
LEAP: A Low-cost Spark SQLQuery Optimizer using
Pairwise Comparison

Junhao Ye
Zhejiang University

junhao_ye@zju.edu.cn

Jiahui Li
Zhejiang University
li.jiahui@zju.edu.cn

Lu Chen
Zhejiang University
luchen@zju.edu.cn

Yuren Mao
Zhejiang University & Zhejiang Key
Laboratory of Big Data Intelligent

Computing
yuren.mao@zju.edu.cn

Yunjun Gao
Zhejiang University & Zhejiang Key
Laboratory of Big Data Intelligent

Computing
gaoyj@zju.edu.cn

Tianyi Li
Aalborg University
tianyi@cs.aau.dk

ABSTRACT
Selecting a good execution plan can significantly improve the query
efficiency of Spark SQL. Several machine learning-based techniques
have been proposed to select good execution plans for DBMS, but
none of them performwell on Spark SQL due to the following issues.
(1) Limited compatibility with Spark SQL: these approaches rely
on physical operator enumeration, while Spark SQL doesn’t sup-
port it; (2) Unreliable cost estimation: they often select execution
plans with poor performance due to inaccurate cost estimation;
(3) Time-consuming plan enumeration: they take much time to
generate a large number of candidate execution plans in Spark SQL.
To overcome these issues, in this paper, we propose LEAP, the first
learned query optimizer tailored for Spark SQL, which can be inte-
grated seamlessly into Spark SQL and solves the compatibility issue.
Also, to avoid the unreliable cost value estimation, LEAP selects
execution plans with an estimation-free method, which directly per-
forms comparisons between the plans. Furthermore, LEAP employs
an efficient progressive plan enumeration algorithm with pruning
techniques to find better plans with fewer enumerations. Extensive
experiments on three public benchmarks show the effectiveness
of LEAP. It reduces the end-to-end execution time of the native
optimizer by up to 54% and other learned methods by up to 94%.

PVLDB Reference Format:
Junhao Ye, Jiahui Li, Lu Chen, Yuren Mao, Yunjun Gao, and Tianyi Li.
LEAP: A Low-cost Spark SQL Query Optimizer using Pairwise Comparison.
PVLDB, 18(3): 675 - 687, 2024.
doi:10.14778/3712221.3712234

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/HuashiSCNU0303/LEAP.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.
doi:10.14778/3712221.3712234

With CBO

N1 N2 S C O L Time:
> 300 s

Without CBO

S L O C N1 N2 Time:
61.2 s

FROM supplier S, lineitem L,
orders O, customer C,
nation N1, nation N2

SELECT

WHERE

…

…

Figure 1: The join plans and their corresponding execution
time of TPC-H Q7, with or without CBO.

1 INTRODUCTION
With the rise of big data, Spark SQL [5] has become increasingly
popular for processing and analyzing large-scale data in a dis-
tributed environment. For an input query 𝑄 , Spark SQL generates
an execution plan (or join plan) to specify the sequence in which
tables are joined and how data operations are executed. Given the
substantial data volumes and extended run times of OLAP work-
loads, selecting efficient execution plans for queries on Spark SQL
is crucial for query optimization. Different execution plans for the
same query can significantly vary execution times. Historically,
Spark SQL’s optimization has relied on its Cost-based Optimization
(CBO) module, which utilizes column statistics like the number of
distinct values (NDV) and histograms to estimate the cost of various
execution plans and select the most cost-effective one. However,
these estimates are often inaccurate, leading to the selection of poor
plans by Spark SQL’s CBO. For example, for TPC-H Q7, enabling
CBO leads to a query execution time exceeding 300s, which is much
more than 61.2s without CBO, as shown in Figure 1.

To further improve query performance, machine-learning-based
techniques have become viable approaches in the DBMS field, which
mainly focuses on two strategies: learned cardinality estimation and
learned optimizer. Learned cardinality estimation methods use ma-
chine learning models to predict the output row count (i.e., cardinal-
ity) of execution plans, thereby refining the native optimizer’s cost
estimates to generate better plans. Learned optimizers often use ma-
chine learning models to directly estimate costs for entire execution
plans, and select the most cost-effective one from a set of promis-
ing candidate plans. Notable techniques include plan-constructor
methods [9, 23, 43] and plan-steerer methods [10, 22, 45, 49].

However, applying these DBMS-based methods to Spark SQL is
challenging due to the following reasons.
Limited compatibility with Spark SQL. Many existing meth-
ods can’t fully optimize Spark SQL queries due to their limited
compatibility with Spark SQL system. For example, hint-set-based

675

https://doi.org/10.14778/3712221.3712234
https://github.com/HuashiSCNU0303/LEAP
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712234
https://www.acm.org/publications/policies/artifact-review-and-badging-current

methods [22, 42] can optimize physical operator selection but not
join orders in Spark SQL, as Spark SQL determines join order based
on logical costs related to output cardinalities, unlike traditional
DBMSs, which consider physical operators in their plan cost. Thus,
disabling physical operators generates candidate plans of the same
join order. Also, Lero [49] generates join plans by scaling the native
cardinality estimates. That may lead to join plans with large table
broadcasts or shuffles, which greatly increases network or I/O costs,
causing performance drops or even execution failures. Moreover,
existing methods often require modifications to Spark SQL’s source
code, which needs extensive architectural knowledge and extra
debugging and maintenance costs.
Unreliable cost estimation. Existing methods often select join
plans with poor performance due to inaccurate cardinality or cost
estimations from learned estimators. These inaccuracies stem from
predicting continuous outputs, making them sensitive to outliers
and noise, especiallywith limited training data. For example, learned
cardinality estimators can produce estimates deviating from actual
values by tens of times, resulting in join plans with execution times
up to 8 to 10 times longer than the optimal ones [33].
Time-consuming plan enumeration. The enumeration space
for a query with 𝑛 tables can reach at least 𝑂 (𝑛!), making it time-
consuming for machine learning models to estimate plan cost or
output cardinalities. Additionally, generating an execution plan
using Spark SQL’s native optimizer is slower compared to DBMS.
Creating multiple candidate plans, as required by plan-steerer meth-
ods, also demands substantial time.

To overcome these issues, we propose a new learned optimizer
tailored for Spark SQL, named LEAP. It introduces the following
three modules to tackle the above three challenges respectively:
Optimization framework. To enhance compatibility, we develop
an optimization framework to align with Spark SQL system. Spark
SQL optimizes queries in two stages: first, it enumerates logical
join orders to find the one with the minimum logical cost (related
to output cardinality); then, it assigns physical operators based on
heuristic rules without enumerating them. Thus, LEAP introduces
two modules, Join Plan Enumerator and Join Operator Selector, to
optimize join order and physical operator selection respectively.
For a query𝑄 , Join Plan Enumerator processes it to generate a cost-
effective join plan 𝑃 . Join Operator Selector then assigns physical
operators to each join operation in join plan 𝑃 . These modules can
be integrated into existing workflows seamlessly without modifica-
tions to Spark SQL’s source code, thus improving the usability.
Learned comparator. To avoid unreliable cost estimation, we de-
sign a learned comparator 𝐶 (𝑃1, 𝑃2) to evaluate two join plans 𝑃1
and 𝑃2. If 𝑃1 is better, 𝐶 (𝑃1, 𝑃2) = 0, and vice versa. This pairwise
comparison approach allows us to identify the best plan among can-
didates more effectively than regression-based methods, as the opti-
mizer only needs to predict relative costs of join plans to choose one,
not their exact costs. Compared to existing comparators [10, 42, 49],
our comparator improves accuracy by using predicate information
and data features. Also, our comparator uses sequence model to
process plans, which may generate better plans than tree models
with limited training data [48]. Moreover, our model does not re-
quire multiple join plans for the same query as training data; it
can be trained directly using accumulated historical query data,
significantly reducing computational resource demands.

Enumeration algorithm. To reduce enumeration space, we pro-
pose an efficient progressive plan enumeration algorithm to gener-
ate a low-cost join plan for a given query𝑄 . The algorithm progres-
sively adds a new table to existing sub-plans to generate a left-deep
tree plan. While left-deep plans are simpler, bushy tree plans are
preferred in distributed systems like Spark SQL due to their ability
to parallelize join operations, though their search space is larger.
Thus, we integrate bushy-tree plan enumeration within the search
for left-deep tree plans. Specifically, during each iteration, when
encountering a sub-plan 𝑃1, the algorithm attempts to generate a
bushy tree plan that includes 𝑃1, that is, it recursively generates
a join plan 𝑃2 for the remaining tables, and then joins 𝑃1 with 𝑃2.
Additionally, the algorithm uses the cost of full join plans to prune
the unpromising sub-plans in subsequent searches.

Our contributions are summarized as follows.
• We propose LEAP, the first learned query optimizer tailored for

Spark SQL, which is simple yet effective. It consists of two
modules: Join Plan Enumerator and Join Operator Selector, to
optimize join order and physical operator selection, respectively,
which can be seamlessly integrated into existing workflows.
• We develop a Learned Comparator to evaluate the relative cost

of two join plans rather than their exact cost, which helps to
select better join plans. It provides more accurate comparisons
with predicate information and data features.
• We propose an efficient progressive plan enumeration algorithm

to reduce the enumeration space, which incorporates beam search
strategy and pruning techniques.

• We conduct extensive experiments on three public benchmarks.
LEAP reduces the native optimizer’s end-to-end execution time
by up to 54% and other learned methods by up to 94%.
We organize this paper as follows. Section 2 introduces Spark

SQL’s optimization process. Section 3 presents an overview of LEAP.
Sections 4, 5, 6 describe three main components of LEAP respec-
tively. Section 7 analyzes the experimental results. Section 8 displays
the related works. Finally, Section 9 concludes the paper.

2 PRELIMINARY
In this section, we provide an introduction to the join plan and the
optimization process of Spark SQL.

2.1 Join Plan
Given a query 𝑄 composed of 𝑛 tables T = {𝑇1,𝑇2,𝑇3, . . . ,𝑇𝑛}, a
join plan 𝑃 is a tree consisting of these tables to specify the order
of operations. In 𝑃 , leaf nodes are filter operations on tables, while
non-leaf nodes represent logical join operations (e.g., Inner Join (⊲⊳)).
We denote the number of output rows of 𝑃 as its output cardinality
𝐶𝑎𝑟𝑑 (𝑃), and refer to the tables involved in 𝑃 as T (𝑃). Additionally,
any subtree within 𝑃 is defined as a sub-plan.

There are left-deep tree plans and bushy tree plans. In a left-deep
tree plan, the left child of any join operation is a subtree, and the
right child must be a leaf node, as shown in 𝑃1 in Figure 2. It allows
only sequential execution of join operations, with a 𝑂 (𝑛!) search
space. In contrast, bushy tree plans allow both children of any join
operation to be subtrees, as shown in 𝑃2 in Figure 2. This structure
enables parallel execution of join operations. The complexity of
possible join plan trees grows significantly to (2𝑛−2)!(𝑛−1)! [26].

676

……

SELECT
COUNT(*)
FROM

WHERE
...

SMJ

BHJ

BHJ

Ex

Sort

Ex

Sort

BEx

BEx

1. Rule-based
Optimization

2. Join Order
Enumeration

3. Physical
 Planning

LogicalPlan

PhysicalPlan

Figure 2: An overview of Spark SQL’s optimization process.
BHJ and SMJ denote physical join operators, while the red
ones are additional physical operators.

