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ABSTRACT
With thewidespread use of GPS-enabled devices and services, trajec-

tory data fuels services in a variety of fields, such as transportation

and smart cities. However, trajectory data often contains errors

stemming from inaccurate GPS measurements, low sampling rates,

and transmission interruptions, yielding low-quality trajectory data

with negative effects on downstream services. Therefore, a crucial

yet tedious endeavor is to assess the quality of trajectory data, serv-

ing as a guide for subsequent data cleaning and analyses. Despite

some studies addressing general-purpose data quality assessment,

no studies exist that are tailored specifically for trajectory data.

To more effectively diagnose the quality of trajectory data, we

propose T-Assess, an automated trajectory data quality assessment

system. T-Assess is built on three fundamental principles: i) exten-

sive coverage, ii) versatility, and iii) efficiency. To achieve compre-

hensive coverage, we propose assessment criteria spanning validity,

completeness, consistency, and fairness. To provide high versa-

tility, T-Assess supports both offline and online evaluations for

full-batch trajectory datasets as well as real-time trajectory streams.

In addition, we incorporate an evaluation optimization strategy

to achieve assessment efficiency. Extensive experiments on four

real-life benchmark datasets offer insight into the effectiveness of T-
Assess at quantifying trajectory data quality beyond the capabilities
of state-of-the-art data quality systems.
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1 INTRODUCTION
With the proliferation of GPS-enabled devices, massive trajectory

data of moving objects such as vehicles is being accumulated that

can fuel important real-word applications in fields such as smart

cities, covering transportation and urban planning [33], as well as

consumer services such as POI recommendation [32, 46], to name

but a few. However, due to a variety of deficiencies, data quality

issues typically occur during GPS data collection and trajectory

generation. Figure 1 illustrates three types of common trajectory

errors. For example, trajectory𝑇1 that is generated by a vehicle con-

tains a point 𝑝1 that is positioned incorrectly inside a building. Such

quality issues degrade the effectiveness of downstream trajectory

driven applications. Therefore, a crucial yet tedious endeavor is to

enable trajectory data quality assessment, that may guide (targeted)

trajectory cleaning, thereby improving the quality of applications.

Several existing studies [10, 26, 27, 36, 39] focus on the quan-

tification of data quality. First, task-agnostic data quality assess-

ment [10, 31, 35, 36, 38, 41] leverages data characteristics to quantify

various quality dimensions. Second, task-aware data quality assess-

ment [8, 21, 22, 34] considers data quality within the context of

specific tasks, especially in the realm of machine learning (ML).

These existing studies target general-purpose data quality assess-

ment and therefore do not contend well with aspects specific to

trajectories, such as the following:

• Failure to identify spatio-temporal patterns. Trajectory data

captures spatio-temporal patterns, representing constraints on

individual points in a trajectory (e.g., location scope) or con-

straints between points in a trajectory (e.g., speed constraints).

However, existing data quality assessment methods only focus

on patterns in general data and fall short at capturing violations

of spatio-temporal patterns.

• Failure to capture inter-dependencies. Inter-dependencies re-
fer to relations across trajectories in the dataset. For instance,

trajectories usually exhibit specific group behaviors, e.g., morn-

ing/evening peaks. However, the most related studies [31, 41]

focus on detecting errors within a single univariate time-series,

lacking the capability to consider inter-dependencies.

• Failure to realize topographical contexts. Topographical con-
text is defined as constraints on trajectories caused by the specific

geographic environment. For example, trajectories capturing the

movements of cars in urban areas have to be consistent with the
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Figure 1: Examples of common types of erroneous trajectories.

road network of the city. However, existing data quality assess-

ment methods struggle with leveraging topographical context

as they ignore auxiliary information like road networks and are

unable to capture underlying relations between topographical

contexts and trajectories.

In addition, spatio-temporal data is generated in streaming
fashion. However, most of the existing data quality studies tar-

get static data and cannot be extended to contend effectively with

streaming data. Although a few systems [36] support incremental

quality evaluation, they still face efficiency challenges when intri-

cate constraint checks are involved. Motivated by the importance

of trajectory data and this state-of-the-art, we introduce T-Assess,
an automated quality assessment system specifically tailored for

trajectory data. T-Assess is designed based on three principles:

(i) Extensive coverage. To achieve a broad understanding of

trajectory data quality, assessments should cover trajectory irregu-

larities and error cases broadly. Understanding the positive impact

of data quality assessment on downstream applications and the

shortages of existing trajectory data quality assessment methods

is imperative to achieve a system that can cover the most typical

errors in trajectory data. Considering the unique characteristics of

trajectory data, our system offers constraints in four dimensions,

facilitating a broad-based quality evaluation.

