated their GPU-based hash table [4] into Gunrock
by modifying the graph storage to accommodate dynamic graph
workloads, as shown in Fig. 2 (c). A vertex dictionary maintains
pointers to neighbor lists stored as hash tables. The hash table,
called Slab Hash [4], employs a fixed number of N buckets arranged
in consecutive memory locations within a direct-address table.

Memory management: Initially, hash buckets do not have
any successors. When a hash collision occurs and a bucket lacks
sufficient space to accommodate additional elements, the system
automatically allocates a new bucket. It then updates the successor
pointer of the full bucket to direct to the newly allocated bucket,
thereby establishing the first N buckets as the head nodes of N
interconnected linked lists. The process of bucket allocation is
managed by a memory manager, which governs a hierarchical
memory structure comprising multiple memory pools.

Tailored optimization: Gunrock prioritizes the optimization
of edge insertion and deletion primitives. Its implementation relies
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on warp-level primitives for efficient data communication and syn-
chronization. Gunrock operates under the assumption that each
thread handles a single edge insertion task. Edges sharing the same
source vertex are grouped for processing in a coalesced replace
operation on the relevant hash table. Deleted edges are marked
as invalid without immediate removal. Marked edge locations are
treated as non-empty during edge insertion and are subsequently
cleared from the data structure.

4.4 faimgraph
Data structure: Fig. 2 (d) gives a demonstration of faimgraph
[65], which is an improved version of aimgraph[66]. Regarding
vertex data, they are stored in a dynamic growing array within
faimgraph. Every vertex contains a collection of workload-related
parameters and a reference to its corresponding neighbor list. As
for edge data, faimgraph’s data storage architecture resembles that
of adjacency lists. Each neighbor list resides on one or more des-
ignated pages. Pages are of a fixed size, and multiple pages form
a linked list to accommodate neighbor lists larger than a single
page. Besides, faimgraph features auxiliary structures to expedite
memory reclamation. Specifically, faimgraph utilizes two indices
to cache freed vertex blocks and edge pages, respectively. When
seeking available space, a thread attempts to obtain a portion of
free space from the queue-like indices before resorting to initiating
a direct allocation request.

Memory management: The primary focus of faimGraph is
reducing the overhead associated with memory allocation and deal-
location on GPUs, as these processes often disrupt the execution
of GPU kernels due to requiring CPU intervention for synchro-
nization. During system setup, faimGraph allocates a substantial
amount of memory and structures it using a tailored memory man-
agement approach. Thus, all memory operations occur on the GPU
side, eliminating the need for reallocation or re-initialization once
faimGraph is running.

Tailored optimization: For vertex insertion and deletion, faim-
graph employs a method called reversed duplicate check. This in-
volves assigning each thread a vertex ID and tasking it with per-
forming a binary search among the vertices scheduled for insertion.
Due to the significantly smaller number of vertices scheduled for
insertion compared to the total graph vertices, conducting a binary
search among them is efficient, and the increase in search operations
can be offset by leveraging extensive parallel processing capabilities.
For edge insertion and deletion, faimgraph pre-processes an update
batch to group operations based on source vertices and eliminate
duplicates within the batch.

4.5 GPMA
Data structure: As shown in Fig. 2 (e) GPMA [56] utilizes the
Packed Memory Array (PMA) [8] to manage neighbor lists within
CSR representations for dynamic graphs. PMA maintains an array
of fixed-size segments while incorporating gaps dynamically orga-
nized by a self-balancing tree to facilitate rapid updates without
violating a predefined threshold of load factor in each segment.
GPMA extends the functionality of PMA to the GPU platform, em-
ploying it to store arrays in a self-balancing CSR-like structure.
As mentioned before, LPMA adopts a tiered tree-like structure.

Developers of LPMA align their design with the GPU’s memory
hierarchy, using shared memory to store the first few levels of
the self-balancing tree, because the first few levels are accessed by
almost every update, thus being the most frequently accessed data.