2.2 Optimization Process of Spark SQL
In Spark SQL, there are two types of execution plans: LogicalPlans
and PhysicalPlans, as shown in Figure 2. LogicalPlan corresponds to
the "join plan" in Section 2.1, which only contains logical operations.
PhysicalPlan replaces these logical operations with concrete physi-
cal operators and adds additional ones (e.g., Exchange). For a query
𝑄 , Spark SQL uses the following three stages to first transform 𝑄

to an optimized LogicalPlan 𝑃1 and then generate a PhysicalPlan
𝑃𝑓 𝑖𝑛𝑎𝑙 for execution, as shown in Figure 2. Note that LEAP only
operates on LogicalPlan.

2.2.1 Rule-basedOptimization. In this stage, native optimizer trans-
forms query 𝑄 into an initial LogicalPlan 𝑃𝑖 . It converts 𝑄 into a
LogicalPlan 𝑃𝑖 with a parser and an analyzer, and then optimizes
𝑃𝑖 using a series of optimization rules (e.g., predicate pushdown).

2.2.2 Join Order Enumeration. In this stage, native optimizer se-
lects a low-cost LogicalPlan 𝑃1 by reordering the Inner Join opera-
tions in 𝑃𝑖 . The cost of a LogicalPlan is measured by the estimated
cardinality and output size, without considering physical operators
or resource consumption [7]. Based on the tables T in query 𝑄 , it
uses a dynamic programming algorithm to enumerate different join
plans from bottom to up. Specifically, the enumeration begins with
1-table sub-plans and incrementally constructs 𝑖-table sub-plans
from existing 𝑗-table sub-plans (where 1 ≤ 𝑗 ≤ 𝑖 − 1). It terminates
after sub-plans containing all tables are generated. During the enu-
meration, native optimizer utilizes the CBO module to estimate the
cost of each LogicalPlan, and selects the one 𝑃1 with the lowest
cost among candidates 𝑃1, 𝑃2, ..., 𝑃𝑛 . The order of join operations
significantly impacts query performance. A suitable LogicalPlan
can reduce the size of intermediate tables, thereby reducing the
need of time and resource of intermediate join operations.

2.2.3 Physical Planning. In this stage, native optimizer assigns
physical operators to each join operation in 𝑃1 based on heuristic
rules, and then inserts additional physical operators (e.g., Exchange,
Sort) accordingly to generate the PhysicalPlan 𝑃𝑓 𝑖𝑛𝑎𝑙 for execu-
tion. When assigning physical join operators, native optimizer uses
the CBO module to estimate the output size of each sub-plan in
𝑃1. If the output size of a sub-plan 𝑃𝑠 is less than the parameter
spark.sql.autoBroadcastJoinThreshold (or 𝐵𝐽𝑇 for short), the output

Join Operator
Selector

Query

Execution EngineResults

Learned
Comparator

Memory
Pool

Model
TrainerPlans

Plans

, ,

Update model

1.

2.

3.

5.

4.

Join Plan
Enumerator

LEAP

Figure 3: An overview of LEAP.
of sub-plan 𝑃𝑠 is considered suitable for broadcasting. For each
join operation, if the output of sub-plan on either side is suitable
for broadcasting, a high-performance Broadcast Hash Join (BHJ) is
used. Otherwise, a Sort Merge Join (SMJ) or Shuffled Hash Join (SHJ)
is employed. Using BHJ properly can avoid shuffling large tables
and reduce query time. However, using BHJ inappropriately, such
as broadcasting large tables due to output size estimation errors,
can lead to increased execution times and even query failures.

3 SYSTEM OVERVIEW
In this section, we present an overview of LEAP, and discuss its
ability to adapt to different scenarios. It’s used for join optimization,
as LEAP is designed to replace Spark SQL CBO, which mainly
focuses on join order enumeration and join operator selection.

3.1 System Framework
Figure 3 shows LEAP’s framework with five components: Mem-
ory Pool, Learned Comparator, Join Plan Enumerator, Join
Operator Selector, and Model Trainer. For a query 𝑄 , Join Plan
Enumerator generates a join plan 𝑃 using Learned Comparator
𝐶𝑐𝑜𝑠𝑡 . Then, Join Operator Selector assigns physical operators to
the join operations in 𝑃 using Learned Comparator𝐶𝑐𝑎𝑟𝑑 , resulting
in a final join plan 𝑃 ′. Subsequently, Spark SQL executes the join
plan 𝑃 ′. After execution, Model Trainer collects join plan 𝑃 ′ and
its output cardinalities 𝐶𝑎𝑟𝑑 (𝑃 ′) and saves them to Memory Pool.
It also periodically updates Learned Comparators 𝐶𝑐𝑜𝑠𝑡 and 𝐶𝑐𝑎𝑟𝑑 .
Memory Pool. It saves historical join plans in memory for the
update of Learned Comparators. It’s a key-value storage where
the key is 𝐶𝑎𝑟𝑑 (𝑃), and the value is a triplet (𝑃,𝐶𝑎𝑟𝑑 (𝑃), 𝐸𝑛𝑑 (𝑃)),
where 𝑃,𝐶𝑎𝑟𝑑 (𝑃), 𝐸𝑛𝑑 (𝑃) denote the join plan, its output cardinal-
ity, and its finish timestamp respectively. Memory Pool is updated
after the execution of each query.
Learned Comparator 𝐶 (𝑃1, 𝑃2). It compares two join plans 𝑃1
and 𝑃2 in terms of a performance-related metric 𝐿(𝑃) (e.g., latency,
cardinality). Formally, 𝐶 (𝑃1, 𝑃2) = 1 when 𝐿(𝑃1) ≥ 𝐿(𝑃2), and 0
otherwise. When 𝐶 (𝑃1, 𝑃2) = 1, 𝑃1 is worse than 𝑃2. We train two
Learned Comparators𝐶𝑐𝑜𝑠𝑡 and𝐶𝑐𝑎𝑟𝑑 using different 𝐿(𝑃) (i.e., the
execution cost and output cardinality).
Join Plan Enumerator. It generates a low-cost join plan for query
𝑄 . It employs an enumeration algorithm to iteratively search for left-
deep tree plans, and at each iteration step, it attempts to generate
bushy tree plans. Finally, it selects the join plan with the lowest
cost from all candidate plans by pairwise comparisons using 𝐶𝑐𝑜𝑠𝑡 .
Join Operator Selector. It assigns appropriate physical operators
for each join operation in the join plan 𝑃 . For simplicity, we only

677

focus on whether to use Broadcast Join (i.e., Broadcast Hash Join
or Broadcast Nested Loop Join), which is sufficient for acceptable
performance improvement. First, it selects some plans with known
cardinalities from Memory Pool. It then compares these plans with
each sub-plan 𝑃𝑠 in join plan 𝑃 using 𝐶𝑐𝑎𝑟𝑑 , to determine whether
the output of each sub-plan 𝑃𝑠 can be broadcast, and selects the
appropriate physical operator for each join operation accordingly.
Model Trainer. It updates the Learned Comparators based on the
data in Memory Pool. After query executions, it collects the join
plan 𝑃 ′ and its output cardinality 𝐶𝑎𝑟𝑑 (𝑃 ′), and saves the tuple
(𝑃 ′,𝐶𝑎𝑟𝑑 (𝑃 ′), 𝐸𝑛𝑑 (𝑃 ′)) into Memory Pool. Also, it regularly clears
old data from Memory Pool and re-trains the Learned Comparators
𝐶𝑐𝑜𝑠𝑡 and 𝐶𝑐𝑎𝑟𝑑 using the accumulated new data.

3.2 Discussion
Here we discuss LEAP’s ability to adapt to various scenarios.
Cold-start scenarios. When there are no training plans for a
new workload, we can initialize LEAP’s Learned Comparator with
Spark SQL’s native estimates similar to [43, 49]. Specifically, we
enumerate sub-plans using Spark SQL’s native optimizer for each
training query, and train LEAP’s comparator using such plans, with
native cardinality estimates as labels. Also, as reported in Section
7.2.4, LEAP performs better than native optimizer even with few
training queries, which can be quickly collected in production.
Compatibility with other systems.While LEAP is initially de-
signed for Spark SQL, it can support other big data query systems.
In other systems, LEAP rewrites SQL queries based on the optimized
join order and specifies physical operators using hints, if supported.
LEAP first converts the input SQL query into a system-agnostic
logical plan 𝑃 , containing only logical operations (e.g., joins and
filters) and regardless of physical operators. It then optimizes join
order and physical operators in 𝑃 to produce an optimized plan
𝑃 ′. Finally, LEAP rewrites the query and organizes the physical
operator hints based on 𝑃 ′, and sends the rewritten query to the
target system for execution. As reported in Section 7.2.3, LEAP also
achieves performance improvement in Presto and Apache Doris.
Compatibility with other queries. LEAP can support query
types beyond Select-Project-Join (SPJ) queries. It can be extended
to handle other operators (e.g., Aggregate, Intersect, Outer Join)
by modifying the one-hot encoding of logical operators in Section
4.1.2. At present, LEAP does not support queries with predicate
sub-queries (e.g., sub-queries in IN or EXISTS), since Spark SQL
decorrelates them after join order enumeration, preventing us from
collecting training labels. We plan to address this limitation in
future work.

4 LEARNED COMPARATOR
Learned Comparator 𝐶 (𝑃1, 𝑃2) compares the performance-related
metric 𝐿(𝑃) of join plans 𝑃1 and 𝑃2. If 𝐿(𝑃1) ≥ 𝐿(𝑃2),𝐶 (𝑃1, 𝑃2) = 1,
and 0 otherwise.

4.1 Model Design
Learned Comparator processes join plan trees 𝑃1 and 𝑃2 by first
flattening them into node sequences and transforming each node
into a vector representation. These vectors are then aggregated
using LSTM to form representations for the entire trees of 𝑃1 and

𝑃2, which are subsequently compared to produce the final result
𝐶 (𝑃1, 𝑃2), as shown in Figure 4.

4.1.1 Plan tree linearization. It transforms the join plan tree 𝑃 into
a node sequence 𝑆𝑒𝑞(𝑃). Using a direct node traversal sequence
would lose structural information. To preserve this, we linearize the
tree into a SBT (Structure-based Traversal) node sequence, inspired
by code representation techniques [16]. We use a preorder traversal
but add a terminal node after each subtree to mark its end. For
instance, if a subtree’s root node is ‘Inner Join’, a terminal node
labeled ‘) Inner Join’ follows its traversal.

4.1.2 Plan node representation. It converts each join plan tree node
𝑁 ∈ 𝑆𝑒𝑞(𝑃) into a low-dimensional vector representation 𝐸𝑚𝑏 (𝑁).
As shown in Figure 4, 𝐸𝑚𝑏 (𝑁) is the concatenation of following
four parts: (1) a one-hot encoding of the logical operator on 𝑁

(e.g., Filter, Inner Join, Left Join), (2) 0/1 encoding of tables touched
by 𝑁 , (3) the row count of chosen tables, and (4) the predicate
embedding of the predicates in 𝑁 . Row counts undergo logarithmic
transformation and min-max scaling to scale values within [0, 1],
and the details about predicate embeddings are in Section 4.1.3.

