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ABSTRACT
Transaction performance in geo-replicated databases heavily relies
on the request location: when not issued by the primary region,
transactions are forced to involve costly wide-area communication.
While existing systems distribute primary roles across regions, such
assignment typically occurs at the shard level, making it di�cult to
align with geographically dispersed access to individual records.

This paper introduces PolyBase, a pioneering architecture to
address such misalignment, leveraging the widely adopted Paxos-
based log replication mechanisms. It enables �exible row-level con-
sensus group a�liation, which runs on an unchanged Paxos protocol,
but dynamically re-assigns database rows between Paxos log repli-
cation groups, whose leaders become the primary region, enjoy-
ing faster writes and up-to-date versions for reads. With carefully
designed data structures and protocols, PolyBase signi�cantly re-
duces wide-area RTTs without compromising transaction or log
replication consistency or reliability guarantees. We implemented
PolyBase with optimized re-assignment policies and integrated it
into two popular databases (RocksDB and MySQL). Our evaluation
on AWS, using a production e-commerce workload andmicrobench-
marks con�rms that PolyBase o�ers signi�cantly higher transaction
throughput and lower average/tail latency compared to baselines.
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1 INTRODUCTION
Geo-replicated databases [3, 10, 17, 40] rely on statemachine replica-
tion enabled by consensus protocols such as Paxos [23, 47], and o�er
fault tolerance and performance advantages. They have been build-
ing blocks for conventional Internet services such as e-commerce
as well as emerging ones such as smart vehicles.

For highly scalable and low-latency processing, the common
practice in implementing geo-replicated databases is combining
data sharding and the leader-based consensus protocols such as
Paxos. They partition large tables (usually by key ranges) into
shards, and naturally adopt data shards as the granularity for state
machine replication, tying each shard to a dedicated consensus
replication group. Data has a unique primary region, usually the
same region assigned to be the group’s leader. With such an archi-
tecture, transactions (including read-only ones) are much faster
when executed in the region that owns consensus group leadership
of the data involved (more details in Section 2).

Unfortunately, such shard-level leadership management cannot
be coordinated with the individual movement in data regional a�n-
ity, meaning most requests for the target data are sent to a speci�c
region in a time duration. In Alibaba, two major scenarios highlight
this problem. The �rst lies in its classic business of e-commerce,
where user tra�c could be redirected to less-utilized regions to mit-
igate workload spikes caused by best-selling products or promotion
events. The second arises with its new services supporting smart
vehicles, which were born to be cloud-native, providing crucial
real-time data processing, such as tra�c information, navigation
services, charging guidance, and vehicle/user history data. As vehi-
cles cross regional boundaries, the associated service cloud changes
accordingly and instantly. To ensure a consistent and reliable user
experience, cloud databases must seamlessly handle queries when
users move across di�erent geographical regions.

Under both scenarios, a small part of a data shard, whose con-
sensus group is led by Region A, could suddenly receive sustained
accesses primarily from Region B. Currently, there are no solutions
to this intra-shard, �ne-grained access locality misalignment, even
when the sharding granularity can be reduced to megabytes, and
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Paxos groups can be merged to manage many shards. These “for-
eign” accesses need to pay higher latency, throughmechanisms such
as request forwarding or 2PC, going through the region assigned to
lead the entire shard. This is unacceptable to new applications like
autonomous driving, where even minor delays can have critical
safety implications. Such coarse one-leader-per-shard assignment
also makes it harder for the database to adapt to workload skewness
or worse, dynamic shifts in workload skewness.

The above scenarios demand dynamic and �ne-grained consen-
sus group assignment and multi-primary capability. While recent
Paxos protocol innovations (e.g., WPaxos [2] and EPaxos [46]) aim
to achieve dynamic leadership, they follow the traditional replicated
state machine model, involving themselves only at the commit stage
for log replication. Hence they fundamentally lack the coordination
mechanisms (such as locks) required by multi-primary DBs during
transaction processing. At the database level, there are also recent
optimizations re-assigning leadership to regions receiving dynami-
cally shifting data accesses. However, existing solutions fail to trans-
parently, generally, and e�ciently mitigate the problem, as they
retain the coarse granularity of consensus group leader assignment
(Akkio [4] and MGR [33]), or impose additional constraints/require-
ments, such as centralized coordination and pre-known write sets
(DynaMast [1]), deterministic transaction execution (SLOG [40]),
or database schema modi�cation (CockroachDB [44]).

In this paper, instead, we propose a novel architecture, Poly-
Base, to eliminate misalignment between the dynamic �ne-granule
data a�nity changes and the coarse-grained shard-level consen-
sus group assignment by allowing dynamic �nest-grained row-level
consensus-group assignment for database tables. This decouples the
strong binding between data shards and consensus groups, allow-
ing each row of data to freely commit its transaction to the nearest
leader at the ‘local” region (or individually colored, to put the con-
cept in a visual way). When a row/record of a DB table is found
consistently accessed by transactions from another region, accord-
ing to certain locality management policy, it can be individually
reassigned/recolored to another consenus group, led by the other
region, making subsequent accesses “local” again.

We argue that the e�ciency and �exibility of using row-level
consensus group a�liations outweigh the cost of storing per-row
color metadata. Less obvious, though, is that this approach actually
simpli�es replication group setup itself, as regardless of the total
data size or the number of shards, fully replicated data across #
regions needs only # consensus groups, one led by each region.
Additionally, the color attribute operates transparently, enabling
automatic, �ne-grained locality annotations without requiring DB
administrators or developers to account for locality migration or
sharding con�gurations. This is especially appealing given the
mixture of end-user mobility and cross-datacenter load balancing.