Memory management: As the number of inserted edges in-
creases, causing GPMA’s load factor to exceed a predefined thresh-
old, an expansion process is initiated. During expansion, a request
for additional memory space is made, and the complete data struc-
ture is relocated to this new memory location. Expansion becomes
inefficient when dealing with high-volume update operations in
dynamic graphs.

Tailored optimization: GPMA employs a bottom-up update
strategy for updates, starting with finding a leaf layer segment
to be inserted. During each segment update, a thread or a warp
(depending on the segment size) is assigned to manage the update
process. GPMA initiates an expansion process that doubles the size
of the original sorted array. Subsequently, GPMA combines all edges
from the original array with the inserted edges and redistributes
them into segments in the expanded array.

4.6 LPMA
Data structure: LPMA [71] represents an enhanced version of
GPMA, illustrated in Fig. 2 (f), where the block array containing
edge data is partitioned into multiple levels. Successive levels in-
crease in size exponentially based on a specified integer exponent
(typically 2) within LPMA.

Memory management: Expansion in LPMA involves allocat-
ing a new level and appending it to the existing LPMA tree instead
of reallocating a doubled continuous space as done in GPMA. This
method reduces memory allocation costs and mitigates memory
fragmentation problems encountered in GPMA. Following expan-
sion, LPMA implements a top-down re-balance strategy that no-
tably reduces unnecessary re-balancing operations. In contrast to
GPMA’s global re-balancing approach involving all edges across
the entire expanded space, LPMA focuses on re-balancing edges
within necessary segments.

Tailored optimization: LPMA processes queries and updates
in a batch sorted by their corresponding timestamps. It separates
the batch into an update group and a query group and deals with the
update group before the query group. LPMA stores edges with the
same source and destination but different timestamps during batch
execution to ensure consistency and merge them after finishing a
query batch.

5 EXPERIMENT
5.1 Experiment Setup
Environment. All experiments are conducted on a Linux server
with two Intel(R) Xeon(R) Gold 5218 CPUs and enough main mem-
ory (1T) to store the entire graph data. GPU-based systems are
tested using Nvidia A100s with 40GB of GPU memory. We use the
CUDA 11.3 toolkit to compile the GPU projects.

Compared Systems. We evaluate six state-of-the-art DGM so-
lutions on the GPU: cuSTINGER[29], Hornet[9], faimGraph[65],
Gunrock[62], GPMA[56], and LPMA[71]. We collect codes from their
authors for performance evaluation. We also include a CPU-based
method[25] that achieves the best performance in our evaluation
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against other CPU-based systems to provide an absolute baseline.
Some DGM systems (i.e., cuSTINGER) do not provide inherent sup-
port for the evaluated analytic workloads, so we implement these
algorithms on top of them by ourselves.

Settings. In all evaluations, once inserted, graph data including
topology data and attributes are entirely stored on GPU memory.
Operation batches including updates and queries are stored in CPU
memory at first and then transferred to GPU kernels. An edge
update consists of two vertex IDs, consuming 8 Bytes (two 32-bit
unsigned integers). The time for cross-device data transfer of data
graphs and operation batches is excluded in the reported latency.

Table 4: Details of Datasets

dataset |𝑉 | |𝐸 | ADa source
road 1.3M 1.9M 1.39 road network
Wiki 1.1M 3.3M 2.9 web
Patent 3.7M 17M 4.38 citation
Pokec 1.6M 30M 18.75 social
LiveJournal 4.8M 68M 14.3 social
Stack 2.6M 36M 13.93 web
Graph500 1M 125M 124.41 synthetic
Orkut 3M 117M 38.14 social
LDBC-SF30 106M 701M 6.61 synthetic
uk2005 39M 936M 23.79 web
LDBC-SF100 337M 2.2B 6.52 synthetic
a Average degree