4.1.3 Predicate representation. It converts the predicates in join
plan tree node 𝑁 into vector representations. Predicates can also
be viewed as a tree, where leaf nodes are atomic predicates 𝑓 (such
as 𝑡𝑎𝑏𝑙𝑒.𝑖𝑑 = 7), and non-leaf nodes are boolean operators (AND,
OR, NOT). We first linearize the predicate tree into an SBT node
sequence as in Section 4.1.1. Then, we extract features for each node
(atomic predicate 𝑓 or boolean operator), and finally aggregate the
features of all nodes through a LSTM to get the final predicate
embedding.
Atomic predicate featurization. An atomic predicate 𝑓 (such as
𝑡𝑎𝑏𝑙𝑒.𝑖𝑑 = 7) consists of a column 𝐶𝑜𝑙 (𝑓), an operator 𝑂𝑝 (𝑓) (e.g.,
>, <, IN, LIKE), and an operand 𝑉𝑎𝑙 (𝑓). Its feature 𝐸𝑚𝑏 (𝑓) is the
concatenation of the following five parts, as shown in Equation 1,

𝐸𝑚𝑏 (𝑓) = [𝐶𝑜𝑙 (𝑓)𝑖𝑑 𝑂𝑝 (𝑓)𝑖𝑑 𝑉𝑎𝑙 (𝑓) 𝐻𝑖𝑠𝑡 (𝑓) 𝑆𝑒𝑙 (𝑓)] (1)

where 𝐶𝑜𝑙 (𝑓)𝑖𝑑 and 𝑂𝑝 (𝑓)𝑖𝑑 are the one-hot encoding of columns
and operators, and 𝑉𝑎𝑙 (𝑓) is the normalized value of the operand.
Histogram embedding 𝐻𝑖𝑠𝑡 (𝑓) and selectivity embedding 𝑆𝑒𝑙 (𝑓)
serve as data features, and we discuss their details below.
(1) Histogram 𝐻𝑖𝑠𝑡 (𝑓). It featurizes the histogram of column

𝐶𝑜𝑙 (𝑓), which represents the data distribution by dividing data
into intervals (a.k.a bins). Each bin 𝐵𝑖 ’s width𝑊 (𝐵𝑖) (interval
length) may vary while the height 𝐻 (𝐵𝑖) (number of elements
in 𝐵𝑖) is uniform in Spark SQL’s equi-height histograms. For
numeric column 𝐶𝑜𝑙 (𝑓), we extract its equi-height histogram
from Spark SQL, and 𝐻𝑖𝑠𝑡 (𝑓) is the concatenation of bound-
ary values of each bin. Histogram features help Comparator
understand data distributions to handle skewed distributions.

(2) Selectivity 𝑆𝑒𝑙 (𝑓). It represents the estimated selectivity of
𝑓 . We estimate the selectivity by diving the column 𝐶𝑜𝑙 (𝑓)
into𝑚 bins to estimate the number of qualified elements 𝑛𝑖 in
the 𝑖-th bin, and then summing up 𝑛𝑖 as 𝑓 ’s overall selectivity
(1 ≤ 𝑖 ≤ 𝑚). Thus, 𝑆𝑒𝑙 (𝑓) is the concatenation of 𝑛𝑖 and 𝑓 ’s
overall selectivity. We discuss how to compute 𝑛𝑖 as below.
• If 𝐶𝑜𝑙 (𝑓) is numeric, we use its histogram as 𝑚 bins to

estimate𝑛𝑖 . For each bin 𝐵𝑖 in the histogram, we determine

678

Operator Table Rowcount Predicate

Filter 6438

－ D
en

se

LS
T

M

.score ≥ 5.0

 = [, , , ,]
 = [0, 1, 9, 12, 13]

.name LIKE '%a'

 = [, , , ,]

hash('Lisa')
% 4 = 0

hash('Eva')
% 4 = 1

.name Lisa Eva Billy

num(v) 8 4 16

1. Plan Tree
Linearization

2. Plan Node Representation 3. Plan Tree
Representation

4. Comparison Layer

.score ≥ 5.0 .name LIKE '%a'OR

Filter Predicate embedding

[0, 1, 0, 1, 0, 0, 0, 0.8, -0.1, 0.7, ..., 0.9, -1.2]

's
rowcount

60

0 1 9 12 13

.score

5

Figure 4: Our comparator model. ⊲⊳ represents Inner Join, while) ⊲⊳ represents the end of the subtree rooted at a ⊲⊳ node.

its intersection with 𝑓 ’s range 𝑓 ∩𝐵𝑖 , and use the intersect
width |𝑓 ∩ 𝐵𝑖 | to calculate 𝑛𝑖 =

| 𝑓 ∩𝐵𝑖 |
𝑊 (𝐵𝑖) × 𝐻 (𝐵𝑖).

• If 𝐶𝑜𝑙 (𝑓) is string-based, histograms are not available.
Thus, we divide 𝐶𝑜𝑙 (𝑓) into𝑚 bins using the hash values
of the elements. We build a Most Common Value (MCV)
list that identifies the most frequent values 𝑣 and their
counts 𝑛𝑢𝑚(𝑣) in𝐶𝑜𝑙 (𝑓), using this list to estimate 𝑛𝑖 . For
predicate 𝑓 , we identify values 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} from
theMCV list that match the predicate 𝑓 . For each matching
value 𝑣 ∈ 𝑉 , we use its hash value ℎ𝑎𝑠ℎ(𝑣) to allocate it to
the 𝑖-th bin, and update the corresponding 𝑛𝑖 with 𝑛𝑢𝑚(𝑣),
and thus, 𝑛𝑖 =

∑
𝑣∈𝑉 :ℎ𝑎𝑠ℎ (𝑣)%𝑚 = 𝑖 𝑛𝑢𝑚(𝑣). This approach

can estimate selectivity for complex string predicates such
as IN and LIKE, which are not widely supported in previ-
ous works. This approach works well on string columns
with any distribution. For an infrequent or unique value
𝑣 , we estimate its count 𝑛𝑢𝑚(𝑣) using NDV. Our MCV list
contains up to 1000 frequent values per column, and NDV
estimates are accurate for values outside this list.

We concatenate the 𝑛𝑖 and the sum of 𝑛𝑖 as the selectivity em-
bedding 𝑆𝑒𝑙 (𝑓). To normalize the values, we divide each value
by the number of total elements |𝐶𝑜𝑙 (𝑓) | to scale within [0, 1].
Specifically, 𝑆𝑒𝑙 (𝑓) =

[
𝑛1, 𝑛2, ..., 𝑛𝑚,

∑
1≤𝑖≤𝑚 𝑛𝑖

]
/|𝐶𝑜𝑙 (𝑓) |.

For example, for a numeric predicate 𝑓1 : 𝑇1 .𝑠𝑐𝑜𝑟𝑒 ≥ 5.0 in
Figure 4, the histogram of𝑇1 .𝑠𝑐𝑜𝑟𝑒 has 4 bins, each with a height
𝐻 (𝐵𝑖) = 60. 𝑓1 selects no element in the first bin, half in the
second, and all the elements in the third and fourth bins. Thus,
𝑛𝑖 = [0, 30, 60, 60], leading to 𝑆𝑒𝑙 (𝑓1) = 1

240 [0, 30, 60, 60, 150].
Also, for a string predicate 𝑓2 : 𝑇1 .𝑛𝑎𝑚𝑒 LIKE ‘%a’ in Figure
4, we set 𝑚 = 4, and the MCV List of 𝑇1 .𝑛𝑎𝑚𝑒 records three
common values ‘Lisa’, ‘Eva’ and ‘Billy’ in this column and
their occurrence counts. Since only ‘Lisa’, ‘Eva’ end with ‘a’
in MCV List, we compute 𝑛𝑖 based on the two values, and get
𝑛𝑖 = [8, 4, 0, 0]. Thus, 𝑆𝑒𝑙 (𝑓2) = 1

240 [8, 4, 0, 0, 12].

Boolean operator featurization.We use one-hot encoding for
each type of boolean operator as their features.

4.1.4 Plan tree representation. It generates the vector representa-
tion 𝐸𝑚𝑏 (𝑃) of the entire join plan 𝑃 . It employs a LSTM network
to aggregate the representation 𝐸𝑚𝑏 (𝑁) of each node 𝑁 ∈ 𝑆𝑒𝑞(𝑃),
and the final hidden state of LSTM network is regarded as 𝐸𝑚𝑏 (𝑃).

4.1.5 Comparison layer. It compares the vector representations
of join plans 𝑃1 and 𝑃2 (i.e., 𝐸𝑚𝑏 (𝑃1) and 𝐸𝑚𝑏 (𝑃2)), and outputs a
binary label (0 or 1) based on their comparison. We use 𝐸𝑚𝑏 (𝑃1) −
𝐸𝑚𝑏 (𝑃2) as the final representation of the pair (𝑃1, 𝑃2), and it’s then
passed through a linear layer to generate an output logit. The logit
is then transformed by a sigmoid function 𝜎 (𝑥) = 1/(1 + 𝑒−𝑥) to
yield a probability value 𝑝 (𝑃1, 𝑃2) ∈ (0, 1), as shown in Equation 2.

𝑝 (𝑃1, 𝑃2) = 𝜎 (𝑾 (𝐸𝑚𝑏 (𝑃1) − 𝐸𝑚𝑏 (𝑃2)) + 𝒃) (2)

where𝑾 and 𝒃 are learnable parameters.
Finally, the binary indicator𝐶 (𝑃1, 𝑃2) is defined as a step function

via the probability 𝑝 (𝑃1, 𝑃2). Specifically, if 𝑝 (𝑃1, 𝑃2) ≥ 0.5, then
𝐶 (𝑃1, 𝑃2) = 1, which indicates 𝐿(𝑃1) ≥ 𝐿(𝑃2), and vice versa.

4.2 Model Training
We randomly generate some training queries Q, and execute these
queries on Spark SQL. Suppose the training query𝑄 ∈ Q is executed
using join plan 𝑃 , we collect the corresponding 𝐿(𝑃) to form a set
of join plans P. Then, we generate plan pairs from P to build the
training data D. For each plan pair (𝑃1, 𝑃2) ∈ P, if 𝐿(𝑃1) ≥ 𝐿(𝑃2),
we assign a label 𝑙 (𝑃1, 𝑃2) = 1; otherwise, 𝑙 (𝑃1, 𝑃2) = 0. Then, we
include the triplet (𝑃1, 𝑃2, 𝑙 (𝑃1, 𝑃2)) in the training dataset D. We
train comparator models using D with binary cross entropy loss.