(ii) Versatility. Real-life applications call for both offline (e.g.,
urban planing [33], POI recommendations [32, 46]) and online tra-

jectory analyses (e.g., real-time congestion monitoring [42], vessel

monitoring [30]). Thus, T-Assess is designed to evaluate the quality

of both historical and streaming trajectory data, supporting both

offline and online trajectory analyses.

(iii) Efficiency. Arrival rates of streaming trajectories are often

in the range from 1 per second to 1 per minute [3, 50]. Efficient data

quality assessment that can keep up with such rates is crucial for

subsequent data cleaning and analysis. A naive approach to evaluate

trajectory data quality is a full scan of the data, identifying all points

in a trajectory dataset that violate constraints. However, this is

time-consuming, especially for massive trajectory data. To achieve

efficiency, we first deploy T-Assess on a distributed dataflow engine

(e.g., Spark [2] and Kafka [1]) for historical and streaming trajectory

data, thereby leveraging parallel processing capabilities. Inspired

by the intuition that trajectories with the same spatial features

share the same data quality, we approximate overall data quality by

evaluating a subset of trajectories, which reduces lots of redundant

calculations. Specifically, we propose a cluster-selection strategy

consisting of efficient trajectory similarity search and representative

selection, which achieves high efficiency and low estimation error.

The major contributions of this paper are as follows.

• We propose T-Assess, an efficient data quality assessment system

tailored for trajectory data that leverages a distributed dataflow

engine to enable both offline and online evaluations. To our

knowledge, this is the first study that targets the evaluation of

trajectory data quality.

• We provide an extensive set of trajectory data quality metrics in

terms of four dimensions (i.e., validity, completeness, consistency,

and fairness) that take into account the special characteristics of

trajectory data.

• We design an evaluation optimization strategy that leverages

spatio-temporal correlations between trajectories to improve

data quality assessment efficiency within small error margins.

• Extensive experiments offer insight into the effectiveness and

efficiency of T-Assess, including its optimization.

2 PRELIMINARIES
2.1 Trajectory Data Models
Trajectory datasets can be collected in the batch or streamingmodes.

We thus provide data models for batch trajectory datasets and

streaming trajectory datasets.

Definition 1 (Batch trajectory dataset). A batch trajectory
dataset is a set of trajectories, denoted by T𝐵 = {𝑇1,𝑇2, . . . ,𝑇𝑁 }, where
𝑁 is the number of trajectories. Each trajectory𝑇 is a bounded, time-
ordered sequence of GPS points, denoted by 𝑇 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑛⟩,
where 𝑛 represents the number of points and each GPS point 𝑝 =

(𝑥,𝑦, 𝑡) consists of a longitude 𝑥 , a latitude 𝑦, and a timestamp 𝑡 .

Definition 2 (Streaming trajectory dataset). A streaming
trajectory dataset T𝑆 is a set of streaming trajectories. Each streaming
trajectory 𝑇 is an unbounded, time-ordered sequence of GPS points,
denoted by 𝑇 = ⟨𝑝1, 𝑝2, . . . ⟩. That is, in the streaming setting, GPS
points keep arriving over time.

We use 𝑝𝑖 to denote the 𝑖-th GPS point in a trajectory 𝑇 and

𝑝𝑖 .𝑥 (resp. 𝑝𝑖 .𝑦 and 𝑝𝑖 .𝑡 ) to denote the longitude 𝑥 (resp. latitude

𝑦 and timestamp 𝑡 ) of the GPS point 𝑝𝑖 . We drop subscripts for

the general case. Note that, the road network is easy to obtain

and is a crucial asset for detecting moving patterns in trajectory

data [18, 26]. Therefore, if available, the road network is used as
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Figure 2: System architecture of T-Assess.

one of the inputs for the data quality assessment system and assists

in detecting data quality issues.

2.2 Trajectory Data Quality Assessment
To support both batch and streaming trajectory datasets, offline

and online quality assessments are considered.

Definition 3 (Offline qality assessment). Given a batch
trajectory dataset T𝐵 and a set of trajectory data quality metrics (i.e.,
constraints, to be detailed in Section 4.1), offline quality assessment
aims to count the numbers of data points and trajectories in T𝐵 that
fail to satisfy the quality metrics.

Unlike in offline quality assessment, the number of points and

trajectories that violate the pre-defined constraints in the online

setting is dynamic. To support the online trajectory data quality

assessment, following previous studies [19, 48], we adopt a sliding

window model.

Definition 4 (Sliding window). Given a length𝑊 and the cur-
rent timestamp 𝑡𝑐 , a sliding window contains points in the streaming
trajectory dataset T𝑆 located in the time period [𝑡𝑐 −𝑊, 𝑡𝑐 ] (𝑡𝑐 ≥𝑊 ).

While Definition 4 adopts a time-based sliding window, our

problems can be extended to count-based sliding windows that

cover the 𝑊 most recent GPS points of each trajectory stream.