PolyBase enables row-level consensus-group a�liation manage-
ment and primary region appointment without using centralized
managers or imposing additional constraints such as deterministic
transaction executions. Rather thanmodifying a consensus protocol
directly, we leverage mature consensus protocols for log replication,
treating group a�liation reassignment operations as standard data-
base operations. This also allows PolyBase to work atop di�erent
leader-based consensus protocols. By building its distributed row-
level color management on top of existing log replication schemes,
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Shard 1
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Paxos group for log replication (led by Region 2)

*

Figure 1: Geo-replicated DB w. Paxos-based log replication

PolyBase contains its complexity within a few additional plug-in
modules to existing DBs and introduces no changes to their trans-
action consistency. In addition, we adopt special care in supporting
database integrity and designing access hotness- and correlation-
aware policies for optimized row recoloring.

Finally, our PolyBase prototype extends Rocks-DB [15] and
MySQL [35], using Paxos for demonstration. Our in-depth evalua-
tion used 18 nodes distributed in 6 AWS regions across 3 continents,
running a production shopping cart workload as well as widely-
used benchmarks such as TPC-C and YCSB+T. The results con�rm
that PolyBase smoothly adapts to dynamic request a�nity changes
and by its agile, �ne-grained row recoloring, delivers signi�cantly
higher transaction throughput and lower average/tail latency than
o�ered by the best baselines we could �nd (both open-source and
commercial). In particular, in tests simulating real-world request
mobility, PolyBase outperforms its closest contender by 1.5⇥-6.9⇥
in aggregate throughput and 48%-86% in tail latency.

2 BACKGROUND AND MOTIVATION
2.1 Geo-Replicated Database and Paxos Setup
Figure 1 illustrates the common architecture of modern geo-
replicated databases, such as Spanner [10], F1 [43], TiDB [19],
CockroachDB [48], and GeoGauss [52]. The data (tables) are split
into multiple shards (key ranges) for scalability. Geo-replicated
databases use consensus protocols such as Paxos [23] and Raft [32]
for fault tolerance. In a typical setup, the nodes carrying the same
shard also form a per-shard consensus group. While our design
applies to both protocols, we focus on Paxos for clarity and brevity.

Each consensus group appoints a leader or primary node in one
region, which doubles as the primary region for the replicated DB,
with other regions as secondary ones. We use the terms “primary”
and “leader” interchangeably in this paper. Only the primary has the
right to write and always possess the latest version of data, while
all nodes can serve read requests. Each physical node can be the pri-
mary and secondary for di�erent shards simultaneously. In Figure 1,
e.g., Region 2 is the primary region for shard 2 and a secondary for
shard 1 and 3, with corresponding Paxos groups color-coded. The
primary node commits a geo-replicated write transaction by repli-
cating the write-ahead log entry via Paxos (1 RTT), tagged with a
unique log sequence number, following the replicated state machine.
Secondary regions (followers in Paxos) synchronize with the pri-
mary by applying the logs to their local database. We call databases
that have their data sharded, fully replicated, and protected by mul-
tiple consensus groups as “multi-primary geo-replicated databases”.

Compared to local accesses within the same region (with a la-
tency typically below 10 milliseconds), cross-region operations are
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Table 1: Comparison with multi-primary geo-replicated databases, most of which handle dynamics in data a�nity
Aurora Global [3] Spanner [10] DynaMast [1] SLOG/Detock [31, 40] PolyBase WPaxos [2]

Nature DB DB DB DB DB Consensus protocol

Supported Transaction Type General General A priori write set Determinisitc General OCC/Deterministic
+ single object

Management granularity Shard Shard Shard Row Row Row

Extra WAN RTTs for coordination
excluding replication costs

Forward to
primary (1RTT)

2PC
(2.5 RTT)

Send RPC to central site
(1RTT)

SLOG: global ordering.
Detock: wait for complete
set from other regions.

Except for migration,
RTTs are local

Except for migration,
RTTs are local

Extra component for
consensus group a�liation change - Movedir service Central site selector Sequencer/Scheduler - -

Consensus group a�liation
metadata management - Directory Centralized management Cache + distributed index;

Asynchronous update Embedded with Row Extra owner set

Changing policy - Background;
Locality-based

Before transaction;
Cost Model based

Background;
Migration after 3 updates

In TXN/background;
Hotness/Correlation based Locality-based
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Figure 2: Tra�c distribution across 3 public cloud regions
from Alibaba Cloud during a 6-hour shopping event

expensive (from 10s to 100s of milliseconds). Clients usually inter-
act with the nearest node in the local region. However, with shards
mostly sized at the MB level or larger, cross-region (remote) data
accesses are inevitable.

For remote write requests, each write query is dispatched to its
primary node (1 RTT). Transactions accessing data records span-
ning shards led by multiple regions have to use a two-phase commit
(2PC, at 2.5 RTTs) to ensure data atomicity, which introduces addi-
tional communication overhead. For remote reads, client requests in
the primary region directly retrieve the latest data locally. For those
in secondary regions, the default process retrieves the latest version
from the primary region (1 RTT). Users willing to tolerate data stal-
eness could opt for follower read [11], performing local snapshot
read instead. Unless otherwise noted, our discussion/evaluation
concerns the default latest read mode.

In summary, co-locating DB query execution with the Paxos
leadership is crucial for the performance of industrial geo-replicated
DBs due to the signi�cant disparity between the local and wide-area
network latency. It is especially important to execute transactions
within a single region to avoid the expensive 2PC process.

2.2 Existing Dynamic Leadership Methods
Frequent Data a�nity changes. Existing studies [9, 20] show
that, despite high data locality, access points often shift across
regions due to user mobility and large-scale, planned workload
migrations, like smart vehicle movement and tra�c re-balance for
spikes in shopping applications. For example, our study, based on a
6-hour trace from Alibaba Cloud, con�rms such patterns (Figure 2).
When a shopping event commenced, the load on Region 1 surged,
prompting load balancers to redistribute tra�c to other regions.
After 2.1 hours, the load was evenly distributed across regions and
stayed for a few more hours. Similarly, Akkio [4] observed that up
to 50% of Facebook’s requests during peak periods were processed
in regions di�erent from their origin, and such shifts occur daily.

