
Towards Practical Oblivious Map

Xinle Cao
∗

Zhejiang University

xinle@zju.edu.cn

Weiqi Feng
∗

University of Massachusetts Amherst

weiqifeng@umass.edu

Jian Liu
†

Zhejiang University

liujian2411@zju.edu.cn

Jinjin Zhou

Ant Group

zhoujinjin.zjj@antgroup.com

Wenjing Fang

Ant Group

bean.fwj@antgroup.com

Lei Wang

Ant Group

shensi.wl@antgroup.com

Quanqing Xu

OceanBase, Ant Group

xuquanqing.xqq@oceanbase.com

Chuanhui Yang

OceanBase, Ant Group

rizhao.ych@oceanbase.com

Kui Ren

Zhejiang University

kuiren@zju.edu.cn

ABSTRACT
Oblivious map (OMAP) is an important component in encrypted

databases, utilized to prevent the server inferring sensitive infor-

mation about client’s encrypted databases based on access patterns.
Despite its widespread usage and importance, existing OMAP so-

lutions face practical challenges, including the need for a large

number of interaction rounds between the client and server, as well

as substantial communication bandwidth. For example, the SOTA

protocol OMIX++ in VLDB 2024 still requires 𝑂 (log𝑛) interaction
rounds and𝑂 (log2 𝑛) communication bandwidth per access, where

𝑛 denotes the total number of key-value pairs stored. In this work,

we introduce more practical and efficient OMAP constructions.

Consistent with all prior OMAPs, our constructions also adapt only

the tree-based Oblivious RAM (ORAM) and oblivious data structures
(ODS) to achieve OMAP for enhanced practicality. In complexity,

our approach needs𝑂 (log𝑛/log log𝑛)+𝑂 (log 𝜆) interaction rounds
and𝑂 (log2 𝑛/log log𝑛) +𝑂 (log 𝜆 log𝑛) communication bandwidth

per data access where 𝜆 is the security parameter. This new com-

plexity results from our two main contributions. First, unlike prior

works relying solely on search trees, we design a novel framework

for OMAP that combines hash table with search trees. Second, we

propose a more efficient tree-based ORAM namedDAORAM, which

is of significant independent interest. This new ORAM accelerates

our constructions as it supports obliviously accessing hash tables

more efficiently. We implement both our proposed constructions

and prior methods to experimentally demonstrate that our construc-

tions substantially outperform prior methods in terms of efficiency.

PVLDB Reference Format:
Xinle Cao, Weiqi Feng, Jian Liu, Jinjin Zhou, Wenjing Fang, Lei Wang,

Quanqing Xu, Chuanhui Yang, and Kui Ren. Towards Practical Oblivious

Map. PVLDB, 18(3): 688 - 701, 2024.

doi:10.14778/3712221.3712235

∗
These authors contributed equally to this work.

†
Jian Liu is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.

doi:10.14778/3712221.3712235

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/WeiqiNs/DAORAM.

1 INTRODUCTION
Oblivious algorithms [8, 14, 32, 57, 64] serve as a critical mechanism

frequently employed alongside encrypted databases (EDBs) [20, 24,

48] to uphold users’ data privacy. They ensure that the access pat-

terns remain independent of the database contents [31]. Therefore,

during query processing, an untrusted server gains no information

beyond query types, database size, and the size of query results [13].

Recently, there has been a surge in the usage of oblivious algorithms

with EDBs [17, 36, 44, 69], which is driven by concerns regarding the

security implications of query access pattern leakages [42, 46, 51].

Oblivious map (OMAP) [56, 64] is a specific type of oblivious

algorithm designed to facilitate oblivious access to key-value (KV)

stores [56], one of the most used database formats in production [67,

68]. OMAP offers clients the security guarantee that an untrusted

server, holding the encrypted KV pairs, cannot obtain information

regarding which data pair was accessed during query processing,

nor its content. Furthermore, OMAP is often used to construct oblivi-

ous algorithms for executingmore complex queries such as join [17],

aggregate [24], and range query [16] in other types of databases.

However, designing efficient and practical OMAPs presents a signif-

icant challenge. Predominantly, most existing oblivious algorithms

rely on the established cryptographic primitive called oblivious

RAM (ORAM) [31]. This primitive is a generic tool for achiev-

ing obliviousness as it was originally proposed to access memory
obliviously in random access machine. Specifically, given KV pairs

{(𝑘𝑖 , 𝑣𝑖)}𝑛−1𝑖=0
where keys are consecutive integers (which is used

to simulate memory), ORAM supports obliviously accessing one

pair from them in functionality. While sharing similarities with

ORAM, OMAP is more general and powerful since OMAP supports

KV stores, even when the keys are non-consecutive and arbi-
trary strings. This difference incurs a huge gap in their designs

such that OMAP cannot be naively constructed from ORAMs with

practicality. It raises the following important question:

How can we design an efficient OMAP based on practical ORAMs,
requiring only small client-side storage like 𝑂 (log𝑛)?

Oblivious data structure. Some prior works [13, 24, 56, 64] also

attempt to address OMAP through another way, i.e., the use of

1

688

https://doi.org/10.14778/3712221.3712235
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712235
https://github.com/WeiqiNs/DAORAM
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Comparison of approaches for oblivious map. 𝑛 is the number of KV pairs stored, 𝜆 is the security parameter. 𝛽 is a constant set for
branching factor in B/B+ tree [24, 56], thus ObliDB [24] still expresses its interaction and bandwidth as 𝑂 (log𝑛) and 𝑂 (log2 𝑛), respectively.

ODS Method Interaction Round Communication Bandwidth Note

ODS+AVL [13, 64] 𝑂 (log𝑛) 𝑂 (log2 𝑛) Many interaction rounds

ODS+B/B+ [17, 24, 56] 𝑂 (log𝑛/log 𝛽) 𝑂 (𝛽 log2 𝑛/log 𝛽) Larger bandwidth blowup

Ours 𝑂 (log𝑛/log log𝑛) +𝑂 (log 𝜆) 𝑂 (log2 𝑛/log log𝑛) +𝑂 (log𝑛 log 𝜆) Better rounds and bandwidth in practice

oblivious data structure (ODS). In short, ODS refers to oblivious

algorithms designed specially for some data structures such as trees

and stacks in order to support obliviously accessing these structures

more efficiently than using the generic ORAM. Wang et al. [64] are

the first to define ODS and non-trivially adapt tree-based ORAM

to achieve this goal. They introduced an OMAP construction em-

ploying ODS for an AVL tree, ensuring that client-side storage does

not exceed 𝑂 (log𝑛). Since then, this construction has been widely

implemented in plenty of works [11, 23, 30] due to its simplicity.

The state-of-the-art work on OMAP [13, 62] continues to use this

approach as a foundation, incorporating several new optimizations.

While the AVL tree makes the OMAP have a good theoretical com-

munication bandwidth, it may not be the optimal choice among

search trees in practice, as noted in [56, 64].

Consequently, some works introduce OMAPs based on other

types of search trees, including B/B+ trees [17, 24] and a variant

similar to B-trees [56], to reduce interaction rounds and improve

efficiency. However, these new OMAPs reduce interaction rounds

at the expense of increased theoretical communication bandwidth.

We summarize the complexity of all existing OMAPs that adapt

only the practical tree-based ORAMs in Table 1. The table demon-

strates that, to achieve 𝑂 (log𝑛/log 𝛽) interaction rounds per ac-

cess, prior works require a larger communication bandwidth of

𝑂 (log2 𝑛/log 𝛽), where 𝛽 is a constant integer predefined by the

client. The value of 𝛽 implies a trade-off between interaction rounds

and communication bandwidth. It cannot be too large, as this would

result in prohibitively high bandwidth costs. For instance, with

𝛽 = 𝑛, the communication bandwidth reaches 𝑂 (𝑛), equivalent to
downloading the entire database. Therefore, the value of 𝛽 must be

chosen carefully to adapt to specific applications. Additionally, the

communication bandwidth remains still 𝑂 (log2 𝑛) regardless of 𝛽 ,
which can be a bottleneck for OMAP when implemented in secure

enclaves [62]. Therefore, we ask the following question:

Can we propose new ODS that achieve both fewer interaction rounds
and reduced communication bandwidth for more efficient OMAPs?

In this work, we revisit the two questions above and provide

a positive answer. Specifically, we propose several new construc-

tions which are the first to build OMAPs via combining both
new novel tree-based ORAMs and ODSs. These constructions
are the first to overcome the 𝑂 (log2 𝑛) communication bandwidth

barrier, marking a significant theoretical improvement in OMAP

bandwidth [62]. Furthermore, they require only𝑂 (log𝑛/log log𝑛)+
𝑂 (log 𝜆) interaction rounds per operation. Based on these merits,

the proposed methods are far more efficient than prior approaches.

1.1 Overview
Framework. We first introduce a new simple but effective frame-

work for designing more efficient OMAPs. Prior methods organize

KV pairs as a search tree and then construct an ODS for the search

tree. To improve this approach, we explore the use of hash tables,

which are well-known for their efficiency in mapping [21]. How-

ever, oblivious hash tables are not ideal in this context due to their

expensive costs for achieving obliviousness. As discussed in [64],

oblivious hash tales can be achieved via a tree-based ORAM [60]

with only 𝑂 (log𝑛) client-side storage, but one access to the table

requires three accesses to the ORAM for addressing collision in

the table. As accessing the tree-based ORAMs with the 𝑂 (log𝑛)
client-side storage is often costly, i.e., 𝑂 (log𝑛) interaction rounds

and𝑂 (log2 𝑛) communication bandwidth per access, oblivious hash

tables via ORAMs are considered to have the same complexity and

impracticality as OMAPs constructed from ODS for the search tree.

Surprisingly, recent works over the last decade [26, 39] demon-

strate that accessing the tree-based ORAMs with limited client-side

storage can be done more efficiently. Nevertheless, they still en-

counter some non-trivial practical problems, which prevent their

easy adaption in real-world implementations. In this paper, we

will show how to address these problems elegantly and propose a

much more practical and efficient ORAM protocol called DAO-
RAM (de-amortized ORAM), which is a contribution of substantial

independent interest. DAORAM can complete each access with

only 𝑂 (log𝑛/log log𝑛) interaction rounds and 𝑂 (log2 𝑛/log log𝑛)
bandwidth. With the new advanced ORAM, now we can follow the

approach in [64] to naively achieve an oblivious hash table with-

out collision and an OMAP with better complexity. To obtain even

more optimized OMAP constructions, we propose a new framework

consisting of two components, as outlined below:

• ORAM for hash table.We initialize an ORAM to store a hash ta-

ble of size𝑛 which allows collisions. For each integer 𝑖 ∈ {0, . . . , 𝑛−
1}, we map 𝑖 to 𝑔𝑖 and store this mapping in the ORAM, where

𝑔𝑖 is used to record the group of collided KV pairs, i.e., any (𝑘, 𝑣)
such that Hash(𝑘) = 𝑖 , where Hash(·) is a hash function ran-

domly mapping a string to an integer in {0, . . . , 𝑛 − 1}.
• Group OMAP. The length of 𝑔𝑖 is limited and cannot store all

KV pairs mapped to 𝑖 . To address this, we establish an OMAP

for all collided pairs at position 𝑖 . Thus, 𝑔𝑖 only needs to store

metadata about the OMAP, requiring only 𝑂 (log𝑛) bits. There
are 𝑛 distinct OMAPs, as we build an OMAP for each 𝑔𝑖 where

𝑖 ∈ {0, . . . , 𝑛 − 1}. We store them in the same ORAM to prevent

the server from observing which group OMAP is accessed during

query processing.

