
PRICE: A Pretrained Model for Cross-Database
Cardinality Estimation

Tianjing Zeng#
Alibaba Group, RUC

Junwei Lan#
Alibaba Group, USTC

Jiahong Ma
Alibaba Group, RUC

Wenqing Wei
Alibaba Group, USTC

Rong Zhu∗
Alibaba Group

Yingli Zhou
Alibaba Group, CUHK(SZ)

Pengfei Li
Alibaba Group

Bolin Ding∗
Alibaba Group

Defu Lian∗
USTC

Zhewei Wei∗
RUC

Jingren Zhou∗
Alibaba Group

ABSTRACT
Cardinality estimation (CardEst) is essential for optimizing query
execution plans. Recent ML-based CardEst methods achieve high
accuracy but face deployment challenges due to high preparation
costs and lack of transferability across databases. In this paper, we
propose PRICE, a PRetrained multI-table CardEst model, which
addresses these limitations. PRICE takes low-level but transferable
features w.r.t. data distributions and query information and ele-
gantly applies self-attention models to learn meta-knowledge to
compute cardinality in any database. It is generally and adaptively
applicable to any unseen new database to attain high estimation
accuracy, while its preparation cost is as little as the basic one-
dimensional histogram-based CardEst methods. Moreover, PRICE
can be finetuned to further enhance its performance on any specific
database. We pretrained PRICE using 30 diverse datasets, com-
pleting the process in about 5 hours with a resulting model size
of only about 40MB. Evaluations show that PRICE consistently
outperforms existing methods, achieving the highest estimation
accuracy on several unseen databases and generating faster exe-
cution plans with lower overhead. After finetuning with a small
volume of database-specific queries, PRICE could even find plans
that were very close to the optimal ones. Meanwhile, PRICE is
generally applicable to different settings such as data updates, data
scaling, and query workload shifts.

PVLDB Reference Format:
Tianjing Zeng, Junwei Lan, Jiahong Ma, Wenqing Wei, Rong Zhu, Yingli
Zhou, Pengfei Li, Bolin Ding, Defu Lian, Zhewei Wei, Jingren Zhou. PRICE:
A Pretrained Model for Cross-Database Cardinality Estimation. PVLDB,
18(3): 637 - 650, 2024.
doi:10.14778/3712221.3712231

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/StCarmen/PRICE.

∗ Corresponding authors, primary contact email address red.zr@alibaba-inc.com
The two authors contribute equally to this paper.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.
doi:10.14778/3712221.3712231

1 INTRODUCTION
Cardinality estimation (CardEst), which predicts the number of
tuples of each SQL query before execution, plays a crucial role in
query optimization in DBMS. Accurate CardEst could significantly
help to identify highly efficient execution plans, thus enhancing the
performance of DBMS. As a result, CardEst methods have been ex-
tensively studied in the literature, but until now, their performance
is still far from satisfactory [29].
Background and Challenges. Traditional methods, including
one-dimensional (1-D) histograms [63, 65] and sampling [32, 45],
are widely applied in commercial and open-source DBMSs [21, 51,
64, 66]. They only require gathering statistical features, i.e., the 1-D
histogram for each attribute, and thus, they are friendly to deploy
for any new database. However, their reliance on oversimplified
models and unrealistic assumptions on data distributions often leads
to poor estimation quality [81, 87]. To address these limitations, a
surge inML-basedmethods has been proposed in recent years. They
either directly learn to model the joint probability density function
(PDF) of data to compute cardinalities (data-drivenmethods [70, 87])
or build models mapping featurized queries to their cardinalities
using collected query workload (query-driven methods [22, 23])
or both (hybrid methods [47]). Although existing benchmarks and
evaluations [29, 39] have verified that these ML-based methods
could attain high accuracy to find better execution plans, their
explicit shortcomings still prevent them from being truly applicable:

1) These methods are all tailored to specific datasets and not
transferable across different databases. Data-driven approaches
model the specific underlying data distribution for each dataset.
Query-driven approaches typically represent features (e.g., the val-
ues of attributes or table names) as hard-encoded vectors, which
can not be resolved in other datasets.

2) The preparation cost of existing ML-based methods is much
higher than traditional CardEst methods. For each new database,
they are required to collect training data, i.e., the sampled tuples in
data-driven methods and the executed query workload in query-
drivenmethods, tune hyper-parameters, train the models, andmain-
tain the models for inference, which is time and space-consuming.

3) The performance of these ML-based methods is not stable [29,
39]. Data-driven methods often have prior assumptions on data dis-
tributions (e.g., DeepDB [36] assumes attributes are not highly cor-
related), while query-drivenmodels can not performwell on queries
having distinct distributions with the training workload [87]. Some
methods [29, 39] can not well adapt to dynamic settings.

637

https://doi.org/10.14778/3712221.3712231
https://github.com/StCarmen/PRICE
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712231
https://www.acm.org/publications/policies/artifact-review-and-badging-current

In light of these issues, what we desire is a CardEst method that
could be effortlessly deployed on any unseen new database with
minimal preparations (akin to traditional methods) while still main-
taining high but stable accuracy comparable to ML-based methods.
Motivations and Our Contributions.Wenote that there has been
some exploration into developing general models for cost estima-
tion [15, 33–35] or single-table CardEst [52], but our goal is to
resolve the most practical, but also complex, CardEst on multi-table
join queries. Inspired by the success of pretrained models in NLP,
such as BERT [20] and ChatGPT [16]. They organize information
hierarchically from the basic embedding of words (a.k.a. tokens) to
complex semantic representations to tackle numerous NLP tasks
simultaneously. In this paper, we lead the pretrained model into
multi-table CardEst and propose PRICE, a PRetrained multI-table
CardEst model that is universally appliable to any database.

Similar to NLP pretrainedmodels, our PRICE also apply low-level
but transferable features to learn high-level intermediate represen-
tations for CardEst. From a statistical view, the cardinality of any
SQL query could be obtained by fetching the probability of the
range specified by its filtering predicates on the joint PDFs of at-
tributes across multiple tables. Therefore, the key tasks are selecting
proper features, designing mechanisms to represent the joint PDFs,
and fetching the probability by filtering predicates.

To this end, we leverage simple features in PRICE, including the
value distribution of each attribute (represented as 1-D histogram),
the distribution of scaling factors of each join condition 𝑇 ⊲⊳ 𝑆 (i.e.,
how many tuples in 𝑆 are joined for each value in 𝑇 , also repre-
sented as 1-D histogram) and some characteristics of each filtering
predicate, as basic tokens in our pretrained model. Notably, the
feature construction time of our PRICE is as low as the traditional
1-D histogram-based methods. Meanwhile, unlike existing CardEst
methods, which are learned to fit each specific database and/or
query workload, the feature representations in PRICE maintain the
same semantics across different databases.

Central to our approach is a powerful self-attention mechanism
that captures the meta-knowledge necessary for accurate CardEst.
This mechanism adaptively assigns weights to tables and attributes
based on their relevance to the final cardinality, providing cru-
cial insights into token significance. During the fusion of multiple
tables, PRICE adjusts its attention weights according to the dis-
tribution of the joined tables, ensuring a nuanced representation
of the joint PDFs. This adaptability enables PRICE to effectively
simulate the cardinality estimation process by condensing high-
level embeddings that reflect both the backbone information of
table joins and the intricate details required for filtering probabili-
ties. Consequently, the final cardinality is accurately derived from
these embeddings, making PRICE broadly applicable across various
databases with minimal adjustments.

Due to the transferable features and attentionmechanisms, PRICE
can be trained on diverse databases with varying joint PDFs and
filtering conditions, allowing it to be adaptively applied to any data-
base with stable, reliable performance. For training, we gather a
diverse set of 30 datasets from various domains, generate 5 × 104
training queries on each of them, and collect their true cardinality
for model training. This collection could serve as a new comprehen-
sive benchmark for CardEst. On a commonmachine, our pretraining
consumes only around 5 hours, which results in a model with a

size of around 40MB. Moreover, the model could be finetuned over
each specific database to improve its accuracy further.

By comprehensive evaluations in actual DBMS (PostgreSQL), we
find that PRICE significantly outperforms other CardEst methods.
The end-to-end execution time of the query plans generated by
PRICE is consistently better than the original PostgreSQL and com-
parable to the advanced ML-based methods. After finetuning, the
performance of PRICE is even close to the optimal plans. Mean-
while, we also find that PRICE is generally applicable to any new
databases and different settings, i.e., data updates, data scaling, and
query workload shifts.

In summary, our main contributions are listed as follows:
1) We design PRICE, a pretrained multi-table CardEst model

that can be easily deployed on any new database with minimal
preparations while preserving stable and high estimation accuracy.
(in Sections 3 and 4)

2) We collect a new comprehensive benchmark for CardEst and
carefully train PRICE to be applicable. (in Section 5)

3) We conducted extensive experiments to evaluate the perfor-
mance of PRICE in various settings, confirming its effectiveness,
generality, and robustness. (in Section 6)

2 PRELIMINARIES
In this section, we formalize the CardEst problem and review cur-
rent CardEst methods. Based on this, we summarize some key
findings that inspire our work.
CardEst Problem. A database 𝐷 comprises a set of tables 𝑇 =

{𝑇1, . . . ,𝑇𝑁 } where each table 𝑇𝑖 contains 𝑛𝑖 attributes as 𝑇𝑖 =

(𝐴𝑖,1, . . . , 𝐴𝑖,𝑛𝑖). In this paper, we assume that each attribute 𝐴𝑖, 𝑗 is
either categorical or continuous, where a categorical attribute falls
into a finite domain Dom(𝐴𝑖, 𝑗) = {𝑐1

𝑖, 𝑗
, . . . , 𝑐𝑑

𝑖,𝑗
} and a continuous

attribute spans in an interval Dom(𝐴𝑖, 𝑗) = [min𝑖, 𝑗 ,max𝑖, 𝑗].
Given a SQL query 𝑄 on database 𝐷 , we seek to estimate the

cardinality Card(𝑄)—the exact number of tuples by executing 𝑄
on 𝐷—without actual execution. Let 𝑄 be the most common select-
project-join (SPJ) SQL queries on table subset 𝑇𝑄 ⊆ 𝑇 with a set of
join conditions 𝐽 and filtering predicates 𝐹 , represented as:

SELECT COUNT(∗) FROM 𝑇𝑄 WHERE 𝐽 AND 𝐹 . (1)

In this paper, we formalize each join condition in 𝐽 as 𝑇𝑖 .𝐴𝑖,𝑥 =

𝑇𝑗 .𝐴 𝑗,𝑦 , which could either be a primary-foreign key (PK-FK) join
or a foreign-foreign key (FK-FK) join. We represent each filtering
predicate as “𝑇𝑖 .𝐴𝑖, 𝑗 op value”, where op ∈ {<, ≥, >, ≤,=} is a com-
parison operator and value is picked from Dom(𝐴𝑖, 𝑗). We reserve
the support for other types of join, e.g., non-equal and non-inner
join, and LIKE queries on string attributes for future work, since
they are not the main focus of the CardEst problem [29, 47].