Datasets. We choose datasets that are commonly used in previ-
ous work, obtained from SNAP1, Graph500 benchmarks2 and LDBC
SNB interactive benchmark[52]. They cover both real-world and
synthetic datasets. The number of edges varies from millions to bil-
lions to evaluate the scalability of the compared system. The details
of our datasets are given in Table 4. We use real-world graphs from
different sources, including road networks, web pages, citation net-
works, and social media. One of the synthetic datasets we use is a
power-law graph generated by RMAT from Graph500 benchmarks.
We also include a data generator used in the LDBC SNB interac-
tive benchmark, which simulates a real-world social network. The
tested datasets are representative, covering highly skewed, uniform-
distributed, and massive graphs. For datasets without timestamps
attached, we assign a random timestamp to each edge, as done in
most existing work.

5.2 Update performance
In this section, we vary batch sizes from 104, 105, to 106, adhering to
the prevalent configurations in existing work, and evaluate systems’
throughput, scalability, and stability. When the batch size is smaller
than 104, gaps between these systems are too small. When the
batch size is larger than 106, it may cause failure for some systems
(cuSTINGER and Hornet). Besides, we include two batch settings
different from any previous studies. First, we construct dynamic
workloads with batches of different sizes using a time-window-
based method. Second, we test existing systems’ performance to
1http://snap.stanford.edu/data/
2https://graph500.org/

(a) Peak throughput with fixed batch sizes of 104 , 105 , to 106

(b) Latency with dynamic batch sizes. Suffix “-h” means hot periods and “-q” refers to
quiet periods.

Figure 3: Update performance of different batch size settings.

handle update-query mixed workloads with various update/query
ratios.

5.2.1 Update-only workloads. We test all GPU-based systems and
the CPU-based baseline with three batch sizes (104, 105, to 106) and
calculate peak throughput in Operation Per Millisecond (OPMS), as
reported in Fig.3(a). Specifically, Gunrock outperforms the competi-
tors on all datasets, achieving an advantage from 3.55× to 122.6×
against other systems, whose advantage is predictable because it is
the first to leverage hash tables to store neighbor lists. In Gunrock’s
implementation, each vertex has an independent hash table to keep
its neighbors, which is optimized for GPU processing and features
independent updates of different hash buckets. faimgraph, LPMA
and Hornet achieve similar throughput but only Hornet achieve
peak performance at smaller batch size. GPMA and cuSTINGER have
trouble with large graphs, throwing errors, or showing performance
loss. Besides, on those more skewed graphs, cuSTINGER are some-
times beaten by the CPU baseline, while other systems prevail the
baseline. Unlike Gunrock, other systems split the neighbor lists into
pages or block arrays with reserved space for data to be inserted.
This brings two trade-offs in DGM performance tuning. First, with
more new edges, the reserved space may run out or become im-
balanced. Then, expansion or re-organization of data structures
becomes necessary but they will introduce overhead coming from
data movement, memory allocation, and synchronization. This is
the reason why Hornet and cuSTINGER fall behind when graph size
grows and thus expansion is more frequent. However, we can not
relentlessly allocate more space at first, which may waste precious
GPU memory. Second, keeping sorted neighbor lists brings con-
venience to list intersections, as shown in Fig. 8. However, it may
turn out to be penalties for updates due to more data movement
and complicated conflict control.
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Figure 4: Normalized latency increases as the batch size
grows.

In Fig. 3(b), we show the latency for processing all dynamic-size
batches. To generate workloads with various batch sizes, we use
a time window to partition a stream of update operations with
their timestamps. Specifically, suppose the time range of a dataset
is [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ], where 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 are the smallest and largest
timestamps, respectively. We divide the time range into 𝑔 time
windows with equal time intervals so that updates that fall into
the same time window form a batch. We control the value of 𝑔 and
timestamp distribution to generate hot periods with mostly large
batches and a quiet period with more small batches. Experimental
results show that Gunrock still prevails due to its suitability for
parallel updates. Hornet and cuSTINGER have trouble dealing with
hot periodswhile LPMA, GPMA, and faimgraph is faster in hot periods
than quiet periods. These observations confirm our statements in
the last paragraph.