4.3 Different Comparators
We train two Learned Comparators 𝐶𝑐𝑜𝑠𝑡 and 𝐶𝑐𝑎𝑟𝑑 with different
𝐿(𝑃), to compare the execution cost and output cardinality of two
join plans. These two comparators are used in Join Plan Enumerator
and Join Operator Selector, as detailed in Sections 5 and 6.
Cost comparator 𝐶𝑐𝑜𝑠𝑡 . It compares the execution costs of join
plans 𝑃1 and 𝑃2 by using𝐶𝑜𝑠𝑡 (𝑃) as 𝐿(𝑃). Assume that join plan 𝑃 is
a Γ-layer tree, we define its execution cost𝐶𝑜𝑠𝑡 (𝑃) as the sum of the
maximum output cardinality of join nodes at each layer. Formally,

679

Algorithm 1: findBestPlan(T , 𝑘)
Input :Tables T , beam width 𝑘
Output :A cheapest join plan composed of T’s tables

1 if | T | ≤ 2 then return a join plan composed of T’s tables;
2 P𝑡 ← findTopK({createJoin(𝑇𝑖 ,𝑇𝑗), ∀𝑇𝑖 ,𝑇𝑗 ∈ T (𝑖 < 𝑗) }, 𝑘) ;
3 𝑃𝑜 ← None ; /* to store the optimal plan */

4 for 𝑖 ← 2 to | T | − 1 do
// Quasi-bushy tree search

5 for 𝑃1 ∈ P𝑡 do
6 if canBeBroadcast(𝑃1) then
7 𝑃2 ← findBestPlan(T \ T (𝑃1), 𝑘) ;
8 𝑃𝑏 ← createJoin(𝑃1, 𝑃2) ;
9 if 𝐶𝑐𝑜𝑠𝑡 (𝑃𝑜 , 𝑃𝑏) = 1 then 𝑃𝑜 ← 𝑃𝑏 ;

// Left-deep tree search

10 P𝑙 ← ∅;
11 for 𝑃1 ∈ P𝑡 do
12 for𝑇 ∈ T do
13 P𝑙 ← P𝑙 ∪ {createJoin(𝑃1,𝑇) };

14 P𝑡 ← findTopK(P𝑙 , 𝑘) ;
// Pruning

15 for 𝑃𝑠 ∈ P𝑡 do
16 if 𝐶𝑐𝑜𝑠𝑡 (𝑃𝑠 , 𝑃𝑜) = 1 then P𝑡 ← P𝑡 \ {𝑃𝑠 };
17 if | P𝑡 | = 0 then break;
18 return findTopK(P𝑡 ∪ {𝑃𝑜 }, 1);

19 Function createJoin(𝑃𝑙 , 𝑃𝑟)
20 return a new join node with left child 𝑃𝑙 and right child 𝑃𝑟 ;

21 Function findTopK(P, 𝑘)
22 return top-𝑘 cheapest join plans in P;

𝐶𝑜𝑠𝑡 (𝑃) = ∑Γ
𝛾=0max𝑃 ′∈P𝛾 𝐶𝑎𝑟𝑑 (𝑃 ′), where P𝛾 are the sub-plans

rooted at join nodes in the 𝛾-th layer. We adopt this cost model as
it accommodates the preference for bushy tree plans in distributed
systems. Then, we use 𝐶𝑜𝑠𝑡 (𝑃) to generate labels to train 𝐶𝑐𝑜𝑠𝑡 .
Cardinality comparator 𝐶𝑐𝑎𝑟𝑑 . It compares the output cardinali-
ties of join plans 𝑃1 and 𝑃2 by using 𝐶𝑎𝑟𝑑 (𝑃) as 𝐿(𝑃), i.e., we use
𝐶𝑎𝑟𝑑 (𝑃) to generate labels to train 𝐶𝑐𝑎𝑟𝑑 .

5 JOIN PLAN ENUMERATOR
Join Plan Enumerator generates a low-cost join plan for query 𝑄
using a join plan enumeration algorithm. This algorithm searches
for left-deep tree plans progressively, and tries to generate bushy
tree plans in each iteration. It then picks the cheapest join plan by
pairwise comparison using 𝐶𝑐𝑜𝑠𝑡 .
Overview. Algorithm 1 outlines our join plan enumeration method.
It starts with table set T and aims to produce a join plan composed
of these tables. The algorithm initializes sub-plans P𝑡 from T ’s
pairwise table combinations (line 2), and iteratively extends the sub-
plans in P𝑡 by joining with a new table and keeps the 𝑘 cheapest
new sub-plans for the next iteration. When search terminates, left-
deep tree plans containing all tables are generated. During each
beam search iteration, the algorithm first attempts to generate a
bushy tree plan that includes all tables (lines 5-9). For each sub-plan
𝑃1, it checks whether a bushy tree plan can be generated based on
𝑃1. If so, it searches for a join plan 𝑃2 using the remaining tables
recursively, and joins 𝑃1 and 𝑃2 to generate a full bushy tree plan

𝑃𝑏 . After the bushy tree plan search, the algorithm continues to
search for the left-deep tree plans (lines 10-17). As bushy tree search
can obtain full plans, the algorithm maintains an optimal plan 𝑃𝑜 ,
and uses its cost to prune the unpromising sub-plans. Finally, it
combines the bushy tree plans and left-deep tree plans, and selects
the join plan with the lowest cost. Overall, in each iteration of
Algorithm 1, it first uses bushy tree search to generate an optimal
full bushy plan based on the left-deep sub-plans generated in the
previous iteration (we can generate a full bushy plan for each left-
deep sub-plan and select the optimal one), and then uses left-deep
tree search to generate 𝑘 left-deep sub-plans with one additional
table. We provide a running example of this in the full version [4].
Quasi-bushy tree search. In each beam search iteration, when
encountering sub-plan 𝑃1, the algorithm attempts to generate a
quasi-bushy tree plan 𝑃𝑏 containing all tables. It recursively finds
join plan 𝑃2 for the remaining tables and joins 𝑃1 and 𝑃2 to gener-
ate 𝑃𝑏 . This allows 𝑃1 and 𝑃2 to run in parallel, enhancing perfor-
mance. However, this method requires time-consuming 𝑘 recursive
searches per iteration. Also, bushy tree plans need to materialize
intermediate tables, and the performance degrades if the outputs
of 𝑃1 or 𝑃2 are large. Thus, we use canBeBroadcast to retain the
𝑃1 with small output size (as detailed in Section 6), and only do
the recursive searches based on such 𝑃1. This reduces the number
of recursive searches and lowers materialization costs, as 𝑃1 join
𝑃2 can be executed using Broadcast Join, which only materialize
the small 𝑃1. When the full plan 𝑃𝑏 is generated, the algorithm
maintains the optimal full plan 𝑃𝑜 to prune the search space.
Left-deep tree search. After quasi-bushy tree search, the algo-
rithm continues to search for left-deep tree plans. It starts with the
sub-plans P𝑡 from the previous iteration. For each sub-plan 𝑃1 ∈ P𝑡
(a 𝑑-table sub-plan, 2 ≤ 𝑑 < |T |), the algorithm joins it with a new
table, generating (𝑑+1)-table candidate sub-plans P𝑙 . It only retains
the 𝑘 lowest-cost sub-plans of P𝑙 for the next iteration. Note that in
beam search, we only consider left-deep sub-plans, since left-deep
sub-plans are partial sets of tables, while the bushy plans 𝑃𝑜 always
include all tables. Thus, left-deep sub-plans consistently have lower
costs than full bushy plans, so keeping the top-𝑘 plans overall is not
meaningful. The search terminates when left-deep plans contain-
ing all tables are generated. Moreover, the quasi-bushy tree search
yields an optimal join plan 𝑃𝑜 . In subsequent iterations of beam
search, the algorithm prunes less promising sub-plans based on
𝑃𝑜 ’s cost, further reducing the search space.
Find top-𝑘 plans with comparison. Here, we outline how
findTopK selects the top-𝑘 cheapest sub-plans from candidates
P. Since𝐶𝑐𝑜𝑠𝑡 doesn’t estimate exact costs, it’s not straightforward
to pick the 𝑘 lowest-cost sub-plans directly. Thus, we employ the
quick select algorithm [15], which uses pairwise comparisons to
reorder sub-plans in P and selects the first 𝑘 as the cheapest.
Comparisons with existing beam-search-based plan enumer-
ators. Beam search is used for plan enumeration in [9, 43]. In
these approaches, they use the cost of the entire query contain-
ing a specific sub-plan to guide beam search, and thus their beam
search operates on search states (each a set of sub-plans for the
query). However, in LEAP, beam search differs from previous ap-
proaches, since LEAP directly uses the cost of individual sub-plans
to guide the beam search. Therefore, LEAP’s beam search operates
on single sub-plans. As a result, beam search strategies in previous

680

Algorithm 2: canBeBroadcast(𝑃𝑠)
Input :A sub-plan 𝑃𝑠

Output :Whether 𝑃𝑠 ’s output can be broadcast
1 𝑡𝑐𝑎𝑟𝑑 ← Broadcast threshold 𝐵𝐽𝑇

Estimated output width of 𝑃𝑠
;

2 P𝑟 ← Set of join plans in Memory Pool with cardinality
∈ [(1 − 𝜖)𝑡𝑐𝑎𝑟𝑑 , (1 + 𝜖)𝑡𝑐𝑎𝑟𝑑];

3 Pℎ ← Join plans in P𝑟 with top-𝑐 highest uncertainty;
4 𝑝𝑐𝑎𝑟𝑑 ← (

∑
𝑃 ∈Pℎ 𝑝𝑐𝑎𝑟𝑑 (𝑃𝑠 , 𝑃)) / | Pℎ |;

5 return 𝑝𝑐𝑎𝑟𝑑 < 0.5;

approaches can’t be applied in Algorithm 1. LEAP additionally in-
troduces recursive search for bushy plans and pruning techniques
to better balance search efficiency and plan quality.

6 JOIN OPERATOR SELECTOR
Join Operator Selector assigns physical operators to each join oper-
ation in join plan 𝑃 . First, it assesses whether the output of each
sub-plan in 𝑃 is suitable for broadcasting. Based on that, it assigns
an appropriate physical operator to each join operation in 𝑃 .

6.1 Assessing Broadcast Suitability
We discuss how to assess if a join plan’s output is suitable for
broadcasting. As described in Section 2.2.3, for a sub-plan 𝑃𝑠 , Spark
SQL evaluates if 𝑃𝑠 ’s output can be broadcast by comparing its out-
put size to broadcast threshold 𝐵𝐽𝑇 . However, it’s user-adjustable.
Given the variability of this threshold, assessing broadcast suitabil-
ity of 𝑃𝑠 can be challenging without cardinality value estimations.