To formalize the CardEst problem, we consider it from the
statistical perspective. For each SPJ query 𝑄 in Eq. (1), in no am-
biguity, we also use 𝑇𝑄 to denote the joined table accessed by 𝑄 .
Let 𝐴𝑄 be the set of all attributes in 𝑇𝑄 . We can regard each at-
tribute𝐴𝑖, 𝑗 as a random variable defined over its domainDom(𝐴𝑖, 𝑗).
Then, the table 𝑇𝑄 forms a joint probability density function (PDF)
Pr(𝑇𝑄) = Pr(𝐴1,1, 𝐴1,2, . . . , 𝐴𝑖, 𝑗 , . . .) on the domain Dom(𝐴𝑄) =

𝐴1,1×𝐴1,2 · · · ×𝐴𝑖, 𝑗 × · · · . Each record 𝑡 ∈ 𝑇𝑄 can be regarded as an
independent sample drawn from Dom(𝐴𝑄) by Pr(𝑇𝑄). After that,

638

the query 𝑄 can also be represented in a canonical form as

𝑄 = {𝐴1,1 ∈ 𝑅1,1 ∧𝐴1,2 ∈ 𝑅1,2 ∧ · · · ∧𝐴𝑖, 𝑗 ∈ 𝑅𝑖, 𝑗 ∧ . . . }, (2)

where 𝑅𝑖, 𝑗 ⊆ Dom(𝐴𝑖, 𝑗) defines the constraint region specified by
the filter predicate on attribute 𝐴𝑖, 𝑗 and 𝑅𝑖, 𝑗 = Dom(𝐴𝑖, 𝑗) if 𝑄 has
no constraint on 𝐴𝑖, 𝑗 . Then, the probability of a randomly picked
record 𝑡 ∈ 𝑇𝑄 satisfying query 𝑄 is:

Pr(𝑄) = Pr(𝐴1,1 ∈ 𝑅1,1, 𝐴1,2 ∈ 𝑅1,2, . . . , 𝐴𝑖, 𝑗 ∈ 𝑅𝑖, 𝑗 , . . .) . (3)

Obviously, when |𝑇𝑄 | hosts a sufficient number of tuples, we have

Card(𝑄) = Pr(𝑄) · |𝑇𝑄 |. (4)

Analysis of Existing Methods.We summarize existing CardEst
methods developed under various technical paradigms as follows:

Traditional Methods, including histogram [19, 27, 28, 58, 63, 65,
74] and sampling [32, 38, 45, 46, 85], are widely applied in com-
mercial and open-source DBMSs [26, 53, 61, 64]. They are based
on simplified assumptions and expert-designed heuristics and only
require gathering very simple statistical features, i.e., the 1-D his-
togram for each attribute. Hence, these methods are friendly to
deploy for any new database, but their reliance on simplified mod-
els often leads to poor estimation quality [81, 87].

Query-driven Methods attempt to learn the direct mappings
function F : 𝑄 → Card(𝑄). These methods require the collec-
tion of training queries and their corresponding true cardinalities,
which usually take a long time. Classic methods apply queries to
correct and tune histograms [17, 24, 37, 67] or update statistical
summaries [68, 74]. Recent methods leverage advanced ML models,
including DNNs [42, 43, 48, 49, 84], auto-regression [78], KDE [38],
gradient boosted trees [22, 23], etc., to model the complex distribu-
tions and improve the estimation accuracy.

Data-driven Methods are independent of queries. They directly
model Pr(𝑇𝑄) and compute Pr(𝑄) from Pr(𝑇𝑄) to obtain Card(𝑄)
by Eq. (4). These methods involve learning unsupervised models
of the joint distribution of multiple attributes and compute the
cardinality using the models. A variety of ML-based models have
been used in existing work, including the deep auto-regression
model [30, 80, 81] and probabilistic graphical models (PGMs) such as
Bayesian networks (BN) [18, 25, 70, 77], SPN [36, 62], and FSPN [79,
87], to model the joint data distribution.

Later, Hybrid Methods [23, 41, 47, 59, 75] further equip the func-
tion F with additional features on attribute distributions, e.g., the
histogram of Pr(𝐴𝑖, 𝑗) for each attribute in [47], so that it could bet-
ter capture the data distribution information of Pr(𝑇𝑄) and exhibit
better results than purely query-driven methods [84] according to
the benchmark evaluations [29, 72].

While ML-basedmethods achieve high estimation accuracy, their
lack of cross-database applicability limits their practical deployment.
Our goal is to propose a method that is easily deployable on any
unseen database with minimal preparation—merely requiring the
gathering of simple statistical information similar to traditional
methods—while preserving high estimation accuracy comparable
to ML-based approaches. In the following, we present our intuitive
roadmap in Section 3 and discuss its technical details in Section 4.

3 OUR ROADMAP
To lay the foundations of our method, we exhibit the similarities
between NLP tasks and our CardEst problem. Based on this, we
derive the key information to be captured in the CardEst pretrained
model, as well as the suitable tools to acquire such knowledge.
Similarities between NLP Tasks and CardEst Problem. We
note that, our CardEst problem resembles NLP tasks. In NLP tasks,
each word 𝑤 is regarded as the fundamental data unit. Different
combinations of words create texts with distinct semantics. Em-
bedding methods, such as CBOW or Skip-gram [55], map each
word into a vector (token) in the latent semantic space. The em-
bedding vector captures not only the frequency information of
word𝑤 , but also its semantic joint relations with other words, i.e. ,
word co-occurrence in the contextual window. Based on such em-
beddings, the pretrained NLP models are developed to organize
semantic information in a hierarchical manner. They start from
low-dimensional word embeddings (tokens) and learn to capture
complex semantics of phrases, sentences, and entire documents
through extensive training on a large corpus. Such high-level rep-
resentations are then applied to complex downstream tasks, such
as text summarization and translation. Notably, for different word
embeddings and NLP tasks, the pretrained models could apply dif-
ferent coefficients (derived from the learned parameters) to obtain
distinct semantic representations. However, the models’ framework
always remains consistent. As a result, the pretrained NLP models
attain transferability to different texts and NLP tasks.

Similarly, for relational tables, each attribute𝐴𝑖, 𝑗 can be regarded
as a fundamental data unit (comparable to words). For the CardEst
problem, the cardinality of query𝑄 varies as the attributes result in
different joint PDFs Pr(𝑇𝑄). We observe a hierarchical relation from
𝐴𝑖, 𝑗 to Pr(𝑇𝑄). Specifically, on each single table𝑇𝑖 , all attributes are
correlated to form the joint PDF Pr(𝑇𝑖) (analogous to phrases); and
multiple tables are connected (through join conditions on attributes)
to form the joint PDF Pr(𝑇𝑄) on the joined table (analogous to sen-
tences). Therefore, it is also possible to represent the high-order
PDF Pr(𝑇𝑄) using the combination of low-level attribute informa-
tion. For example, for two attributes (or corresponding random
variables) 𝑋 and 𝑌 , the joint probability Pr(𝑋 = 𝑥0, 𝑌 = 𝑦0) of any
point (𝑥0, 𝑦0) could be approximated by combining the probability
on each attribute and adjusted by coefficients, i.e. , Pr(𝑋 = 𝑥0, 𝑌 =

𝑦0) = 𝛼 Pr(𝑋 = 𝑥0) + 𝛽 Pr(𝑌 = 𝑦0) + 𝛾 Pr(𝑋 = 𝑥0) Pr(𝑌 = 𝑦0).
Different correlations between attributes are reflected in the coeffi-
cients (e.g. , 𝛼, 𝛽,𝛾), but the framework of the method for combining
low-dimensional features remains consistent.

This implies that, if we could adaptively adjust the combination
coefficients, the method can be transferred to attributes of different
distributions and/or correlations. Such adaptiveness can be attained
by a pretrained model, which has witnessed enough diversified
data distributions and could learn to produce the corresponding
coefficients with its internal parameters to combine low-level in-
formation into high-order joint PDFs. In the literature works for
CardEst, this finding has been used to combine the attribute-level
information to learn the joint PDF of a single table (IRIS [52]) or
a single dataset with updates (ALECE [47]). While these methods
have demonstrated feasibility in simpler contexts, they can not be
applied to more complex multi-table scenarios. Specifically, IRIS

639

is limited to single-table scenarios with no consideration of the
correlations across tables. ALECE is designed as a soft lookup table
linking SQL queries to the hard-encoded underlying data distri-
bution and cannot adapt to different databases. The details of its
limitations are explained in Appendix E of the full version [5].

In this paper, we consider the pretrained CardEst model for
general multi-table join queries across different databases. It is
more complex than existing methods, as it must: 1) capture the
correlations between attributes in the same single table and across
joined tables at the same time; and 2) be adaptive to the difference
in the database level, i.e. , different number of tables and attributes,
distinct distribution skewness and correlations, and etc. Next, we
present the details of the key information to be captured by the
pretrained model and the proper tools for building our model.
Key Information Captured by the Pretrained Model. By the
above analysis, the CardEst pretrained model learns to represent
the high-level joint PDF Pr(𝑇𝑄) and computes the probability Pr(𝑄)
from Pr(𝑇𝑄) by utilizing a number of features in low-dimensional
space w.r.t. each attribute 𝐴𝑖, 𝑗 ∈ 𝐴𝑄 . To this end, the model needs
to essentially capture three aspects of key information as follows:

1) Correlation factors among attributes. In a database, attributes
in the same or different tables are often correlated with others [29,
47, 87], so we could not simply obtain Pr(𝑇𝑄) as

∏︁
𝐴𝑖,𝑗 ∈𝐴𝑄

Pr(𝐴𝑖, 𝑗).
Instead, we must learn some correction factors to elegantly combine
Pr(𝐴𝑖, 𝑗) on each singleton attribute together to approximate the
joint PDF Pr(𝑇𝑄), e.g., using addition or multiplication with learned
weights to fit the dependency among attributes.

2) Scaling factors among tables. For different tables in a database,
the join operation could also change the joint PDF of attributes. As
we explained earlier, a tuple in a table 𝑇𝑖 may join with a different
number of tuples in another table 𝑇𝑗 . As a result, for each value 𝑣
of any attribute 𝐴𝑖, 𝑗 in 𝑇𝑖 , the occurring probability of 𝑣 in 𝑇𝑖 may
be different from that in 𝑇𝑖 ⊲⊳ 𝑇𝑗 . Therefore, to combine Pr(𝐴𝑖, 𝑗)
together as Pr(𝑇𝑄), we must also consider the correction effects of
the join scaling in our learned weights. This part of information is
not explicitly considered in existing works [47, 52].

3) Filtering factors of predicates. Upon the joint PDF Pr(𝑇𝑄), we
need to extract the probability Pr(𝑄) by the predicates in 𝑄 . Thus,
except simply combining Pr(𝐴𝑖, 𝑗) together in terms of the correla-
tion and scaling effects, by Eq. (2), the learned weights in the model
should also be able to filter Pr(𝐴𝑖, 𝑗) to Pr(𝐴𝑖, 𝑗 ∈ 𝑅𝑖, 𝑗), where 𝑅𝑖, 𝑗
is the constraint region specified by the filter predicate on 𝐴𝑖, 𝑗 .

Notably, the three key factors (namely correlation, scaling, and
filtering) are interdependent, requiring the model to condense their
information altogether. This complexity necessitates implicit learn-
ing through extensive training to ensure adaptability to attributes
and joins with varying levels of correlation and scaling effects.
Tools to Build the Pretrained Model. Although the above task
seems to be very difficult, we borrow the successful experience of
applying the self-attention mechanism [71] in the pretrained NLP
models [16, 20, 50] to fulfill such goals. The self-attention mecha-
nism allows models to learn to concentrate on relevant aspects of
input data while disregarding the irrelevant, thereby mimicking
human cognitive attention processes.

In particular, let 𝑿 = [𝒙1, 𝒙2, . . . , 𝒙𝑛]⊤ ∈ R𝑛×𝑑 be input data
with 𝑛 rows, where each row 𝒙𝑖 represents an input token (e.g., a

word embedding) with the same dimension 𝑑 . The self-attention
mechanism transforms this input matrix into three matrices: Key
(𝑲), Query (𝑸), and Value (𝑽) through learned weight matrices:
𝑲 = 𝑿𝑾𝐾 , 𝑸 = 𝑿𝑾𝑄 and 𝑽 = 𝑿𝑾𝑉 , where 𝑾𝐾 ∈ R𝑑×𝑑𝑘 ,
𝑾𝑄 ∈ R𝑑×𝑑𝑞 , and 𝑾𝑉 ∈ R𝑑×𝑑𝑣 are learnable matrices for keys,
queries, and values, respectively, and 𝑑𝑞 = 𝑑𝑘 usually. Denote 𝒌𝑖 ,
𝒒𝑖 , and 𝒗𝑖 as the 𝑖-th row of the matrices 𝑲 , 𝑸 , and 𝑽 , respectively.
The attention coefficients 𝛼𝑖, 𝑗 , which reflect the importance from
𝒙 𝑗 to 𝒙𝑖 , are computed as 𝛼𝑖, 𝑗 = exp(𝑒𝑖, 𝑗/

√︁
𝑑𝑘)/

∑︁𝑛
𝑙=1 exp(𝑒𝑖,𝑙/

√︁
𝑑𝑘),

where 𝑒𝑖, 𝑗 = 𝒒𝑖𝒌
⊤
𝑗 is the correlation coefficient between query 𝑖

and key 𝑗 and
√︁
𝑑𝑘 is a normalization factor. Based on these scores,

we can obtain a number of output tokens 𝒚1,𝒚2, . . . ,𝒚𝑛 , where
𝒚𝑖 =

∑︁
𝑗 𝛼𝑖, 𝑗𝒗 𝑗 , to condense low-level information in 𝑿 to high-

order representations.
In practice, the self-attention mechanism can be implemented

multiple times to create a multi-head self-attention mechanism. In
the NLP domain, it is applied to compress the semantics of word
embeddings to represent phrases, sentences and documents. For
our CardEst task, we apply it to condense the information of at-
tributes, join relations and filtering predicates together to represent
the joint PDF Pr(𝑇𝑄) in high-dimensional space and compute the
query probability Pr(𝑄). Notably, it fully attains the requirements
to capture the key information in the pretrained model.