To summarize, we handle the collisions in hash tables by utilizing
smaller OMAPs for collided KV pairs. When the client accesses a

KV pair (𝑘, 𝑣) where Hash(𝑘) = 𝑗 , it retrieves the corresponding

𝑔 𝑗 from the hash table ORAM. Then, it uses 𝑔 𝑗 to find (𝑘, 𝑣) from
the OMAP storing the collided pairs. The overhead of our OMAP

is equal to the sum of the overhead in accessing the ORAM and

the group OMAP. Importantly, accessing the group OMAP can be

689

much more efficient than accessing the ORAM as each group has

at most 𝑂 (𝜆) collided pairs [22, 54]. Hence, our framework allows

us to use only one access to the ORAM and a much cheaper access to
the group OMAP to replace the three accesses to the ORAM in the

general construction of an oblivious hash table without collision

proposed by [64], significantly improving practicality.

Contributions. We summarize our contributions below.

(1) A new OMAP framework. We propose a new OMAP frame-

work that combines both ORAM for hash tables and ODS for

search trees. Within this framework, we can apply a prior the-

oretically elegant tree-based ORAM scheme [39] and existing

OMAPs[13, 24, 56, 64] to present several new OMAP construc-

tions. Compared with prior OMAPs, they are asymptotically
better and do not require any additional expensive techniques.

(2) A faster ORAM. We identify the infeasible worst-case perfor-

mance and impracticality of the ORAM protocol [39] used in

our constructions, which makes them unacceptable in produc-

tion. To this end, we introduce a new de-amortized ORAM

protocol named DAORAM. It offers substantially better per-

formance and greater practicality compared to [39], making

our constructions indeed outperform all prior OMAPs both
theoretically and practically.

(3) Full-fledged Implementation. We implement three typical prior

OMAPs including the widely used baseline [64] and SOTA

works [13, 24] and our three new OMAP constructions based

on them. We provide a comprehensive evaluation of our DAO-
RAM and OMAPs, demonstrating the significant speedup of

our framework to prior OMAPs. The experimental results show

that our OMAPs improve processing time by up to 72.0%
and communication bandwidth by up to 92.6% compared

to the SOTA work [13].

2 PRELIMINARIES
In this section, we introduce some basic and important notions used

in this work. All notations in this work are introduced as needed, a

summary table of notations is provided in [10]. All algorithms are

assumed to be probabilistic polynomial-time (PPT).

Pseudorandom function. Following [41], we call a function 𝐹 :

{0, 1}𝑘1 × {0, 1}𝑘2 → {0, 1}𝑘3 a pseudorandom function (PRF) if:

• There is a polynomial-time algorithm: given a key 𝐾 ∈ {0, 1}𝑘1
and an input 𝑥 ∈ {0, 1}𝑘2 , it computes 𝐹𝐾 (𝑥) = 𝐹 (𝐾, 𝑥).

• For any PPT adversary A, its advantage

Advprf
𝐹
(A) = | Pr

𝐾←${0,1}𝑘1
[A𝐹𝑘 (·) = 1] − Pr[A$ = 1] |

is negligible in 𝜆, where $ above denotes the oracle that imple-

ments a random function from {0, 1}𝑘2 to {0, 1}𝑘3 , A𝐹𝑘 (·) and
A$

denote that the adversary has access to the oracle of function

𝐹𝐾 (·) and random function, respectively.

ORAM and OMAP. Oblivious RAM (ORAM) and oblivious map

(OMAP) are very similar in definition and functionality. Gener-

ally speaking, they allow the client C to store a database DB :=

{(𝑘𝑖 , 𝑣𝑖)}𝑛𝑖=1 encrypted on the untrusted server S and then oper-

ate each pair of data obliviously, i.e., S cannot infer which pair

is operated by C via observing access patterns during operations.

However, they are very different in key-value (KV) stores supported:

ORAM is originally proposed to access memory obliviously. So it

always assumes keys in KV store are consecutive integers to simu-

late memory. OMAP is more general and powerful as it is designed

for all KV stores where keys can be arbitrary and non-consecutive

strings. To this end, there is a huge gap between existing ORAMs

and OMAPs expected in deployment:

• Feasible but impractical: Actually, there are indeed some exist-

ing ORAMs (e.g., hierarchy ORAMs [4, 52, 53]) which naturally

support non-consecutive keys. Nevertheless, they are highly in-

efficient due to the large constant factors in overhead complexity,

even though some of them [4, 6] achieve the 𝑂 (log𝑛) optimal

theoretical communication bandwidth of ORAM [47].

• Practical but infeasible: When we try more practical ORAMs,

only tree-based ORAMs [60, 63] demonstrate relative efficiency

and are widely used in EDBs [9, 11, 17, 66]. But tree-based

ORAMs, when constrained by limited client-side storage, typ-
ically 𝑂 (log𝑛) for practical applications, are capable of sup-

porting only consecutive keys as the ORAM functionality re-

quires. They cannot be naively applied to process a KV store

with unpredictable and non-consecutive keys, e.g., the database

DB := {((Alice, Boston), (Bob, London), · · ·)}.
These limitations above leave building practical OMAPs via ORAM

still unsolved. As OMAP is a fundamental primitive for oblivious

algorithms and secure EDBs, building practical OMAPs becomes

an imperative task in encrypted databases (EDBs).

In algorithms, both ORAM andOMAP consist of two subroutines:

• Initialization: Init(𝑛, 𝜆) → (stC, stS). On input the (estimated)

maximal number of pairs in the database 𝑛 and security parame-

ter 𝜆. C and S interact with each other to run this subroutine,

and produce client state stC in C and server state stS in S.
• Access: Access(stC, stS, 𝑘, 𝑣) → (st′C, st

′
S, 𝑣
′). On input the

states (stC, stS) and a pair (𝑘, 𝑣), C and S interact with each

other to run this subroutine, and produce the updated states

(st′C, st
′
S). If 𝑣 is ⊥, then this is an read operation; 𝑣 ′ is set to the

value stored in stS corresponding to 𝑘 . Otherwise, this is a write
operation, and (𝑘, 𝑣) is written in st′S , where 𝑣

′ = 𝑣 .

ODS. Differing from the ORAM and OMAP primitives that aim

to operate a single KV pair, oblivious data structure (ODS) [64] tries

to design oblivious algorithms specialized to some data structures,

e.g., trees [56], heaps [58], and graphs [13]. This enables operat-

ing these data structure more efficiently than using the generic

ORAM/OMAP [40]. In otherwords, while ORAM/OMAP is a generic

primitive to build various oblivious algorithms, ODS is the spe-

cialized data structure for optimizing some important oblivious

algorithms in applications, e.g., ObliDB [24] builds oblivious B+

tree to complete range queries obliviously instead of ORAM/OMAP.

Additionally, we remark that, although OMAP is conceptually simi-

lar to ORAM, compared with extending ORAM to achieve OMAP,

most existing works often achieve OMAP via the ODS for search

trees [13, 24, 64] to enhance practicality.

3 REVISIT
In this section, we introduce some intuition and specific construc-

tions of prior ORAM/OMAP. They are necessary components this

690

work is based on. Especially, we revisit them to point out their short-

ages, explaining why more advanced constructions are needed.

3.1 Prior Recursive ORAM
3.1.1 Basic Intuition. We first provide some background on how

tree-based ORAMs work. As illustrated in Figure 1, a KV pair (𝑘, 𝑣)
is assigned a random label, denoted by 𝑝𝑡 ∈ [𝑛], indicating the

path this pair is on. S stores a tree where the ciphertext of (𝑘, 𝑣, 𝑝𝑡)
is guaranteed to be on the path from the root node to the 𝑝𝑡-th

leaf node. The position map in C records the corresponding 𝑝𝑡

for each key, resulting in a size of 𝑂 (𝑛). Each time C searches

for (𝑘, 𝑣), it first retrieves the corresponding 𝑝𝑡 from the position

map using 𝑘 and then accesses the path indicated by 𝑝𝑡 . After

C retrieves the pair from the path, its label will be replaced by

a new random value, denoted by 𝑝𝑡 ′. This pair will be placed in

the path of 𝑝𝑡 ′. To achieve this, C can adopt different eviction

strategies [18, 60, 63] to balance various trade-offs. If the eviction

process fails, the pair is temporarily placed in the stash and will

be retried to evict during next ORAM accesses. It has been proven

that with some strategies [60, 63], the stash size exceeds 𝑂 (log𝑛)
with a negligible probability.

While tree-based ORAM looks perfect, the 𝑂 (𝑛) position map

storage makes them impractical. So prior works [59, 61] introduce

the recursion technique. It uses a series of smaller ORAMs to store

the map but requires the keys must be consecutive integers,
e.g., suppose the position map is {(𝑐𝑘𝑖 , 𝑝𝑡𝑖)}𝑛−1𝑖=0

where 𝑐𝑘 denotes

consecutive integers, then C can use ⌈𝑛/2⌉ blocks in another ORAM
to store them: the 𝑖th block records {(𝑐𝑘2𝑖 , 𝑝𝑡2𝑖), (𝑐𝑘2𝑖+1, 𝑝𝑡2𝑖+1)}.
Such an ORAM and block are called PosMap ORAM and block,

respectively. To distinguish them from the original ORAM and

block holding KV pairs, we call the original ORAM and block as

data ORAM and block, respectively. Besides the number 2, the

recursion can be deeper with a larger number here. We call this

number recursion degree and denote it as 𝑋 .

In the most common setting [60], the size of both data blocks and

PosMap blocks are set to be𝑂 (log𝑛) [26, 60], the path label 𝑝𝑡 also

needs log𝑛 bits to record the corresponding path. In this way,𝑋 can

be only a constant. The above example shows that we can apply a

PosMap ORAMwith ⌈𝑛/𝑋 ⌉ blocks to store the position map for the

data ORAM. As 𝑋 is a constant, this recursion process needs to be

repeated for𝑂 (log𝑛) times such that C can ultimately use constant

storage to access the data ORAM. Unfortunately, the recursion pro-

cess requires C to sequentially access PosMap ORAMs from small

to large and finally access the data ORAM, incurring𝑂 (log𝑛) inter-
action rounds and 𝑂 (log2 𝑛) communication bandwidth between

C and S. Such expensive costs makes recursive ORAM impractical

and motivate some works [26, 39] to improve the recursion process.

3.1.2 Review. Here we review some works that try to enlarge 𝑋 to

be 𝑂 (log𝑛/log log𝑛) in recursive ORAMs to enhance practicality.

Fletcher et al. are the first to enlarge 𝑋 but in an insecure way,

which was fixed by Chan et al. [39] later. For ease of understanding,

throughout this paper, we treat the recursion process as traversing

a complete 𝑋 -ary tree and here call each pair as a node in the tree.

A KV pair in the PosMap ORAM preserving the index (i.e., 𝑝𝑡) of

𝑋 pairs in the next larger ORAM is described as one internal node

recording the index of its 𝑋 children.

Figure 1: The illustration of tree-based ORAMs.