To overcome this, we use join plans with known cardinalities
from the training data of𝐶𝑐𝑎𝑟𝑑 to establish a reference. We can find
some join plans Pℎ with output size close to 𝐵𝐽𝑇 , and compare 𝑃𝑠
with Pℎ using 𝐶𝑐𝑎𝑟𝑑 . Thus, we can know whether 𝑃𝑠 ’s output size
is smaller than the broadcast threshold 𝐵𝐽𝑇 . If smaller, 𝑃𝑠 ’s output
is suitable for broadcasting. The process is outlined in Algorithm
2. For a sub-plan 𝑃𝑠 , it first computes a cardinality threshold 𝑡𝑐𝑎𝑟𝑑
based on 𝐵𝐽𝑇 and 𝑃𝑠 ’s output width estimation from Spark SQL
(line 1). Then, it selects some join plans Pℎ from Memory Pool that
have a cardinality near 𝑡𝑐𝑎𝑟𝑑 and exhibit high uncertainty (lines
2-3). Finally, it compares 𝑃𝑠 with each join plan in Pℎ using 𝐶𝑐𝑎𝑟𝑑 ,
and generates an output probability 𝑝𝑐𝑎𝑟𝑑 (line 4). If the average
output probability 𝑝𝑐𝑎𝑟𝑑 is < 0.5, it indicates 𝑃𝑠 ’s output size is
smaller than that of Pℎ , and thus smaller than 𝐵𝐽𝑇 . 𝑃𝑠 ’s output is
then considered suitable for broadcasting.
Candidate selection. In Algorithm 2, selecting candidate join
plans Pℎ is critical. Here, we first identify historical plans in Mem-
ory Pool with cardinalities that fall within [(1−𝜖)𝑡𝑐𝑎𝑟𝑑 , (1+𝜖)𝑡𝑐𝑎𝑟𝑑],
and then retain 𝑐 join plans with the highest uncertainty as can-
didate plans Pℎ . We select 𝑐 join plans with cardinality near 𝑡𝑐𝑎𝑟𝑑
for comparison to avoid the potential inaccuracy of a single com-
parison. This strategy does not harm the performance, as the de-
fault value of 𝐵𝐽𝑇 is not always optimal. Even if 𝑃𝑠 ’s output size
is slightly higher than 𝐵𝐽𝑇 (for example, within 2 × 𝐵𝐽𝑇), it can
still be considered suitable for broadcasting. We prioritize candi-
date join plans with high uncertainty since they help avoid overly
confident incorrect comparisons. Uncertainty is assessed by the
𝐿2 distance between the representations of two join plan trees; a

smaller distance indicates higher classification difficulty and un-
certainty. The intuition is that, when 𝑃1 and 𝑃2’s embedding vec-
tors have a small 𝐿2 distance, 𝐸𝑚𝑏 (𝑃1) − 𝐸𝑚𝑏 (𝑃2) approaches 0 in
Equation 2. After regularization, the bias term b is also near 0, so
W(𝐸𝑚𝑏 (𝑃1) − 𝐸𝑚𝑏 (𝑃2)) + b is near 0, and the output probability
𝑝𝑐𝑎𝑟𝑑 = 𝜎 (W(𝐸𝑚𝑏 (𝑃1) −𝐸𝑚𝑏 (𝑃2)) +b) tends toward 0.5. It reduces
the impact of single incorrect comparisons on 𝑝𝑐𝑎𝑟𝑑 .

6.2 Assigning Physical Operator
We assign appropriate physical operators by checking if the output
of each sub-plan 𝑃𝑠 in 𝑃 can be broadcast. For each join operation,
we use Algorithm 2 to assess whether the output of either child
sub-plan can be broadcast. If so, a BROADCAST hint is added to
that join, prompting Spark SQL to execute it using Broadcast Join.

7 EXPERIMENTS
In this section, we conduct extensive experiments to validate the
effectiveness of our learned Spark SQL query optimizer LEAP.

7.1 Experiment Setup
7.1.1 Environment. We conduct the experiments in a 3-node clus-
ter with Spark 3.3.0. Each node is interconnected via a 1Gbps net-
work. We assign 36 executor cores and 60GB executor memory for
each query execution. We use a NVIDIA RTX-3090 GPU for model
training, and use CPU for model inference during optimization.

7.1.2 Benchmarks. We select three typical benchmarks for evalua-
tion by following previous studies [10, 49].
JOB [18]. Join Order Benchmark (JOB) utilizes the real-world IMDB
dataset, which includes 21 tables on movies and actors. JOB com-
prises 113 realistic queries derived from 33 templates, with each
query involving between 4 and 17 relations. We expand the IMDB
tables tenfold, resulting in a 37GB dataset.
STACK [22]. STACK includes 10 tables about the information from
Stack Exchange websites. The benchmark contains queries from 16
templates, with each query involving between 4 and 12 relations.
The entire dataset is 100GB. In our evaluation, we exclude templates
#4, 7, 9 and 10 because the first two involve arithmetic operations
in join conditions, and the last two have predicate subqueries not
yet supported by LEAP and all previous related works. We plan to
address these limitations in future works.
TPC-H [32]. TPC-H includes 8 tables about the decision support
applications in business intelligence. The benchmark contains 22
templates, and we can generate different queries based on them.
We produce 100GB data as the dataset. In our evaluation, we only
consider the query templates #2, 3, 5, 7, 8, 9, 10 following [49]. We
exclude other templates, as they are too simple (only have one or
two tables), or contain predicate subqueries.

7.1.3 Baselines. As many competitors can’t fully optimize Spark
SQL queries, we compare LEAP with three typical methods.
Spark SQL native optimizer employs Cost-Based Optimization
(CBO) to estimate the output size of each join plan, and uses these
estimations to guide the join plan enumeration and physical op-
erator selection. In CBO module, it uses NDV and histograms for
estimation, and we set the number of histogram bins to 64.

681

Native: Raw query time / Optimization cost
E2E: Raw query time / Optimization cost

Lero: Raw query time / Optimization cost
LEAP: Raw query time / Optimization cost

1000 3000 5000 7000
LEAP
Lero
E2E

Native

1848
2383
2277
2600

640 2488
39586 41969
2114 4391

1104 3704

(a) JOB
500 2333 4166 6000

LEAP
Lero
E2E

Native

1485
3126
2736
2357

582 2067
2597 5723

698 3434
545 2902

(b) STACK
1000 3000 5000 7000

LEAP
Lero
E2E

Native

2325
3350
3147
5782

595 2920
1038 4388

592 3739
581 6363

(c) TPC-H
Figure 5: Query performance on three benchmarks, in seconds. Black numbers outside bars represent end-to-end query
execution time, while white numbers in dark and light bars represent raw query time and optimization cost respectively.

Lero [49] is a learned optimizer also using a learned comparator to
choose join plans. We adopt the implementation from authors [2].
E2E [30] is a learned query-driven cardinality estimator based on
TLSTM model. We implement it on Spark SQL based on its code
[1], and replace CBO’s cardinality estimation with E2E’s estimation.
We exclude other query-driven estimators as they lack support for
disjunction [17, 19], complex string predicates [33], or bushy tree
plan estimation [24]. We do not consider data-driven cardinality
estimators due to their higher inference times according to [33].

We don’t consider another learning-to-rank optimizer LEON [10]
as it can’t optimize the physical operator selection in Spark SQL.
The performance drops in this case according to Section 7.4.1. We
don’t consider learned Spark SQL cost models [20, 21], because
they only estimate the cost of PhysicalPlans in Spark SQL, not
LogicalPlans. As discussed in Section 2.2.2, the optimal join order
is determined by the cost of LogicalPlan, and LEAP also operates
on LogicalPlan, so these models cannot be used for join order op-
timization. Additionally, Spark SQL’s native optimizer (Catalyst)
does not provide alternative PhysicalPlans for comparison in cur-
rent implementation [7], making it impossible to select the best
plan using a learned cost model without altering the source code.

7.1.4 Settings. We first generate training and test queries as [22,
49], and evaluate the optimizers in a static manner.
Training data generation. For each benchmark, following [22, 49],
we generate 1,000 training queries based on its query templates.
We randomly choose a query template, retrieve its join conditions,
and add some random predicates to generate each training query.
To support Lero, we use its plan exploration strategy to generate
multiple candidate join plans for each training query. Thus, there
are 7,600 distinct plans for JOB, 5,409 distinct plans for STACK
and 3,494 distinct plans for TPC-H. This strategy is reasonable,
as nearly-identical queries are frequently repeated in some OLAP
workloads [22, 41]. For the test set, we employ different strategies.
In JOB, we use the 113 realistic queries as test set. In STACK, we
randomly select 10 queries from each query template as test set. In
TPC-H, we randomly generate 10 queries for each query template.
Evaluation scenarios. All methods are evaluated in a static man-
ner. We first train the optimizers with all training queries until
convergence, then use the optimizers to run test queries and re-
port their performance. Thus, we can compare the performance of
different methods once they have been stabilized on a workload.
Evaluation metrics. We consider three key metrics in our evalua-
tion. (1) End-to-end query execution time. This is the time a query
takes from start to finish to return results. In the following text, we
may also call it "query performance". (2) Optimization cost. This is
the time required to generate a final join plan for query execution.

(3) Raw query time. This is the duration of Spark SQL jobs associ-
ated with the query. Simply, end-to-end query execution time is
the sum of raw query time and optimization cost.

7.2 Query Performance
7.2.1 Total execution time. Figure 5 presents the total execution
time for all test queries for each method. We set a timeout for raw
query time of 300s to reduce the effect of long-running join plans.
End-to-end query execution time. As shown in Figure 5, LEAP
outperforms the three baselines in end-to-end query execution time
(the sum of dark and light bars in Figure 5). Compared with the
native optimizer, LEAP reduces execution time by 32.8%, 28.8%,
54% in JOB, STACK and TPC-H respectively. Compared with E2E,
LEAP reduces execution time by 43.3%, 39.8%, 21.9% in JOB, STACK
and TPC-H respectively. These results showcase the effectiveness
of our learning-to-rank approach over regression-based methods.
Compared with Lero, LEAP reduces execution time by 94.1% in JOB,
63.9% in STACK, and 33.5% in TPC-H. Lero’s much longer execution
time is due to its high optimization cost, as analyzed below.
Optimization cost.We compare the optimization cost (the light
bars in Figure 5) of all methods mentioned above. Compared with
the native optimizer and E2E, LEAP reduces optimization cost by
42% and 69.7% respectively in JOB. Native optimizer and E2E experi-
ence faster growth in the search space for queries with more tables,
while LEAP’s search space maintains stable growth, as reported
in Section 7.3.2. While in STACK and TPC-H, LEAP shows similar
optimization costs due to the smaller search space with fewer tables
and possible join conditions. Compared with Lero, LEAP reduces
the optimization cost by 98.4%, 77.6%, 42.7% in JOB, STACK and
TPC-H respectively. Lero incurs high optimization costs because it
generates |𝛼 | · |T (𝑄) | candidate join plans with the native optimizer
for each query 𝑄 (𝛼 is the set of scaling factors), resulting in an
optimization cost several times higher than that of native optimizer.
Raw query time.We compare the raw query time without opti-
mization cost (the dark bars in Figure 5) to demonstrate LEAP’s
effectiveness in finding good join plans. Compared with native
optimizer, LEAP reduces raw query time by 29%, 37%, 60% in JOB,
STACK and TPC-H respectively. Compared with E2E, LEAP reduces
raw query time by 19%, 46%, 26% respectively, as E2E still suffers
from high cardinality estimation errors, while our approach reduces
such errors by an estimation-free pairwise comparison. Compared
with Lero, LEAP reduces the raw query time by 23%, 53%, 31% re-
spectively, since LEAP’s Learned Comparator integrates predicate
information and data features to make more accurate comparisons,
instead of relying on Spark SQL CBO’s inaccurate estimation. Inter-
estingly, we find that comparison-based Lero performs worse than

682

Native E2E Lero LEAP

200 400 600 800 10001700

2266

2833

3400

Ra
w

qu
er

y
tim

e
(s

)

(a) JOB, raw query time
200 400 600 800 10001200

2866

4533

6200

Ra
w

qu
er

y
tim

e
(s

)

(b) STACK, raw query time
200 400 600 800 10002000

3833

5666

7500

Ra
w

qu
er

y
tim

e
(s

)

(c) TPC-H, raw query time

Figure 6: Query performance with varying numbers of training queries of different learning-based methods.

Table 1: Total raw query time of E2E using native cardinality
estimates to replace predicate information, in seconds.