Using the sliding window, online assessment is defined as follows.

Definition 5 (Onlineqality assessment). Given a streaming
trajectory dataset T𝑆 , a sliding window, and a set of trajectory data
quality metrics, online data quality assessment aims to count the
numbers of data points and trajectories in the sliding window that
fail to satisfy pre-defined quality metrics.

3 T-ASSESS ARCHITECTURE
To enable extensive, versatile, and efficient trajectory data quality

assessment, the T-Assess automatic data quality assessment system

adopts the architecture shown in Figure 2. T-Assess employs the dis-

tributed platforms Spark [2] and Kafka [1] for batch and streaming

trajectory datasets, respectively. Both leverage parallel computing

to facilitate high-performance processing.

Even with the advantages of distributed computing, efficiency

challenges arise when intricate constraint checks are involved. For

this, T-Assess incorporates an evaluation optimization strategy in a

second layer that evaluates data quality approximately with error

bounds. The optimization strategy consists of two steps: trajectory

clustering and representative trajectory selection. The details are

covered in Section 5. This way, T-Assess performs constraint checks

on trajectory representatives rather than the entire dataset, which

enables a trade-off between correctness and efficiency.

In the subsequent layer, T-Assess exposes a user-facing API that

enables the formulation of different categories of data quality met-

rics for trajectory data. Considering the unique characteristics of

trajectories and potential downstream analyses, the proposed data

quality metrics span four dimensions, to be detailed in Section 4.

The metrics in T-Assess are encapsulated into user-defined func-

tions (UDFs) for ease of use, and evaluations are performed through

UDF calls. To modify existing metrics or add new metrics, users

simply need to update or add the respective UDFs, making the

system flexible and adaptable to new requirements.

4 DATA QUALITY EVALUATION
We first motivate and describe the detailed data quality dimensions,

and then we present detailed offline and online evaluations.

4.1 Data Quality Dimensions
4.1.1 Motivation. We collected quality metrics based on three

recent comprehensive surveys [26, 27, 39] of data quality issues in

spatio-temporal data. The resulting quality metrics are grouped into

four categories – validity, completeness, consistency, and fairness –
which are commonly identified as essential in the surveys. To de-

velop the quality metric system, we further reviewed recent studies

and identified the data quality issues that impact data mining tasks

the most to ensure that corresponding quality metrics are included

in T-Assess. Due to the growing use of deep learning, we include

the data quality dimension, fairness, which is often overlooked in

existing surveys. Metrics in these dimensions consider both the

trajectory characteristics and potential impacts on applications,

addressing the “failures” mentioned in the introduction.

4.1.2 Design. We proceed to cover the quality metrics using the

examples of errors illustrated in Figure 1.

Validity refers to the degree to which trajectory data conforms

to basic spatio-temporal patterns. It addresses the first “failure”
stated in the introduction by including constraints for individual

points in a trajectory, namely timestamp and scope constraint. The
timestamp constraint ensures that timestamps of trajectory points

increase monotonically over time. For example, 𝑝5 and 𝑝6 in 𝑇5
violate the timestamp constraint since the timestamp of 𝑝6 is smaller

than that of 𝑝5. The scope constraint restricts the location scope

of GPS points. For example, the longitude of a GPS point cannot

exceed the range of [−180, 180].
Completeness concerns the integrity and informativeness of tra-

jectory data. It is included inmost data quality studies [16, 31, 36, 39]

and can guide for data cleaning (e.g., position imputation [28]).

Here, we consider missing points and missing values. A missing

point exists if the time interval between two consecutive points is

abnormally long. For instance, 𝑝3 is regarded as a missing point
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Table 1: Metrics for evaluating trajectory data quality.

Metric Definition
Dimension Validity

Timestamp constraint 𝑝𝑖 .𝑡 ≤ 𝑝 𝑗 .𝑡, ∀0 < 𝑖 ≤ 𝑗 ≤ 𝑛.
Scope constraint (𝑥min ≤ 𝑝𝑖 .𝑥 ≤ 𝑥max ) ∧ (𝑦min ≤ 𝑝𝑖 .𝑦 ≤ 𝑦max ) , where 𝑥min and 𝑥max (resp. 𝑦min and 𝑦max ) represent minimum and

maximum longitudes (resp. latitudes) of the range under consideration.

Dimension Completeness
Missing point 𝑝𝑖+1 .𝑡 − 𝑝𝑖 .𝑡 < 2Δ𝑡 , where Δ𝑡 is the sampling time interval.

Missing value (𝑝𝑖 .𝑥 ≠ NULL) ∧ (𝑝𝑖 .𝑦 ≠ NULL) .
Dimension Consistency

Smoothness constraint Following the previous definition [51], treat abrupt location shifts in trajectories as violations of the smoothness constraint.