Current shard-based geo-replicated databases, while popular,
face two major challenges with dynamic modern workloads. Firstly,
they experience signi�cant cross-region latency when clients and
primary data locations are mismatched, as tra�c and users fre-
quently migrate between regions. Secondly, their shard-based struc-
ture lacks the �exibility needed for dynamic �ne-grained data a�n-
ity changes in application since Paxos manages data at the shard
level and cannot move individual data’s leader solely.
Limitations of existing methods. We summarize characteristics
of representative multi-primary, geo-replicated databases in Table 1.
The �rst 4 columns are DB designs capable of changing the primary
region of target data to accommodate dynamic workloads. However,
they su�er serious limitations, as shown in the table.

First, they may require additional services for consensus group
changes. DynaMast employs a central coordination site, while SLOG
and Detock use deterministic transactions with added sequencers
and scheduling layers, both costly for wide-area workloads.

Second, even with inter-group migration, existing solutions still
easily incur extra cross-region communication during transactions.
Aurora Global and Spanner process cross-region transactions with
2PC, requiring 2.5 RTTs. DynaMast mandates an RPC to its “global
site selector” for transaction pre-checks, adding 1 RTT. SLOG uses
single-leader global Paxos for transaction ordering and Detock
employs all-to-all broadcasts for transaction set synchronization,
both leading to scalability issues. In addition, Aurora, with its single
primary architecture, needs 1 RTT for request forwarding from
secondary regions to the primary.

Third, industrial products like Spanner and Aurora manage data
at the shard or database level, lacking �exibility for speci�c appli-
cation access patterns. While several other DBs in Table 1 o�er
row-level management, DynaMast struggles with long cross-region
RTTs in geo-replicated setups and defaults to shard-level imple-
mentation. Both SLOG and DynaMast employ extra distributed
index/cache for managing metadata regarding consensus group
a�liations, necessitating asynchronous updates on these extra data
structures, thereby increasing the risk of data inconsistency.

Finally, current row-level dynamic solutions restrict transaction
types. DynaMast requires a prior write set, while SLOG and Detock
only support deterministic transactions. This contrasts with the
more general models supporting interactive transactions, adopted
by mainstream database application developers [37] and tools [36].

Besides multi-primary DBs, there are proposals on multi-leader
or leaderless Paxos protocols. For instance, WPaxos [2] adapts the
conventional Paxos protocol to allow a non-leader node to steal
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Figure 3: PolyBase system model

the leadership for an individual data object, making it faster in
reaching consensus by allowing the region seeing more accesses to
lead its log replication. EPaxos [46], leaderless protocol, allows any
member node to opportunistically propose/commit non-con�ict
requests, but still requires a second phase for con�ict requests, suf-
fering WAN latency. As shown in Figure 1, the interaction between
Paxos variants and DBs occurs at the transaction commit stage,
only to determine if the logs can commit globally. In multi-writer
scenarios, therefore, they cannot use objects’ ownership to hold
o� another region’s concurrent attempt for leadership change. If
another node steals the ownership, the original owner’s updates
are invalidated, leading to abort. Thus, such protocols alone can
only support optimistic transaction control (OCC) modes or de-
terministic transactions (abort and retry upon con�icts), neither
feasible in supporting interactive database transaction processing.

In contrast, our proposed PolyBase integrates unchanged Paxos
with database transactions, enabling row-level Paxos-group a�l-
iations reassignment and embedding metadata directly in rows.
Its recoloring mechanism reduces wide-area RTTs and supports
unrestricted transactions. Paxos safeguards recoloring by ensuring
correctness through a serial update history linked via Paxos logs.

3 POLYBASE OVERVIEW
3.1 System Model
Geo-replication Paxos group setting. With a replication factor
of ', PolyBase replicates the database across ' geographical regions
(out of # total regions) while sharding data within each region for
scalability. Modern cloud databases often span dozens of regions,
with ' typically set between 3 and 5. Figure 3 gives a sample setup,
where # = 5 and ' = 3.

Departing from the traditional “one Paxos group per shard”
model, PolyBase constructs only ' Paxos groups, each led by one
of the ' regions, as illustrated with di�erent colors. This design
not only simpli�es management but also reduces overhead by min-
imizing the number of Paxos groups. With each group handling
more data, it enables e�cient message batching [6], lowering per-
transaction communication costs and increasing throughput. Actu-
ally, we observe that a highly optimized Paxos group could handle
the entire database instance’s tra�c within a region in production
(30K write transactions/s). If indeed one group becomes a bottle-
neck, we could easily scale out by creating more groups on demand
(i.e., 2' groups, two in each color, for the setup in Figure 3). When
multiple groups are used per region, the data is partitioned among

Application frontend
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Application backend
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Query analyzer
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Figure 4: PolyBase Architecture: Building atop Paxos groups

groups by key range split. Without the loss of generality, our dis-
cussion stays with the case where we have ' groups in total.
Row-coloring for Paxos group assignment By decoupling
Paxos group setup with sharding, PolyBase acquires the liberty
to enable the ultimate �ne-grained data locality management, by
coloring individual database rows according to the Paxos group
it is currently assigned to. As shown in Figure 3, this is done by
appending a per-row metadata �eld denoting the appropriate Paxos
group ID (GID for short). With a replication factor of ', there are
only ' colors. When access locality change is sensed, PolyBase
could independently “recolor” a row, assigning it to its new “local
region”, without physical data movement.

Our main intuition is that with either users’ physical mobility or
request-redirection for load balancing, a locality change perceived
by PolyBase is likely to sustain for some time, at least hours or days.
With such independent, �ne-grained, and lightweight recoloring,
database rows get to have their Paxos group a�liation continuously
aligned with the majority of transactions accessing them (hotness)
at the moment. Note that for transactions accessing multiple rows
with di�erent hottest regions, we may resort to 2PC. However, the
idea is that frequently co-accessed data rows will likely have the
same color, reducing the number of such multi-color transactions.