On one side, for different input embedding vectors, the atten-
tion coefficients 𝛼𝑖, 𝑗 for combination are different. Therefore, the
model could produce adaptive weights to: 1) compress attributes
and joins with different correlations and distributions; and 2) focus
on different parts of the joint PDF representation w.r.t. different
filtering conditions. This ensures the pretrained model is applicable
to different databases.

On the other side, the size of the learned matrices𝑾𝐾 ,𝑾𝑄 and
𝑾𝑉 are only determined by the embedding dimensions 𝑑,𝑑𝑘 , 𝑑𝑞, 𝑑𝑣 ,
but has no relation with the input length 𝑛. Therefore, it naturally
hinders the difference between databases and queries with varied
numbers of tables, attributes and filtering predicates.

4 OUR PRETRAINED MODEL
We outline our proposed Pretrained Multi-Table CardEst Model
(PRICE) in Figure 1. On a high level, for an input query 𝑄 , PRICE
extracts low-dimensional features (see details below), which are
easily obtained at low cost and adaptable to any database. These
features are then mapped into embedding vectors of fixed length
through a two-stage CardEst simulation. The joining stage sim-
ulates the joining process across multiple tables in 𝑄 . It applies
a self-attention module to integrate the distribution and scaling
information over all attributes in the join conditions. The output
reflects the backbone information of the joined table𝑇𝑄 (or the joint
PDF Pr(𝑇𝑄)). Then, the filtering stage utilizes another self-attention
module to fuse the backbone information with the distribution and
filtering predicate information over all other attributes together.
The outputs naturally condense the information of correlation, scal-
ing, and filtering predicate over all attributes together and thus
offer a rich representation w.r.t. Pr(𝑇𝑄) and Pr(𝑄). Based on such
output and auxiliary query-level features, we finally obtain the
desired cardinality Card(𝑄). The details on feature selection and
model workflow are described as follows.

640

SELECT	 COUNT(*)	
FROM	 A,	B,	C
WHERE	 A.id =	B.pid
and	B.id =	C.uid and	
A.age <=	22	and
C.gpa >	3.5

Query	𝑄

Database

I. Embedding Stage

Table	A Table	B

Table	C

Query-level
Information

Scaling	Factor
Distribution

Attribute
Distribution

Filtering
Information

Table-level
Information

ℎ!.#$ ℎ%.&#$
ℎ%.#$ ℎ'.(#$

Join	Emb.

𝑑!.)*+ 𝑑,.-&.
Linear

Filter	Emb.

𝑡! 𝑡% 𝑡'

Linear

Linear

Linear
Table Emb.

Linear
Query	Emb.

II. Joining Stage

s
Self-

Attention
Multi-Heads

MJoin
Emb.

𝑠′

Join
Emb.

III. Filtering Stage
𝑠′
Join
Emb.
Filter
Emb.
Table
Emb.

Self-
Attention
Multi-Heads

N

𝑠′′

Join
Emb.
Filter
Emb.

Table
Emb.

Card(Q)

IV. Predict

𝑠′′
Query
Emb.

multi-information	
embeddings

MLP…

…

Q

Figure 1: Model architecture of PRICE.

Feature Selection. For a database𝐷 and a SQL query𝑄 , our PRICE
takes four classes of features to capture key information as follows:

1) The value distribution Pr(𝐴𝑖, 𝑗) of each attribute 𝐴𝑖, 𝑗 ∈ 𝐴𝑄 .
For continuous attributes, we use a histogram vector to represent
its distribution. To eliminate the different ranges of attributes, we
normalize each histogram vector to span into [0, 1]. For categorical
attributes, we utilize the SpaceSaving Summary [54, 83] to maintain
its distribution. It records the frequency of each item and can be
accessed and updated at the same cost as the histogram vector.
These vectors of distributions are set to the same length. They are
regarded as the basic tokens in our approach, similar to the basic
word embeddings in the NLP models.

2) The distribution of the scaling factors of each join condition
𝑇𝑖 .𝐴𝑖,𝑥 = 𝑇𝑗 .𝐴 𝑗,𝑦 in 𝑄 . Let 𝑠 be a tuple in table 𝑇𝑖 . The scaling
factor of 𝑠 refers to how many of tuples 𝑡 in table 𝑇𝑗 could join
with 𝑠 , i.e. 𝑠 [𝐴𝑖,𝑥] = 𝑡 [𝐴 𝑗,𝑦]. We also encode the distributions of
scaling factors as histogram vectors. They capture the inter-table
correlation information and help the model learn how to scale
Pr(𝑇𝑖) to Pr(𝑇𝑄). Details on the calculation of scaling factors and
the associated maintenance cost analysis are provided in Appendix
A [5].

3) The information of each filtering predicate “𝑇𝑖 .𝐴𝑖, 𝑗 op value”
in Q. We encode each filtering predicate as a three-dimensional
vector comprising: i) Range: represented as a two-dimensional
vector [lower_bound, upper_bound], normalized to the attribute’s
domain. For example, “A.age<22” with domain [0, 100] is encoded
as [0, 0.22]. For categorical attributes, the range is the index of the
bin containing the value. If the predicate is an equality, the lower
and upper bounds are set to the same value; and ii) Selectivity: An
estimated decimal value ∈ [0, 1], calculated as the ratio of tuples
satisfying the predicate on attribute 𝐴𝑖, 𝑗 over all tuples in 𝑇𝑖 . This
aids in computing Pr(𝑄) from the joint PDF.

4) The table-level and query-level auxiliary information of 𝑄 . For
each table 𝑇𝑖 in 𝑄 , we encode the simplified single-table selectivity
estimates produced by heuristic estimators, including AVI, MinSel,
and EBO (see details in [23]). We also encode the size |𝑇𝑖 | of each
table to characterize its volume. For query 𝑄 , we encode: i) the
number of tables and joins in 𝑄 ; and ii) the cardinality estimated

by traditional methods, e.g., the histogram-based methods in Post-
greSQL. In this way, we feed the wisdom of the traditional CardEst
methods into the model, which could provide more guidelines to
produce better results.

Notably, all of the above features could be easily obtained in
𝑂 (∑︁𝑖 |𝑇𝑖 |) time. Thus, our PRICE is as cheap as the efficient tra-
ditional 1-D histogram-based methods in terms of feature con-
struction. Meanwhile, when data changes, these features could be
incrementally updated in almost real-time.
Workflow of PRICE. As shown in Figure 1, PRICE consists of
three main stages: the embedding stage for data preparation and
the joining and filtering stages for data integration.

1) Embedding Stage: Initially, PRICE maps the input features for
each attribute and table into fixed-dimensional embeddings using
simple linear models. Specifically, for each attribute 𝐴𝑖, 𝑗 that oc-
curs in any join condition of 𝑄 , its value distribution vector and
scaling factor distribution vector are separately mapped into a fixed-
dimensional vector by different linear models. These vectors are
then concatenated to form the embedding vector 𝒉𝑖, 𝑗 . For each
attribute𝐴𝑖, 𝑗 that occurs in any filtering predicate of𝑄 , we concate-
nate its value distribution vector, filter range, and selectivity, then
map this combined vector to a fixed dimension embedding vector
𝒅𝑖, 𝑗 using a linear model. For each table𝑇𝑖 , we apply a linear model
with shared parameters to map its table-level auxiliary information
into an embedding 𝒕𝑖 . For the query𝑄 , we also apply a linear model
with shared parameters to map its query-level auxiliary information
into an embedding 𝑸 . Additionally, we randomly initialize a special
embedding vector 𝒔 as input. 𝒔 would be fed into the subsequent
modules with the other embedding vectors together. It serves to
amalgamate the information of other embedding vectors together,
akin to the CLS token in NLP tasks [20] or the virtual node in Graph
Neural Networks (GNN) [82]. We will explain the detailed role of 𝒔
later. Notice that the dimension of all embedding vectors 𝒉𝑖, 𝑗 , 𝒅𝑖, 𝑗 , 𝒔
and 𝒕𝑖 are uniformly fixed, ensuring the generality across different
numbers of joins and filtering predicates in the query. Then, PRICE
applies two main stages to exploit the capabilities of the multi-head
self-attention mechanism to capture key information for CardEst.

641

2) Joining Stage (Backbone Assembly): We integrate the infor-
mation related to all attributes in the join conditions to build the
backbone structure of the table 𝑇𝑄 . The token 𝒔 and all embedding
vectors 𝒉𝑖, 𝑗—representing each attribute 𝐴𝑖, 𝑗 in the join condition—
are fed into a multi-head self-attention module. The module con-
verts them into new embedding vectors 𝒔′ and 𝒉′𝑖, 𝑗 . Each 𝒉′𝑖, 𝑗 (as
well as 𝒔′) is a weighted sum over all embedding vectors 𝒉𝑖, 𝑗 and 𝒔.
The weights, a.k.a. attention coefficients, are adaptively determined
by learned parameters (see details in Section 3). Using this attention
mechanism, the output vectors 𝒉′𝑖, 𝑗 and 𝒔′ capture two sides of
information together: i) the correlations between the scaling factor
distributions of different joins in 𝑄 ; and ii) the impact of the join-
ing operations (i.e., the scaling effects) on the value distribution of
attributes. This combined knowledge is represented as the outputs
𝒉′𝑖, 𝑗 . Upon them, the model could then know how to scale multiple
low-level PDFs Pr(𝑇𝑖) on each single table to the high-level joint
PDF Pr(𝑇𝑄) on the joined table in the subsequent steps.

3) Filtering Stage (Information Refinement): The focus shifts to
refining the backbone information with all filtering conditions to
obtain accurate estimation results. Specifically, we aim to obtain
the information of Pr(𝑇𝑄) and compute the probability Pr(𝑄) from
Pr(𝑇𝑄). Recall that each embedding vector 𝒅𝑖, 𝑗 condenses the value
distribution and filtering information on each attribute 𝐴𝑖, 𝑗 occur-
ring in the filtering predicates, and each embedding vector 𝒉′𝑖, 𝑗
condenses the information of the scaling factor distributions of all
joins. In this stage, we apply another multi-head self-attention
module to integrate their information together. In particular, let
𝑈 = {𝒅𝑖, 𝑗 } ∪ {𝒉′𝑖, 𝑗 } ∪ {𝒔′} ∪ {𝒕𝑖 } be the set of all input embedding
vectors. Then, for each 𝒖 ∈ 𝑈 , the self-attention module obtains an
embedding vector 𝒖′ using a weighted sum over all vectors in𝑈 .

We find that, the vectors 𝒖′ integrate three sides of information
together: i) the scaling information of multiple tables (encoded
in 𝒉′𝑖, 𝑗) are fused with the value distributions of other attributes
(encoded in 𝒅𝑖, 𝑗) not occurring in the join conditions. This compre-
hensively amalgamates the information to represent the joint PDF
Pr(𝑇𝑄); ii) the information of all filtering predicates (also encoded
in 𝒅𝑖, 𝑗), which reflects how to compute Pr(𝑄) from Pr(𝑇𝑄); and iii)
some coarsen-grained information for estimated cardinality on each
single table (encoded in 𝒕𝑖). This would more or less provide the
representation vectors with some guidelines from the traditional
CardEst methods to correct Pr(𝑄). In short, the output vectors 𝒖′
encapsulate all relevant information to offer a rich representation
w.r.t. Pr(𝑇𝑄) and Pr(𝑄).