The main idea of Fletcher et al. [26] is using PRF to generate the

index instead of recording the index. In detail, each internal node

in [26] consists of three parts: (1) a log𝑛-bit key and log𝑛-bit path;

(2) a 𝛼-bit group counter (GC); (3) 𝑋 𝛾-bit individual counters (ICs):

id| |𝑝𝑡 | |GC| |IC0 | | · · · | |IC𝑋−1 .
where id is the key of this node and 𝑝𝑡 is the index (the path where

this node is within the ORAM). The values of GC and ICs are
initialized as 0. To keep the 𝑂 (log𝑛) node size, it is required that

𝛼 + 𝛾 · 𝑋 ∼ 𝑂 (log𝑛). For this internal node, the recursion process

guarantees that the keys of its children are {𝑎, 𝑎 + 1, ..., 𝑎 + 𝑋 − 1}
where 𝑎 = 𝑋 · id. That’s why this node does not need to store these
keys, leaving the potential to enlarge 𝑋 . To determine the path of

the child with key 𝑎 + 𝑗 (𝑗 ∈ [𝑋]), C calculates this path based on

PRF function, GC, and IC𝑗 . Specifically, C maintains a secret key K
for a PRF function PRF and generates:

𝑝𝑡𝑎+𝑗 := PRFsk (𝑎 + 𝑗 ∥GC∥IC𝑗)1 . (1)

In the Initialization procedure, C assigns 𝑝𝑡𝑎+𝑗 to the child with

key 𝑎 + 𝑗 as its index and this child will be guaranteed to be in

the path corresponding to 𝑝𝑡𝑎+𝑗 . For Access procedure, when C
wants to retrieve this child, it gets GC and IC𝑎+𝑗 during recursion,

calculates 𝑝𝑡𝑎+𝑗 , and retrieves this path to get this child. After the

retrieval, C executes increment:

IC𝑗 := IC𝑗 + 1 mod 2
𝛾

and reassigns a new path to this child with Equation 1 for eviction

placing this child back to theORAM. In this way, the length of IC can

be𝑜 (log𝑛) to allow a larger𝑋 . For example, setting𝛾 ∼ 𝑂 (log log𝑛)
and 𝛼 ∼ 𝑂 (log𝑛), then they enable 𝑋 ∼ 𝑂 (log𝑛/log log𝑛).

Security and Fix. There is a vulnerability in the original con-

struction of Fletcher et al. [26]: the value of GC| |IC𝑗 should not be

repeated for any 𝑗 ∈ [𝑋] for satisfying computational security. So

after C accesses the node with index 𝑎 + 𝑗 for 2𝛾 − 1 times, i.e., the

value of IC𝑗 is going to be repeated in the next access towards this

node, C is required to change the value of GC and update the path

of all the 𝑋 nodes with the updated GC. This process is called reset:
(1) Before updating GC, C retrieves all the nodes with key {𝑎, 𝑎 +

1, ..., 𝑎 + 𝑋 − 1} according to GC and ICs.
(2) C updates GC := GC + 1, then sets ∀𝑗 ∈ [𝑋], IC𝑗 := 0. Finally,

C assigns each node with the new path calculated based on the

updated GC and ICs and places them back using eviction.

1
The level of current node is also taken as an input of PRF, we follow [26] to omit it

throughout this paper for ease of presentation.

691

In the above process, C is required to retrieve and return all𝑋 nodes

above, making it much expensive. Worse more, the reset happens

only when one IC is going to be repeated. As pointed out by Chan et

al. [39], now the adversary can infer sensitive information according

to the reset frequency. For example, if C is always accessing the

same node, then the reset happens very frequently because the

same IC is always incremented. However, if C accesses all distinct

nodes, no IC is repeated, C will never do reset. So the adversary can

infer the pair access distributions according to the reset frequency.

Chan et al. [39] propose a theoretically elegant fix where the

reset is done randomly. In each access to a child, they do the re-

set with a probability of 1/𝑋 . So the reset is done independent of

the access distribution. In this case, Chan et al. need to guaran-

tee that before any IC is repeated, the reset must have been done

to this node. Therefore, they require 𝛾 = 3 log log𝑛 when 𝑋 is

log𝑛/log log𝑛. This promises that repeated GC| |IC happens with

a probability of (1 − 1/𝑋)2𝛾 which is negligible in 𝑛 [39]. Now the

cost of reset is still 𝑂 (𝑋 log𝑛) and the reset is expected to happen

once every 𝑋 accesses. So under this fixed solution, the interac-

tion round and communication bandwidth are 𝑂 (log𝑛/log𝑋) and
𝑂 (log2 𝑛/log log𝑋), respectively.

3.1.3 Observations. The fixed approach by Chan et al. [39] is theo-

retically elegant but leaves some drawbacks in practicality. Here

we point out these shortages and we will address all of them with
our new construction in Section 5.

Observation 1 (amortized). The fixed approach guarantees
only amortized interaction rounds of 𝑂 (log𝑛/log log𝑛) and com-
munication bandwidth of 𝑂 (log2 𝑛/log log𝑛).

This observation is due to the probabilistic reset operations.

Suppose the client can store and retrieve at most 𝜇 (𝜇 should be a

constant) paths once, then the interaction rounds per query are

log𝑛

log𝑋
+ 𝑋 · 𝑢

𝜇

where 𝑢 is the number of reset operations triggered in the query

processing. Also, the communication bandwidth is

log𝑛 · log𝑛
log𝑋

+ 𝑋 · 𝑢 · log𝑛.

Note 𝑢 follows the binomial distribution, i.e., 𝑢 ∼ Bin(⌈ log𝑛
log𝑋
⌉, 1
𝑋
).

So the query performance actually fluctuates, in the worst case

where 𝑢 = ⌈ log𝑛
log𝑋
⌉, if we assume C can only store one path in

local once, the interaction rounds required are as (𝑋 + 1) times as

that in the best case where 𝑢 = 0. And obviously, the theoretical

complexity in the worst case is also much larger than the amortized

complexity. To this end, it is essential to study if we can do de-

amortization [6, 15, 45, 50] here, i.e., improving the worst-case

performance while preserving efficiency. Note performing stably is

an important property in production [33] and all prior OMAPs and

tree-based ORAMs satisfy it, thus without this property, ORAMs

and OMAPs may be not competitive to prior works.

Observation 2 (Strict Parameters). The fix requires 𝛾 must be
no smaller than 3 log log𝑛 and 𝑛 to be large to guarantee negligible
probability (1 − 1/𝑋)2𝛾 .

Figure 2: The ODS for AVL. For (Bob, London), the ODS block

stores not only the KV pair and its path (Bob, London, 3) but also
the children keys and paths (Alice, 2) and (Carol, 4).

These strict parameter values affect the actual performance of

the fixed solution. The value of 𝛾 implies that if the block size

is fixed (like memory blocks), then the upper bound of 𝑋 is also

fixed because we cannot change 𝛾 to smaller values than 3 log log𝑛.

However, with a small 𝑋 , there can be still too many expensive

interaction rounds, making the ORAM inefficient. So we wonder

if the value of 𝛾 can be smaller for better efficiency. While the

smaller values do not imply the improvement on complexity, they

are important for actual performance. Besides, another important

issue is if we can achieve the security on resets perfectly: whatever
𝑛 is, it is guaranteed that reset must happen beforeGC| |IC in a block

is repeated without the sacrifice of obliviousness and efficiency.

3.2 Prior OMAPs
The prior OMAPs [13, 24, 56, 64] organize KV pairs as a search

tree according to key orders. To access a pair, C traverses the

search tree to find it. Typically, these works apply some classic

data-dependent search tree such as an AVL tree or a B+ tree. These

structures are determined by both database sizes and contents.

Traversing the tree requires 𝑂 (log𝛽 𝑛) interaction rounds where

𝛽 is the branching degree of a node. Achieving OMAPs naturally

involves enabling C to traverse the search tree obliviously, which

can be done with a pointer-based technique [64] in ODS. In Fig-

ure 2, we provide a minimal AVL tree example with data pairs

{(Alice, Boston), (Bob, London), (Carol, Paris)}. To preserve the

node of an AVL tree, the ORAM tree stores 1) the keys of this

node and its children and 2) the paths this node and its children are

in. Each time it traverses a node, it finds paths its children located

on. Finally, C stores only the root node of the AVL tree.

The ODS of data-dependent search trees can achieve the OMAP

with only𝑂 (log𝑛) client-side storage where 𝑛 is the number of KV

pairs in the database. However, they incur in-compressible blocks

because the client cannot predict the keys and paths of its children,

necessitating these values to be recorded in the block. Recall that

the block size in ORAMs is assumed to be 𝑂 (log𝑛), given that the

key length is also at least𝑂 (log𝑛) [64], each block can store only a

constant number of keys, i.e., the branching factor of a node in the

search tree can be only a constant. In otherwords, the design of prior

works inherently implies the expensive𝑂 (log𝑛) interaction rounds

where the complexity constant factor is determined by the block size

and 𝑛 in production. So up to now, the prior OMAPs [13, 24, 56, 64]

cannot overcome either the 𝑂 (log2 𝑛) communication bandwidth
or the 𝑂 (log𝑛) interaction rounds while not exceeding 𝑂 (log2 𝑛)
communication bandwidth. To this end, this work tries to design

OMAPs under a new novel framework escaping from the above

inherent shortages of data-dependent search trees.

692

4 OMAP FRAMEWORK
In this section, we define the security model for ORAM/OMAP, then

we propose our new novel framework for designing OMAPs. This

framework allows us to combine the recursive ORAM introduced

in Section 3.1 and (modified) ODS for search trees to instantiate

new OMAPs which are asymptotically better than prior OMAPs.

4.1 Security Model
Consistent with most ORAMs [52, 60, 63] and EDBs [11, 22, 24],

we consider a client C that stores its encrypted database (EDB)

on a remote, untrusted server S. Typically, C is assumed to have

limited storage [26, 39, 60, 64] to accommodate most devices, in-

cluding those with very limited resources, such as mobile phones,

smartwatches, and secure enclaves [62]. The adversary A is as-

sumed to be honest-but-curious adversary A to capture S. This
adversary does not deviate from the predefined protocols or invade

the client C, but it observes everything available on S in the entire

process. Specifically, while C issues read and write operations, A
continuously observes the server state to glean as much sensitive

information about C as possible.

Definition 4.1 (Security definition). Let fi𝑦0 := {(op𝑖 , 𝑒𝑘0𝑖 , 𝑒𝑣
0

𝑖
)}𝑚−1
𝑖=0

and fi𝑦1 := {(op𝑖 , 𝑒𝑘1𝑖 , 𝑒𝑣
1

𝑖
)}𝑚−1
𝑖=0

denote two operation sequences

with the same length𝑚. The operation type op is either read orwrite.
Let 𝐴(fi𝑦𝑖) denote the access sequence of blocks in S by executing

fi𝑦𝑖 via the Access interface of ORAM/OMAP after Initialization2.
Then an ORAM/OMAP is secure if (1) 𝐴(fi𝑦0) and 𝐴(fi𝑦1) are com-

putationally indistinguishable by A, i.e., they can be distinguished

with an advantage of negl(𝜆) where 𝜆 is the security parameter,

and (2) it is correct, i.e., the results returned by executing fi𝑦𝑖 via
ORAM/OMAP is consistent with that returned by executing fi𝑦𝑖 on
unencrypted database directly with a probability of 1 − negl(𝜆),
which implies the ORAM/OMAP may fail with probability negl(𝜆).

The definition of OMAP and ORAM differs only in the KV pairs

allowed. While OMAP can process operation sequences with arbi-

trary keys in the KV store, ORAM assumes all the keys in the KV

store can be included by an integer interval with the length set by

the initialization (which is because ORAM is simulating the mem-

ory). The security definition guarantees that the access patterns

do not leak information about the operations besides the opera-

tion length. The adversary cannot obtain any knowledge about the

operation type or content. Similar to prior works [11, 17, 60], we

consider the leakage from side-channel attacks, such as when or

how frequently C issues requests, to be out of the scope of this

paper. More details and effective defenses to these attacks can be

found in [19, 27, 35]. While the initial OMAPs treat both search

and insertion as write operations and hence, indistinguishable. The

recent work [13] allows them to be distinguishable for better search

efficiency. Our OMAPs can adaptively allow or disallow these two

operations to be distinguished as needed. We discuss this and pro-

vide formal security proofs of our OMAPs in the full version [10].