One related issue is the e�ciency of large, read-only scans, which
bene�ts from shard-level Paxos group assignments. However, in
line with the mainstream industry practice, PolyBase provides snap-
shot isolation regarding scans, leveraging MVCC (Multi-Version
Concurrency Control). This signi�cantly reduces the impact of
multi-colored data shards, as scans operate simply on the local data
snapshot once the Paxos log application has caught up with the
speci�c version. The only additional overhead from the row-level
color assignment is to wait for the Paxos-replicated logs to be lo-
cally applied. Section 6.4 demonstrates that this overhead is quite
minor, especially compared to the wide-area RTT of cross-region.

3.2 Software Architecture
As shown in Figure 4, PolyBase extends a geo-replicated database
running common DBs such as MySQL [35] and RocksDB [15]. At
the top, the database supports one or more applications (user-facing
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Figure 5: PolyBase cLabel structure

or internal), typically with an application-speci�c load balancer dis-
patching requests to geographically dispersed regions. Underneath
the database, multiple Paxos groups are dedicated to log replication.

PolyBase augments the database transaction path with several
key components. A color manager dynamically assigns row-level
Paxos group a�liations (Section 4.2), requiring enhanced cross-
group dependency tracking for per-object linearizability and a pre-
key protocol to maintain data integrity during concurrent key inser-
tions and a�liation changes (Section 4.4). Furthermore, PolyBase
employs con�gurable policies for recoloring decisions (i.e., when
and what to recolor) based on access hotness and correlations (Sec-
tion 5.1), optimizing remote transaction performance (Section 5.2).

4 DYNAMIC ROW COLORING
4.1 Row-Level Color Annotation
Row-level Paxos group assignmentmanagement requires consistent
storage metadata that delineates the relationship between data
records and Paxos groups. Rather than using an extra Paxos group
to reliably replicate standalone metadata, PolyBase embeds the
relevant metadata �eld within each row, called cLabel (color label).

Figure 5 demonstrates a DB row extended by appending the
compact 64-bit cLabel. This structure contains several �elds relevant
to a row’s color management, whose usage will be detailed in
Section 4.2. First, the GID �eld (8-bit) identi�es the consensus group
overseeing a row, which dictates the row’s current color. Next, the
8-bit appliedGID (aGID) and the 32-bit appliedSequence (aSeq) �elds
record the group ID and the sequence number of the last applied log
to this row, where each log has a unique sequence number within
Paxos. As we implement the recoloring process using Paxos itself,
the action is propagated across regions using log replication and
application as well. This pair of �elds ensures that when a row
changes color, transaction logs from the previous color group have
all been applied, and the row is up to date.

Next, the 10-bit colorSeq (cSeq) �eld records the number of inter-
group a�liation re-assignments (color changes) of the row, to en-
sure the color group initiating the row-recoloring is up to date in
terms of the row’s color-change history itself. Both the aSeq and
cSeq �elds reset to zero upon over�ow, with an auxiliary reset

bit to detect wrap-around. Finally, the inTransit bit acts as a local
lock, which is not replicated and coordinates con�icting concurrent
requests from the same region during the row’s color change. These
add up to 61 bits, leaving 3 free bits in cLabel for future extensions
(e.g., extending the maximum number of groups). We consider the
64-bit per-row metadata overhead more than justi�ed for perfor-
mance and �exibility, considering typical modern record sizes of
100s-1000s of bytes [8, 13].

4.2 Recoloring Protocol
The challenge of row-level Paxos group a�liation change (recolor-
ing) lies in achieving consensus on the new color, with per-object

linearizability among the recovering events guaranteed while ac-
commodating independent log applications from di�erent Paxos
groups and minimizing the recoloring overhead.
Recoloring work�ow. We illustrate the process of a sample row’s
color change in Figure 6, with a formal description in Algorithm 1.
This row (record A) is currently blue, meaning only the blue group
generates logs for its update, with log application up to the log
sequence number (aSeq) of 238. Also, the cSeq �eld shows that the
row has witnessed 10 recoloring operations.

When a transaction at the red region accesses that blue row and
PolyBase considers the workload locality change signi�cant enough
(policies being described in Section 5) to warrant a recolor, the red
group leader locks the cLabel with the inTransit bit locally. Upon
lock granting, the leader issues a color change request (req_cc)
embedding the cLabel to the blue group leader via RPC (line 2-3).

As shown in Figure 6, the bulk of the recoloring work happens
in Region 2, which leads the blue group. Here the proper node in
the blue region (responsible for the shard in question) �rst checks
(line 9) the row’s cLabel, to make sure that the row is (1) indeed
blue right now and (2) has not missed previous color changes (the
request bearing the same cSeq as in the local row). If the check fails,
the node returns an error, otherwise enters the recoloring process.

It starts by locking the row in the blue region, locally setting its
inTransit bit. This local locking procedure coordinates con�icting
concurrent requests from multiple remote regions, e.g., Region 1
and 3. To prevent livelock or deadlock, we adopt the common expo-
nential back-o� strategy in restarting requests after a lock timeout.
Again, once permitted, the RPC continues to create a special color
change log (CC_Log, of rectangular shape in the Figure 4), as op-
posed to the normal transaction log (TXN_Log, of round shape). This
log entry records the blue-to-red GID change (line 11), plus corre-
sponding dependencies used for data consistency (to be detailed in
discussing Figure 7). The node appends the log for global replication
using the blue Paxos group, commits the recolor transaction, and
unlocks its local row by resetting inTransit (line 12-13). Note that
as the validated current “owner” region, it is guaranteed to have
the most recent update to this row, in its local aSeq �eld. When it
receives the Paxos ACKs from the other two regions, it wraps up its
recoloring operation with a response RPC back to the requesting
(red) region, embedding its aSeq.