Based on these, we are prepared to obtain the final estimated
cardinality. Notice that, it is not necessary to utilize all output
vectors 𝒖′ produced by the filtering stage. Instead, let 𝒔′′ be the cor-
responding output vector to 𝒔′. We only need to apply 𝒔′′ into the
final step as 𝒔′′ already condenses the information of other input
vectors through the self-attention mechanism. As a result, 𝒔′′ and
the query-level embedding 𝑄 (serving as guidelines) are concate-
nated and then fed into a non-linear neural network, specifically
referring to a multilayer perceptron (MLP) [31]. This concatenated
input is used to obtain the desired cardinality Card(𝑄).
Analysis Results of PRICE. To better understand the functional-
ity of the attention mechanism in PRICE, we present some analysis

s(CLS)

(a) Attention Weights for High-Performing Queries

s(CLS)
(b) Attention Weights for Low-Performing Queries

Figure 2: Attention weights impact on model performance.
SELECT COUNT(*) FROM
comments as c,
posts as p,
users as u
WHERE c.userid = p.owneruserid
AND p.owneruserid = u.id
AND c.score = 0
AND p.answercount ≤ 3
AND p.commentcount ≤ 10
AND p.score ≤ 15
AND p.score ≥ 0
AND p.viewcount ≤ 3002
AND p.viewcount ≥ 0
AND u.creationdate ≤ 1409622606
AND u.creationdate ≥ 1282551670
AND u.downvotes ≤ 0
AND u.upvotes ≥ 0;

(a) SQL Query

Scaling
Factor Std

Scaling
Factor Avg

p.ow
neru

ser
id

c.u
ser

id u.id

p.ow
neru

ser
id

Attention
Weights

(b) Join Columns in Joining Stage

u.dow
nvotes

p.view
co

unt

co
mmen

ts

p.answ
erc

ount
posts

user
s

p.ow
neru

ser
id

p.ow
neru

ser
id

c.s
co

re

p.co
mmen

tco
unt

u.cr
ea

tio
ndate u.id

u.upvotes

c.u
ser

id

p.sc
ore

(c) All Columns and Tables in Filtering Stage

Attention Weights

Table
Size

comments
posts

user
s

Attention
Weights

(d) Tables in Filtering Stage

Selectivity

u.dow
nvotes

p.view
co

unt

p.answ
erc

ount

c.s
co

re

p.co
mmen

tco
unt

u.cr
ea

tio
ndate

u.upvotes

p.sc
ore

Attention
Weights

(e) Filter Columns in Filtering Stage

Figure 3: Attention weight for a specific query.

results with concrete examples. The representative examples in Fig-
ure 2 and Figure 3 are extracted from our test dataset STATS, and
additional ones are given in Appendix B [5]. The darker colors
indicate larger attention weights or other values.

At first, we find that, the attention weights contain valuable in-
formation for accurate CardEst. Based on our observations, queries
with diversified attention weights tend to result in more accurate
estimates. For example, the query in Figure 2(a) with varied atten-
tion weights over features has a much lower estimation error than
the query in Figure 2(b) with uniform attention weights. Their q-
errors (defined in Section 6.1) are 1.97 and 2079, respectively. This
indicates that the learned attention weights help to differentiate
the influence of various features and extract useful information to
estimate the final cardinality. Meanwhile, this observation also pro-
vides practical guidance for deployment: if the model fails to assign
adaptive weights to a large number of queries in a new dataset, fine-
tuning may be necessary; otherwise, traditional CardEst methods
embedded in the DBMS may be more reliable.

Then, with an in-depth analysis, we exhibit how these attention
weights play their roles in CardEst. We find that PRICE could au-
tomatically and adaptively pay attention to important features and
adjust its coefficients to fit different input distributions.

On the one hand, our analysis reveals that PRICE’s attention
mechanism could adaptively assign weights to different tables and
attributes based on their significance to the final cardinality. A higher
attention weight on a token 𝑡 indicates that PRICE pays more at-
tention to 𝑡 to obtain accurate estimation results. For the example

642

Table 1: Overview of test datasets: database statistics and workload specifications.
Database Statistics Workload Specifications

of Cols # of Rows # of Join Total Attribute Distribution Skewness Average Pairwise Join Joined # of Filtering True CardinalityDataset Name
Sectors # of Tables

(All Tables) (All Tables) Relations
Volume

Domain Size (MIN/AVG/MAX) Correlation Forms Tables Predicates
Join Type

Range

IMDB Entertainment 6 37 6.2 · 107 15 3.0G 8.5 · 107 -1.9/19.2/384.5 0.32 Star 2 - 5 0 - 4 PK-FK/FK-FK 2 - 1·1010
STATS Education 8 43 1.0 · 106 30 32.3M 1.9 · 106 -1.0/10.5/134.5 0.46 Mixed 2 - 7 0 - 10 PK-FK/FK-FK 16 - 8·1010
ErgastF1 Sport 14 98 5.5 · 105 67 15.1M 3.2 · 105 -2.0/2.2/66.6 0.44 Mixed 2 - 7 0 - 9 PK-FK/FK-FK 1 - 2·1010

VisiualGenome Education 6 20 3.6 · 106 6 73.4M 3.1 · 105 -3.8/-0.4/2.0 0.20 Mixed 2 - 6 0 - 7 PK-FK/FK-FK 24 - 2·108

query in Figure 3(a), in the first joining stage, PRICE assigns differ-
ent attention weights to attributes involved in the join conditions
to learn the backbone information of the whole joined table. Fig-
ure 3 (b) illustrates the relations between the attention weights, the
mean and the standard derivation of the scaling factor distributions
of these join attributes. Obviously, the attention weights are posi-
tively correlated with the mean value and standard derivation of
the scaling factor distributions of these join attributes. We find that:
i) join attributes with larger mean scaling factors or more diversified
scaling factors (i.e. , larger standard deviations) receive higher atten-
tion weights. This is because these attributes contain tuples having
larger scaling factors, occur more frequently in the joined table and
thus significantly impact the final cardinality.

In the second filtering stage, PRICE refines the backbone infor-
mation with the value distributions and filtering information of
all other attributes and tables to obtain accurate estimation results.
In Figure 3 (c), we rank the attention weights over all tables and
attributes in this stage. We observe that: ii) The model primarily
focuses on attributes having filtering conditions (e.g. , u.downvotes
and p.viewcount), as the model requires fine-grained filtering over
these attributes to obtain accurate cardinality.

In detail, Figure 3 (d) and (e) show the relations between attention
weights with table size and selectivity of attributes in the filtering
conditions, respectively. We further find that: iii) PRICE tends to
assign higher attention to larger tables since they typically have
a more significant impact on the cardinality of the query results;
and iv) The model focuses more on filtering attributes with lower
selectivity since decreasing the selectivity would increase the diffi-
culty of accurate estimation (in similar to sampling-based methods).
These four findings reveal that PRICE could learn to automatically
prioritize elements by their impacts to the final cardinality.

On the other hand, we find that, in the process of fusing multiple
tables together, PRICE could appropriately adjust its attention weights
based on the joined table’s distribution. For instance, in the query
shown in Figure 3, the filtering condition “u.downvotes ≤ 0” shows
high selectivity in the single table “user” (98%). According to the
above third finding, PRICE tends to give lower weight to the column
with high selectivity. However, in this case, it also assigns a large
weight to this attribute. This is because this filtering condition
incurs very low selectivity in the joined table (1.5%), which requires
the model to pay more attention to obtain accurate estimation
results. This suggests that PRICE would appropriately adjust its
attention weights on attributes when a distribution drift exists
between the single and joined tables.

5 DATA COLLECTION AND MODEL TRAINING
In this section, we introduce how to collect different databases
and related query workloads to train our model PRICE. We have

made both the collected databases and query workloads (including
queries and their corresponding cardinalities) as well as the pre-
trained model publicly available in the repository [12] to nourish
the community. We hope these resources could serve as a new and
comprehensive benchmark for evaluating CardEst methods.
Datasets Collection. To effectively assess the performance of our
PRICE, it is imperative to train and test the model across various
datasets. However, existing CardEst methods commonly utilize lim-
ited datasets for evaluation, which are insufficient for the expansive
training needs of the pretrained model. To cultivate a model capa-
ble of generalizing across diversified databases, we exhaustively
searched the public data repositories and obtained 30 datasets, in-
cluding: 1) 6 well-established benchmark datasets for evaluating
CardEst methods, such as TPC-H [10], SSB [60], IMDB [6] and
STATS [13]; and 2) 24 new datasets assembled from [57]. We clean
and process each dataset. We observe that these datasets closely
resemble real-world scenarios and demonstrate notable diversity.
Table 1 provides detailed properties of the four test datasets and
their corresponding workloads. Due to space limits, the compre-
hensive details of all datasets are provided in Appendix C [5].
Query Workloads Generation. For model training and evalua-
tion, corresponding workloads for each dataset must be prepared.
We retain the testing workloads JOB-light[7] and STATS-CEB[29]
for widely recognized datasets IMDB and STATS, respectively, and
developed new training and testing workloads for others by the fol-
lowing process. Specifically, for each dataset, we obtain a graph of
its join schema where each node represents a table𝑇𝑖 and each edge
connecting 𝑇𝑖 and 𝑇𝑗 represents a join relation between two tables.
We enumerate all connected subgraphs from the join schema graph,
where each subgraph represents a possible join relation among
some tables in the dataset. To generate an SQL query, we randomly
select a subgraph and then attach it with some filtering predicates.
In particular, we first collect all categorical and numerical attributes
in all the tables that occurred in the subgraph. Let𝑚 be the total
number of attributes. We uniformly sample a number 𝑛 from 1 to
𝑚 and then repeatedly sample 𝑛 attributes at random. For each
sampled attribute 𝐴𝑖 , if it is numerical, we pick its lower bound 𝑙
and upper bound 𝑢 uniformly at random and set the filtering predi-
cate as 𝐴𝑖 ≤ 𝑢 and 𝐴𝑖 ≥ 𝑙 ; if it is categorical, we randomly select
a value 𝑣 from its domain and set the filtering predicate as 𝐴𝑖 = 𝑣 .
For each dataset, we generate 5 × 104 SQL queries for model train-
ing. We obtain the true cardinality of each query through actual
execution. The detailed Pseudo-code for workload generation is
given in Appendix D [5].
Model Pretraining.We reserve the four widely applied datasets—
IMDB, STATS, ErgastF1 and VisualGenome—as the test datasets
and apply the remaining 26 datasets with the generated query
workloads to pretrain our model PRICE. The details are as follows:

643

1) Loss Function: Due to the board range of the cardinality (e.g.,
from 1 to 1011), we apply a logarithmic transformation to normalize
its scale and use log (Card(𝑄)) as the target label for training. The
Mean Squared Error (MSE) function is employed as the loss function
during training. That is, for a batch of 𝑘 SQL queries𝑄1, 𝑄2, . . . , 𝑄𝑘 ,
the total loss is (∑︁𝑘

𝑘 ′=1 (log (Card(𝑄𝑘 ′)) − log (̂︄Card(𝑄𝑘 ′)))2)/𝑘.
2)Model Hyperparameters: We implement our model and its train-

ing function in Python 3.10. In our PRICE, we use a 40-dimensional
vector to represent all input features on value distribution and
scaling factor distribution of attributes. The dimension of all inner
embedding vectors 𝒉𝑖, 𝑗 , 𝒉′𝑖, 𝑗 , 𝒅𝑖, 𝑗 , 𝒔, 𝒔′, 𝒔′′ and 𝒕𝑖 (see details in
Section 4) are set to 256. The self-attention modules applied in the
joining and filtering stage all comprise 8 heads.

3) Training Method: To promote stable learning and robust gen-
eralization across databases, we shuffle the training data and use a
large batch size (i.e., 1.5 × 104). We adopt the Adam optimizer [40]
for model training with the initial learning rate of 2.85× 10−5 and a
weight decay of 5×10−5. To stabilize the training process, we utilize
the StepLR function in PyTorch to adaptively adjust the learning
rate. To prevent overfitting, we also apply the dropout function.

4) Training Environment: We train our model on a Linux server
outfitted with a 96-core Xeon(R) Platinum 8163 CPU @ 2.50GHz,
512GB of main memory, and 8 NVIDIA A100 GPUs. For the whole
training workload having 1.3×106 SQL queries, we consume around
5 hours to produce a model of around 40MB.