JOB STACK TPC-H
E2E 2,277.0 2,736.0 3,147.0

E2E with native estimates 2,744.7 3,910.6 6,282.0
Lero 2,383.0 3,126.0 3,350.0

Table 2: The speedup ratio of Balsa and LEAP over native
optimizer in training and test queries. The higher, the better.

JOB
(RandSplit)

JOB
(SlowSplit) STACK TPC-H

Train Test Train Test Train Test Train Test
Balsa 0.75 0.58 0.67 0.70 0.35 0.39 2.00 0.89
LEAP 1.39 1.47 1.39 1.47 1.61 1.38 2.74 1.00

regression-based E2E in raw query time. First, Lero may generate
more sub-optimal candidate plans with its plan exploration strategy
in Spark SQL. By scaling up the estimated sub-query cardinality,
it may convert Broadcast Hash Join to Sort Merge Join, leading
to large table shuffles, and conversely, it may trigger large table
broadcasts. Both cases will incur huge network transfer costs, caus-
ing the execution time to grow faster. Thus, Lero is more likely to
choose a sub-optimal plan due to the large number of sub-optimal
candidates. Second, E2E uses predicate information and sample
bitmaps to capture fine-grained details of join conditions and filters,
which Lero does not support. We evaluate E2E’s raw query time
using only the native cardinality estimates, as shown in Table 1,
and it shows that E2E’s raw query time is higher than that of Lero
with only native cardinality estimates.

7.2.2 Comparison with Balsa. We evaluate the speedup ratio of
Balsa and LEAP compared to the native optimizer in terms of to-
tal raw query time, as shown in Table 2. Across four benchmarks,
LEAP shows a significantly higher speedup ratio than Balsa for
both training and test queries. There are three main reasons for this.
First, Balsa relies on a regression model to predict query latency
during plan enumeration, which often leads to the selection of in-
appropriate physical operators due to inaccuracies in the model.
Also, Balsa’s on-policy learning approach struggles with limited
training plans, as it can’t efficiently utilize the information from
earlier iterations. Lastly, Balsa’s beam search is limited by expand-
ing only one state per step. In contrast, LEAP expands all candidate
sub-plans at each step, enabling a broader search for better plans.

7.2.3 Total execution time in other systems. We evaluate LEAP in
two additional big data query processing systems, Presto [29] and
Apache Doris [3], and compare LEAP’s performance with their na-
tive cost-based optimizers in Table 3. We select these two systems

Table 3: Total end-to-end query execution time of LEAP in
Presto and Apache Doris, in seconds.

JOB STACK TPC-H
Presto (native) 2,649.4 1,845.7 2,785.6

Presto (with LEAP) 1,870.6 1,404.5 2,463.9

Apache Doris (native) 1,165.9 271.9 950.6
Apache Doris (with LEAP) 508.4 325.3 783.8

as they support cost-based exact join order enumeration. Although
two systems use different cost estimation strategies, LEAP still out-
performs them by up to 29.4% in Presto and 56.4% in Apache Doris,
since it provides more accurate estimations via learned approach.
Note that LEAP underperforms Apache Doris native optimizer in
STACK since LEAP takes too much time to rewrite the queries, and
we will try to fix this issue in our future works.

7.2.4 Training efficiency. We compare the query performance of
learning-based methods with varying numbers of training queries.
This evaluation simulates the scenario where the model is contin-
uously updated during workload execution, as described in [49].
The raw query times are shown in Figure 6, and we can observe
that, (1) LEAP consistently outperforms E2E and Lero. For example,
in JOB, LEAP reduces raw query time by up to 33% compared with
E2E, and 22% compared with Lero. (2) With more training data,
raw query time generally decreases as models can more accurately
capture the relations between cost and plans. Notably, with more
training queries, the performance gap between LEAP and baselines
shrinks in TPC-H, and E2E and Lero exhibit unstable performance
in STACK. This is due to the complexity of TPC-H and STACK,
where some join plans can produce intermediate tables with up to
1011 rows, leading to query timeouts. Baselines may generate such
poor plans with insufficient training data. (3) LEAP can quickly
adapt to new workloads. It outperforms the native optimizer with
only 200 training queries in JOB, 600 in STACK and 200 in TPC-H.
The improvement continues to grow with more training queries.
Note that LEAP is not specifically designed for dynamic work-
loads, but it performs better than baselines in this case due to their
own limitations. For E2E, LEAP performs better than it due to the
superiority of comparison-based approach over regression-based
approach. For comparison-based Lero, it tends to generate many
sub-optimal candidate plans. With limited training data, the accu-
racy of plan comparator is affected, and thus a plan with inferior
performance is easier to be selected. Generally, LEAP avoids the
limitations of baselines. Also, LEAP has fewer parameters with
short input plan node sequences. This smaller data volume makes
overfitting less likely with limited training data. Thus, it helps LEAP
generalize better to unseen queries.

683

Table 4: The number of queries showing performance improvement/regression compared with native optimizer.

(a) JOB

E2E Lero LEAP
Improvement 65 10 96

(-20%, 0) 21 11 12Regression (-∞, -20%) 25 92 5
Failure 2 0 0

(b) STACK

E2E Lero LEAP
Improvement 94 9 107

Regression (-20%, 0) 11 18 7
(-∞, -20%) 7 88 6

Failure 8 5 0

(c) TPC-H

E2E Lero LEAP
Improvement 41 16 56

Regression (-20%, 0) 4 27 14
(-∞, -20%) 15 27 0

Failure 10 0 0

(0, 4] (4, 8] (8, 12] (12, ∞)Na
tiv

e

Na
tiv

e

Na
tiv

e

Na
tiv

e

E2
E

E2
E

E2
E

E2
E

Le
ro

Le
ro

Le
ro

Le
ro

LE
AP

LE
AP

LE
AP

LE
AP

102
103
104

Ti
m

e
(s

)

(a) JOB
(0, 4] (4, 8] (8, 12]Na

tiv
e

Na
tiv

e

Na
tiv

e

E2
E

E2
E

E2
E

Le
ro

Le
ro

Le
ro

LE
AP

LE
AP

LE
AP

102

103

104

Ti
m

e
(s

)

(b) STACK
(0, 4] (4, 8]Na

tiv
e

Na
tiv

e

E2
E

E2
E

Le
ro

Le
ro

LE
AP

LE
AP

102

103

104

Ti
m

e
(s

)

(c) TPC-H
Figure 7: Total end-to-end query execution time for queries with varying number of tables on three benchmarks. The dark and
light bars represent raw query time and optimization cost respectively.

Native LEAP

6f 5c 31
b31

c
25

a
25

b
18

b18
c
16

a
16

b16
c
16

d
13

a
13

d 5b 30
b

102

103

Qu
er

y
Ti

m
e

(s
)

(a) JOB
q1

0#
0

q1
0#

1
q3

#0
q3

#1
q5

#0
q5

#1
q7

#0
q7

#1
q9

#0
q9

#1

102

103

Qu
er

y
Ti

m
e

(s
)

(b) TPC-H
Figure 8: The running time of individual large queries in
augmented JOB and TPC-H, in seconds.
7.3 Query Performance on Individual Queries
7.3.1 Performance regression analysis. We compare the end-to-end
query execution time of learning-based methods with Spark SQL
native optimizer on each test query. For query 𝑄 executed with
a learning-based method𝑀 , we compute its performance change
as Δ(𝑄,𝑀) = 𝑇𝑖𝑚𝑒 (𝑄,𝐶𝐵𝑂)−𝑇𝑖𝑚𝑒 (𝑄,𝑀)

𝑇𝑖𝑚𝑒 (𝑄,𝐶𝐵𝑂) , where 𝑇𝑖𝑚𝑒 (𝑄,𝐶𝐵𝑂) and
𝑇𝑖𝑚𝑒 (𝑄,𝑀) represent the execution time of 𝑄 with native opti-
mizer and method𝑀 . Δ(𝑄,𝑀) ≥ 0 indicates improvement, while
Δ(𝑄,𝑀) < 0 indicates regression. Table 4 shows the distribution of
Δ(𝑄,𝑀) for each method𝑀 . LEAP achieves the least performance
regression and provides significantly more performance gains com-
pared to E2E and Lero. Although E2E matches LEAP in the number
of improved queries in STACK, it has 7 long-running queries and 8
queries that fail after long execution times, leading to much higher
overall query times. We find that LEAP’s underperformance com-
pared to the baselines is mainly due to incorrect physical operator
selection. In STACK q8, LEAP overestimates the output cardinal-
ity of two sub-plans, resulting in shuffling two large tables and
a 20% slowdown. In TPC-H q7, LEAP underestimates cardinality,
leading to inefficient broadcasts of two large intermediate tables
and making it 150% slower than Lero. These issues stem from the
limited accuracy of the cardinality comparator 𝐶𝑐𝑎𝑟𝑑 . We plan to
improve this by adding more join features in future work. Con-
versely, in queries where LEAP excels, the improvement is due to
better join order selection. For example, in STACK q15, E2E times
out due to a join order with an intermediate table of 14.3 billion
rows, causing excessive shuffling. LEAP, however, selects a more
efficient order, producing intermediate tables of up to only 479K
rows and completing the query in 15 seconds.

7.3.2 Findings on individual queries. On the level of individual
queries, we can make the following findings. (1) LEAP’s perfor-
mance greatly improves with queries involving many tables and
join conditions (e.g., JOB’s 29a, 29b, 29c and STACK’s q2, q3). We
group the test queries of each benchmark into four categories based
on the number of tables: (0, 4], (4, 8], (8, 12], and (12,∞), and report
the total end-to-end query execution time for each group in Figure
7. For queries with more tables, the larger search space makes it
difficult for baselines to enumerate join plans efficiently, allowing
LEAP to reduce optimization costs. For example, for queries with
≥ 8 tables, LEAP is up to 79.5% faster in JOB and 62.8% in STACK.
However, with fewer tables and join conditions, the improvement
is less pronounced, as the search space is smaller, making it easier
for baseline methods to match LEAP’s recommended execution
plans, and in some cases, query time is driven more by reading or
shuffling large tables than by join order (e.g., TPC-H’s q3, q10). (2)
LEAP’s performance is related to the types of filters included in
the query. Briefly, the performance improvement of LEAP is more
significant in queries with predicates on skewed string columns, or
pattern matching predicates (e.g., JOB’s 20b, 5c, 27c). Spark SQL’s es-
timator does not support these cases very well, and often produces
inaccurate estimations, leading to inferior plans.

7.3.3 Query performance in large queries. To assess LEAP’s effec-
tiveness on larger queries, we execute some long-running queries
on augmented JOB and TPC-H datasets in Figure 8. For JOB, we
expand the IMDB tables to create a 400GB dataset and run the top-
16 slowest queries. For TPC-H, we generate 200GB data and run
two queries per template for 5 time-consuming templates. We can
observe that, (1) for JOB, LEAP reduces query time by up to 74.6%
compared with native optimizer. However, for some queries like 31c
and 25a, LEAP achieves similar performance due to significant time
spent on broadcasting the large table cast_info, which stems from
inaccurate size estimates by the native optimizer. (2) for TPC-H,
LEAP reduces the runtime of the two longest-running queries (q7
and q9) by up to 87.8% by identifying better join orders that mini-
mize intermediate table sizes. For q10 and q3, LEAP’s performance
is slightly better since these queries involve fewer tables, allowing
the native optimizer to find similar plans.