In the background, each region simultaneously employs many
threads to apply local DB changes by the replicated logs of the
three Paxos groups (line 18-23), as illustrated in the middle part of
Figure 6. Here a CC_Log would result in a local color change, with
the cSeq incremented. The red region, as the requester of the recolor
operation, needs to ensure that the transaction log application of
the row in group aGID has caught up to the aSeq noted in the blue
region response RPC, to avoid operating on stale data. Afterwards,
it resets inTransit to unlock its local row, proceeds to execute
the transaction that triggered the recoloring in the �rst place, and
replicates TXN_Log globally.

The recolor operation as portrayed in the �gure generally takes
two wide-area RTTs, with each wide-area communication step
(RPC and Paxos alike) taking 0.5 RTT. While a 2PC-based recolor
implementation is also possible, the expensive coordination will
be excessive for our row-level color management. Our approach
leveraging the existing Paxos log replication infrastructure is much
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Figure 6: PolyBase recolor operation timeline, with Row A re-assigning group a�liation from Region 2 (blue) to Region 1 (red)

1 fun Recolor(row_key, cur_GID, next_GID, cSeq):
2 row = DB.Get(row_key), Lock(row.cLabel.InTransit)
3 res = req_cc(row_key, cur_GID, next_GID, cSeq)
4 if res.succ():
5 WaitSeqUpdate(res.GID, res.Seq)
6 UnLock(row.cLabel.InTransit)
7 fun OnRecolor(row_key, cur_GID, next_GID, cSeq):
8 row = DB.Get(row_key), cLabel = row.cLabel
9 if <cur_GID, cSeq> == <cLabel.GID, cLabel.cSeq>:
10 Lock(cLabel.InTransit)
11 CC_Log = {row_key, cur_GID, next_GID, deps:{cLabel.aGID,

cLabel.aSeq}}
12 seq = PaxosList[cLabel.GID].replicateLog(CC_Log)
13 UnLock(cLabel.InTransit)
14 return {Code::succ, cLabel.GID, Seq}
15 else:
16 return {Code::error} //version fall−behind or lock−timeout
17 fun ApplyLog(Log):
18 if Log is CC_Log:
19 WaitIndexUpdate(Log.deps.aGID, Log.deps.aSeq)
20 row = DB.Get(Log.row_key)
21 row.cLabel.{GID, cSeq, aSeq, aGID} = {Log.next_GID, cSeq+1,

Log.seq, Log.cur_GID}
22 else: // Log is TXN_Log:
23 ApplyTransaction(Log)

Algorithm 1: Row-level group a�liation recolor

lighter in comparison. With this sample recolor scenario, it is antici-
pated that most of the subsequent accesses to this rowwill be issued
from the red region, enjoying the local latency in both reads and
writes. Additionally, optimizations such as batching multiple oper-
ations and prefetching data in advance further minimize latency
and reduce overall costs, as detailed in Sections 5 and 6.1.
Cross-group dependency tracking. Row-level recolor opera-
tions embedded in CC_Log complicate log application at the Paxos
follower side. Please note again that at each region, there are multi-
ple Paxos groups (red, blue, and orange in our example) performing
independent log applications to the local DB. When a row gets
recolored, its a�liation changes from one group to another, with
the recoloring event becoming one synchronization point between
the log sequences of the source and the destination groups (the
parallel log application “tracks” in two colors).

Using our running example, this problem is illustrated by Figure 7
from the viewpoint of Region 3 (leading the orange group), where it
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IH1.1

ST3.2

A1.2 IK1.3

C3.3 Y3.4

waiting for deps

G1

G3

A1.4

C2.1 D2.3 FV2.4A2.2 G2

log applier

log applier

log applier

Figure 7: Sample DAG for recolor-aware log application,
where rectangles/circles represent CC_Log and TXN_Log en-
tries. Letters denote the key of row(s) accessed.

simultaneously applies logs from the three Paxos groups. Again the
shape of the log entry indicates the event type: normal transactions
(round) or recolor operations (rectangular). As row� was recolored
from blue to red, only the blue group bears the CC_Log (�1,2). The
�rst transaction updating � in the red group, however, could only
happen after this recoloring, creating a cross-group dependency in
log application, as indicated by the dashed edge.

Such a dependency edge is added in the transaction that triggered
the recolor. At the right end of Figure 6, the red region executes
the transaction after recoloring and adds related dependency infor-
mation in its TXN_Log. In this case, it writes down the GID and the
sequence number of the CC_Log, as noti�ed by the response RPC
from the blue group. With such dependency carried in the log entry,
a follower region that did not participate in the recolor operation
(orange here) learns the cross-group ordering of log entries and
ensures that �2,3’s application follows that of �1,2 (line 19).

It is rather straightforward to prove that the log “nodes” and their
local or cross-group dependency edges form a directed acyclic graph
(DAG): the edges (local or cross-group) always indicate logical
precedence, therefore if there is a cycle, two log entries in the same
group (color) would have contradicting ordering. This structure
establishes a partial order for all log entries across groups, thereby
preserving per-row linearizability (more discussions in Section 4.3).
Failure handling. For PolyBase ’s fault tolerance, two cases need
to be considered. First, if failures occur prior to recolor or after it has
been persisted (i.e., CC_Log entry successfully applied to update the
GID bit), then we o�er the same level of fault tolerance as provided
by Paxos for that record, as it manages CC_Log replication just like
that of ordinary TXN_Log. If otherwise (when a failure happens
in between those), we claim that crashed req_cc RPC will not
leave the row colors in an inconsistent state. There are further two
possibilities. If req_cc fails to complete, then the old color persists
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and an error message will be returned to the recolor RPC initiator.
However, if req_cc proceeds to the end, then the CC_Log will be
written and guarantees that the color change will persist.