4.2 OMAP Framework
In this section, we propose a new framework for designing OMAPs.

Compared with prior OMAPs [13, 24, 56, 64], this framework is the

2
The initialization uses the same value for parameter 𝑛 which is no smaller than𝑚.

Figure 3: Our constructions under the new framework.

first to combine both tree-based ORAMs and ODS of search trees to

achieve OMAP. Moreover, using this framework, we propose new

OMAPs with the best-known complexity on interaction rounds and

communication bandwidths under tree-based structures.

Framework. For better efficiency, we redesign the framework

to construct OMAP. Specifically, instead of organizing all the KV

pairs as a search tree, we follow the design of the hash table in

computer science [21] and recent ORAM works [5, 52]. We divide

the data pairs into different groups via a hash function and then

adopt efficient methods to access each group and the required pair

within it, obliviously. In detail, given a database DB := {𝑘𝑖 , 𝑣𝑖 }𝑛−1𝑖=0
,

we perform the following steps:

(1) Hash: We randomly map each pair to a group with a hash

function Hash : {0, 1}∗ → [𝑛]:

∀𝑖 ∈ [𝑛], (𝑘𝑖 , 𝑣𝑖) ∈ G𝑗 where 𝑗 = Hash(𝑘𝑖).

It is guaranteed that there are at most 𝑂 (𝜆) pairs mapped to

the same group [29, 59].

(2) ORAM for consecutive keys: We apply an ORAM to help ac-

cess these groups, i.e., we prepare KV pairs {(𝑖, 𝑝𝑡𝑖)}𝑛−1𝑖=0
where

𝑝𝑡𝑖 implies the path to access group G𝑖 . Remark the keys are

consecutive so the prior recursive ORAMs [26, 39, 60] (cf. Sec-

tion 3.1) can be applied here.

(3) Smaller OMAP for groups: For each group G𝑖 , we organize
pairs within it as a search tree. Then we construct an ODS

for the 𝑛 search trees such that we can access one of them

while avoiding C to know which tree is accessed. We call this

ODS as group OMAPs and it can be achieved by modifying

existing OMAPs [13, 24, 64]. As each group has at most 𝑂 (𝜆)
pairs [22, 54], the interaction rounds are reduced to 𝑂 (log 𝜆).
The ORAM in step (2) uses 𝑝𝑡𝑖 to record how to access the

search tree here for G𝑖 and then we use it to access pair in G𝑖 .
To search a pair, C first calculates its group G𝑗 via the hash func-

tion, then obliviously accesses G𝑗 with ORAM to get 𝑝𝑡 𝑗 , and finally

uses 𝑝 𝑗 to find the pair via the group OMAP for G𝑗 . Under this
new framework, we can apply any ORAM in step (2) and any exist-

ing OMAP in step (3) to instantiate OMAP construction. Now we

explain how this framework enables more practical OMAPs.

Data-independent Tree. We first discuss the ORAM for consecu-

tive keys, especially the recursive ORAMs introduced in Section 3.1.

The recursive access in prior ORAMs can be regarded as obliviously

traversing a complete 𝑋 -ary tree from root to leaf where 𝑋 is the

recursion degree, i.e., the recursive ORAMs actually establish
the ODS for a complete 𝑋 -ary tree. Interestingly, the complete

tree is a data-independent tree [25], meaning its structure depends

693

on only the database size 𝑛. So C can exactly predict the next child

node accessed when traversing. It does not need to store the keys

of children nodes in each traversed node. While it still has to record

the paths of children, this information can be compressed because

they are only required to be nearly random instead of specified by
application, as introduced in Section 3.1. Therefore, if we use the

same block size, the node of a data-independent tree can include

more children than that of the data-dependent tree in prior OMAPs.

Conceptually, our framework needs only an ORAM here for stor-

ing data hash information. It is not necessary to use the recursive

ORAM and establish the data-independent tree. Applying some

more advanced (but impractical) hierarchy ORAMs [4, 52] with

optimal complexity, our framework can achieve better complexity

than the constructions in this paper, e.g., with the ORAM in [4]

and group OMAPs in Section 6, the communication bandwidth can

be as low as𝑂 (log𝑛 log log𝑛) instead of𝑂 (log2 𝑛/log log𝑛) in our

constructions. However, we focus on the practicality of OMAPs

in realistic scenarios instead of only the theoretical complexity,

and up to now, only the recursive tree-based ORAMs [26, 39, 59]

have been demonstrated the practicality under 𝑂 (log𝑛) client-side
storage. To this end, we adopt the recursive ORAM and compress

the data-independent tree to improve the ORAM performance.

Group OMAPs. The data-independent tree seems nice but is theo-

retically equivalent to a simple hash table allowing collisions. There

can be a group of KV pairs mapped to the same leaf node in the

tree. To this end, after we find the leaf node in the ORAM, we

still need to access the required pair within this group via existing

OMAPs. Take the OMAP based on ODS+AVL [64] as an example,

we establish a new ODS and then organize each non-empty group

as an AVL tree stored in this ODS. The height of each AVL tree is

𝑂 (log 𝜆) as each group has at most 𝑂 (𝜆) pairs [22, 54]. To access a

pair in a group, we traverse only 𝑂 (log 𝜆) nodes of the AVL tree,

and corresponding interaction rounds are also 𝑂 (log 𝜆).
We still need to clarify how we combine the data-independent

tree and group OMAPs. There are two ODSs separately for the two

components. Recall we need to know the path of the root node of

an AVL tree for traversing the tree. So before we look up the pair

required within the ODS for the corresponding group, we first find

the path of the root from the ODS for the data-independent tree,

i.e., the variable 𝑝𝑡 𝑗 for group G𝑗 . Until now, we smoothly integrate

the two components together for constructing new more efficient

OMAPs. We sum the two components for calculation. We conclude

the interaction rounds as𝑂 (log𝑛/log log𝑛) +𝑂 (log 𝜆) and the com-

munication bandwidth as𝑂 (log2 𝑛/log log𝑛) +𝑂 (log𝑛 log 𝜆). Note
that the ODS for the data-independent tree can be built by the ex-

isting recursive ORAM where 𝑋 ∼ 𝑂 (log𝑛/log log𝑛) [39] and the

OMAP for groups can be constructed by any existing OMAP con-

structions [13, 17, 24, 56, 64]. So up to now, we can design five OMAP
constructions which are asymptotically better than prior works.

5 DATA-INDEPENDENT TREE
In this section, we propose a new ORAM named De-amortized

ORAM (DAORAM). It is motivated by addressing the impractical-

ity of the prior recursive ORAMs [26, 39]. As we pointed out in

Section 3.1.3, while the recursive ORAM in [39] can be used to in-

stantiate new OMAPs with better complexity under our framework,

it is impractical in production. This makes the OMAPs based on it

noncompetitive to prior OMAPs for real-world applications. To this

end, we propose DAORAM to address all the shortages of [39] pre-

sented in Section 3.1.3 and make our OMAPs indeed practical. For

brevity, we still treat the recursion process as traversing a complete

𝑋 -ary tree and call each KV pair as a node in the tree.

5.1 Construction
In this section, we propose a new recursive ORAM protocol named

De-amortized ORAM (DAORAM) for achieving the ODS of the

data-independent tree efficiently. Motivated by our observations in

Section 3.1.3, there are three design goals for our new protocol:

(1) De-amortization: It should perform stably, even the worst-

case performance is still efficient.

(2) Larger 𝑋 : It should enables a large 𝑋 to reduce interaction

rounds as much as possible.

(3) Perfect reset: There is no repeated GC||IC with probability 1
whatever the database size is.

Overall, compared with the fixed approach [39], our new protocol

is expected to be more practical and efficient.

Reset analysis. Here we explain why the reset operation is expen-

sive and should be “removed”. First of all, lots of works [7, 28, 49,

55, 65] have demonstrated that the main cost overhead of ORAMs

is communication including the interaction rounds and commu-

nication bandwidth. That’s why a line of work [5, 18, 28, 52, 55]

are trying to pursue better interaction rounds and communication

bandwidth. The reset operation becomes costly as it needs C to

download 𝑋 paths and then place them back. Although C can re-

trieve 𝜇 paths in parallel (within the same interaction round) to

reduce interaction rounds, it needs to provide 𝑂 (𝜇 log𝑛) storage
and still interacts with S for 𝑋/𝜇 rounds. Recall we always assume

C owns only 𝑂 (log𝑛) storage to cover a wide range of devices

like smartwatches, which implies 𝜇 should be a constant. So the

reset cannot avoid 𝑂 (𝑋) interaction rounds and transferring 𝑋

paths between C and S. Worse more, C is often assumed to interact

with S under WAN [11, 17, 37, 56] where the latency can be high.

This makes the multiple interaction rounds in the reset further

unacceptably expensive, becoming one bottleneck for real-world

applications where low latency is important [28].

Intuition. Nowwe can introduce the intuition of our construction.

The main challenge is how to remove the reset while preserving

the efficiency of each query, i.e., each query processing should be

as nearly fast as the baseline in the fix, i.e., no reset happens during

the query processing. As we have analyzed that the expensive

costs in ORAM come from interaction rounds and communication

bandwidth, we address them with the following guideline:

(1) Removing the 𝑂 (𝑋) interaction rounds for the reset;

(2) Transferring the 𝑋 paths partially in each query, e.g., transfer-

ring only one of the 𝑋 paths in each query.

In this way, C will feel only a little sacrifice on efficiency because

the overhead brought by (2) is very cheap relative to the total time

usage. But the practicality is improved much as lots of interaction

rounds incurred by resets are not needed any more. To achieve

the guideline above, we resort to the de-amortization algorithm

to “spread” the reset operation over many queries. Specifically, in

694

this paper, we make use of the interaction rounds in usual query

processing to partially transfer reset paths and process the reset.

De-amortization philosophy. De-amortization is a classic topic

about ORAM and has been studied a lot [6, 15, 45, 50]. However,

all prior works aim to hierarchy ORAMs [4, 53] and cannot be non-

trivally applied in tree-based ORAMs. This is because among tree-

based ORAMs, only the works above [26, 39] which try to compress

children within a node suffer from the worst-case performance.

However, such ORAM protocols are important for our framework.

As far as we know, this work is the first to introduce de-amortization

in tree-based ORAMs and adopt a philosophy different from prior

works, which can be helpful for understanding the recursive ORAM

and OMAPs based on it.

The prior works [6, 15, 45, 50] hope to prepare a backup for the

expensive operation (like the reset) during usual queries. So if C
needs reset, it directly starts with the backup and then prepares

the next backup. However, this always brings copies of data such

that in the end we have to execute de-duplication to delete data

copies, which is the main bottleneck in prior works. Moreover, to

guarantee data consistency, C has to execute each update query

in both the currently used data and backup data which we call

as the current group and backup group, respectively. In this paper,

we propose a new lazy strategy for tree-based ORAMs: pursue the
expensive operation instead of preparing it in advance. In short, if C
needs to reset the block when accessing a pair, it just directly resets
this pair alone and resets all other pairs in this node during the

next usual queries. This avoids data copies and also de-duplication,

enabling more efficient ORAM construction. The data consistency

under our strategy is also guaranteed in a more efficient way. We

always preserve each item in only one group. The challenge is to

let C always know which group stores the item. Besides, C needs to

remove all items from the current data group to the backup group

before the next reset is triggered for continuous de-amortization.

Our construction proposed below will address the two challenges

with practicality.