6 EXPERIMENTAL STUDIES
This section presents a comprehensive evaluation of PRICE against
existing state-of-the-art (SOTA) techniques for multi-table cardinal-
ity estimation. The evaluation results aim to answer the following
pivotal questions about its performance:

1) How does our pretrained model PRICE perform when directly
applied to unseen databases with little preparation? (Section 6.2)

2) Howdoes PRICE perform after finetuning on specific databases
compared to existing ML-based CardEst methods? (Section 6.3)

3) Can PRICE generalize to data updates and query workload
drifts? (Section 6.4)

4) What are the impacts of training data on PRICE? (Section 6.5)
5) How do individual features contribute to PRICE’s perfor-

mance? (Section 6.6)

6.1 Experiment Setup
Datasets. We selected four real-world datasets—IMDB, STATS, Er-
gastF1 and VisualGenome—for evaluation, which are commonly
used to assess CardEst methods in the literature [29, 35, 59]. Their
properties are detailed in Table 1. STATS [13, 29] is an anonymized
compilation of all user-contributed content from the Stats Stack
Exchange network [11]. The associated query workload STATS-
CEB contains 146 queries for testing. The IMDB dataset [44] is
on movies and stars with the simplified JOB-light workload [7]
containing 70 realistic queries. ErgastF1 [3] provides extensive in-
formation on Formula 1 races spanning from the 1950 season to the
present day. VisualGenome [14] encompasses dense annotations
of objects, attributes, and relationships within various genes. We
use the method in Section 5 to generate 148 and 186 queries on
ErgastF1 and VisualGenome for testing, respectively.

Competing Methods. We select the competing CardEst methods
based on their performance reported in various benchmarks [29,
69] and evaluation studies [77, 80, 87]. For each category, namely
traditional, data-driven, query-driven and hybrid CardEst methods,
we select the representative ones as follows:

1) PG stands for the basic 1-D histogram based approach used in
PostgreSQL [26] for CardEst. This simple method serves as a base-
line to measure the effectiveness of more sophisticated methods.

2) NeuroCard [80] builds a single deep auto-regression model
on the joint PDF of all tables in the database. The cardinality of any
query could then be accessed from this model.

3) DeepDB [36] learns the joint PDF of data using Sum-Product
Networks (SPNs) [62]. It builds several SPNs, each covering a subset
of tables for CardEst.

4) FactorJoin [76] applies a cohesive factor graph to combine
the learned cardinality on every single table, and the histograms of
joins together for CardEst on multiple tables.

5)MSCN [41] utilizes a multi-set convolutional network to amal-
gamate data and query information together to learn cardinality.

6) ALECE [47] is designed as a soft lookup table, linking each
SQL query to the underlying data distribution to estimate the car-
dinality of the query using attention mechanisms.

We use the open-source implementations of these methods [1, 2,
4, 8, 9] with their original parameter setting. For DeepDB, we set its
RDC independence threshold to 0.3 and split each SPN node with
at least 1% of the input data; for NeuroCard, the sampling size is
set to 8,000. We exclude DeepDB and FactorJoin from the ErgastF1
and VisualGenome datasets, as DeepDB supports only PK-FK joins,
and FactorJoin is hard-coded for IMDB and STATS.

Besides them, an Optimal approach, which utilizes the true
cardinality for query plan generation, is also included for bench-
marking. As shown in [44], this method could find the optimal plans
for most of the queries. Therefore, it could serve as a borderline to
exhibit the best performance that the CardEst could bring for query
optimization. We inject all CardEst methods into PostgreSQL 13.1
using PilotScope [86]—a middleware for deploying ML algorithms
into databases—for end-to-end testing in actual DBMS.
Evaluation Metrics.We evaluate the effectiveness of each CardEst
method by the following metrics:

1) End-to-end (E2E) Time refers to the total time to gener-
ate the plan using estimated cardinalities and the execution of
the physical plan. It reflects the performance gain that a CardEst
method could bring to the query optimization process. Therefore,
it is considered the gold standard metric to gauge the effectiveness
of CardEst methods [29].

2) Q-ERROR [56] assesses the relative multiplicative deviation
of the estimateion results from the exact values as Q-ERROR =

max(̂︄Card(𝑄)/Card(𝑄),Card(𝑄)/̂︄Card(𝑄)) . It provides a coarse-
grained accuracy assessment but cannot differentiate between under-
and over-estimates or account for the impact of errors in individual
sub-queries on plan generation.

3) P-ERROR [29] corrects the drawbacks of Q-ERROR and could
be computed without the actual execution of queries. By [44], the
plan cost estimated by the cost model is a good surrogate for the
execution time. Therefore, we evaluate the quality of a CardEst
method by comparing the execution cost of the plans derived from

644

Table 2: Overall performance of different CardEst methods.
Q-ERROR P-ERROR

DATASETS CARDEST METHOD
E2E

TIME (S) 50% 80% 90% 95% 99% 50% 80% 90% 95% 99%
MODEL
SIZE (MB)

(PRE)TRAINING
TIME (MIN)

INFERENCE
TIME (MS)

IMDB

PG 4037 1.95 6.04 19.04 49.44 879.64 1.00 1.31 1.73 2.45 13.44 − − −
ALECE 3911 1.75 4.21 11.49 19.07 124.68 1.00 1.07 1.46 1.92 5.44 233.11 472.88 5.08
MSCN 4755 3.24 12.75 28.54 104.20 411.90 1.07 1.71 2.31 4.00 15.66 1.57 75.19 0.79
DeepDB 3850 1.31 2.97 3.61 5.03 14.03 1.00 1.00 1.09 1.27 1.56 88.33 73.73 4.73

NeuroCard 3664 1.66 4.14 7.80 14.25 22.22 1.00 1.23 1.78 2.32 4.05 50.27 14.55 18.43
FactorJoin 3588 13.86 89.88 348.96 1027.19 4794.80 1.04 1.61 2.86 3.46 7.91 5.59 78.45 3.20

PRICE (Pretrained) 3910 1.77 4.07 8.39 15.45 70.88 1.00 1.05 1.16 1.28 1.63 41.14 313.56 5.27
PRICE (Finetuned) 3454 1.29 2.05 2.92 5.36 29.45 1.00 1.00 1.04 1.08 1.16 41.14 6.47 5.27

Optimal 3442 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 − − −

STATS

PG 30484 1.87 7.11 20.71 73.35 1600.22 1.04 1.67 2.44 4.16 20.57 − − −
ALECE 25716 1.67 3.79 7.93 16.44 118.96 1.00 1.38 1.84 2.17 3.49 233.04 93.09 10.88
MSCN 42051 6.19 70.02 363.71 1609.45 9.15·104 1.36 2.64 5.98 13.41 59.14 1.60 2.03 0.81
DeepDB 22931 1.84 19.94 73.52 132.63 1507.78 1.03 2.17 2.85 4.41 9.32 249.93 142.12 12.42

NeuroCard 24435 2.12 12.57 48.40 228.41 1.32·104 1.03 1.56 1.97 2.92 8.22 121.88 36.43 33.80
FactorJoin 50179 5.41 40.44 150.52 666.59 2.10·104 1.09 2.05 3.07 5.19 21.73 1.86 0.55 23.70

PRICE (Pretrained) 18292 1.87 5.49 12.46 35.55 579.67 1.00 1.42 1.90 2.41 6.40 41.14 313.56 14.13
PRICE (Finetuned) 17192 1.41 2.28 3.67 7.07 42.03 1.00 1.00 1.25 1.46 2.33 41.14 10.20 14.13

Optimal 17160 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 − − −

ErgastF1

PG 48185 1.60 4.26 11.30 27.47 114.24 1.00 1.32 1.64 1.98 6.39 − − −
ALECE 50902 1.75 3.15 5.18 8.43 53.81 1.03 1.32 1.61 2.08 3.35 233.34 121.49 7.06
MSCN 45511 10.20 99.89 353.02 999.52 1.32·104 1.52 2.54 4.92 8.61 13.72 1.66 5.08 0.81

PRICE (Pretrained) 44532 1.43 3.12 6.45 14.57 67.97 1.00 1.15 1.46 1.73 2.24 41.14 313.56 7.14
PRICE (Finetuned) 44350 1.43 2.46 4.06 7.37 29.96 1.00 1.00 1.42 1.57 2.28 41.14 5.21 7.14

Optimal 44256 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 − − −

Visual
Genome

PG 6165 1.17 4.34 15.12 383.09 1.17·104 1.04 1.04 1.44 2.26 4.72 − − −
ALECE 5874 1.13 1.34 1.44 1.58 2.01 1.00 1.00 1.04 1.04 1.08 232.72 49.68 6.25
MSCN 12070 2.84 9.34 18.91 47.45 108.48 2.68 2.74 4.38 4.39 4.40 1.54 39.86 0.78

NeuroCard 6673 1.04 12.23 14.35 26.75 53.75 1.00 1.20 1.21 1.28 2.73 38.38 12.91 9.85
PRICE (Pretrained) 5840 1.65 3.59 5.17 15.67 115.61 1.00 1.00 1.01 1.42 2.64 41.14 313.56 6.22
PRICE (Finetuned) 5838 1.06 1.19 1.29 1.35 1.54 1.00 1.00 1.00 1.00 1.08 41.14 11.48 6.22

Optimal 5834 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 − − −

the estimated and true cardinalities. Specifically, for a query 𝑄 ,
let C𝐸 and C𝑇 denote the estimated and true cardinalities of all
sub-queries of𝑄 . Let P𝐸 and P𝑇 be the plan generated by the query
optimizer by feeding C𝐸 and C𝑇 into it. Let𝑀 be the cost model of
the query optimizer and𝑀 (𝑃,𝐶) denote the estimated cost of plan 𝑃
with cardinality 𝐶 .𝑀 (𝑃,𝐶) often approximates the execution time
of plan 𝑃 . Obviously,𝑀 (P𝑇 ,C𝑇) is the estimated cost of executing
the (most possible) optimal plan P𝑇 . In the actual execution of
plan P𝐸 , the exact cardinality C𝑇 would be instantiated, so the
estimated execution cost of plan P𝐸 is𝑀 (P𝐸 ,C𝑇). Thus, we define
it as P-ERROR = 𝑀 (P𝐸 ,C𝑇)/𝑀 (P𝑇 ,C𝑇). As analyzed in [29], P-
ERROR considers the impacts of estimation errors of all sub-queries
in terms of plan optimization and is more highly correlated to the
E2E time than Q-ERROR.

Besides them, we also consider the Training Time for model
training, the Inference Time for accessing cardinality from the
CardEst models, and the Model Size for the amount of memory
used to store model parameters. These metrics could reflect the
performance of each CardEst method from multiple views.

6.2 Performance on Unseen Datasets
We compare our PRICE and other CardEst methods on the four
unseen new databases. For fairness, we also apply 5 × 104 queries
on each dataset to train MSCN and ALECE. As shown in Table 2,
we have the following observations:

1) Our pretrained model, PRICE, demonstrates competitive per-
formance compared to other CardEst methods across various met-
rics. Specifically, for the most crucial E2E time, PRICE surpasses the

basic PG and other ML-based methods in almost all cases (except
IMDB, where all methods attain good results). On STATS, the E2E
time of PRICE is 1.67×, 1.25×, and 1.41× faster than PG, DeepDB,
and ALECE, respectively. In terms of the Q-ERROR and P-ERROR
metrics, PRICE is always better than PG and has no significant
gaps with other ML-based methods. This verifies the success of the
design choices of our PRICE model and its pretraining strategies.

2) Our PRICE consistently demonstrates strong and stable per-
formance across all datasets, while existing ML-based methods may
exhibit significant variability. For instance, FactorJoin achieves near-
optimal performance on IMDB and performs even worse than PG
on STATS. This property of PRICE plays an important role when
actually deployed into DBMS. By [73], the DBMS not only focuses
on performance gains but also pays attention to avoiding perfor-
mance regressions. The reason for that is our model encounters a
number of different data distributions and query workloads during
pretraining, so the learned parameters could generalize to attain
stable performance on any database. Whereas, existing ML-based
methods often have prior assumptions on the data distributions
(e.g., DeepDB assumes attributes are not highly correlated), so they
may fail when the dataset does not obey such assumptions.

3) PRICE is time and space efficient. Its inference time spans from
several to a dozen milliseconds, ensuring no impact on plan gener-
ation. In the actual deployment, we only need to store one PRICE
model having 41.14MB for all databases. This is much smaller than
storing the models trained by ALECE, NeuroCard, and DeepDB on
each specific database. The pretraining time of PRICE is longer than
other ML-based methods. However, it only needs to be trained once,
after which the model can be seamlessly applied to any database.