5.2.2 Scalability over batch size. Apart from comparing the latency,
we are also interested in scalability over batch size. An essential
advantage of GPU-based DGM systems is parallelism, and a larger
batch should bring more chances to leverage more threads and
achieve higher memory bandwidth utilization.

In Fig. 4, we choose a large dataset and showhow latency changes
as batch size increases. When the batch size increases by 10×, LPMA
shows the smallest latency growth thanks to its redundant-free re-
balance and update strategies. The scalability of Hornet and GPMA
is worse than other systems. When a certain amount of edges has
been inserted, Hornet has to find a new block to store the enlarged
neighbor list, and then move the data to the new place. GPMA needs
to invoke a re-balance procedure to rearrange data to ensure that
reserved space in every block is in a pre-defined threshold. Mem-
ory allocation and data movement inside the data structure will
seriously stall active threads. As for Gunrock, concurrent access to
hash tables leads to more stalled random IO requests, so it suffers
from more performance loss as the batch size grows from 104 to
105, but the growth of its latency plateaus because of achieving
higher parallelism.

5.2.3 Stability. Apart from update speed and scalability, desired
DGM systems should strive to minimize substantial variations in
latency across various batches, especially as long-term data man-
agement services. Usually, the significant fluctuation in latency may
bring trouble to the downstream applications, ultimately compro-
mising the entire system’s performance. We report the 90 percentile
latency of every 10 consecutive batches, as shown in Fig. 5. From
the latency curves, we have three observations.

Figure 5: Stability of update latency on Orkut.

First, among the compared systems, Gunrock and faimgraph
have the best stability, whose standard deviations of 90 percentile
latency are low in Fig. 5. This is because faimgraph allocates a large
amount of memory beforehand and designs a memory management
technique, which entirely runs on the GPU side to avoid interven-
tion or reallocation procedures from the CPU host. faimgraph
organizes the neighbor lists as fixed-size pages, so allocating a new
page during insertion is cheap. Gunrock uses hash tables based on
an array of hash buckets and linked lists for collision, so insertions
are mapped to random locations, and extending a new node in a
linked list is less costly. Second, the stability of compared systems
deteriorates to different extents as the graph data scale grows. For
example, when more data have been stored, Hornet has a higher
chance to invoke data movement, migrating the neighbor list to
bigger memory blocks. Third, we can see obvious crests on the
latency curves of cuSTINGER, GPMA, and LPMA. cuSTINGER uses a
brute strategy of over-allocating the neighbor lists. If a neighbor
list is full, cuSTINGER re-allocates double-sized memory space and
moves the original data to the new space. GPMA and LPMA apply a
tree-based structure to balance the reserved empty slots, but its
expansion becomes a bottleneck. As an improved version of GPMA,
LPMA finishes the re-organization faster because it is a layered data
structure, so fewer data are influenced and moved at each expan-
sion.

5.2.4 Impact of skewness. In update-only evaluations, we notice
that system performance varies in data graphs of the same scale
but with different levels of skewness. Therefore, we investigate the
impact of skewness in this subsection. We generate a set of data
graphs with the same number of edges but various skewness by re-
distributing edges in a highly skewed data graph, and report update
latency normalized by original data in Fig. 6. With the diminution
of skewness, latency is observed to decrease across all comparing
systems because large neighbor lists lead to more frequent ex-
pansion (cuSTINGER), worse workload balance (faimgraph), more
re-organization (Hornet, LPMA and GPMA), and more hash conflicts
(Gunrock). Among these factors, frequent expansion leads to the
most severe performance loss. Besides, this trend is also clear in
tree-like data structures, such as LPMA and GPMA. Large neighbor
list sizes (i.e., higher skewness) result in more insertion to some
particular regions of the entire pre-allocated space, exceeding the
density threshold and triggering expensive local re-organization.