Another issue is color handling when an entire region (e.g., the
red) is down. In this case, PolyBase goes through Paxos re-election
to �nd a new group leader, e.g., the blue region. Before the red region
recovers, PolyBase adopts a lazy approach that does not actively
recolor the red rows. Instead, any surviving region accessing a red
row would be told to consider it blue and perform the recolor on
demand. As region-wide failures are rare and typically short, this
avoids unnecessary large-scale recolor operations.

4.3 Correctness in Log Replication
The correctness of our proposal is based on the observation that
our row-level consensus group assignment does not alter the lin-
earizability [18] guarantee o�ered by the underlying consensus
protocol, in this case Paxos. More speci�cally, the object/row-level
linearizability delivered by such protocols for geo-replicated data-
base ensures that all replica nodes observe the same sequential
order of operations on each row. The correctness of our proposal
equals proving that for a given row, the history collectively built by
Paxos groups involving dynamic assignment forms a linear order.

To do so, we �rst de�ne the new history under the context of
our row-level assignment. Given a row A , whose a�liation can
be assigned within = Paxos groups ⌧ = (60,61, . . . ,6=�1), while
geo-located users issue a set of operations $ = (>0,>2, . . . ,>: )
that mutate A . During $’s execution, there are < a�liation re-
assignments, each by a color change request (req_cc), generating
a sequence of recolor events ⇢ =< 40, 41, . . . , 4"�1 >.
De�nition 1 (History). The history of A is de�ned as � =
(⌘0,⌘1, . . . ,⌘<), where a history segment ⌘8 is generated and main-
tained by a single Paxos group 6 2 ⌧ , concluded by a recolor event
48 that changes A ’s a�liation from 6 to 60 (and then initiates ⌘8+1).

We then formally de�ne the correctness of PolyBase’s row-level
Paxos group assignment in the following theorem.
Theorem 1. Given a row A , its history � is semantically equivalent
to a linearizable order on its operation set $ .

Theorem 1’s proof builds on the following two lemmas. Lemma
1 asserts that at any given time, for each row, there exists exactly
one consensus group whose leader can handle its write operations.
Lemma 1. For any operation > 2 $ , there exists a single ⌘ 2 � such
that > appears in ⌘.

P����. There are three cases to consider regarding the occur-
rence of recolor operations within � :
Case 1: When no recolor happens, the statement holds trivially
since the row has been owned by a single Paxos group and follows
conventional log replication/application.
Case 2: A recolor is attempted, but does not complete due to
failure. Note that the recolor log (CC_Log) itself is also replicated by
Paxos, which in this case would not reach the consensus to persist
the recolor operation. According to the recolor protocol given in
Figure 6, A would remain locked when the failure occurs, shielding
it from further updates. In this case, the recolor operation would
not appear in � at all, with A remain in the color of its source Paxos
group 6 upon recovery. The history � therefore appears the same

as in Case 1 above, with all operations located in a single segment,
recorded by 6.
Case 3: When a recolor operation is successfully executed, the
source Paxos group leader 6 logs the recoloring (CC_Log) and repli-
cates it to the majority of nodes. During this transition, all concur-
rent requests on A are blocked, ensuring that no operations in$ are
executed until the recoloring process completes. Once the CC_Log
entry is applied at the region leading 6 (A ’s “old primary region”),
the lock on A is released. At this point, regions still perceiving A as
belonging to 6 reject writes due to the metadata mismatch, while
any write operation retrieving A ’s updated GID directs requests to
the new Paxos group 60. When all nodes have applied the CC_Log
and updated A ’s color metadata, subsequent operations in $ are
handled exclusively by 60 until the next recoloring. Thus, each op-
eration appears in the appropriate history segment of either 6 or
60, ensuring consistency across segments.

⇤

Lemma 2 asserts that for any row A , any of its recolor event 4
connects the history segments managed by the recolor source and
destination Paxos groups to form a linear order.
Lemma 2. For any pair of A ’s adjacent history segments, ⌘8 and
⌘8+1, >⌘8 , |⌘8 |�1 < >⌘8+1,0, where the former is the last operation in
⌘8 , while the latter the �rst of ⌘8+1. (“<” here denotes the "preceding"
relationship.)

P����. Let 6BA2 and 63BC be the source and target Paxos groups
of the recolor event 4 , respectively. By the design of our recoloring
protocol (see Section 4.2), 4 is the last operation of ⌘8 , i.e., 4 =
>⌘8 , |⌘8 |�1. It generates a recolor log (CC_Log), which changes A ’s
GID from 6BA2 to 63BC . Write operations issued by the region leading
the group63BC could only happen after this log is applied. Following
this, there must be a read operation >A403 executed prior to >⌘8+1,0
to fetch the most updated GID value of A to determine that it is
now colored to be a�liated with 63BC . Therefore, we have >A403 <
>⌘8+1,0. Because of data dependencies on A ’s ⌧�⇡ , we also have
>⌘8 , |⌘8 |�1 < >A403 . By transitivity of happen-before relationship,
>⌘8 , |⌘8 |�1 < >⌘8+1,0. As a result, such recolor events at the end of
each history segment enforce a strict order between the operations
within the adjacent pairs of history segments, chaining them to
form a global linear order of operations. ⇤

Together, the two lemmas above ensure that PolyBase also forms
a total order on logged user operations with regard to any row
(objects), thus delivering the same linearizability guarantee as a
single Paxos group without violating Paxos semantics.