645

102 103 104 105
2

10

30

100

500

Q
-E
RR

O
R
90
%

IMDB

102 103 104 105
2

10
30

100

500
1250

STATS

102 103 104 105
2

10
30
100

500

2500

ErgastF1

102 103 104 105
1

10

30

100

300
Visual Genome

102 103 104 105
1

4

10

30

125

P-
ER

RO
R
95
%

102 103 104 105
1

2

4

10

25

102 103 104 105
1

2

4

12

102 103 104 105
1

2

4

10

of queries

PG
PRICE (Pretrained)
PRICE (Finetuned)
ALECE
MSCN
DeepDB
NeuroCard
FactorJoin

Figure 1: Estimation errors of cardinality estimation models across varying numbers of training queries.

1

Figure 4: Estimation errors of cardinality estimation models across varying numbers of training queries.

In short, this set of experiments verifies the superiority of our
PRICE over other CardEst methods. It generates plans with much
higher and more stable quality, incurs less time and space over-
heads, and exhibits the easiness for system deployment. To further
demonstrate PRICE’s effectiveness, we evaluated it on more chal-
lenging workloads (JOB-Adapt), where it continued to perform
well; detailed results are provided in Appendix F [5].

6.3 Performance of PRICE with Finetuning
We further examine the performance of our PRICE after finetuning.
Figure 4 shows the estimation errors (90%-quantile Q-ERROR and
95%-quantile P-ERROR) of different CardEst models as the number
of training queries increases. We omit other metrics, such as E2E
time, since they exhibit similar trends. PG, data-driven methods
(DeepDB, NeuroCard and FactorJoin) and our pretrained model ex-
hibit a stable horizontal line since their performance is independent
of the training workload. For the finetuned version of PRICE, we
apply the corresponding training queries to tune the model further
to fit each specific dataset. The results reported in Table 2 are ob-
tained by the models finetuned (or trained) with 5 × 104 queries.
Based on Table 2 and Figure 4, several key observations emerge:

1) PRICE can be further enhanced to achieve near-optimal per-
formance by finetuning. In Table 2, our finetuned PRICE exhibits
the smallest Q-ERROR and P-ERROR values across most quantiles.
On most datasets, the P-ERROR values even approach 1.0, the lower
bound of this metric. In terms of the E2E time, our finetuned PRICE
achieves the shortest time in all four test datasets. The relative
deviation to the optimal cases is all less than 0.4%.

2) The finetuning cost of PRICE is small and acceptable. From
Figure 4, our PRICE could outperform almost all other methods
in terms of Q-ERROR and P-ERROR when finetuning with even
100 queries. Collecting and executing such a few training queries
takes less than one hour. The finetuning time to tune the model of
PRICE is only around 10 minutes. Even if we collect and execute
5×104 queries by around 216 hours (or 9 days) and consume several
hours to train models of MSCN and ALECE, their performance is
still worse than PRICE. This is because the existing query-driven
and hybrid CardEst methods need to be learned from scratch for
each specific database. Whereas, for PRICE, the model has already
captured the general paradigm for mapping joint PDFs and query

information to cardinality after pretraining, so we could tune the
model to fit a specific database with a small number of queries.

6.4 Generalization Ability of PRICE
In this section, we examine the generalization ability of our pre-
trained model PRICE. We conduct experiments in three scenarios
commonly occurring in real-world applications, namely data up-
dates, data scaling and query workload drifts.
Generalization Ability to Data Updates. In real-world DBMS,
data is constantly updated. We apply the STATS dataset with times-
tamps to test the performance of PRICE on updated data. Similar
to [29, 47], we split the STATS datasets according to the creation
time of tuples and obtained 4 datasets containing 1/8, 2/8, 4/8 and
8/8 tuples of the full data, respectively. We denote them as STATS
1x, 2x, 4x to 8x. For our PRICE, we directly test the pretrained model
on these 4 datasets. For existing CardEst method and the finetuned
version of PRICE, we apply the underlying data and execute the
query workload on STATS 1x (12.5% of the full data) to collect work-
load statistics and model training (finetuning for PRICE). Then, we
use the same test queries to evaluate its performance on STATS 1x,
2x, 4x to 8x. Notably, although the test queries remain the same on
the 4 datasets, the true cardinalities differ due to data changes. We
only report the results of 90%-quantile Q-ERROR and 95%-quantile
P-ERROR and omit the similar results of other metrics.

From Figure 5, we find existing CardEst methods (except the basic
PG) exhibit diminished performance when faced with data updates,
and DeepDB, NeuroCard, and MSCN show notable performance
declines. It also resembles their behaviors in Section 6.2 on unseen
datasets. These models are specifically trained to fit each dataset,
which may fall down on updated data with different distributions.

However, both the original pretrained and finetuned PRICEmain-
tain a promising and stable performance across all datasets. These
results align with our observations in Section 6.2. The pretrained
PRICE is trained to capture the meta-knowledge for CardEst, so
it easily adapts to arbitrary datasets, including both unseen and
updated data. For the finetuned PRICE, although we finetune it
on STATS 1x, it could also adjust its parameters to capture some
coarse-grained knowledge on the data distributions of the STATS
dataset. As a result, when it is transferred to STATS 2x, 4x to 8x,
the performance can still be further improved.

646

1x 2x 4x 8x
5

20

100

400
1250

Q
-E
RR

O
R
90
%

1x 2x 4x 8x
2

4

8

16

30

P-
ER

RO
R
95
%

PG PRICE (Pretrained) PRICE (Finetuned) ALECE

MSCN DeepDB NeuroCard FactorJoin

Figure 5: Estimation errors of cardinality estimation
models during data updating processes.

102 103 104 105
1.25

1.50

1.75

2.00

of queries

Q
-E
RR

O
R
50
%

102 103 104 105
2
6
10
14
18
22

of queries

Q
-E
RR

O
R
90
%

PG Pretrained
Sub-Database Finetuned Full-Database Finetuned

Figure 6: PRICE finetuned on the Sub-Database and
the Full-Database workload and evaluated on the Full-
Database.

Generalization Ability to Data Scaling. Later, we present more
details on the impact of different data volumes on the finetuned
PRICE. We finetune PRICE on STATS 1x (partial of the dataset,
denoted as Sub-Database) with a different number of queries and
compare its performance with the model finetuned on the Full-
Database (STATS 8x). Figure 6 exhibits a surprising result: the
performance of PRICE finetuned on the partial and full dataset
exhibits comparable performance. No matter how many training
queries are applied, their performance is very close and consistently
better than basic PG and original PRICE without finetuning. This
further verifies the generalization ability of PRICE, which just
focuses on the data distribution but not the data volume. This
property is very appealing as executing the query workload on a
smaller dataset is much faster, so we could consume much less time
to collect statistics on a new dataset for finetuning. In the above
setting, in comparison to executing the query workload on the full
dataset for finetuning, we consume only 1.5% of time on STATS 1x.
Generalization Ability to Query Workload Drifts. In actual
DBMS, the query workloads may change from time to time [73].
As data-driven CardEst methods are not sensitive to workload
drifts [29, 87], we only compare our PRICEwith ALECE and MSCN.
For the training workload on a dataset, we obtain two partial work-
loads containing only nomore than 5 joins and 7 filtering predicates,
respectively. PRICE is pretrained on each partial workload derived
from the 26 datasets (mentioned in Section 5) and tested on STATS.
ALECE and MSCN are directly trained on each partial workload of
STATS. For testing, we only employ queries from the test workload
containing more than 5 joins or 7 filtering predicates to examine
their performance on different queries. Figure 7 reports their per-
formance on training (or pretraining for PRICE) with partial and
full workloads. We have the following observations:

PG PRICE ALECE MSCN
1
4
10
50

400

3600

Q
-E
RR

O
R

Train on ≤ 5 Joins, Test on > 5 Joins

PG PRICE ALECE MSCN
1

4
10

50

150

Train on ≤ 7 Filters, Test on > 7 Filters

PG Partial Workload Full Workload

Q-ERROR 90% Workloads PG PRICE ALECE MSCN

> 5 Joins Partial 24.8 19.5(+4.2) 65.3(+21.4) 5170(+1868)
Full 15.3 ↑ 43.9 ↑ 3302 ↑

> 7 Filters Partial 31.7 15.5(-1.2) 129.6(+21.4) 1298(+453)
Full 16.7 ↑ 108.2 ↑ 845 ↑

Figure 3: Estimation errors of cardinality estimation
models across workload drifts.

From Figure 1, we can see that existing CardEst methods (except
the basic PG) exhibit diminished performance when faced with
data updates, where DeepDB, NeuroCard, and MSCN show notable
performance declines. This also resembles their behaviors in Sec-
tion 1.2 on unseen datasets. Their models are specifically trained to
fit each dataset, which may fall down on updated data with different
distributions.

However, our PRICE, including both the original pretrained
model and finetuned version, maintains a promising and stable
performance across all datasets. These results align with our ob-
servations in Section 1.2 that the pretrained PRICE is trained to
capture the meta-knowledge for CardEst, so it easily adapts to ar-
bitrary datasets, including both unseen and updated data. For the
finetuned PRICE, although we finetune it on STATS 1x, it could also
adjust its parameters to capture some coarse-grained knowledge
on the data distributions of the STATS dataset. As a result, when it
is transferred to STATS 2x, 4x to 8x, the performance can still be
further improved.

Later, we present more details on the impact data volume to
the finetune PRICE. We finetune PRICE on STATS 1x (denoted as
Sub-Database) with a different number of queries and compare it
with the model finetuned on the Full-Database (STATS 8x). Figure 2
exhibits a surprising result: the performance of PRICE finetuned
on the small and full dataset exhibits comparable performance. No
matter how many training queries are applied, their performance
is very close and consistently better than basic PG and original
PRICE without finetuning. This further verifies the generalization
ability of PRICE, which just focuses on the data distribution but
not the data volume. This property is very appealing as executing
the query workload on a smaller dataset is much faster, so we could
consume much less time to collect statistics on a new dataset for
finetuning. In the above setting, in comparison to executing the
query workload on the full dataset for finetuning, we consume only
1.5% of time on STATS 1x.
Generalization Ability to Query Workload Drifts. In actual
DBMS, the query workloads may change from time to time [?]. As
data-driven CardEst methods are not sensitive to workload drifts [?
?], we only evaluate our PRICE with ALECE and MSCN in this
experiment. For the training workload on a dataset, we obtain two
partial workloads containing only no more than 5 joins and 7 fil-
tering predicates, respectively. PRICE is pretrained on each partial

5 10 15 20 26
1
2
3
4
5
6

of datasets

Q
-E
RR

O
R
50
%

5 10 15 20 26
1
15
30
45
60
75

of datasets

Q
-E
RR

O
R
90
%

102 103 104 105
1

2

3

4

of queries

Q
-E
RR

O
R
50
%

102 103 104 105
1

15

30

45
55

of queries

Q
-E
RR

O
R
90
%

IMDB STATS ErgastF1 Visual Genome

Figure 4: Evaluation of PRICE’s performance with var-
ied quantities of datasets and queries.
workload derived from the 26 datasets (mentioned in Section ??)
and tested on STATS. ALECE and MSCN are directly trained on
the partial workload of STATS. For testing, we only employ queries
from the test workload containing more than 5 joins or 7 filter-
ing predicates to examine their performance on different queries.
Figure 3 reports their performance on training (or pretraining for
PRICE) with partial and full workloads. We have the following
observations:

1) PRICE exhibits promising generalization ability to workload
drifts. Despite training on the partial workload, PRICE shows mini-
mal performance degradation (the blue numbers in Figure 3) com-
pared to training on the full workload. This validates the effective-
ness of the attention-based architecture in handling queries with
different numbers of joins and filtering predicates. Similarly, an-
other attention-based approach, ALECE, also maintains relatively
stable performance. Its Q-ERROR remains consistent, but is much
higher than PRICE, indicating the potential limitations in handling
complex query patterns. For MSCN, which uses simple deep neural
networks, the performance drops very significantly.

2) For complex queries with a relatively large number of joins or
filtering predicates, only our PRICE could obtain better performance
than the basic PG. On the contrary, both ALECE andMSCN perform
very poorly on such complex queries (consistently worse than PG),
no matter whether they are trained on full or partial workloads.
This is due to the different learning mechanisms between PRICE
and existing methods. PRICE aims to learn the general approach to
combine and correct the simple distributions on each single table
(encoded as features) to the joint PDF, making it easily appliable to
any number of joins and filtering predicates. Whereas, the models
in ALECE and MSCN learn the specific parameters to map queries
to their cardinality. As the training workload may not contain
a sufficient number of complex queries (executing them is time-
consuming), the models may not be well trained to capture such
mapping relations.