Data structures. We first define the data structure in an internal

node of the data-independent tree. Suppose this node containing

the paths of children with key {𝑎, 𝑎 + 1, ..., 𝑎 +𝑋 − 1}, we store two
groups of counters: they are the compression for reset and pursuing

reset denoted by G𝑟 and G𝑝 :

G𝑟 : GC𝑟 | |IC𝑟
0
| |IC𝑟

1
| |IC𝑟

2
| | · · · | |IC𝑟𝑋−1,

G𝑝 : GC𝑝 | |IC𝑝
0
| |IC𝑝

1
| |IC𝑝

2
| | · · · | |IC𝑝

𝑋−1 .

Consistent to prior works [26, 39], we let GC occupies 𝛼 bits and

IC occupies 𝛾 bits such that 𝛼 + 𝑋 · 𝛾 ∼ 𝑂 (log𝑛). Besides, we
additionally add one bit b ∈ {0, 1} as the indicator variable. The
path calculation for the child with key 𝑎 + 𝑗 (𝑗 ∈ [𝑋]) based on the

two groups are as below:

𝑝𝑡𝑟𝑗 = PRFKb (𝑎 + 𝑗 | |GC𝑟 | |IC𝑟𝑗), (2)

𝑝𝑡
𝑝

𝑗
= PRFK1−b (𝑎 + 𝑗 | |GC𝑝 | |IC𝑝𝑗) (3)

where (K0,K1) are two secret keys for PRF. That means we define

two different calculations for the two groups and we will show how

they are useful in query processing.

Query Processing. Nowwe describe the specific query processing

with three phases as below.

(1) The initialization phase happens only once in the beginning.

Similar to prior works [26, 39], it initializes (G𝑟 ,G𝑝) in an in-

ternal node of the data-independent tree to include paths for

the children with keys {𝑎, 𝑎 + 1, ..., 𝑎 +𝑋 − 1}. The initial values
are set as below:

∀𝑗 ∈ [𝑋], IC𝑟𝑗 := 1, IC𝑝
𝑗
:= 0.

Also (GC𝑟 ,GC𝑝) and b are set as 0. The child with keys 𝑎 + 𝑗 is
guaranteed to be placed in the path calculated by Equation 2.

(2) The query phase is for processing a query from C. Here we

describe how the access is done between an internal node and

its children. C repeats this process for 𝑂 (log𝑛/log𝑋) internal
nodes to traverse the data-independent tree. Suppose C wants

to access the node with key 𝑎 + 𝑗 (𝑗 ∈ [𝑋]) in level 𝑖 , and it

has got the internal node in level 𝑖 − 1 whose children own

keys {𝑎, 𝑎+1, ..., 𝑎+𝑋 −1}. Then C calculates (𝑝𝑡𝑟 , 𝑝𝑡𝑝) accord-
ing to Equation 2 and Equation 3. Now C execute procedures

according to the value of IC𝑟
𝑗
:

(a) If 0 < IC𝑟
𝑗
< 2

𝛾 − 1, C directly retrieves the child node

using 𝑝𝑡𝑟 . Then C increments IC𝑟
𝑗
:= IC𝑟

𝑗
+ 1 to calculate

the new assigned path to this child node with Equation 2.

(b) If IC𝑟
𝑗
= 2

𝛾 − 1, i.e., it cannot be incremented more for

obliviousness. Next C sets GC𝑝 = GC𝑝 + 1, IC𝑝
𝑗
= 1. Then

C retrieves the child node using 𝑝𝑡𝑟 and assigns the node

with the new path 𝑝𝑡𝑝 to place it back. Finally, C sets

b = 1 − b, IC𝑟
𝑗
= 0, and then swaps (G𝑟 , G𝑝), i.e., the

original reset group now needs to be the one for pursing

reset because one value in it reached the upper bound.

(c) If IC𝑟
𝑗
= 0, then C uses 𝑝𝑡

𝑝

𝑗
to retrieve the node. Next it

increments IC𝑟
𝑗
:= IC𝑟

𝑗
+ 1 to calculate the new assigned

path to the node with Equation 2. After that, it sets IC𝑝
𝑗
= 0.

With steps above, C identify the retrieved path and new as-

signed path so it can write back the child node.

(3) The reset phase is executed in parallel with the query phase to

reuse the interactions in the query phase. There are two cases:

(a) If all IC
𝑟
s except IC

𝑟
𝑗
are non-zeo, then C just retrieves a

random path, evicts it and wirtes it back.

(b) If there exists 𝑗1 ≠ 𝑗 such that IC
𝑟
𝑗1
= 0, then C accesses

the child node with key 𝑎 + 𝑗1 identically to case (c) in the

query phase.

During the execution, every time C issues a query, it interacts with

S to execute the query phase and reset phase in parallel. In total,

C will retrieve 2 paths, process them, and return them. The two

path are retrieved within the same one interaction round. This

guarantees that GC| |IC strictly increases if 2
𝛾 > 𝑋 , the correctness

proof is provided in the full version [10].

Remark. The readers may notice that it is not easy for C to

always distinguish G𝑟 and G𝑝 correctly because they have the

same format and value range. So we will always place G𝑝 behind

G𝑟 . The indicator bit b is exactly used to mark which secret key

corresponds to the first group.

Reducing groups. Now we have achieved the de-amortization

with two compressed groups within an internal node but there

695

is only one group in prior works [26, 39]. Next, we show how to

optimize our construction for reducing group numbers. The setting

of two-group parameters helps understand how the reset is partially

done per access. But the two groups can be integrated based on

a non-trivial observation: for any 𝑗 ∈ [𝑋], it holds that one of

(IC𝑟
𝑗
, IC𝑝

𝑗
) must be zero and the other is non-zero. So we can record

only the non-zero value and use only a bit to imply which groups

it belongs to. Besides, as GC𝑟 and GC𝑝 can be repeated without

sacrificing security, we replaced them with only one variable GC.
Now we do the increment GC := GC+ 1 every two swaps, i.e., both
the logic GC𝑟 and GC𝑝 have been used for recursion. We use the

variable b to do this: each time swap happens and also b = 1, we

increment GC. Finally, the data structure within a node is:

GC| |IC0 | |IC1 | | · · · | |IC𝑋−1 and g
0
| |g

1
| | · · · | |g𝑋−1 | |b

where g𝑗 ∈ {0, 1} implies if IC𝑗 belongs to G𝑟 and b ∈ {0, 1}.

5.2 Analysis
In this section, we mainly give the analysis of performance to show

DAORAM indeed achieves all three design goals in Section 5.1.

The proof of correctness and security is formally given in [10]. For

the performance, we analyze three metrics including interaction
round, interaction bandwidth, and computational complexity per

query. In DAORAM, the interaction round is 𝑂 (log𝑛/log log𝑛) as
we still enable 𝑋 ∼ 𝑂 (log𝑛/log log𝑛) and assume 𝑂 (log𝑛) client-
side storage. The communication bandwidth is calculated as:

𝑂 (log𝑋 + log𝑋 2 + · · · + log𝑛) = 𝑂 (log2 𝑛/log𝑋).

where log𝑋 𝑖 denotes the communication bandwidth in the 𝑖th in-

teraction round. So when 𝑋 is 𝑂 (log𝑛/log log𝑛), the communica-

tion bandwidth is 𝑂 (log2 𝑛/log log𝑛). To complete the calculation

about retrieving a node in 𝑖th level, the main computation is sorting

the union of 𝑂 (log𝑋 𝑖) retrieved nodes and 𝑂 (log𝑋 𝑖) nodes in the

stash, which requires𝑂 (log𝑋 𝑖 log log𝑋 𝑖) computation. So the total

complexity is

𝑂 (log𝑋 log log𝑋 + log𝑋 2
log log𝑋 2 + · · · + log𝑛 log log𝑛)

which can be bounded by 𝑂 (log2 𝑛 log log𝑛/log𝑋). When 𝑋 is

𝑂 (log𝑛/log log𝑛), the total complexity is 𝑂 (log2 𝑛).
It is easy to notice that we successfully remove all interaction

rounds for resets by applying the interaction rounds in usual query

process. The cost is that we transfer two paths in each access while

prior works transfer only one, i.e., we increase one path commu-

nication, which is very cheap for the whole query processing. So

we achieve the de-amortization design goal as expected. Now

we explain our de-amortization naturally supports the second and

third design goals. For parameters, the correctness and security of

DAORAM require only 2
𝛾 > 𝑋 even when 𝑛 whatever 𝑛 is. This is

much more relaxed than that in [39] (cf. Observation 2). Therefore,

we can further enlarge 𝑋 as much as possible to minimize the in-

teraction round for actual performance by solving the following

equations to get values of (𝛾, 𝑋):(
2
𝛾 − 1 = 𝑋
𝛼 + 𝑋 · 𝛾 ∼ 𝑂 (log𝑛)

(4)

6 GROUP OMAP
In this section, we introduce the group OMAP under our framework.

Its design is creatively modified from existing OMAPs to fit our

framework. Under our framework, 𝑛 KV pairs are randomly divided

into 𝑛 groups. Prior works [29, 59] conclude that each group has at

most𝑂 (𝜆) items. However, the recent work [22] proposes a theorem

that shows this bound can be very low in practice, which makes

our method truly more practical than prior OMAPs. For example,

given 𝜆 = 128, 𝑛 = 2
24
, there exists a group consisting of more than

52 pairs with a probability no larger than 2
−128

. Here we introduce

the simplified theorem in [22] here for completeness:

Theorem 6.1. With 𝑛 items independently and uniformly ran-
domly mapped to one of 𝑛 groups, then for the following function
𝑓 (𝑛, 𝜆) that outputs the bound, the probability of there exists one
group consisting of more than 𝑓 (𝑛, 𝜆) is negligible in 𝜆.

𝑓 (𝑛, 𝜆) =𝑚𝑖𝑛(𝑛, 𝑒𝑥𝑝 [𝑊0 (𝑒−1 (log𝑛 + 𝜆 − 1)) + 1])

where𝑊0 (·) is branch 0 of the Lambert𝑊 function.

We list a table to identify the small value of 𝑓 (𝑛, 𝜆) under 𝜆 = 128

in [10]. Although we continue using 𝑂 (𝜆) to bound the group size,

the readers should realize this bound can be small enough to be

efficient. Now we describe the design and performance of the group

OMAP. Recall it is used to store the 𝑛 groups and access any pair

within a group obliviously. For obliviousness, it is required:

• Group obliviousness: S cannot infer which group among the 𝑛

groups is accessed during the query processing.

• Pair obliviousness: S cannot infer which pair among the 𝑂 (𝜆)
pairs within the group is accessed in the query processing.

OMAPs as a whole. To achieve the pair obliviousness, we can

apply any existing OMAP [13, 24, 56, 64] to process the𝑂 (𝜆) pairs in
the same group. The essence is to guarantee the group obliviousness:

we store all the 𝑛 groups within the same ODS tree for access. Take
the OMAP based on ODS for the AVL tree as an example, pairs in

the same group are organized as an AVL tree. Then the 𝑛 AVL trees

are stored in the same ODS tree. To access a pair in the AVL tree,

we just traverse the AVL tree obliviously via the ODS tree. Recall

to access the AVL-based OMAP, we need to know how to find the

root node of the AVL tree, which is provided by the DAORAM. In

the end, the root is updated and rewritten to the DAORAM. As

most existing OMAPs [13, 24, 56, 64] are based on a search tree,

we can in general apply such a process to all of them for different

trade-offs.

Here we introduce three OMAP approaches [13, 24, 64] we use
with DAORAM under our framework to instantiate three new specific
OMAP constructions. They adopt ODS for different search trees with
various trade-offs. We summarize them as below and refer their

complexity description to Table 1.