Length constraint

∑︁
1≤𝑖≤𝑛−1 dist (𝑝𝑖+1, 𝑝𝑖 ) ≥ 𝐿th , where dist (∗, ∗) is a distance function and 𝐿th denotes the trajectory length threshold.

Trajectory outlier Following the previous definition [25, 29], a GPS point 𝑝𝑖 from trajectory 𝑇 is deemed a point outlier if the number of its

neighbors — defined as points from other trajectories with a distance of less than 𝜎 to 𝑝𝑖 — is less than a threshold 𝜂. If a

trajectory𝑇 contains more than a pre-set number 𝜌 of these point outliers,𝑇 is considered an outlier trajectory.

Anomalous stay point Regard point outliers that are not in stay point clusters as anomalous stay points.

Road network constraint OHMM [23] is employed to find the correspondence between each point to a road segment in the road network. Once the

correspondence does not exist, the point and the corresponding trajectory violates the road network constraint.

Dimension Fairness
Spatial density

|T (𝑄𝑠 ) |∑︁
𝑇 ∈T |𝑇 | ·

Area
Area(𝑄𝑠 ) , where𝑄𝑠 is a rectangular region, T(𝑄𝑠 ) is a set of GPS points from T within𝑄𝑠 ,

∑︁
𝑇 ∈T |𝑇 | is the total

number of GPS points in dataset, and Area and Area(𝑄𝑠 ) denote the dataset’s total area and the area of𝑄𝑠 , respectively.

Temporal density
|T (𝑄𝑡 ) |∑︁
𝑇 ∈T |𝑇 | ·

max𝑝𝑖 ∈T (𝑝𝑖 .𝑡 )−min𝑝𝑖 ∈T (𝑝𝑖 .𝑡 )
𝑡max−𝑡min

, where𝑄𝑡 = [𝑡min, 𝑡max ] is a user-specified timespan, T(𝑄𝑡 ) is a set of GPS points in
𝑄𝑡 , and max𝑝𝑖 ∈T (𝑝𝑖 .𝑡 ) − min𝑝𝑖 ∈T (𝑝𝑖 .𝑡 ) is the dataset’s total timespan.

since the time interval between points before and after 𝑝3 (20s) is

larger than the average sampling interval (10s) of 𝑇3. We regard a

GPS point as a missing value if it has no longitude or latitude value.

Consistency is gauged by the extent to which a set of semantic

rules is upheld. It addresses three “fails” by enabling constraints

between the points in a trajectory, constraints concerning inter-

dependencies, and constraints concerning topographical contexts.

Specifically, we consider these: smoothness constraint (addressing
thefirst “failure”), length constraint and trajectory outliers (address-
ing the second “failure”), anomalous stay points and road network
constraint (addressing the third “failure”). The smoothness con-

straint restricts location shifts within a trajectory. For example, 𝑝2
in 𝑇2 violates the smoothness constraint as it deviates abnormally

from other points in𝑇2. The length constraint restricts the length of

a trajectory, with an abnormally short trajectory regarded as a vio-

lation. A trajectory deviating from the proper course is considered a

trajectory outlier. For instance, 𝑇6 in Figure 1 is a trajectory outlier

as it deviates from its course, as captured by𝑇4 and𝑇5. Considering

topographical contexts, a point is regarded as anomalous when its

location is inappropriate. For example, 𝑇3 has a set of stay points

(e.g., 𝑝4) that stays in one place for a long time, and it is anomalous

because it stays on the road (typically forbidden). The road network

constraint specifies that trajectories generated by vehicles have to

be constrained to the road network. For example, 𝑝1 in 𝑇1 violates

the road network constraint, as it is positioned inside a building.

Fairness evaluates the degree of biased information in a trajectory

dataset, which affects machine learning results in subsequent appli-

cations. We focus on spatial and temporal density. Spatial density
measures the density of GPS points in a specific region compared

to the overall density of the dataset, indicating data skewness in

the spatial dimension. Taking 𝑄1

𝑠 and 𝑄
2

𝑠 in Figure 1 as an example,

assuming traffic flow prediction as a subsequent task, it is expected

that models will produce more accurate predictions for region 𝑄1

𝑠

due to its better GPS point coverage compared to 𝑄2

𝑠 . Temporal

density measures the density of GPS points in a specific timespan

compared to the overall density, indicating data skewness in the

temporal dimension. For instance, considering 𝑄1

𝑡 and 𝑄
2

𝑡 in Fig-

ure 1 and anomaly detection across timespans as a subsequent task,

it is expected that more false negatives may occur in region𝑄1

𝑡 than

𝑄2

𝑡 due to less training data in 𝑄1

𝑡 . Fairness alerts data practitioners
to perform data augmentation to address data skewness.

We use the above metrics to evaluate the trajectory data quality

in general scenarios. However, different quality assessment require-

ments may exist in specific application scenarios. Our system can

be easily extended to support more data quality metrics.