684

Table 5: Total end-to-end query execution time of LEAP with
different components, in seconds. Each cell shows the end-
to-end query time (e.g., 2,488.4) on top, with raw query time
(e.g., 1,848) and optimization cost (e.g., 640) in brackets below.

JOB STACK TPC-H

LEAP 2,488.4
(1,848+640)

2,067.7
(1,485+582)

2,920.4
(2,325+595)

LEAP w/o
Join Plan Enumerator

3,380.9
(2,263+1,117)

2,666.1
(2,124+541)

6,090.8
(5,490+600)

LEAP w/o
Join Operator Selector

3,034.5
(2,394+640)

2,469.3
(1,895+574)

3,117.3
(2,498+618)

LEAP w/o
Bushy tree search

2,607.4
(2,028+579)

2,237.9
(1,694+543)

3,363.1
(2,770+592)

LEAP with Cardinality-
driven plan selection

2,671.7
(1,953+717)

2,377.0
(1,817+559)

3,298.9
(2,705+593)

LEAP with Low-
uncertainty plan selection

2,843.2
(2,097+746)

2,770.3
(2,156+614)

3,798.1
(3,141+657)

LEAP with only
Native estimates

4,963.8
(4,281+682)

6,283.9
(5,690+594)

4,672.6
(4,016+657)

7.3.4 Proportion of bushy plans. Here we discuss the proportion
of test queries where bushy plan 𝑃𝑜 is selected. In our experiments,
35 (31%) queries in JOB, 20 (17%) queries in STACK, and 10 (14%)
queries in TPC-H adopt the bushy plan 𝑃𝑜 . Our approach only uses
sub-plans with few output rows to generate bushy plans, so the
number of bushy plans is limited. Also, bushy plans are not always
more efficient than left-deep plans. To improve the proportion of
selected bushy plans, we can retain all generated bushy plans for the
final comparison (line 18 in Algorithm 1), rather than only keeping
the optimal one 𝑃𝑜 . This prevents potentially overlooking better
bushy plans, as the comparator model is not always accurate.

7.4 Ablation Study
7.4.1 Effects of each component in LEAP. In this section, we
compare the performance of LEAP with some components dis-
abled to understand the benefits of each component. We evaluate
LEAP against six variants: (1) without Join Plan Enumerator, (2)
without Join Operator Selector, (3) without bushy tree search in
findBestPlan, (4) selecting candidate plans with the closest cardi-
nality to 𝑡𝑐𝑎𝑟𝑑 in Algorithm 2, (5) selecting candidate plans with
lowest uncertainty to 𝑃𝑠 in Algorithm 2, and (6) using Spark SQL’s
native cardinality estimates to replace predicate information and
data features in Learned Comparator. The results are shown in Table
5. Without Join Plan Enumerator, performance drops by up to 108%
due to the inferior join orders produced by native optimizer with
large intermediate tables. Without Join Operator Selector, query
execution time is up to 21.9% higher, as incorrect join operator se-
lection causes large table shuffles or broadcasts. Without bushy tree
search, performance drops by up to 15.2%, as parallel joins are disal-
lowed. Although bushy tree search reduces raw query time by up to
16.1%, the optimization cost is higher due to larger search space. In
Algorithm 2, selecting candidate plans with the closest cardinality
to 𝑡𝑐𝑎𝑟𝑑 or the lowest uncertainty reduces LEAP’s performance by
up to 34% compared to our high-uncertainty-guided candidate plan
selection. High-uncertainty candidates help correct final decisions
when faced with single incorrect comparisons, as they decrease

Table 6: Total end-to-end query execution time of native
optimizer using LEAP’s either component, in seconds.

JOB STACK TPC-H

Native 3,704.9
(2,600+1,104)

2,902.6
(2,357+545)

6,363.2
(5,782+581)

Native with
Learned Comparator

6,455.4
(2,191+4,264)

2,892.1
(2,038+854)

3,307.1
(2,643+664)

Native with
Join Plan Enumerator

3,291.2
(2,793+497)

4,859.4
(4,347+512)

9,967.7
(9,375+592)

LEAP 2,488.4
(1,848+640)

2,067.7
(1,485+582)

2,920.4
(2,325+595)

Table 7: Total raw query time of LEAP using different
comparator architecture and different number of training
queries, in seconds.

JOB STACK TPC-H
Tree convolution, 1000 queries 1,985.4 1,649.2 3,147.9
Tree convolution, 1500 queries 1,837.0 1,397.3 2,539.1

Tree-LSTM, 1000 queries 1,970.0 1,648.8 2,851.1
Tree-LSTM, 1500 queries 1,902.8 1,545.8 2,608.7
LSTM (ours), 1000 queries 1,848.0 1,485.0 2,325.0

the impact on average output probability 𝑝𝑐𝑎𝑟𝑑 . Finally, replacing
features with native cardinality estimates negatively affects perfor-
mance due to high estimation errors, which hinder comparator’s
ability to accurately compare sub-plans, particularly in Join Plan
Enumerator which compares sub-plans across different queries.

7.4.2 Effects of learned comparator and plan enumerator in LEAP.
We investigate the effects of LEAP’s Learned Comparator and Join
Plan Enumerator by using each of them in native optimizer. Ta-
ble 6 shows that, (1) using LEAP’s Learned Comparator to guide
plan enumeration reduces raw query time, as it helps to find better
plans with more accurate plan comparisons. However, optimization
costs increase significantly because neural network inference is
more time-consuming. (2) when using LEAP’s Join Plan Enumer-
ator to generate plans with traditional estimators, performance
significantly declines compared with native optimizer due to large
estimation errors from the traditional estimator, and our enumera-
tion algorithm only explores a limited part of the join plan space.

7.4.3 Different comparator architecture. We further compare the
performance of LEAPwith differentmodel architectures for Learned
Comparator to show the efficiency of our approach. We implement
our Learned Comparator using a tree convolution network, Tree-
LSTM, and LSTM (our approach) and compare their raw query
time, as the search space of different models are affected by 𝐶𝑐𝑎𝑟𝑑 ,
thus their optimization cost differs. As shown in Table 7, with 1000
training queries, our LSTM-based approach outperforms the others
across all three benchmarks, reducing raw query time by up to 6.9%,
10% and 26.1% in JOB, STACK and TPC-H respectively. Tree models
find worse plans for some queries due to their structural limitations.
Tree-LSTM may emphasize the root node, placing less emphasis on
leaf nodes [36], while tree convolution networks can suffer from
information dilution and ineffective feature aggregation when cap-
turing long-distance dependencies in join plan trees [8]. Also, join
plan trees are simple binary structures with limited height, which

685

limit the benefits of tree models. In this case, tree models can in-
crease complexity and potentially lead to overfitting with limited
training data. Thus, tree models underperform in some cases com-
pared to LSTM, which aligns with previous findings in [48]. We
also train the tree models with 1500 training queries, and while
their performance improves, they can’t surpass the performance of
LSTM with 1000 training queries in many cases.

8 RELATED WORK
In this section, we review the relatedworks of cardinality estimation
and learned query optimizers.

8.1 Cardinality estimation
Traditional estimators. Native optimizers typically use his-
tograms, sketches, and sampling techniques for cardinality esti-
mation. Histograms [27, 34] capture the attribute value distribution.
Sketches [13, 28] represent a column as a vector or matrix to as-
sess data statistics. Sampling methods [11, 12, 37, 39] sample tuples
from multiple tables to discern inter-table correlations. However,
traditional estimators fail to capture inter-table correlations using
histograms or sketches, and face high variance when the sample
distribution differs from the real distribution [14, 19, 31].
Learned data-driven estimators. Learned data-driven estima-
tors [35, 40, 44, 50] employ various machine learning models to un-
derstand the joint distribution of underlying data, such as deep auto-
regressive model in NeuroCard [44], factorize-split-sum-product
network (FSPN) in FLAT [50], and normalizing flow in FACE [35].
However, learned data-driven estimators incur high training and
inference costs, which escalate as the data volume increases.
Learned query-driven estimators. Learned query-driven esti-
mators [17, 19, 25, 30, 33, 47] address cardinality estimation as a
regression problem. They collect (query, cardinality) pairs and use
various machine learning models to model their relationship, such
as multi-set convolutional network [17], TLSTM [30], attention-
based model [19] and SRU [33]. These methods have limited appli-
cability, especially with complex string predicates and disjunctions
(i.e., ’OR’). Also, they generally offer less precise estimates than
those derived from learned data-driven estimators.

8.2 Learned query optimizers
Instead of estimating the query cardinality to help generate low-
cost query plans, learned query optimizers directly optimize the
query plans to reduce the query costs. There are primarily plan-
constructor and plan-steerermethods, and some learned-comparator-
based methods have also emerged recently.
Plan-constructor. Plan-constructor methods [9, 23, 43, 46] often
build a new learned optimizer that discards or underuses expert
knowledge of native optimizer, and generate an execution plan from
scratch for each query 𝑄 . These methods use deep reinforcement
learning models [6, 38] trained on historical query data to estimate
query cost, and propose various plan search algorithms to generate
execution plans. Compared with such methods, LEAP designs a
comparator to compare sub-plan costs instead of estimating overall
query costs. Additionally, LEAP introduces a plan enumeration
algorithm that separates the search for left-deep and bushy plans,
along with a customized physical operator selection mechanism

tailored for Spark SQL, rather than relying on operator enumeration
in DBMS.
Plan-steerer. Plan-steerer methods [10, 22, 45, 49] leverage the
knowledge of the native optimizer to produce improved execution
plans. These methods guide the native optimizer to generate multi-
ple candidate plans, and select the plan with the lowest estimated
cost. For example, BAO [22] uses the native optimizer to create a
plan for each hint set, HybridQO [45] generates candidate plans
using leading hints, Lero [49] adjusts the native optimizer’s car-
dinality estimates to produce plans, while LEON [10] enumerates
sub-plans with native optimizer. While these methods adapt well
to changes in data and schema, their dependency on specific DBMS
features restricts their use in platforms like Spark SQL. Also, gener-
ating execution plans in Spark SQL is slower than in other DBMS,
significantly raising optimization costs.
Learned comparators. Learned comparator methods [10, 42, 49]
use a comparator to select the best execution plan from candidate
sets. While they share a similar comparator architecture (tree con-
volution model, using native cardinality and cost estimation as
features), they differ in how they generate candidate plans. While
our LEAP and existing methods share a similar framework of a plan
comparator and plan generation strategy, the components differ
significantly. For the plan comparator, LEAP incorporates predi-
cate information (e.g., join conditions and filters) and data features
(e.g., histograms and selectivity distributions), avoiding inaccurate
native cardinality estimates in Spark SQL. Also, LEAP uses a light-
weight LSTM model with structure-preserving traversal, enabling
better plan generation with limited training data. Moreover, LEAP
can train using plans from different queries, while other methods
require multiple plans for the same query, increasing their training
overhead. As for plan generation, LEAP adopts a unique approach
by constructing a single plan from scratch, bypassing the native
optimizer. In contrast, existing methods use plan-steerer methods to
produce multiple candidate plans with the help of native optimizer.