• ODS+AVL: This OMAP [64] is based on oblivious AVL tree. It is
the simplest and achieves the best bandwidth blowup. However,

it is the most expensive in reality as pointed out by [56]. Notably,

it guarantees the insertion and search are indistinguishable.

• ODS+AVL∗: This OMAP [13] is also based on oblivious AVL
tree and is the SOTA work in VLDB 2024. It allows search to be

distinguishable from insertion and further optimizes search for

better efficiency. It also contributes to the client-side oblivious

696

algorithm as it is implemented in Intel SGX. As our works focus

on the client-server setting [62] where the client-side algorithms

are not required for obliviousness, we just adopt more efficient

algorithms for this OMAP in C.
• ODS+B+: This OMAP [24] is based on oblivious B+ tree and

thus allows a lower tree height and fewer interaction rounds.

However, it achieves the reduced interaction rounds at the cost of

communication bandwidth: compared to prior methods [13, 64],

the block and bucket size here have to be extended for storing

more keys within one node of the B+ tree.

7 EVALUATION
Our proposed new framework for designing OMAP comprises two

important components: an ORAM for the data-independent tree and
an ODS for group OMAPs. The new ORAM protocol named DAO-
RAM not only surpasses the performance of prior solutions [26,

39] suited for the data-independent tree, but also achieves de-
amortization for practicality. The ODS is adapted from existing

OMAP schemes described in Section 6. To this end, we combine

DAORAM with the three aforementioned OMAPs to build three

new OMAP constructions, studying the following two questions:

Q1. What is the performance gain of DAORAM compared to prior

ORAMs [26, 39] for the data-independent trees? (Section 7.1)

Q2. What is the performance gain of our new OMAPs compared

to prior OMAPs [13, 24, 56, 64]? (Section 7.2)

Settings. Consistent with prior works [13, 24, 56, 64], we imple-

ment our ORAM/OMAPs in a client-server setting. S operates a

powerful machine, featuring an Intel Xeon Platinum 8160 CPU

(96 cores, 2.10 GHz) and 376 GB memory, located in Hangzhou,

China. C operates on a relatively lightweight Alibaba Cloud ma-

chine equipped with 4 vCPUs (from an Intel Xeon Platinum 8269CY,

2.50GHz) and 16 GB memory and located in Beijing, China. Im-

portantly, C and S interact with each other over the WAN to

simulate reality, with a bandwidth of 100 Mbps and an average

latency of 38 ms. Our constructions are implemented in Python

3.10, where the encryption (AES 128-bit) and PRF are imported

from the pycryptodome package [3]. To ensure a fair compari-

son, we implement prior OMAPs following their open-sourced

repositories [1, 2] in Python. We follow the commonly used param-

eters to set up ORAMs: each bucket has 4 blocks, and the block

size of DAORAM is set to 512 bits, consistent with [26]. Follow-

ing prior works [22, 24, 48], we primarily conduct experiments on

synthetic datasets, as the obliviousness property guarantees that

ORAMs/OMAPs perform independent of data distributions [11, 34].

We generate the synthetic datasets of varying sizes to evaluate the

scalability of our proposed constructions.

7.1 Practical ORAM with de-amortization
To demonstrate that DAORAM is the most practical and efficient,

we implement DAORAM and two other recursive ORAMs for com-

parison. We refer to the ORAM constructions by the names listed

below in the following discussions:

• Freeset: Freecursive [26] serves as the baseline, although it does

not achieve obliviousness. It represents the best possible average

processing time for queries, as it requires the fewest resets.

Table 2: Comparison between Fixset and Probset on stability.

Reset number 0 1 2 3

Proset
time (s) 0.29 1.72∼2.95 3.14∼4.75 4.55∼5.06

band (KB) 24 91.5∼392.3 234.2∼685.4 452.1∼903.3

Fixset
time (s) 0.37

band (KB) 39.7

• Probset: Freecursive with the probabilistic reset [39] is the only

ORAM (before ours) that satisfies both the obliviousness and the

data-independent tree requirements. However, it is impractical

due to its inefficiency and unstable query performance.

• Fixset: OurDAORAMwith the fixed reset not only ensures stable

performance but also performs more efficiently than Probset.

De-amortization. We compare Fixset and Probset on their query

performance. We run both of them on a synthetic dataset with 2
24

(over 16,000,000) KV pairs, where both key and value are 4 bytes,

and perform 2
20

queries. Since Probset processes queries with ran-

dom resets, we categorize its queries based on the number of resets

that occur during the query. The corresponding bandwidth and

processing time per query are shown in Table 2. The results are

intervals when the reset number is non-zero because resets can

occur in ORAMs of different sizes, leading to varying costs. Clearly,

the costs noticeably increase even if the reset number is only 1. The

processing time can be 6 ∼ 17× slower than that in the best case,

where the reset number is 0. In contrast, Fixset always performs sta-

bly, and the results show that its performance is comparable to even

the best-case performance of Probset. Additionally, we evaluate the
stash size stored in C to demonstrate DAORAM also outperforms

prior works [26, 39] in stash size. We show the maximum stash

size used under different query numbers in Figure 4. While the

query distribution does not affect the reset operations, it possibly

impacts the stash sizes. To study this, we generate queries under

two typical query distributions: 1) all queries repeatedly access the

same pair, and 2) queries follow uniform distributions. It is shown

that Fixset has an impressively smaller clientside stash than the

other two protocols. The stash size in Fixset is only one-third of

that in Probset! This results from two advantages of DAORAM
brought by de-amortization. Firstly, there are dummy accesses in

DAORAM, which only evicts a random path. They help DAORAM
reduce the stash size but the other two works do not have such

dummy accesses. Secondly, while the other two protocols retrieve

only one path per access, DAORAM retrieves two paths per access

corresponding the query and reset phase, respectively. This allows

more aggressive eviction strategies, reducing the stash size. All

these results demonstrate, benefited from de-amortization, Fixset

is the most practical among the protocols of interest.

Efficiency. We also compare the average processing time and

communication time of all queries to evaluate their performance.

With each of the three ORAM protocols, we run 2
10

queries on

databases with sizes ranging from 2
10

to 2
24

and present the re-

sults in Figure 5. The queries are generated without repetition to

ensure Fixset maintains its best-case performance by avoiding any

resets. Despite this, Fixset’s performance remains close to that of

Freeset and improves upon Probset by 21% ∼ 47%. Thus, Freeset

697

0 5 10 15 20

0

2

4

6

8

10

Query number𝑚 (2
𝑥
)

E
n
t
r
y

(a) Repeated

0 5 10 15 20

0

2

4

6

8

10

Query number𝑚 (2
𝑥
)

E
n
t
r
y

(b) Uniform

Freeset Probset Fixset

Figure 4:Maximal stash size.

10 12 14 16 18 20 22 24

100

200

300

400

500

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
m
s
)

(a) Total time

10 12 14 16 18 20 22 24

100

200

300

400

500

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
m
s
)

(b) Communication time

Freeset Probset Fixset

Figure 5: Amortized cost per query.

(i.e.,DAORAM) is highly suitable for production due to its efficiency

improvements and practicality.

7.2 Efficient OMAP with less communication
In Section 6, we list three existing OMAP constructions. Under

our framework, we construct three new OMAPs using DAORAM
with each of these OMAPs. We compare the efficiency of each new

OMAP with the corresponding existing OMAP it is based on to

demonstrate our framework accelerates OMAPs:

• DAORAM+AVL vs. ODS+AVL: ODS+AVL [64] is the baseline

and is included in the comparison as it is the first and most

widely-used OMAP [11, 38, 48].

• DAORAM+AVL∗ vs. ODS+AVL∗: ODS+AVL∗ [13] is the state-of-
the-art OMAP based on the AVL tree. It optimizes the search

algorithm of the baseline for better efficiency.

• DAORAM+B+ vs. ODS+B+: ODS+B+ [24], benefiting from its

large branching degree, is the most efficient OMAP to date.

As claimed in [62] and Section 5.1 of this work, the performance

bottleneck of OMAPs in a client/server setting is the bandwidth and

interaction rounds. Therefore, we use the following three metrics

to evaluate OMAPs: 1) the time usage of operations, 2) the number
of interaction rounds, and 3) the communication bandwidth.

Insertion. We run all six OMAPs mentioned above on databases

with sizes ranging from 2
10

to 2
24

and execute 100 queries, as in [24,

56]. Here we mainly focus on the insertion operation. Insertion is

essential to OMAPs because it captures the write operations on

databases and in the original and ideal OMAPs [64], even the search

operation should seem identical to insertion. So we present the

insertion comparison here and leave the search comparison in [10]

for space. The time usage of insertion is depicted in Table 3 and

we decompose the time in detail to show the speedup in different

components further. Besides, to explain the speedup, we list the

improvement in communication of our OMAPs in Table 4.

As shown in the tables, there is a substantial speedup of our

OMAPs to prior OMAPs. Firstly, in communication time (𝑇2 in Ta-

ble 3), our OMAPs achieve a speedup of 37.0% ∼ 72.0% compared

to the corresponding OMAPs they are based on. This results from

the reduced interaction rounds and bandwidth. We significantly

reduce the interaction rounds and bandwidth with a speedup from

35.6% ∼ 92.6%! The interaction round is the dominant factor in com-

munication as the OMAPs are run under WAN, hence the speedup

of 𝑇2 is closer to that of the interaction round. Also, communica-

tion occupies the most time usage during query processing, our

OMAP mainly improves communication to enhance efficiency. Sec-

ondly, our OMAPs also speed up the client-side calculation (𝑇1 in

Table 3) between 33.3% ∼ 71.1% although𝑇1 owns only a veryminor

proportion. This speedup comes from reduced bandwidth, which

implies we retrieve fewer items to calculate, thus 𝑇1 decreases. The

speedup of𝑇1 is lower than the reduction in bandwidth because the

client-side calculation in our OMAPs is more complex, lowering the

speedup. Finally, in the whole query processing time (𝑇3 in Table 3),

our OMAPs achieve a speedup of 40.1% ∼ 72.0%. The most efficient

of our OMAPs is DAORAM+B+, which is almost 6× faster than the

baseline ODS+AVL for insertions. We remark our speedup comes

from the lower asymptotic complexity, both the two tables show

with 𝑛 increasing, the speedup is more and more significant. So

it is predictable the speedup of our OMAPs on insertions will be

more pronounced as the database size increases due to the superior

complexity of our OMAPs, i.e., our OMAPs are expected to perform

even better in very large databases in production.

Extended experiments. There are more extensive experiments

conducted to evaluate our ORAM and OMAPs, which are shown

in [10]. For DAORAM, we test the impact of different accesses on

its stash size, validate its obliviousness by running it under multiple

query distributions, and compare it with prior tree-based ORAMs

to provide further insights. The results are presented in [10]. For

OMAPs, we evaluate more of its operations (e.g., search, delete, etc),

validate its obliviousness with six distinct query distributions with

different skewness and two different datasets, and finally evaluate

it under network conditions across a wide range of latencies. These

results are provided in [10].

8 RELATEDWORK
The leakage from access patterns has been widely recognized as

dangerous in EDBs, prompting handful of works presented in the

communities of databases [17, 24, 43], security [48, 56, 64], and cryp-

tography [4, 6, 53] to achieve obliviousness in EDBs. Our work is

closely aligned with two well-known areas: Oblivious RAM (ORAM)

and oblivious data structure (ODS).