4.2 Evaluation Implementation
Table 1 lists the metrics available in our paper for evaluating trajec-

tory data quality. Detailed evaluations of these data quality metrics

are provided in the extended technical report [5]. In our imple-

mentation, we employ classical methods to evaluate the metrics

as described in Table 1. The system ultimately returns counts of

violations of the quality metrics. Instead of aiming for SOTA perfor-

mance in a specific quality metric evaluation, our system prioritizes

offering a broad-based quality assessment. Our system can incorpo-

rate any of the SOTA techniques for these evaluations. Moreover,

to accommodate dynamic traffic conditions (e.g., road closures),

T-Assess can be extended to integrate traffic-aware techniques.

5 EVALUATION OPTIMIZATION
We proceed to cover the proposed system’s optimization strategy by

first motivating the strategy and then providing algorithm details.
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5.1 Overview
While enabling perfect accuracy, data quality assessment via full

data scan is prohibitively time-consuming, especially with massive

trajectory data, even when leveraging a distributed dataflow engine.

Thus, assuming the cost of quality assessment is proportional to

the number and the lengths of trajectories in a dataset, we propose

conducting data quality assessments on representative trajectories

rather than on all trajectories. The key intuition is that spatially
similar trajectories share similar data quality issues. To support this

intuition, we compute trajectory similarity and the similarity of

data quality issues for all trajectory pairs in the three datasets and

visualize the distributions of the two types of similarity scores

(detailed settings can be found in the technical report [5]). Figure 3

shows that the distributions of pairwise trajectory similarity and

quality issue similarity are similar, thus supporting our intuition.

The core challenges are to identify spatially similar trajectories and
to select representative trajectories.

5.2 Trajectory Clustering
5.2.1 Motivation. To find similar trajectories, the straightfor-

ward solution is pair-wise comparisons using some trajectory dis-

tance notion, such as Frechet distance. However, this has high time

complexity [24]. To address this issue, we opt for trajectory cluster-

ing. Although different trajectory clustering methods exist, many

of them require intricate trajectory feature engineering for sub-

sequent clustering, making them computationally expensive [37].

Consequently, we propose a more efficient approach to generating

trajectory clusters that avoids complex feature engineering.

5.2.2 Design. To improve the efficiency of trajectory clustering,

we convert free space trajectories into grid space-represented tra-

jectories. Specifically, given a two-dimensional space, we construct

a grid 𝐺 that partitions the space into 2
𝜃 × 2

𝜃
equal-sized grid

cells, where 2
𝜃
is the grid resolution. Each raw trajectory 𝑇 can be

converted into a grid-based trajectory 𝑇𝐺 by replacing each point

𝑝𝑖 in 𝑇 with the ID of its grid cell. Given a grid-based trajectory

dataset, to eliminate the impact of the visiting order, we first sort the

trajectories in descending order of their length. Then we initialize

an empty list that stores the centers of each cluster (we regard the

longest trajectory in a cluster as the center of the cluster). During

the clustering, we traverse the sorted grid-based trajectories, and

for each visited trajectory 𝑇𝐺 , we check whether it has at least 𝑂

grid cells that intersect with any of the current centers. If𝑇𝐺 has at
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Figure 4: Toy example illustrating the representative trajec-
tory selection strategy.

least 𝑂 grid cells in common with cluster center 𝑐 , we add it to the

corresponding cluster 𝐶 ; otherwise, a new cluster 𝐶new is added to

the set of clusters and𝑇𝐺 becomes the center of𝐶new . This process

continues until all trajectories are visited. The pseudocode can be

found in the technical report [5].

Complexity analysis. For a dataset of𝑁 trajectories and𝐾 clusters

generated by the algorithm, its complexity is𝑂 (𝑁 log𝑁+𝐾 (𝑁−𝐾)).

5.3 Representative Trajectory Selection
5.3.1 Motivation. Trajectory clustering groups spatially similar

trajectories into the same cluster. Rather than considering all trajec-

tories in a dataset, selecting a subset of trajectories from each cluster

when performing a quality assessment can improve efficiency con-

siderably. However, randomly selecting trajectories from clusters

would severely distort the trajectory distribution of the dataset,

rendering the quality assessment ineffective. Instead, we propose a

representative trajectory selection strategy that can preserve the

trajectory distribution as well as ensure high performance of the

selection process. We provide a visualization of how the proposed

selection strategy preserve the trajectory distribution as compared

to other strategies in the accompanying technical report [5].

5.3.2 Design. It is computationally expensive to sample trajec-

tories w.r.t. a particular non-uniform distribution (𝑂 (𝐾𝑁𝑠 ) com-

putation for 𝑁𝑠 samples). To overcome this, we leverage the alias

method [43] to convert sampling trajectories w.r.t. a non-uniform

distribution into constant-time sampling from a uniform distribu-

tion. The core idea is to equalize the cluster sizes through trajectory

reallocation without altering the actual trajectory distribution.