1.5 Impacts of Training Data to Pretrain PRICE
Collecting broader and richer training data from different databases
is crucial for developing a robust pretrained model. In this set of

4

Figure 7: Estimation errors of cardinality estimation
models across workload drifts.

1) PRICE exhibits promising generalization ability to workload
drifts. Despite training on the partial workload, PRICE shows mini-
mal performance degradation (the blue numbers in Figure 7) com-
pared to training on the full workload. This validates the effective-
ness of the attention-based architecture in handling queries with
different numbers of joins and filtering predicates. Similarly, an-
other attention-based approach, ALECE, also maintains relatively
stable performance. Its Q-ERROR remains consistent, but is much
higher than PRICE, indicating the potential limitations in handling
complex query patterns. For MSCN, which uses simple deep neural
networks, the performance drops very significantly.

2) For complex queries with a relatively large number of joins or
filtering predicates, only our PRICE outperforms the basic PG. On
the contrary, both ALECE and MSCN perform very poorly on such
complex queries (consistently worse than PG), no matter whether
they are trained on full or partial workloads. This is due to the
different learning mechanisms: PRICE aims to learn the general
approach to combine and correct the simple distributions on every
single table (encoded as features) to the joint PDF, making it easily
applicable to any number of joins and filtering predicates. Whereas,
the models in ALECE and MSCN learn the specific parameters to
map queries to their cardinality. As the training workload may not
contain a sufficient number of complex queries (executing them is
time-consuming), the models may not be well trained to capture
such mapping relations.

6.5 Impacts of Training Data to Pretrain PRICE
Collecting broader and richer training data from varied databases
is crucial for developing a robust pretrained model. In this set of
experiments, we explore how the quantity and diversity of datasets
and the volume of training workload impact our pretrained PRICE.
Number of Training Datasets. Figure 8 shows PRICE’s perfor-
mance on unseen datasets that are pretrained using different num-
bers of datasets. We find that:

1) There is a clear trend that the 50% and 90%-quantile Q-ERROR
of PRICE progressively improves when the number of datasets
increases and eventually stabilizes after around 15—20 datasets. The
trends of othermetrics are also similar, so we omit them due to space
limits. It indicates that PRICE can capture enough knowledge and
transferable parameters for CardEst using not too many datasets.

647

5 10 15 20 26
1
15
30
45
60
75

of datasets

Q
-E
RR

O
R
90
%

102 103 104 105
1

15

30

45
55

of queries

Q
-E
RR

O
R
90
%

IMDB STATS ErgastF1 Visual Genome

Figure 8: Evaluation of PRICE’s performance with var-
ied quantities of datasets and queries.

10 20 30

No table-level info

No query-level info

No table-level and
query-level info

No filter predicates

No scaling factor

No attribute
value distribution

PRICE (Original ver.)

STATS

12.5 13 13.5 14 14.5 15

ErgastF1

Total Runtime (hours)

PRICE (Original Model and Its Variants) Optimal PostgreSQL

Figure 9: Ablation study. Each label (y-axis) is a difference
from the PRICE.

2) With a small number of datasets, the performance of PRICE
varies significantly in different datasets. Specifically, when trained
using only 5 datasets, PRICE performs well on ErgastF1 but poorly
on IMDB. However, when trained over 15 datasets, its performance
remains stable over all datasets (also witnessed in Section 6.2). This
is because a small number of datasets are not diversified enough, so
the knowledge learned by PRICEmay be biased and can not be gen-
eralized well. This underscores the importance of selecting datasets
from a variety of domains with diverse properties to achieve the
high generalization capability of PRICE.
Number of Training Queries. Beyond the dataset quantity, the
number of training queries collected from each dataset also directly
affects the performance of the pretrained PRICE. Therefore, we also
pretrain PRICE with different numbers of queries on each dataset
and evaluate its performance on four unseen test datasets.

From Figure 8, we observe that the overall performance of PRICE
steadily improves when more queries are applied for training. It
is natural as more training queries bring the PRICE’s model more
knowledge on how to filter the joint PDF for computing cardinality.
Additionally, the improvement of PRICE becomes marginal after
1.0×103 training queries, indicating the model has mastered enough
knowledge. At that time, the workload contains only 2.6 × 104
queries to pretrain PRICE. It is much cheaper than existing query-
driven and hybrid CardEst methods, which require collecting a
large volume of training queries on each dataset. We note that, on
the STATS dataset, ALECE is required to collect around the same
volume of queries to attain comparable performance of PRICE
pretrained with 2.6 × 104 queries. For MSCN, even if we train it on
5 × 104 queries (results reported in Table 2), its performance is still
much worse than PRICE pretrained with only 2.6 × 104 queries.

6.6 Ablation Study
We systematically assessed the impact on model performance of
each feature category outlined in Section 4 on four test datasets: the
value distribution of each attribute, the scaling factor distribution
of each join condition, the information of each filtering condition
and table-level and query-level auxiliary information. Figure 9 and
Figure 15 (in Appendix G.2 [5]) shows the results of training vari-
ous model variants, each incorporating specific key modifications.
Comparing with the original pretrained PRICE, we find that:

1) Removing any single category of features results in varying
degrees of performance degradation. This verifies the effectiveness
of our feature selection strategy in PRICE.

2) Excluding the value distribution of each attribute leads to a
significant decline in model accuracy. As discussed earlier, value
distributions serve as fundamental tokens in our approach, enabling
PRICE to effectively learn correlations between different tables
and attributes. Without this feature, PRICE can not capture useful
information w.r.t. the joint PDF for CardEst.

3) Excluding table-level and query-level information significantly
degrades performance. Information such as table size and cardi-
nality estimates from traditional methods, is crucial for PRICE to
approximate cardinality scales. While other features are normalized
to [0, 1] for comparability across different databases, the differences
in database sizes necessitate such guidelines. Without them, PRICE
struggles to accurately position its estimates.

To further investigate this, we conducted experiments by indi-
vidually removing table-level and query-level information. In each
case, the remaining feature, either table size or traditional cardinal-
ity estimates, provided sufficient guidance for the model to estimate
cardinality magnitudes. These results show that retaining at least
one category significantly improves performance, supporting our
hypothesis. Furthermore, the removal of either table-level or query-
level information results in performance degradation, demonstrat-
ing that each type of auxiliary information contributes to the model
from different perspectives, which enhances robustness.

7 CONCLUSION AND FUTUREWORK
In this paper, we introduce PRICE, a PRetrained multI-table CardEst
model that overcomes the limitations of existing methods by en-
abling quick deployment to new, unseen databases with minimal
preparation. After pretraining on diverse datasets, PRICE shows
strong generalization and outperforms existing approaches. After
finetuning with minimal database-specific data, it achieves near-
optimal performance while incurring lower time and space costs,
making it a practical solution for DBMS.

However, PRICE has some limitations: it is primarily designed
for OLAP scenarios, resulting in slower inference times compared
to traditional methods. It currently supports only basic SPJ queries
and lacks support for complex query types like non-equal joins
or nested queries. Additionally, its performance relies on the di-
versity of pretraining data, potentially limiting generalization to
rare or extreme cases. For future enhancements of PRICE, it is cru-
cial to extend its capabilities to handle more complex query types.
Meanwhile, we plan to extend the pretraining paradigm to other
DBMS tasks, including but not limited to cost estimation, index
recommendation, and view advisor.

648

REFERENCES
[1] ALECE Github repository. https://github.com/pfl-cs/ALECE.
[2] DeepDB Github repository. https://github.com/DataManagementLab/deepdb-

public.
[3] ErgastF1 Dataset. https://relational-data.org/dataset/ErgastF1.
[4] FactorJoin Github repository. https://github.com/wuziniu/FactorJoin.
[5] Full Version paper of PRICE. https://github.com/StCarmen/PRICE/blob/master/

PRICE_full_paper.pdf.
[6] IMDB Dataset. http://homepages.cwi.nl/~boncz/job/imdb.tgz.
[7] Job-light Workload. https://github.com/andreaskipf/learnedcardinalities/blob/

master/workloads/job-light.sql.
[8] MSCN Github repository. https://github.com/andreaskipf/learnedcardinalities.
[9] NeuroCard Github repository. https://github.com/neurocard/neurocard.
[10] online. https://www.tpc.org/tpc_documents_current_versions/current_

specifications5.asp.
[11] online. https://stats.stackexchange.com/.
[12] PRICE Github repository. https://github.com/StCarmen/PRICE.
[13] STATS Dataset. https://relational.fit.cvut.cz/dataset/Stats.
[14] VisualGenome Dataset. https://relational-data.org/dataset/VisualGenome.
[15] Pratyush Agnihotri, Boris Koldehofe, Carsten Binnig, and Manisha Luthra. 2023.

Zero-Shot Cost Models for Parallel Stream Processing. In Proceedings of the
Sixth International Workshop on Exploiting Artificial Intelligence Techniques for
Data Management. ACM, Seattle WA USA, 1–5. https://doi.org/10.1145/3593078.
3593934

[16] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In
Proceedings of the 34th International Conference on Neural Information Processing
Systems (NIPS ’20). Curran Associates Inc., Red Hook, NY, USA, Article 159,
25 pages.

[17] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2001. STHoles: A Multidi-
mensional Workload-Aware Histogram. In SIGMOD. 211–222.

[18] C. K. Chow and C. N. Liu. 1968. Approximating discrete probability distributions
with dependence trees. IEEE Trans. Inf. Theory 14, 3 (1968), 462–467.

[19] Amol Deshpande, Minos Garofalakis, and Rajeev Rastogi. 2001. Independence is
good: Dependency-based histogram synopses for high-dimensional data. ACM
SIGMOD Record 30, 2 (2001), 199–210.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association
for Computational Linguistics, Minneapolis, Minnesota, 4171–4186. https://doi.
org/10.18653/v1/N19-1423

[21] Postgresql Documentation 12. 2020. Chapter 70.1. Row Estimation Examples.
https://www.postgresql.org/docs/current/row-estimation-examples.html (2020).

[22] Anshuman Dutt, Chi Wang, Vivek R. Narasayya, and Surajit Chaudhuri. 2020.
Efficiently Approximating Selectivity Functions using Low Overhead Regression
Models. Proc. VLDB Endow. 13, 11 (2020), 2215–2228. http://www.vldb.org/pvldb/
vol13/p2215-dutt.pdf

[23] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya,
and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates using
Lightweight Models. Proc. VLDB Endow. 12, 9 (2019), 1044–1057.

[24] Dennis Fuchs, Zhen He, and Byung Suk Lee. 2007. Compressed histograms with
arbitrary bucket layouts for selectivity estimation. Inf. Sci. 177, 3 (2007), 680–702.

[25] Lise Getoor, Benjamin Taskar, and Daphne Koller. 2001. Selectivity estimation
using probabilistic models. In SIGMOD. 461–472.

[26] PostgreSQL Global Development Group. 1996. PostgreSQL.
https://www.postgresql.org. (1996). Accessed: 2022-10-28.

[27] Dimitrios Gunopulos, George Kollios, Vassilis J Tsotras, and Carlotta Domeni-
coni. 2000. Approximating multi-dimensional aggregate range queries over real
attributes. In SIGMOD. 463–474.

[28] Dimitrios Gunopulos, George Kollios, Vassilis J Tsotras, and Carlotta Domeni-
coni. 2005. Selectivity estimators for multidimensional range queries over real
attributes. The VLDB Journal 14, 2 (2005), 137–154.

[29] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan,
Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren
Zhou, Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A
Comprehensive Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (2021), 752–
765.

[30] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2019. Multi-attribute selectivity estimation using deep learning.
In SIGMOD.

[31] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. 2009. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition. Springer.

[32] Max Heimel, Martin Kiefer, and Volker Markl. 2015. Self-tuning, gpu-accelerated
kernel density models for multidimensional selectivity estimation. In SIGMOD.
1477–1492.

[33] Roman Heinrich, Manisha Luthra, Harald Kornmayer, and Carsten Binnig. 2022.
Zero-shot cost models for distributed stream processing. In Proceedings of the
16th ACM International Conference on Distributed and Event-Based Systems. ACM,
Copenhagen Denmark, 85–90. https://doi.org/10.1145/3524860.3539639

[34] Benjamin Hilprecht and Carsten Binnig. 2022. One Model to Rule them All:
Towards Zero-Shot Learning for Databases. http://arxiv.org/abs/2105.00642
arXiv:2105.00642 [cs].