ORAM. ORAM is an essential primitive that counters attacks

based on access pattern leakage, with extensive research in various

directions [4, 6, 39, 59, 60]. Our works follow a line of works [12, 26,

39, 55, 63] to improve the relatively practical tree-basedORAM. Tree-

based ORAMs can be divided into recursive ORAMs [26, 39, 60]

and non-recursive ORAMs [63, 66]. Non-recursive ORAMs use

𝑂 (𝑛) client-side storage to enhance their efficiency, but this stor-

age requirement may be infeasible in production [26, 62]. Recur-

sive ORAMs require small client-side storage, typically 𝑂 (log𝑛),

698

Table 3: Time usage of insertion. 𝑇1 is calculation time, 𝑇2 is the communication time, and 𝑇3 is the total processing time.

𝑛 2
10

2
13

2
16

2
19

2
21

2
24

Time components 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3

AVL

prior (s) 0.06 2.91 2.97 0.09 3.72 3.81 0.17 4.70 4.87 0.27 5.51 5.78 0.31 6.12 6.43 0.38 6.94 7.32

ours (s) 0.04 1.25 1.31 0.06 1.48 1.55 0.07 1.58 1.64 0.09 1.81 1.89 0.10 1.82 1.93 0.11 1.94 2.05

speedup (%) 33.3 57.0 55.9 33.3 60.2 59.3 58.8 66.4 66.3 66.7 67.2 67.3 67.7 70.3 70.0 71.1 72.0 72.0

B+

prior (s) 0.04 1.46 1.57 0.05 1.79 1.84 0.08 2.01 2.09 0.10 2.51 2.61 0.13 2.73 2.86 0.16 2.95 3.11

ours (s) 0.02 0.92 0.94 0.03 0.94 0.97 0.04 0.98 1.02 0.04 1.00 1.04 0.05 1.04 1.09 0.06 1.08 1.14

speedup (%) 50.0 37.0 40.1 40.0 47.5 47.3 50.0 51.2 51.2 60.0 60.2 60.2 61.5 61.9 61.9 62.5 63.4 63.3

Table 4: Interaction rounds and communication bandwidth of insertion.

𝑛 2
10

2
13

2
16

2
19

2
21

2
24

Communicate round band (KB) round band (KB) round band (KB) round band (KB) round band (KB) round band (KB)

AVL

prior (s) 90 345.6 114 554.49 144 884.74 168 1204.22 186 1476.10 210 1881.60

ours (s) 58 128.51 58 130.05 60 132.86 60 135.17 60 136.70 62 139.26

speedup (%) 35.6 62.8 49.1 76.5 58.3 85.0 64.3 88.8 67.7 90.7 70.5 92.6

B+

prior (s) 42 75.26 54 124.42 66 185.86 72 221.18 84 301.06 96 393.22

ours (s) 28 28.67 28 30.21 30 33.02 30 35.33 30 36.86 32 39.42

speedup (%) 33.3 61.9 48.1 75.7 54.5 82.2 58.3 84.0 64.3 87.8 66.7 90.0

making them more practical. However, as discussed in Section 2,

one data access in recursive ORAMs involves 𝑂 (log𝑛) interaction
rounds, which can be expensive, especially over WAN. Our work

follow [26, 39] to significantly reduce the number of interaction

rounds to 𝑂 (log𝑛/log log𝑛). Notably, our proposed scheme DAO-
RAM elegantly avoid the costly worst-case performance in prior

works [26, 39]. To our knowledge,DAORAM is the most efficient

and practical recursive ORAM protocol to date.

ODS. Since Wang et al. [64] introduced the concept of ODS,

extensive research has focused on exploring and improving ODS

constructions. Wang et al. [64] propose techniques and construc-

tions for a variety of classic data structures, including trees, sets,

and graphs. In particular, they provide the first construction for

the oblivious map (OMAP), using an oblivious AVL tree, which

is broadly adopted by many EDBs [11, 23, 30] and serves as the

baseline for comparisons in this work. FollowingWang et al., Roche

et al. [56] propose a new tree structure named HIRB (similar to a

B tree) to establish a more efficient OMAP. Currently, the SOTA

works are [13, 24], which adopt an oblivious B+ tree and an opti-

mized AVL tree, achieving the best performance to date. However,

the design philosophy of search trees causes these constructions

to be limited by the 𝑂 (log1.5 𝑛) communication bandwidth lower

bound of oblivious search trees, as proven by [40]. Moreover, con-

structions of search tree based OMAPs have not yet overcome

the 𝑂 (log2 𝑛) bandwidth. As far as we know, we are the first to

adopt a framework other than the oblivious search tree and achieve

𝑂 (log2 𝑛/log log𝑛)+𝑂 (log 𝜆 log𝑛) communication bandwidthwith

OMAP constructions. Our work on ORAM in this paper also sug-

gests that oblivious hash tables [64] can have a similar bandwidth

complexity, but as we discussed in Section 1, this approach is still

more costly than our constructions. Enigma [62] is another study on

OMAP that is independent of our research, as it focuses on optimiz-

ing the performance when implementing OMAP in secure enclaves,

e.g., the page swaps between inside and outside the enclave. In ad-

dition, several other works address OMAP in secure enclaves, with

a strong emphasis on achieving obliviousness within the enclave

(i.e., the obliviousness in C). All of these works can benefit from

our OMAP, as it improves the performance of oblivious algorithms

in S. We leave it as future works to integrate our work with prior

algorithms in 𝐶 to achieve obliviousness practically in both C and

S, a concept referred as double-obliviousness in Oblix [48].

9 CONCLUSION
In this paper, we propose a new framework for designing a funda-

mental oblivious data structure in encrypted databases: oblivious
map (OMAP). We are the first to combine the oblivious hash table
(which allows collisions) with an oblivious search tree to build more

efficient OMAPs. We propose a new ORAM protocol named DAO-
RAM, the most efficient and practical recursive tree-based ORAM

so far, for the oblivious hash table. By combining the oblivious hash

table with three prior OMAPs based on search trees [13, 24, 64], we

present three OMAP constructions and empirically demonstrate

that they significantly outperform prior OMAPs. Our work can

enhance the efficiency of all encrypted key-value databases and

more general encrypted databases.

ACKNOWLEDGMENTS
The work was supported in part by National Natural Science Foun-

dation of China (U20A20222) and National Key Research and Devel-

opment Program of China (2023YFB2704000). It is also supported

by Ant Group. The authors from Ant Group are supported by the

Leading Innovative and Entrepreneur Team Introduction Program

of HangZhou (Grant No.TD2020001). The authors sincerely thank T-

H. Hubert Chan for his helpful comments and suggestions, and also

the insightful reviews of VLDB anonymous reviewers especially

those on the complexity calculation and security proofs.

699

REFERENCES
[1] [n.d.]. ObliDB open-sourced repository. ([n. d.]). https://github.com/

SabaEskandarian/ObliDB. Accessed in December 2024.

[2] [n.d.]. An open-sourced repository for ODS+AVL. ([n. d.]). https://github.com/

obliviousram/oblivious-avl-tree. Accessed in December 2024.

[3] [n.d.]. Python package pycryptodome. ([n. d.]). https://github.com/Legrandin/

pycryptodome. Accessed in December 2024.

[4] Gilad Asharov, Ilan Komargodski,Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and

Elaine Shi. 2020. OptORAMa: optimal oblivious RAM. In Advances in Cryptology–
EUROCRYPT 2020: 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings,
Part II 30. Springer, 403–432.

[5] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, and Elaine Shi.

2022. Optimal Oblivious Parallel RAM. In Proceedings of the 2022 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2459–2521.

[6] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, and Elaine Shi. 2023. Oblivious

RAM with worst-case logarithmic overhead. Journal of Cryptology 36, 2 (2023),

7.

[7] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and

YanHuang. 2015. Practicing oblivious access on cloud storage: the gap, the fallacy,

and the new way forward. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. 837–849.

[8] Marina Blanton, Aaron Steele, and Mehrdad Alisagari. 2013. Data-oblivious

graph algorithms for secure computation and outsourcing. In Proceedings of
the 8th ACM SIGSAC symposium on Information, computer and communications
security. 207–218.

[9] Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam

O’Neill. 2021. 𝜀psolute: Efficiently Querying Databases While Providing Differ-

ential Privacy. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. 2262–2276.

[10] Xinle Cao, Weiqi Feng, Jian Liu, Jinjin Zhou, Wenjing Fang, Lei Wang, Quan-

qing Xu, Chuanhui Yang, and Kui Ren. 2024. Towards Practical Oblivious Map.

Cryptology ePrint Archive, Paper 2024/1650. https://eprint.iacr.org/2024/1650

[11] Xinle Cao, Yuhan Li, Dmytro Bogatov, Jian Liu, and Kui Ren. 2023. Secure and

Practical Functional Dependency Discovery in Outsourced Databases. Cryptology
ePrint Archive (2023).

[12] Anrin Chakraborti, Adam J Aviv, Seung Geol Choi, Travis Mayberry, Daniel S

Roche, and Radu Sion. 2019. rORAM: Efficient Range ORAM with O (log2 N)

Locality.. In NDSS.
[13] Javad Ghareh Chamani, Ioannis Demertzis, Dimitrios Papadopoulos, Charalam-

pos Papamanthou, and Rasool Jalili. 2023. GraphOS: Towards Oblivious Graph

Processing. Proc. VLDB Endow. 16 (2023), 4324–4338. https://api.semanticscholar.

org/CorpusID:265455667

[14] TH Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. 2018. Cache-oblivious

and data-oblivious sorting and applications. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2201–2220.

[15] T-H Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. 2017. Oblivious hashing

revisited, and applications to asymptotically efficient ORAM and OPRAM. In

Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the
Theory and Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I 23. Springer, 660–690.

[16] Zhao Chang, Dong Xie, Feifei Li, Jeff M. Phillips, and Rajeev Balasubramonian.

2022. Efficient Oblivious Query Processing for Range and kNN Queries. IEEE
Transactions on Knowledge and Data Engineering 34, 12 (2022), 5741–5754. https:

//doi.org/10.1109/TKDE.2021.3060757

[17] Zhao Chang, Dong Xie, Sheng Wang, and Feifei Li. 2022. Towards Practical

Oblivious Join. In Proceedings of the 2022 International Conference on Management
of Data. 803–817.

[18] Hao Chen, Ilaria Chillotti, and Ling Ren. 2019. Onion ring ORAM: efficient

constant bandwidth oblivious RAM from (leveled) TFHE. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security. 345–
360.

[19] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. 2017.

Detecting Privileged Side-Channel Attacks in Shielded ExecutionwithDéjà Vu. In

Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security (Abu Dhabi, United Arab Emirates) (ASIA CCS ’17). Association for

Computing Machinery, New York, NY, USA, 7–18. https://doi.org/10.1145/

3052973.3053007

[20] Seung Geol Choi, Dana Dachman-Soled, S DovGordon, Linsheng Liu, and Arkady

Yerukhimovich. 2021. Compressed oblivious encoding for homomorphically

encrypted search. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. 2277–2291.

[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[22] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha Crooks, and

Raluca Ada Popa. 2021. Snoopy: Surpassing the scalability bottleneck of oblivious

storage. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles. 655–671.

[23] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos, and Char-

alampos Papamanthou. 2019. Dynamic searchable encryption with small client

storage. Cryptology ePrint Archive (2019).
[24] Saba Eskandarian and Matei Zaharia. 2017. Oblidb: Oblivious query processing

for secure databases. arXiv preprint arXiv:1710.00458 (2017).
[25] Francesca Falzon, Evangelia Anna Markatou, Zachary Espiritu, and Roberto

Tamassia. 2022. Range Search over Encrypted Multi-Attribute Data. Proc. VLDB
Endow. 16 (2022), 587–600. https://api.semanticscholar.org/CorpusID:252545892

[26] Christopher W Fletcher, Ling Ren, Albert Kwon, Marten Van Dijk, and Srini-

vas Devadas. 2015. Freecursive ORAM: [Nearly] Free Recursion and Integrity

Verification for Position-based Oblivious RAM. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages
and Operating Systems. 103–116.