Suppose that𝑘 clusters,C = {𝐶1,𝐶2, · · · ,𝐶𝐾 }, are created through
trajectory clustering, and that an identifier is assigned to each trajec-

tory that indicates the trajectory it belongs to. For instance, Figure 4

shows four trajectory clusters, with the trajectories in the yellow

cluster assigned ID 1 and those in the red cluster assigned ID 4.

Step 1. Normalization of cluster sizes. The sizes of each cluster is
normalized using the formula

|𝐶𝑖 |𝐾∑︁𝐾
𝑗=1 |𝐶 𝑗 |

, so the average size becomes

1. In Figure 4, the normalized sizes of the clusters are 0.4, 1.2, 0.8, 1.6,

respectively, with an overall average of 1.

Step 2. Reallocation of excess trajectories. Trajectories from
larger clusters are reallocated to smaller clusters to obtain equal

cluster sizes. Figure 4 provides an example of this reallocation pro-

cess: Cluster 4 (the red block) “donates” trajectories from its excess
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portion (the dashed red section) to cluster 1 (the yellow block). To

track the reallocation and support the following selective sampling,

we use a dictionary to record “donor-recipient” relationships (i.e.,
the IDs of donors as keys and the IDs of recipients as values), a

queue to store IDs of clusters whose normalized sizes are greater

than 1 (i.e., donors), and another queue to store the IDs of smaller

clusters (i.e., recipients).
Step 3. Selective sampling. The sampling process involves two

steps: (1) First, a cluster is selected randomly based on its ID; (2)

Then, whether a trajectory is selected from the original or “donated”

section of the cluster depends on if the random number is less than

the normalized cluster size. This redirection maintains the overall

trajectory distribution. Figure 4 illustrates two cases: in the first,

cluster 1 is chosen, and a random number 𝑟 = 0.3 < 0.4 leads to

selecting a trajectory from its original section (i.e., the yellow part);

in the second case, cluster 3 is randomly selected, and a random

number 𝑟 = 0.9 > 0.8 leads to the selection from the reallocated

portion in the cluster 3 (i.e., the green part of cluster 3).

The pseudocode for the trajectory reallocation and sampling

process is present in the technical report [5].

Complexity analysis. Given 𝐾 clusters and 𝑁𝑠 samples, the time

complexity of trajectory reallocation is 𝑂 (𝐾), and the time com-

plexity of sampling a trajectory is 𝑂 (1).

5.4 Error Analysis
By employing the evaluation optimization, the error incurred by

approximate evaluation is small and bounded. Given a selected

representative𝑇 𝑠 and a trajectory𝑇 , the violation count of𝑇 derived

by the system is approximated by that of𝑇 𝑠 . The approximate error

for a pair of 𝑇 𝑠 and 𝑇 is defined as the difference between two

violation counts, denoted by 𝑥 . For a dataset of 𝑁 trajectories to

be assessed, 𝑁𝑠 trajectory representatives are sampled from the

dataset and form 𝑁 pairs. The accumulative error is defined as the

sum of approximate errors for all pairs, denoted by 𝑆Ns =
∑︁𝑁
𝑖=1 𝑥𝑖 .

We have the following error guarantee analysis:

Theorem 1 (Error bound). The probability that 𝑆Ns exceeds a
threshold 𝜖 is upper bounded by 𝑃𝑟 (𝑆Ns ≥ 𝜖) ≤

(𝑁−𝑁𝑠 ) (1−𝑂/|𝑇 | )
𝜖 .

The proof can be found in the extended version [5].

6 EXPERIMENTS
In this section, we conduct experiments with the aim of answering

the following research questions:

RQ1 How does T-Assess assist downstream data cleaning and

subsequent data mining tasks?

RQ2 Does T-Assess outperform the off-the-shelf competitors?

RQ3 How do parameter settings affect T-Assess?

6.1 Experimental Setup
Datasets.The experiments are conducted on four real-world datasets:

T-drive [50], Rome [4], AIS [3], and Geolife [52]. The statistics of

datasets are available in the technical report [5].

Baselines. Deequ [36] and TsFile [41] are data quality assessment

systems for general-purpose and time-series data, respectively, each

of which can support a small set of quality metrics. For fair compar-

ison, we combine them and propose a new data quality assessment
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Figure 5: Case study of how T-Assess assists trajectory data
cleaning and trajectory data mining tasks.

system, termed STDeequ, to serve as a baseline. STDeequ supports

timestamp constraint checking, missing value detection, and out-

of-range value detection.

Parameter settings. The implementation details of T-Assess are
presented in an extended technical report [5].