[35] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-shot cost models for out-of-
the-box learned cost prediction. Proceedings of the VLDB Endowment 15, 11 (July
2022), 2361–2374. https://doi.org/10.14778/3551793.3551799

[36] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from
Queries! Proc. VLDB Endow. 13, 7 (2020), 992–1005.

[37] Andranik Khachatryan, Emmanuel Müller, Christian Stier, and Klemens Böhm.
2015. Improving Accuracy and Robustness of Self-Tuning Histograms by Sub-
space Clustering. IEEE Trans. Knowl. Data Eng. 27, 9 (2015), 2377–2389.

[38] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. 2017. Estimating
Join Selectivities using Bandwidth-Optimized Kernel Density Models. Proc. VLDB
Endow. 10, 13 (2017), 2085–2096.

[39] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and
Jaehyok Chong. 2022. Learned Cardinality Estimation: An In-depth Study. In
Proceedings of the 2022 International Conference on Management of Data. ACM,
Philadelphia PA USA, 1214–1227. https://doi.org/10.1145/3514221.3526154

[40] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[41] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In CIDR.

[42] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Simple
and Scalable Predictive Uncertainty Estimation using Deep Ensembles. In NIPS.
6402–6413.

[43] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pen-
nington, and Jascha Sohl-Dickstein. 2018. Deep Neural Networks as Gaussian
Processes. In ICLR.

[44] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How good are query optimizers, really? PVLDB 9, 3
(2015), 204–215.

[45] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. 2017. Cardinality Estimation Done Right: Index-Based Join Sampling.
In CIDR.

[46] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander join: Online aggrega-
tion via random walks. In SIGMOD. 615–629.

[47] Pengfei Li, Wenqing Wei, Rong Zhu, Bolin Ding, Jingren Zhou, and Hua Lu.
2023. ALECE: An Attention-based Learned Cardinality Estimator for SPJ Queries
on Dynamic Workloads. Proceedings of the VLDB Endowment 17, 2 (Oct. 2023),
197–210. https://doi.org/10.14778/3626292.3626302

[48] Henry Liu, Mingbin Xu, Ziting Yu, Vincent Corvinelli, and Calisto Zuzarte.
2015. Cardinality estimation using neural networks. In Proceedings of 25th
Annual International Conference on Computer Science and Software Engineering,
CASCON 2015, Markham, Ontario, Canada, 2-4 November, 2015. IBM / ACM, 53–59.
http://dl.acm.org/citation.cfm?id=2886453

[49] Jie Liu, Wenqian Dong, Dong Li, and Qingqing Zhou. 2021. Fauce: Fast and
Accurate Deep Ensembles with Uncertainty for Cardinality Estimation. Proc.
VLDB Endow. 14, 11 (2021), 1950–1963.

[50] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[51] Pedro Lopes, Craig Guyer, and Milener Gene. 2019. Sql docs: cardinality
estimation (SQL Server). https://docs.microsoft.com/en-us/sql/relational-
databases/performance/cardinality-estimation-sql-server?view=sql-server-ver15
(2019).

[52] Yao Lu, Srikanth Kandula, Arnd Christian König, and Surajit Chaudhuri. 2021.
Pre-training summarization models of structured datasets for cardinality es-
timation. Proceedings of the VLDB Endowment 15, 3 (Nov. 2021), 414–426.
https://doi.org/10.14778/3494124.3494127

[53] MariaDB Server Documentation. 2020. Statistics for optimizing queries: InnoDB
persistent statistics. https://mariadb.com/kb/en/innodb-persistent-statistics/.
Accessed: 2020.

[54] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2006. An integrated
efficient solution for computing frequent and top-k elements in data streams.
ACM Trans. Database Syst. 31, 3 (sep 2006), 1095–1133. https://doi.org/10.1145/
1166074.1166084

649

https://github.com/pfl-cs/ALECE
https://github.com/DataManagementLab/deepdb-public
https://github.com/DataManagementLab/deepdb-public
https://relational-data.org/dataset/ErgastF1
https://github.com/wuziniu/FactorJoin
https://github.com/StCarmen/PRICE/blob/master/PRICE_full_paper.pdf
https://github.com/StCarmen/PRICE/blob/master/PRICE_full_paper.pdf
http://homepages.cwi.nl/~boncz/job/imdb.tgz
https://github.com/andreaskipf/learnedcardinalities/blob/master/workloads/job-light.sql
https://github.com/andreaskipf/learnedcardinalities/blob/master/workloads/job-light.sql
https://github.com/andreaskipf/learnedcardinalities
https://github.com/neurocard/neurocard
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://stats.stackexchange.com/
https://github.com/StCarmen/PRICE
https://relational.fit.cvut.cz/dataset/Stats
https://relational-data.org/dataset/VisualGenome
https://doi.org/10.1145/3593078.3593934
https://doi.org/10.1145/3593078.3593934
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
https://doi.org/10.1145/3524860.3539639
http://arxiv.org/abs/2105.00642
https://doi.org/10.14778/3551793.3551799
https://doi.org/10.1145/3514221.3526154
https://doi.org/10.14778/3626292.3626302
http://dl.acm.org/citation.cfm?id=2886453
https://doi.org/10.14778/3494124.3494127
https://mariadb.com/kb/en/innodb-persistent-statistics/
https://doi.org/10.1145/1166074.1166084
https://doi.org/10.1145/1166074.1166084

[55] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In 1st International Con-
ference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1301.3781

[56] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors. Proc. VLDB
Endow. 2, 1 (2009), 982–993.

[57] Jan Motl and Oliver Schulte. 2015. The CTU Prague Relational Learning Reposi-
tory. CoRR abs/1511.03086 (2015). arXiv:1511.03086 http://arxiv.org/abs/1511.
03086

[58] M Muralikrishna and David J DeWitt. 1988. Equi-depth multidimensional his-
tograms. In Proceedings of the 1988 ACM SIGMOD international conference on
Management of data. 28–36.

[59] Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam
Madden, Tim Kraska, and Mohammad Alizadeh. 2023. Robust Query Driven
Cardinality Estimation under Changing Workloads. Proc. VLDB Endow. 16, 6
(2023), 1520–1533.

[60] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. 2009. The
Star Schema Benchmark and Augmented Fact Table Indexing. In Performance
Evaluation and Benchmarking, Raghunath Nambiar and Meikel Poess (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 237–252.

[61] Oracle White Paper. 2019. The optimizer In Oracle database 19c.
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-
optimizer-with-oracledb-19c-5324206.pdf (2019).

[62] Hoifung Poon and Pedro M. Domingos. 2011. Sum-Product Networks: A New
Deep Architecture. In UAI. 337–346.

[63] Viswanath Poosala and Yannis E Ioannidis. 1997. Selectivity estimation without
the attribute value independence assumption. In VLDB, Vol. 97. 486–495.

[64] MySQL 8.0 Reference Manual. 2020. Chapter 15.8.10.2
Configuring Non-Persistent Optimizer Statistics Parameters.
https://dev.mysql.com/doc/refman/8.0/en/innodb-statistics-estimation.html
(2020).

[65] P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A
Lorie, and Thomas G Price. 1979. Access path selection in a relational database
management system. In SIGMOD. 23–34.

[66] MariaDB Server Documentation. 2020. Statistics for optimizing queries: Inn-
oDB persistent statistics. https://mariadb.com/kb/en/innodb-persistent-statistics/
(2020).

[67] Utkarsh Srivastava, Peter J. Haas, Volker Markl, Marcel Kutsch, and Tam Minh
Tran. 2006. ISOMER: Consistent Histogram Construction Using Query Feedback.
In ICDE. 39.

[68] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO
- DB2’s LEarning Optimizer. In VLDB. 19–28.

[69] Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. 2021. Learned Car-
dinality Estimation: A Design Space Exploration and A Comparative Evaluation.
Proc. VLDB Endow. 15, 1 (2021), 85–97.

[70] Kostas Tzoumas, Amol Deshpande, and Christian S Jensen. 2011. Lightweight
graphical models for selectivity estimation without independence assumptions.
PVLDB 4, 11 (2011), 852–863.

[71] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NeurIPS. 5998–6008.

[72] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2021. Are We Ready For Learned Cardinality Estimation? VLDB 14, 9 (2021),
1640–1654.

[73] Lianggui Weng, Rong Zhu, Di Wu, Bolin Ding, Bolong Zheng, and Jingren Zhou.
2024. Eraser: Eliminating Performance Regression on Learned Query Optimizer.
Proc. VLDB Endow. 17, 5 (may 2024), 926–938. https://doi.org/10.14778/3641204.
3641205

[74] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi
Qiao, and Sriram Rao. 2018. Towards a Learning Optimizer for Shared Clouds.
Proc. VLDB Endow. 12, 3 (2018), 210–222.

[75] Peizhi Wu and Gao Cong. 2021. A Unified Deep Model of Learning from both
Data and Queries for Cardinality Estimation. In SIGMOD. 2009–2022.

[76] Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and Samuel
Madden. 2023. FactorJoin: A New Cardinality Estimation Framework for Join
Queries. Proc. ACM Manag. Data 1, 1 (2023), 41:1–41:27.

[77] Ziniu Wu and Amir Shaikhha. 2020. BayesCard: A Unified Bayesian Framework
for Cardinality Estimation. CoRR abs/2012.14743 (2020). https://arxiv.org/abs/
2012.14743

[78] Ziniu Wu, Pei Yu, Peilun Yang, Rong Zhu, Yuxing Han, Yaliang Li, Defu Lian, Kai
Zeng, and Jingren Zhou. 2022. A Unified Transferable Model for ML-Enhanced
DBMS. In CIDR.

[79] Ziniu Wu, Rong Zhu, Andreas Pfadler, Yuxing Han, Jiangneng Li, Zhengping
Qian, Kai Zeng, and Jingren Zhou. 2020. FSPN: A New Class of Probabilistic
Graphical Model. CoRR abs/2011.09020 (2020). https://arxiv.org/abs/2011.09020

[80] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73.

[81] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi
Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.
2019. Deep Unsupervised Cardinality Estimation. Proc. VLDB Endow. 13, 3 (2019),
279–292.

[82] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do Transformers Really Perform Badly
for Graph Representation?. In NeurIPS. 28877–28888.

[83] Tianjing Zeng, Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. 2022.
Persistent Summaries. ACM Trans. Database Syst. 47, 3, Article 11 (Aug. 2022),
42 pages. https://doi.org/10.1145/3531053

[84] Kangfei Zhao, Jeffrey Xu Yu, Zongyan He, Rui Li, and Hao Zhang. 2022. Light-
weight andAccurate Cardinality Estimation byNeural NetworkGaussian Process.
In SIGMOD. 973–987.

[85] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random
sampling over joins revisited. In SIGMOD. 1525–1539.

[86] Rong Zhu, LiangguiWeng,WenqingWei, DiWu, Jiazhen Peng, YifanWang, Bolin
Ding, Defu Lian, Bolong Zheng, and Jingren Zhou. 2024. PilotScope: Steering
Databases with Machine Learning Drivers. Proc. VLDB Endow. 17, 5 (may 2024),
980–993. https://doi.org/10.14778/3641204.3641209

[87] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method
for Cardinality Estimation. Proc. VLDB Endow. 14, 9 (2021), 1489–1502.

650

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1511.03086
http://arxiv.org/abs/1511.03086
https://doi.org/10.14778/3641204.3641205
https://doi.org/10.14778/3641204.3641205
https://arxiv.org/abs/2012.14743
https://arxiv.org/abs/2012.14743
https://arxiv.org/abs/2011.09020
https://doi.org/10.1145/3531053
https://doi.org/10.14778/3641204.3641209

	Abstract
	1 Introduction
	2 Preliminaries
	3 Our Roadmap
	4 Our Pretrained Model
	5 Data Collection and Model Training
	6 Experimental Studies
	6.1 Experiment Setup
	6.2 Performance on Unseen Datasets
	6.3 Performance of PRICE with Finetuning
	6.4 Generalization Ability of PRICE
	6.5 Impacts of Training Data to Pretrain PRICE
	6.6 Ablation Study

	7 Conclusion and Future Work
	References