9 CONCLUSION
In this paper, we propose LEAP, a learned query optimizer tailored
for Spark SQL. To tackle compatibility, LEAP optimizes queries by
first enumerating join plans and then assigning physical operators,
aligning with Spark SQL and requiring no changes for integra-
tion. Also, LEAP enhances the join plan selection with a Learned
Comparator to avoid the inaccuracy of exact value estimation, and
provides more accurate comparison by using predicate information
and data features. Moreover, LEAP adopts a progressive join plan
enumeration algorithm with a beam search strategy and pruning
techniques, ensuring efficient and effective join plan generation.
Extensive experiments on public benchmarks demonstrate that
LEAP delivers superior performance in end-to-end execution time,
optimization cost, and training efficiency.

ACKNOWLEDGMENTS
This work was supported in part by the NSFC under Grants
No. (62472377, 62025206, U23A20296, 62302436), and Zhejiang
Province’s "Lingyan" R&D Project under Grant No 2024C01259.
Lu Chen and Tianyi Li are the corresponding authors of the work.

686

REFERENCES
[1] 2019. https://github.com/greatji/Learning-based-cost-estimator
[2] 2023. https://github.com/Blondig/Lero-on-Spark
[3] 2023. https://github.com/apache/doris
[4] 2024. https://github.com/HuashiSCNU0303/LEAP/tree/main/full_version
[5] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al.
2015. Spark sql: Relational data processing in spark. In SIGMOD. 1383–1394.

[6] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. 2017. Deep reinforcement learning: A brief survey. IEEE Signal Process-
ing Magazine 34, 6 (2017), 26–38.

[7] Lorenzo Baldacci and Matteo Golfarelli. 2019. A Cost Model for SPARK SQL.
IEEE Transactions on Knowledge and Data Engineering 31, 5 (2019), 819–832.
https://doi.org/10.1109/TKDE.2018.2850339

[8] Baoming Chang, Amin Kamali, and Verena Kantere. 2024. A Novel Technique
for Query Plan Representation Based on Graph Neural Nets. In International
Conference on Big Data Analytics and Knowledge Discovery. Springer, 299–314.

[9] Tianyi Chen, Jun Gao, Hedui Chen, and Yaofeng Tu. 2023. LOGER: A Learned
Optimizer Towards Generating Efficient and Robust Query Execution Plans. Proc.
VLDB Endow. 16, 7 (2023), 1777–1789.

[10] Xu Chen, Haitian Chen, Zibo Liang, Shuncheng Liu, Jinghong Wang, Kai Zeng,
Han Su, and Kai Zheng. 2023. LEON: A New Framework for ML-Aided Query
Optimization. Proc. VLDB Endow. 16, 9 (2023), 2261–2273.

[11] Yu Chen and Ke Yi. 2017. Two-Level Sampling for Join Size Estimation. In
SIGMOD. 759–774.

[12] C. Estan and J.F. Naughton. 2006. End-biased Samples for Join Cardinality
Estimation. In ICDE. 20–20.

[13] Sumit Ganguly, Minos N. Garofalakis, and Rajeev Rastogi. 2004. Processing Data-
Stream Join Aggregates Using Skimmed Sketches. In International Conference
on Extending Database Technology. https://api.semanticscholar.org/CorpusID:
11330374

[14] Jintao Gao, Zhanhuai Li, Wenjie Liu, Zhijun Guo, and Yantao Yue. 2020. A new
fragments allocating method for join query in distributed database. Frontiers of
Computer Science 14, 4 (2020), 144608.

[15] Charles AR Hoare. 1961. Algorithm 65: find. Commun. ACM 4, 7 (1961), 321–322.
[16] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment

generation. In ICPC. 200–210.
[17] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and

Alfons Kemper. 2018. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. ArXiv abs/1809.00677 (2018).

[18] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc. VLDB
Endow. 9, 3 (2015), 204–215.

[19] Pengfei Li, Wenqing Wei, Rong Zhu, Bolin Ding, Jingren Zhou, and Hua Lu. 2023.
ALECE: An Attention-based Learned Cardinality Estimator for SPJ Queries on
Dynamic Workloads. Proc. VLDB Endow. 17, 2 (2023), 197–210.

[20] Yan Li, LiweiWang, ShengWang, Yuan Sun, and Zhiyong Peng. 2022. A Resource-
Aware Deep Cost Model for Big Data Query Processing. In 2022 IEEE 38th Inter-
national Conference on Data Engineering (ICDE). 885–897.

[21] Yan Li, Liwei Wang, Sheng Wang, Yuan Sun, Bolong Zheng, and Zhiyong Peng.
2024. A learned cost model for big data query processing. Information Sciences
670 (2024), 120650.

[22] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and TimKraska. 2021. Bao:Making LearnedQuery Optimization Practical.
In SIGMOD. 1275–1288.

[23] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: a learned
query optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718.

[24] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul, Tim
Kraska, and Mohammad Alizadeh. 2021. Flow-loss: learning cardinality estimates
that matter. Proc. VLDB Endow. 14, 11 (2021), 2019–2032.

[25] Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam
Madden, Tim Kraska, and Mohammad Alizadeh. 2023. Robust Query Driven
Cardinality Estimation under Changing Workloads. Proc. VLDB Endow. 16, 6
(2023), 1520–1533.

[26] Arjan Pellenkoft, César A. Galindo-Legaria, and Martin L. Kersten. 1997. The
Complexity of Transformation-Based Join Enumeration. In VLDB. 306–315.

[27] Viswanath Poosala and Yannis E. Ioannidis. 1997. Selectivity Estimation Without
the Attribute Value Independence Assumption. In VLDB.

[28] Florin Rusu and Alin Dobra. 2008. Sketches for size of join estimation. ACM
Trans. Database Syst. 33, 3 (2008), 46.

[29] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and
Christopher Berner. 2019. Presto: SQL on Everything. In 2019 IEEE 35th Inter-
national Conference on Data Engineering (ICDE). 1802–1813. https://doi.org/10.
1109/ICDE.2019.00196

[30] Ji Sun and Guoliang Li. 2019. An end-to-end learning-based cost estimator. Proc.
VLDB Endow. 13, 3 (2019), 307–319.

[31] Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. 2021. Learned
cardinality estimation: a design space exploration and a comparative evaluation.
Proc. VLDB Endow. 15, 1 (2021), 85–97.

[32] Transaction Processing Performance Council (TPC). 2021. TPC-H Version 2 and
Version 3. http://www.tpc.org/tpch/

[33] Fang Wang, Xiao Yan, Man Lung Yiu, Shuai LI, Zunyao Mao, and Bo Tang.
2023. Speeding Up End-to-end Query Execution via Learning-based Progressive
Cardinality Estimation. Proc. ACM Manag. Data 1, 1 (2023), 25.

[34] Hai Wang and Kenneth C. Sevcik. 2003. A multi-dimensional histogram for
selectivity estimation and fast approximate query answering. In Proceedings of
the 2003 Conference of the Centre for Advanced Studies on Collaborative Research.
328–342.

[35] Jiayi Wang, Chengliang Chai, Jiabin Liu, and Guoliang Li. 2021. FACE: a normal-
izing flow based cardinality estimator. Proc. VLDB Endow. 15, 1 (2021), 72–84.

[36] Jin Wang, Liang-Chih Yu, K. Robert Lai, and Xuejie Zhang. 2019. Investigating
Dynamic Routing in Tree-Structured LSTM for Sentiment Analysis. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan
(Eds.). Association for Computational Linguistics, Hong Kong, China, 3432–3437.
https://doi.org/10.18653/v1/D19-1343

[37] TaiNing Wang and Chee-Yong Chan. 2020. Improved Correlated Sampling for
Join Size Estimation. In ICDE. 325–336.

[38] Sai Wu, Ying Li, Haoqi Zhu, Junbo Zhao, and Gang Chen. 2022. Dynamic index
construction with deep reinforcement learning. Data Science and Engineering 7,
2 (2022), 87–101.

[39] Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. 2016. Sampling-Based
Query Re-Optimization. In SIGMOD. 1721–1736.

[40] Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and Samuel
Madden. 2023. FactorJoin: A New Cardinality Estimation Framework for Join
Queries. Proc. ACM Manag. Data 1, 1, Article 41 (2023), 27 pages.

[41] Jinhan Xin, Kai Hwang, and Zhibin Yu. 2022. LOCAT: Low-Overhead Online
Configuration Auto-Tuning of Spark SQL Applications. In SIGMOD. 674–684.

[42] Xianghong Xu, Zhibing Zhao, Tieying Zhang, Rong Kang, Luming Sun, and
Jianjun Chen. 2023. COOOL: A Learning-To-Rank Approach for SQL Hint
Recommendations. arXiv preprint arXiv:2304.04407 (2023).

[43] Zongheng Yang,Wei-Lin Chiang, Sifei Luan, GautamMittal, Michael Luo, and Ion
Stoica. 2022. Balsa: Learning a Query Optimizer Without Expert Demonstrations.
In SIGMOD. 931–944.

[44] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2020. NeuroCard: one cardinality estimator for all tables. 14, 1 (2020),
61–73.

[45] Xiang Yu, Chengliang Chai, Guoliang Li, and Jiabin Liu. 2022. Cost-Based or
Learning-Based? A Hybrid Query Optimizer for Query Plan Selection. Proc.
VLDB Endow. 15, 13 (2022), 3924–3936.

[46] Yuchen Yuan, Xiaoyue Feng, Bo Zhang, Pengyi Zhang, and Jie Song. 2024. JAPO:
learning join and pushdown order for cloud-native join optimization. Frontiers
of Computer Science 18, 6 (2024), 186614.

[47] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: a
tree transformer model for query plan representation. Proc. VLDB Endow. 15, 8
(2022), 1658–1670.

[48] Yue Zhao, Zhaodonghui Li, and Gao Cong. 2024. A Comparative Study and Com-
ponent Analysis of Query Plan Representation Techniques in ML4DB Studies.
Proc. VLDB Endow. 17, 4 (mar 2024), 823–835. https://doi.org/10.14778/3636218.
3636235

[49] Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu,
and Jingren Zhou. 2023. Lero: A Learning-to-Rank Query Optimizer. Proc. VLDB
Endow. 16, 6 (2023), 1466–1479.

[50] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. 2021. FLAT: fast, lightweight and accurate method
for cardinality estimation. 14, 9 (2021), 1489–1502.

687

https://github.com/greatji/Learning-based-cost-estimator
https://github.com/Blondig/Lero-on-Spark
https://github.com/apache/doris
https://github.com/HuashiSCNU0303/LEAP/tree/main/full_version
https://doi.org/10.1109/TKDE.2018.2850339
https://api.semanticscholar.org/CorpusID:11330374
https://api.semanticscholar.org/CorpusID:11330374
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.1109/ICDE.2019.00196
http://www.tpc.org/tpch/
https://doi.org/10.18653/v1/D19-1343
https://doi.org/10.14778/3636218.3636235
https://doi.org/10.14778/3636218.3636235

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Join Plan
	2.2 Optimization Process of Spark SQL

	3 System Overview
	3.1 System Framework
	3.2 Discussion

	4 Learned Comparator
	4.1 Model Design
	4.2 Model Training
	4.3 Different Comparators

	5 Join Plan Enumerator
	6 Join Operator Selector
	6.1 Assessing Broadcast Suitability
	6.2 Assigning Physical Operator

	7 Experiments
	7.1 Experiment Setup
	7.2 Query Performance
	7.3 Query Performance on Individual Queries
	7.4 Ablation Study

	8 Related Work
	8.1 Cardinality estimation
	8.2 Learned query optimizers

	9 Conclusion
	References