Evaluation Metrics. We quantify each quality dimension (except

fairness) as the proportion of trajectories that do not contain vio-

lations of constraints that belong to the corresponding dimension.

For fairness, we use spatial and temporal density to quantify the

fairness of datasets. To improve legibility, abbreviations are used

for metrics: Validity (VA), Completeness (CM), Consistency (CS),

Spatial density (FA-S), and Temporal density (FA-T). For offline eval-

uation efficiency, we use the average evaluation time for a single

trajectory as the metric; for the efficiency of online evaluations, we

use the time it takes the system to process a data point from the

moment it is received as the metric.

6.2 Case Study: As an Advisor (RQ1)
Datasets usually contain quality issues of varying severity, reflected

in different violation counts for each quality metric. It is more ef-

ficient to target the most severe issues first rather than applying

all cleaning operations indiscriminately. The type of quality assess-

ment enabled by T-Assess helps identify the most severe quality

issues are most critical enabling efficient data cleaning strategies.

In this case study, we apply three trajectory cleaning opera-

tions on the datasets: 1○ data imputation [14] to impute missing

data, 2○ trajectory calibration [40] to correct trajectory outliers,

and 3○ trajectory segmentation [15] to remove location shifts. The

execution order of these cleaning operations is determined by the

violation counts provided by T-Assess, thereby prioritizing opera-

tions that address the most severe quality issues. We measure both

the runtimes of the data cleaning and the resulting improvements
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Table 2: Runtime of components in T-Assess in milliseconds.

Datasets T-drive Rome AIS Geolife
Full data scan 3825.82 162.95 1264.98 231.28

Optimization

Clustering 21.62 5.30 9.65 2.05

Selection 0.0013 0.0023 0.0129 0.0018

Evaluation

Distributed T-Assess 417.40 25.57 136.35 31.90

Online T-Assess 0.43 0.35 0.06 0.21

in downstream model performance. The downstream trajectory

data mining methods include: ST2Vec [18] for similarity search,

E2DTC [17] for trajectory clustering, SECA [12] for transportation

type identification, and MetaPTP [47] for trajectory prediction.

In Figure 5, the numbers (i.e., 1○, 2○, 3○) indicate the data clean-

ing operation used. Compared to STDeequ, it takes less time to

achieve the same performance improvements on a dataset cleaned

in the order suggested by T-Assess. This is because T-Assess con-
siders a broader range of quality metrics, enabling it to effectively

determine the most impactful data cleaning sequence. For example,

in Figure 5a, T-Assess recommends prioritizing trajectory calibra-

tion due to the large number of location shifts in the dataset, while

STDeequ suggests performing data imputation first, as it cannot

detect location shifts. We observe that trajectory calibration, as

recommended by T-Assess, results in a higher-quality dataset in 4

minutes, allowing ST2Vec to performs better, while the data impu-

tation suggested by STDeequ is still ongoing.

6.3 System Design Comparisons (RQ2)
Time breakdown analysis. Table 2 provides a detailed runtime

analysis of key optimization components (including trajectory clus-

tering and representative selection) and other system components.

The results indicate that the overhead introduced by these opti-

mizations of clustering and selection is minimal compared to the

overall evaluation time. Further, the total runtime of T-Assess is ap-
proximately 9× shorter than that of a full data scan, demonstrating

the efficiency of our approach.

Evaluation optimization comparison. For the component of

trajectory clustering, we compare our method with three methods:

• Dynamic variant (DV). A variable grid-based method, where

lower-density grids are merged into larger cells.

• TrajStore (TS). The trajectory clustering component used in the

TrajStore system [11].

• E2DTC. A deep learning based trajectory clustering method [17].

For trajectory selection, we compare our alias method (abbr. A) with
random selection (abbr. R). This results in a total of 8 combinations

(4 clustering methods × 2 selection methods). We use the runtime

to evaluate the efficiency, and we employ the average error rate to

evaluate the effectiveness. Let 𝐸∗fds (T ) denote the data quality in

dimension ∗ obtained by the full data scan and 𝐸∗
𝑁𝑠 ,𝜃

(T ) denote the
data quality in dimension ∗ obtained by T-Assess with parameter

𝑁𝑠 and 𝜃 . The error rate in the quality dimension ∗ is calculated as:

Error rate∗ =
|𝐸∗fds (T ) − 𝐸∗

𝑁𝑠 ,𝜃
(T )|

𝐸∗
𝑓 𝑑𝑠
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Figure 6: Comparison of trajectory clustering and selection.