5.2.5 Mixed workloads. Fig. 7 demonstrates system performance
on update-query mixed workloads. To generate such workloads,
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Figure 6: Change of normalized update latency for different
levels of skewness

we first choose three update-query ratios: 25%, 50%, and 75% up-
dates. The selection of query/update ratios is based on an analysis
of previous work [53] from the industry and well-known graph
benchmarks such as LDBC SNB interactive workloads[52]. We use
edge existence check and neighborhood scan as possible queries
here. Apart from LPMA, other existing systems do not provide na-
tive support for mixed workloads, suffering from the overhead of
switching between update and query logic. Therefore, undoubt-
edly LPMA is the champion in mixed workload evaluation, which
reorders a mixed batch and conducts updates before queries to
avoid contention. However, reordering is a straightforward opti-
mization and can be easily adopted in other systems but we can
not see more sophisticated optimizations in existing systems. Thus,
studies in mixed workload support on GPUs are inadequate and
can be a promising future topic.

Figure 7: Performance on mixed workload with various
update-query ratios.

5.3 Query performance
We generate workloads for different primitives in the following
ways. For edge existence checks, we sample vertex pairs with equal
probability to generate a uniform workload. Then, we sample ver-
tex with 𝑃 (𝑣) = |𝑑 (𝑣) |

2 |𝐸 | to generate a workload influenced by the
skewness of data graphs, where vertices with higher degrees are
more likely to be accessed. We uniformly sample vertices for 1-hop
neighborhood scans, 2-hop neighbor scans, and clique searches and
require the system to return 1-hop or 2-hop neighbor lists or clique
collections containing a given vertex. For cycle detection, we use
uniformly distributed vertex pairs in the edge existence check test
and ask systems whether they are in at least one cycle. We limit
the size of cliques and cycles to 4 by default.

5.3.1 Edge existence check: Fig. 8(a) and 8(b) compares the through-
put of the edge existence check. Gunrock is far ahead on a uniform

(a) Edge check (uniform) (b) Edge check (skewed)

(c) 1-hop neighborhood scan (d) 2-hop neighborhood scan

(e) Cycle detection (f) Clique

Figure 8: Performance of different query primitives.

workload, while on a skewed workload, its lead is even bigger be-
cause large neighbor lists bring more cost to scan or conduct binary
searches on neighbor lists than hash tables, not to mention more
queries accessing large neighbor lists. Hence, the advantage of hash
tables against arrays in edge existence check is obvious. Besides,
among array-based solutions, those maintaining sorted neighbor
lists for fast searching achieve higher throughput than others.

5.3.2 1-hop and 2-hop neighborhood scan: Fig. 8(c) gives results of
1-hop neighborhood scans, which is quite the opposite of our edge
existence checks. Gunrock performs the worst on neighborhood
scans and cuSTINGER, which is not competitive for update latency
and edge existence check, achieves the best throughput on some
datasets. Other systems are close in terms of 1-hop neighborhood
scan performance. Results in Fig. 8(d) involving 2-hop neighborhood
scan show a similar situation where performance gaps between
Gunrock and other systems are even larger. Such performance loss
of Gunrock results from its hash-based data storage, which requires
extra random memory access to jump via pointers and overhead to
skip empty slots when scanning a neighbor list.

5.3.3 Clique search and Cycle detection: Fig. 8(f) and 8(e) demon-
strate the results of clique search and cycle detection tests. We
discuss these two queries together because they have similar be-
havior of depth-first-search in our implementation. A clique search
also runs neighbor list intersections to filter out neighboring ver-
tices unlikely to be in a clique. Although the overall performance
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ranking is the same as one in neighborhood scant tests, Gunrock
closes the gaps in both queries because, for cycle detection, we can
stop searching as long as we find one cycle, and, for clique search,
list intersections using pre-constructed hash tables can achieve
high parallelism. Another interesting observation is that systems
keeping sorted lists perform better on clique search because they
facilitate faster list intersections.