[27] Christopher W. Fletchery, Ling Ren, Xiangyao Yu, Marten Van Dijk, Omer Khan,

and Srinivas Devadas. 2014. Suppressing the Oblivious RAM timing channel

while making information leakage and program efficiency trade-offs. In 2014
IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). 213–224. https://doi.org/10.1109/HPCA.2014.6835932

[28] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2016.

TWORAM: Efficient oblivious RAM in two rounds with applications to searchable

encryption. In Annual International Cryptology Conference. Springer, 563–592.
[29] Craig Gentry, Kenny A Goldman, Shai Halevi, Charanjit Julta, Mariana Raykova,

and Daniel Wichs. 2013. Optimizing ORAM and using it efficiently for secure

computation. In Privacy Enhancing Technologies: 13th International Symposium,
PETS 2013, Bloomington, IN, USA, July 10-12, 2013. Proceedings 13. Springer, 1–18.

[30] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,

and Rasool Jalili. 2018. New constructions for forward and backward private sym-

metric searchable encryption. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. 1038–1055.

[31] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation

on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.
[32] Michael T Goodrich. 2011. Randomized shellsort: A simple data-oblivious sorting

algorithm. Journal of the ACM (JACM) 58, 6 (2011), 1–26.
[33] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto

Tamassia. 2011. Oblivious RAM simulation with efficient worst-case access

overhead. In Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop (Chicago, Illinois, USA) (CCSW ’11). Association for Computing Ma-

chinery, New York, NY, USA, 95–100. https://doi.org/10.1145/2046660.2046680

[34] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li,

Rachit Agarwal, and Thomas Ristenpart. 2020. Pancake: Frequency smoothing

for encrypted data stores. In 29th USENIX Security Symposium (USENIX Security
20). 2451–2468.

[35] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and

Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Protection using

Hardware Transactional Memory. In 26th USENIX Security Symposium (USENIX
Security 17). USENIX Association, Vancouver, BC, 217–233. https://www.usenix.

org/conference/usenixsecurity17/technical-sessions/presentation/gruss

[36] Thang Hoang, Ceyhun D Ozkaptan, Gabriel Hackebeil, and Attila Altay Yavuz.

2018. Efficient oblivious data structures for database services on the cloud. IEEE
Transactions on Cloud Computing 9, 2 (2018), 598–609.

[37] Thang Hoang, Ceyhun D. Ozkaptan, Gabriel Hackebeil, and Attila Altay Yavuz.

2021. Efficient Oblivious Data Structures for Database Services on the Cloud.

IEEE Transactions on Cloud Computing 9, 2 (2021), 598–609. https://doi.org/10.

1109/TCC.2018.2879104

[38] Thang Hoang, Muslum Ozgur Ozmen, Yeongjin Jang, and Attila Altay Yavuz.

2018. Hardware-Supported ORAM in Effect: Practical Oblivious Search and

Update on Very Large Dataset. Proceedings on Privacy Enhancing Technologies
2019 (2018), 172 – 191. https://api.semanticscholar.org/CorpusID:4007767

[39] T-H Hubert Chan and Elaine Shi. 2017. Circuit OPRAM: Unifying statistically

and computationally secure ORAMs and OPRAMs. In Theory of Cryptography
Conference. Springer, 72–107.

[40] Riko Jacob, Kasper Green Larsen, and Jesper Buus Nielsen. 2019. Lower bounds

for oblivious data structures. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 2439–2447.

[41] Jonathan Katz and Yehuda Lindell. 2014. Introduction to Modern Cryptography.

(No Title) (2014).
[42] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill. 2016. Generic

attacks on secure outsourced databases. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 1329–1340.

[43] Marcel Keller and Peter Scholl. 2014. Efficient, oblivious data structures for MPC.

In Advances in Cryptology–ASIACRYPT 2014: 20th International Conference on
the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, ROC, December 7-11, 2014, Proceedings, Part II 20. Springer, 506–525.

[44] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila. 2020. Efficient

oblivious database joins. arXiv preprint arXiv:2003.09481 (2020).
[45] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2012. On the (in) security

of hash-based oblivious RAM and a new balancing scheme. In Proceedings of
the twenty-third annual ACM-SIAM symposium on Discrete Algorithms. SIAM,

700

https://github.com/SabaEskandarian/ObliDB.
https://github.com/SabaEskandarian/ObliDB.
https://github.com/obliviousram/oblivious-avl-tree.
https://github.com/obliviousram/oblivious-avl-tree.
https://github.com/Legrandin/pycryptodome.
https://github.com/Legrandin/pycryptodome.
https://eprint.iacr.org/2024/1650
https://api.semanticscholar.org/CorpusID:265455667
https://api.semanticscholar.org/CorpusID:265455667
https://doi.org/10.1109/TKDE.2021.3060757
https://doi.org/10.1109/TKDE.2021.3060757
https://doi.org/10.1145/3052973.3053007
https://doi.org/10.1145/3052973.3053007
https://api.semanticscholar.org/CorpusID:252545892
https://doi.org/10.1109/HPCA.2014.6835932
https://doi.org/10.1145/2046660.2046680
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://doi.org/10.1109/TCC.2018.2879104
https://doi.org/10.1109/TCC.2018.2879104
https://api.semanticscholar.org/CorpusID:4007767

143–156.

[46] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2018. Improved

reconstruction attacks on encrypted data using range query leakage. In 2018
IEEE Symposium on Security and Privacy (SP). IEEE, 297–314.

[47] Kasper Green Larsen and Jesper Buus Nielsen. 2018. Yes, there is an oblivious

RAM lower bound!. In Annual International Cryptology Conference. Springer,
523–542.

[48] PratyushMishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada

Popa. 2018. Oblix: An efficient oblivious search index. In 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 279–296.

[49] Muhammad Naveed. 2015. The Fallacy of Composition of Oblivious RAM and

Searchable Encryption. Cryptology ePrint Archive, Paper 2015/668. https:

//eprint.iacr.org/2015/668

[50] Rafail Ostrovsky and Victor Shoup. 1996. Private Information Storage. Cryp-

tology ePrint Archive, Paper 1996/005. https://eprint.iacr.org/1996/005 https:

//eprint.iacr.org/1996/005.

[51] Simon Oya and Florian Kerschbaum. 2021. Hiding the access pattern is not

enough: Exploiting search pattern leakage in searchable encryption. In 30th
USENIX security symposium (USENIX Security 21). 127–142.

[52] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. 2018.

PanORAMa: Oblivious RAMwith logarithmic overhead. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 871–882.

[53] Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM revisited. In Advances
in Cryptology–CRYPTO 2010: 30th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 15-19, 2010. Proceedings 30. Springer, 502–519.

[54] Martin Raab and Angelika Steger. 1998. "Balls into Bins" - A Simple and Tight

Analysis. In Proceedings of the Second International Workshop on Randomization
and Approximation Techniques in Computer Science (RANDOM ’98). Springer-
Verlag, Berlin, Heidelberg, 159–170.

[55] Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten

Van Dijk, and Srinivas Devadas. 2015. Constants count: Practical improvements

to oblivious {RAM}. In 24th USENIX Security Symposium (USENIX Security 15).
415–430.

[56] Daniel S Roche, Adam Aviv, and Seung Geol Choi. 2016. A practical oblivious

map data structure with secure deletion and history independence. In 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 178–197.

[57] Sajin Sasy and Olga Ohrimenko. 2019. Oblivious sampling algorithms for private

data analysis. Advances in Neural Information Processing Systems 32 (2019).
[58] Elaine Shi. 2020. Path oblivious heap: Optimal and practical oblivious priority

queue. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 842–858.

[59] Elaine Shi, T. H. Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious

RAM with O((logN)3) Worst-Case Cost. In Advances in Cryptology – ASIACRYPT
2011, Dong Hoon Lee and Xiaoyun Wang (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 197–214.

[60] Emil Stefanov, Marten van Dijk, Elaine Shi, T-H Hubert Chan, Christopher

Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM: an

extremely simple oblivious RAM protocol. Journal of the ACM (JACM) 65, 4
(2018), 1–26.

[61] Emil Stefanov, Elaine Shi, and Dawn Song. 2011. Towards practical oblivious

RAM. arXiv preprint arXiv:1106.3652 (2011).
[62] Afonso Tinoco, Sixiang Gao, and Elaine Shi. 2022. Enigmap : External-Memory

Oblivious Map for Secure Enclaves. Cryptology ePrint Archive, Paper 2022/1083.

https://eprint.iacr.org/2022/1083 https://eprint.iacr.org/2022/1083.

[63] Xiao Wang, Hubert Chan, and Elaine Shi. 2015. Circuit oram: On tightness of

the goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 850–861.

[64] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Hubert Chan, Elaine Shi, Emil

Stefanov, and Yan Huang. 2014. Oblivious data structures. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.
215–226.

[65] Peter Williams and Radu Sion. 2012. Single round access privacy on outsourced

storage. In Proceedings of the 2012 ACM conference on Computer and communica-
tions security. 293–304.

[66] Zhiqiang Wu and Rui Li. 2023. OBI: a multi-path oblivious RAM for forward-

and-backward-secure searchable encryption.. In NDSS.
[67] Zhifeng Yang, Quanqing Xu, Shanyan Gao, Chuanhui Yang, Guoping Wang,

Yuzhong Zhao, Fanyu Kong, Hao Liu, Wanhong Wang, and Jinliang Xiao. 2023.

OceanBase Paetica: A Hybrid Shared-Nothing/Shared-Everything Database for

Supporting Single Machine and Distributed Cluster. Proc. VLDB Endow. 16, 12
(Aug. 2023), 3728–3740. https://doi.org/10.14778/3611540.3611560

[68] Zhenkun Yang, Chuanhui Yang, Fusheng Han, Mingqiang Zhuang, Bing Yang,

Zhifeng Yang, Xiaojun Cheng, Yuzhong Zhao,Wenhui Shi, Huafeng Xi, Huang Yu,

Bin Liu, Yi Pan, Boxue Yin, Junquan Chen, and Quanqing Xu. 2022. OceanBase:

a 707 million tpmC distributed relational database system. Proc. VLDB Endow.
15, 12 (Aug. 2022), 3385–3397. https://doi.org/10.14778/3554821.3554830

[69] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E

Gonzalez, and Ion Stoica. 2017. Opaque: An oblivious and encrypted distributed

analytics platform. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). 283–298.

701

https://eprint.iacr.org/2015/668
https://eprint.iacr.org/2015/668
https://eprint.iacr.org/1996/005
https://eprint.iacr.org/1996/005
https://eprint.iacr.org/1996/005
https://eprint.iacr.org/2022/1083
https://eprint.iacr.org/2022/1083
https://doi.org/10.14778/3611540.3611560
https://doi.org/10.14778/3554821.3554830

	Abstract
	1 Introduction
	1.1 Overview

	2 Preliminaries
	3 Revisit
	3.1 Prior Recursive ORAM
	3.2 Prior OMAPs

	4 OMAP Framework
	4.1 Security Model
	4.2 OMAP Framework

	5 Data-independent Tree
	5.1 Construction
	5.2 Analysis

	6 Group OMAP
	7 Evaluation
	7.1 Practical ORAM with de-amortization
	7.2 Efficient OMAP with less communication

	8 related work
	9 Conclusion
	Acknowledgments
	References