Figure 6 shows that our approach outperforms the competitors

in terms of both assessment accuracy and efficiency. While the dy-

namic variant of our method achieves lower error rates, it requires

more computation time, particularly with large datasets like Tdrive

and Rome. The clustering method in TrajStore performs poorly

due to its reliance on a continuous trajectory similarity threshold,

which is challenging to fine-tune given its extremely large search

space. Additionally, it has high computational cost (e.g., taking over
2 days on Tdrive). E2DTC is worse than non-learning clustering

approaches since it is trained on labeled data annotated by a non-

learning clustering approach. Further, its process of representing

trajectories by vectors incurs high computational overhead as the

dataset size grows. Compared to the alias method used in T-Assess,
random trajectory selection sacrifices assessment accuracy for a

marginal reduction in runtime.

6.4 Sensitivity Study (RQ3)
T-Assess might be influenced by three key parameters: the number

of samples 𝑁𝑠 , grid resolution 2
𝜃
, and the sliding window length

𝑊 . Due to the space limitation, only T-drive and AIS results are

presented here and more can be found in our technical report [5].

The number of samples.We investigate the impact of the number

of samples 𝑁𝑠 on the performance of T-Assess. Figures 7a, 7b, 7f, 7g
show the results by varying 𝑁𝑠 from 1000 to 7000. As observed, for

all quality dimensions, the error rates decrease with an increase of

𝑁𝑠 . This decrease is attributed to T-Assess with the sampling-based

optimization becoming closer to the full data scan as 𝑁𝑠 increases.

In addition, the runtime of the quality evaluation increases as 𝑁𝑠
grows, while the runtime of the sampling remains almost constant,

which aligns with the 𝑂 (1) complexity of the representative trajec-

tory selection strategy.
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Figure 7: Effectiveness and Efficiency vs. number of samples 𝑁𝑠 , grid resolution 2
𝜃 , and sliding window length𝑊 .

Grid resolution. To explore the impact of the grid resolution 2
𝜃

on the performance of T-Assess, we vary the grid resolution 𝜃 from

4 to 7, resulting in the number of grid cells ranging from 32 × 32

to 128 × 128. Figures 7c, 7d, 7h, and 7i show the corresponding

results. The error rates in almost all quality dimensions drop, and

the running time of the sampling period increases with the growth

of 𝜃 . This is because, grid-based trajectories become more accurate

with a larger resolution, resulting in a higher trajectory clustering

accuracy but also a longer clustering time. The evaluation time

remains constant regardless of the resolution. This is because the

number of trajectories used for quality evaluations remains the

same regardless of the resolution.

Sliding window length. We explore the impact of the length

of the sliding window𝑊 on the performance of online T-Assess.
Figures 7e, and 7j depict the results of T-Assess when varying the

length of the sliding window𝑊 from 20s to 80s. In terms of the

effectiveness, the assessment results of online T-Assess remains

stable; in terms of the efficiency, the running time increases with

the growth of𝑊 . This is because the number of data points within

a sliding window increases, resulting in longer processing time to

perform constraint checks in the sliding window. Note that, the

time complexity of some constraint checks (e.g., the smoothness

constraint) is superlinear in the number of data points.

7 RELATEDWORK
Data Quality Assessment. Task-agnostic data quality assess-

ment [10, 31, 35, 36, 38, 41] uses data characteristics (e.g., data
distributions) as a means of quantifying different quality aspects of

the data. However, Those works only offer basic metrics for data

quality assessments that do not take into account the specifics of

the type of data considered, and fall short in providing sufficiently

informative the quality assessments. Task-aware data quality as-

sessment studies [8, 21, 22, 34] allow data quality to be considered

in the context of particular tasks, typically machine learning tasks.

Although task-aware data quality assessment is more indicative of

how data quality affects analysis tasks, this type of assessment is

designed for specific tasks and is not generally applicable.

Trajectory Data Management System. Several trajectory man-

agement systems exist, including TrajStore [11], UlTraMan [13],

and Torch [45], which are designed to support efficient trajectory

query processing. A key component of trajectory data management

systems is trajectory cleaning, which involves operations such as

trajectory segmentation [7], trajectory calibration [40], and trajec-

tory enrichment [6]. Such operations are essential for noise removal

but tend to focus on specific types of noise, lacking a holistic ap-

proach to assess and improve overall data quality comprehensively.

Trajectory Data Applications. A range of applications involve

trajectory data, as highlighted in recent surveys [9, 44]. Most prior

work on common trajectory applications, like travel time estima-

tion [49], and traffic prediction [20], focuses on innovating in model

architectures. In contrast, our study takes a data-centric approach,

focusing on detecting and addressing data quality issues within

trajectory data to improve downstream application performance.

8 CONCLUSION
We present T-Assess, an efficient trajectory data quality assessment

system with three salient features. First, the system supports con-

straints spanning four dimensions. Second, the system supports

both offline and online evaluations for batch trajectory datasets

and trajectory streams. Third, the system features an evaluation

optimization strategy to improve evaluation efficiency. Extensive ex-

periments demonstrate the effectiveness and efficiency of T-Assess.
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