4.4 Supporting Database Integrity
Geo-replicated databases extended with PolyBase’s recoloring pro-
tocol preserve ACID transactional semantics. However, PolyBase’s
row-level Paxos group a�liation introduces challenges for enforc-
ing data integrity, particularly for constraints like unique, monoton-
ically increasing primary keys (e.g., ascending IDs used in orders,
invoices, or tracking numbers). In Spanner-style geo-replication,
consensus group assignment is tied to key-range sharding, with
new insertions handled by the region leading the shard’s consensus
group. In contrast, PolyBase assigns consensus groups at the row
level, decoupling them from sharding. This allows any region to
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Figure 8: Duplicated insertions due to lost hidden dependency

insert new keys, risking cross-region duplication or violations of
uniqueness and monotonicity constraints.
Pre-Key protocol. To this end, we adopt a pre-key protocol in-
spired by established locking mechanisms, such as MySQL’s next-
key locking [34], but tailored to maintaining data integrity in a
geo-replicated database. When inserting a new key, a region must
locate the row with the preceding key (pre-key) in the primary
index and recolor it to its own region. As explained in Section 4.2,
this recoloring e�ectively "locks" the open key range between the
pre-key and the key following it. This ensures synchronization
during key insertions and prevents inconsistencies across regions.
Augmented pre-key with deleted keys. Handling concurrent
insertions and deletions is more complex, as implicit data depen-
dencies between Paxos groups may be lost, leading to potential
duplicate insertions. Consider the case in Figure 8: three regions,
each leading one Paxos group, generate three streams of replicated
transaction logs to insert and delete rows with primary keys �,
⌫, ⇠ , ⇡ , and ⇢. Although these keys are in ascending order, the
transactions may not be. In this case, Region 1 (red) inserts �. Next,
Region 2 (blue) inserts⇠ and recolored⇠’s pre-key � as blue. After
that, Region 1 proceeds to insert key ⌫, �nds � as its pre-key, and
recolors � back to red. Region 2 then continues to insert key ⇢,
with ⇠ (already blue) as the pre-key, then deletes ⇠ . When Region
1 replays the log and sees that ⇠ was deleted, it uses ⌫ (still red) as
the correct pre-key to insert key ⇡ .

At the same time, Region 3 (orange) is slower in applying the
logs from Region 2, unaware when attempting to insert key ⇢ that
Region 2 has already done so. It identi�es ⇡ as the pre-key, recolors
it to orange, and successfully inserts ⇢ again. Such dupliated inser-
tion only becomes apparent when Region 3 later applies Region 2’s
log with the already committed insertion of ⇢.

Such problems arise because the deletion of ⇠ breaks the im-
plicit keys’ dependency in di�erent regions (from red ⇡ to blue ⇠),
manifested in the independent log application of another region.
PolyBase �xes this by requiring each region to include, as depen-
dencies in its key insertion log, any mark-deleted keys between the
pre-key and the new key (i.e., ⌫ and the deleted ⇠ when Region 1
inserts ⇡). This ensures that Region 3 cannot apply the red log to
insert ⇡ until it �rst processes the dependent blue logs, forcing it to
see Region 2’s insertion of ⇢ before making its own attempt. This
is facilitated by the widely-adopted design in modern commercial
DBs to not explicitly delete a key but to mark it with a tombstone,
thereby preserving dependencies.

4.5 Overhead Discussions
Recolor operation. PolyBase’s recolor overhead primarily de-
pends on the wide-area RTT, with each operation incurring about
2 RTTs (Figure 6): our measurement shows that with RTT at
30ms/60ms, PolyBase’s has recolor latency of 64.26ms/127.63ms.

The recoloring of multiple rows is further batched (Section 6.1),
amortizing and minimizing the overhead.
DB transactions with concurrent key insertions. When two
regions insert keys concurrently, the conventional geo-replicated
DBs rely on a global central coordination module for transaction
ordering and con�ict avoidance, requiring 1 RTT for request for-
warding. In PolyBase, if the target previous keys are local, the data
accesses of the corresponding transaction remain local. In the worst
case, recoloring remote previous keys adds 2 RTTs.
Dependency tracking. PolyBase’s dependency tracking runs in
the background with minimal impacts on ongoing transactions.
This involves microsecond-level log application and local version
checks, both handled locally. In setups with wide-area RTTs (30ms
to 200ms), this overhead is negligible.
Overall trade-o�. Note that PolyBase trades the aforementioned 2-
RTT recolor latency for much cheaper local executions for multiple
subsequent transactions, as opposed to the 2.5-RTT per-transaction
remote accesses paid by conventional DBs. Therefore, when either
we have higher RTTs (more expensive remote accesses) or a higher
ratio of requests undergoing recolor (more workload mobility),
PolyBase obtains more savings despite higher network overhead
spent on recoloring itself. In our use cases, such as cross-region data
center load balancing or smart vehicle transitions, high regional
data a�nity with necessary yet infrequent recolor operations al-
lows most subsequent transactions to remain local with an average
latency close to 1 RTT (used for replication). The worst case oc-
curs when a row’s accesses switch back to Region A right after it
meets the hotness requirement to be recolored to Region B. With
our motivating use cases, this is unlikely to be other than a rare
coincidence.

5 COLORING POLICY
5.1 Criteria for Recoloring
PolyBase recolors individual DB rows for better a�nity and latency
by placing them in the Paxos group led by the region most likely
to access them, which is driven by access hotness and correlation.
Access hotness. Access hotness, measured by recent access count,
indicates the potential gain of recoloring a row. Themajor challenge
here lies in aggregating access history globally in a decentralized
way. Again, PolyBase leverages Paxos logs double as an access
history database. But, it cannot a�ord to scan the logs to derive per-
row hotness metrics on demand when recoloring. Instead, PolyBase
adopts an 8-bit Morris counter [26, 30] per row for approximating
access count or frequency. This is managed by each Paxos group’s
log replay thread in a HashMap-based list – ‘Heat List’. The counter
increments with every write to the row and halves when the time
between successive updates exceeds a decay_time threshold. Edge
cases like execution forwarding are also handled. Speci�cally, re-
quests in Region 1 are forwarded to Region 2 and then executed;
these accesses should be counted for Region 1. For this, we incor-
porate a forward_source �eld within the log schema to indicate
such forwarding.
Access correlation. While the hotness optimization is reactive,
PolyBase proactively prefetch row’s a�liation likely to be accessed
in a region based on observed data association patterns. Inspired by
cache prefetching techniques [50], PolyBase employs a lightweight
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log-based prefetching layer, which stores the recently updated rows
in a hash table with an update timestamp vector. The parameter
rsize speci�es how many correlated rows are recorded.