5.4 Performance of Analytic Workloads
We select three representative algorithms (BFS, Pagerank, and Be-
tweenness Centrality) to compare the analytical performance of ex-
isting systems. Some tested systems, by default, initially transform
the data structure into a static layout for static graphs (typically
CSR). They then essentially execute the workload based on a static
layout. Hence, we incorporate the time for transforming data rep-
resentations into latency as penalties. However, in circumstances
where updates are less often, conversion to static structures is not
a bad idea.

5.4.1 BFS. BFS tests the systems’ capability to scan the neighbor-
hood of vertices, which is selected by most existing GPU-based
DGM solutions as an analytical workload in their experiments.
Fig. 9(a) presents the latency for BFS. The results correspond with
the evaluation of neighborhood scans to some extent. Generally,
GPMA, LPMA and cuSTINGER have the best performance on different
datasets, while the gaps among other systems are small. Suffering
from penalties of CSR conversion, Gunrock can be slower than
other systems, especially for larger graphs.

(a) BFS

(b) Pagerank (c) Betweenness Centrality

Figure 9: Performance of BFS, Pagerank, and Betweenness
Centrality

5.4.2 Pagerank. Pagerank also launches neighborhood scans, but
unlike BFS, Pagerank accesses more data because it reads the neigh-
borhood of every vertex at every iteration. What’s more, the order
of accessing the neighborhood can be fixed, usually following the
order of the vertex IDs (i.e. from 𝑣0 to 𝑣 |𝑉 | ). Fig. 9(b) demonstrates

the latency comparison for Pagerank. GPMA, LPMA, and cuSTINGER
are still the best three systems with very close performance. Their
advantage against other systems is larger than that in the BFS test
because they store the neighbor lists in the same order as the vertex
IDs, which improves their memory access locality. Gunrock is again
of the worst performance due to its trouble in neighborhood scan.

5.4.3 Betweenness Centrality. Betweenness Centrality has differ-
ent behaviors from BFS and Pagerank. The major computational
cost of Betweenness Centrality comes from calculating amounts
of the shortest path passing a specific vertex, which can be seen
as conducting BFS with a vertex as a source. The algorithm com-
pares distances between two visited vertices and the source ver-
tex so it requires access to edge attributes. As shown in Fig.9(c),
Gunrock narrows its gap because of its efficiency for acquiring edge
attributes.

5.5 Hardware utilization
5.5.1 Memory consumption. Given thatmemory resources onGPUs
are more limited and expensive compared to CPU memory, a DGM
system compromising memory efficiency in favor of throughput
too much would not constitute a desirable design. As shown in
Fig 10, all systems lead to different levels of memory increase com-
pared with compact CSR. cuSTINGER usually has a small memory
footprint because it only expands a neighbor list when it is almost
full. However, its memory efficiency is severely influenced by ex-
pansion. If the last few insertions to a list trigger an expansion, its
memory footprint will grow significantly. Gunrock requires extra
pointers to maintain hash tables. Hornet and faimgraph use ag-
gressive memory management strategies, allocating a large portion
of memory in advance and maintaining extra pointers or auxiliary
structures. Hornet guarantees that a neighbor list is kept in one
fixed-size block, whose size is extended by a power of 2 when a
neighbor list violates its size limit. Therefore, it consumes more
memory especially when large neighbor lists exist.

Figure 10: Memory inflation rate against CSR

5.5.2 Roofline analysis. The roofline model [64] is famous for its
effectiveness in investigating bottlenecks in hardware resources
like compute units, DRAM, and Caches. No previous studies have
conducted such analysis to figure out possible optimization of re-
source utilization. We use Nvidia’s official profiling toolchains to
obtain kernel execution metrics including integer operations count,
total bytes from HBM, and execution duration to build a roofline
model. As shown in Fig. 11, existing systems are memory-bound
and can not make full use of memory bandwidth for two reasons.
First, some systems involve hash addressing, backtracking in a tree
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structure, or jumping via pointers, all of which lead to random ac-
cesses. Second, incoming insertions may cause memory allocation
and block computation logic.

Figure 11: Roofline analysis on batch updates

5.6 Extensions
5.6.1 Multi-GPU support. Modern computation platforms often
have more than one GPU, but existing systems do not pay atten-
tion to DGM on multiple GPUs, which is a research gap worthy of
investigation. Hence, we present experiments in Fig. 12 by incorpo-
rating existing systems and graph partitioning methods[28, 40, 42].
If an application requires mostly updates and simple queries like
edge existence checks, a naive partition-based method works well,
as in Fig. 12 read-only workload and edge existence checks suffer
from small performance loss. However, matching complicated pat-
terns like clique and 2-hop neighbors turns out to be costly and
can even be slower than single-GPU implementation. Therefore,
designing multi-GPU DGM systems requires careful design when
complex computation is needed, where the key problem is dealing
with cross-partition edges because they are likely to be accessed in
complicated pattern matching but not in edge existence checks.

Figure 12: Acceleration ratios of primitives of single-GPU
against 4-GPU implementations

5.6.2 Concurrency support. As mentioned in Section 5.2.5, only
one existing system LPMA provides native support for a mixed work-
load by separating updates and queries to avoid contention. This
is a tricky optimization but we are interested in how GPU-based
DGM systems can achieve concurrency support with overlapping
queries and updates, which is a common topic in studies on con-
current data structures and databases. That is the reason why we
carry out the experiment in Fig. 13, where we modify faimgraph
and LPMA, implementing lock mechanisms of different granularity
using atomic operations in CUDA. We add a coarse-grained lock to
the entire balanced tree in LPMA but fine-grained locks to each data
page in faimgraph. Relative runtime of concurrent LPMA increases

significantly but faimgraph achieves better mixed workload per-
formance than its original version. Hence, data structures that are
friendly to fine-grained concurrency control can be promising.

Figure 13: Performance change of LPMA and faimgraph with
lock mechanisms for concurrency control

6 CONCLUSIONS
In this paper, we study the performance of six GPU-based DGM
systems, analyzing the motivation and advantages of each design.
We also conduct experiments on both real-world and synthesis
graph datasets, scaling from millions to thousands of millions of
edges. We use a unified model, metrics, and workloads to evaluate
update latency, resource utilization, and memory consumption in a
fair condition. Therefore, we can have a more comprehensive view
when comparing existing systems.

Recommendations and future direction: We have the fol-
lowing recommendations on design choices or unsolved problems
for future studies. (1) If the workload is update-heavy, hash tables
will be a good alternative to array-like structures to store the neigh-
bor lists. Users can lessen the disadvantage of neighborhood scan
by adopting a more compact hash table design (i.e., higher load
factor, fewer pointers). (2) The most important factor for choosing
a proper DGM system is the behavior of workloads. For example,
keeping sorted arrays can benefit list intersection but slow down
updates. Since there is no one-size-fits-all design, using hybrid
data structures can be a way out. (3) If real-time responses are not
strictly required, or the overlapping of updates and computation
is small, transferring the DGM structure to a compact data layout
will be a good idea. (4) Be careful when you decide to rearrange
the data during execution, which results in unstable performance.
Based on existing studies, allocating a large space and designing cus-
tomized memory management is helpful. (5) Existing studies focus
on exploiting peak performance, and thus some settings like batch
updates without overlapping with queries may not be practical.
Concurrency control and efficient query-update mixed workload
are worth considering in future work to implement truly useful
DGM systems on GPUs. (6) Hardware-related metrics like mem-
ory hierarchy and resource utilization are not well investigated in
current systems. Insights from related communities like database
design should provide valuable inspiration for us to develop a better
GPU-based DGM system.
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