Among the “hot” rows, PolyBase deploys a lightweight data min-
ing algorithm [50] to identify row groups with correlated access
patterns by comparing rows’ update timestamp vectors. Here, there
are two key parameters: lookahead, the maximum time distance
between correlated rows’ timestamp vector, and freq, the minimum
update frequency a row must meet to enter the mining process. The
algorithm has an$ (= log=) complexity, where parameter n denotes
the number of rows mined. The prefetching layer is all in-memory
and we follow a previous work [50] to limit the prefetching layer
size to 5% of available memory. By predicting forthcoming data
accesses, PolyBase can “color prefetch” correlated rows when recol-
oring. Given the common access skewness, the correlation mining
could yield further gains in some cases, as detailed in Section 6.5.
Parameter tuning. decay_time determines how quickly hotness
diminishes, with smaller values risking premature devaluation of
hot rows and larger values retaining stale rows. lookahead de�nes
the temporal window for detecting correlated rows, where smaller
values may miss associations and larger ones risk prefetching irrel-
evant rows. Optimal values depend on workload patterns: bursty
workloads favor smaller settings, while consistent patterns bene�t
from larger ones. Currently, PolyBase uses static values for these
parameters, but future work may explore dynamic tuning.

5.2 Transaction Execution Optimization
Finally, we describe PolyBase’s work�ow in transaction processing,
as outlined in Figure 4. The client requests are �rstly sent to servers
within their vicinity (¨). The request processing begins with query
analysis (≠), which examines relevant color information based on
the cLabel of involved rows. The color manager consults the Poly-
Base recolor policies (supported by access history data) to decide
whether recolor operations are needed, following the appropriate
work�ow (5.1, Æ), before proceeding to DB query execution. The
execution strategy hinges on the color distribution of accessed data.
PolyBase can recolor remote data (2 RTT) to match the local region
if it meets the criteria for hotness or correlation (4B , ∞, ±). If all the
accessed data belongs to a single remote region, the transaction is
forwarded to that region (1 RTT). In rare multi-row/color transac-
tions where rows have di�erent hottest regions, PolyBase directly
uses 2PC (2.5 RTTs, 4A) instead of recoloring, as recoloring all data
to one region could negatively impact future transactions on those
rows. Notably, if the transaction involves only local accesses (the
local region owns all data), the local database executes the query
directly (≤). Ultimately, PolyBase replicates the transaction logs
and applies them globally (≥, ¥) to ensure a consistent state.

6 EVALUATION
6.1 Implementation Details
PolyBase is a general proposal compatible with various databases, as
popular RocksDB and MySQL integration demonstrated. The Poly-
Base color manager has 8000 lines of C++ code, with an additional
1000-2000 lines for RocksDB/MySQL. We retained the transaction
and storage logic in both DBs. For MySQL, we revised its SQL layer
and log module for the color manager, while for RocksdDB, we
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Figure 9: Multi-region group setup with RTT latency (<B)

developed a logical log like MySQL’s binary log. For both, cLabel is
embedded as an invisible �eld. Log modules are also augmented to
record and process recolor-induced dependencies.

To further reduce recoloring cost, PolyBase batches concurrent
recolor requests when possible. For a query accessing multiple rows,
we divide these rows into sub-groups based on their colors and
consolidate the recolor for the sub-group into a single RPC.

PolyBase introduces no changes to Paxos, and Paxos does not
directly access the PolyBase’s metadata or DB engine. Though
PolyBase de�nes new log content for group a�liation reassignment,
it uses Paxos solely for log replication, making it also compatible
with other leader-based consensus protocols (e.g., Raft [32]). We
implement a log_replicate(logs) function, which invokes Paxos
logic for replicating CC_Log and transaction logs. Therefore, one
could replace Paxos with other leader-based consensus protocols
like Raft with minor changes.

PolyBase system runs above unchanged Paxos, thus inheriting
Paxos’ fault tolerance and per-key linearizability guarantee: it func-
tions despite the failure of 5 out of 25 + 1 replicas or client crashes.
It o�ers the same transactional semantics as its baseline DB. Finally,
it also guarantees read freshness, which means once a transaction
is committed, all future transactions will see its changes.

6.2 Experimental Setup
Testbed con�guration. We use AWS EC2 with three instances per
region across six regions to form two 3-region groups: one European
and one intercontinental. Figure 9 summarizes their region locations
and inter-regional latency. Each instance has a 16-core CPU, 64GB
DRAM, and ample SSD storage, running CentOS-7.
Baselines. PolyBase aims at dynamic workloads running on
geo-replicated databases. For an apples-to-apples comparison,
we selected three dynamic multi-primary systems: CockroachDB
(CRDB) [44], MySQL Group Replication multi-primary (MGR) [33],
and DynaMast [1]. Among them, CRDB dynamically re-partitions
data based on workload patterns. The majority of our tests use
its open-source version, which only o�ers partition-level manage-
ment, while its commercial version (denoted as “CRDB-c”) supports
row-level data primary region adjustment. MGR rotates leaders for
load balancing, similar to Mencius [7]. As for DynaMast, the latest
dynamic multi-primary architecture, there is no implementation
available and we crafted our own by strictly following its original
design and enabling general transaction support.

Each system is con�gured with synchronous geo-replication for
strong consistency. Note that in our target scenarios, the di�erence
in query execution performance due to data structure design is
dwarfed by the large cross-region RTT, ranging from 30ms to 200ms.

Finally, we compare MySQL-based PolyBase with the Amazon
Aurora Global Database (Aurora) [3], a popular multi-region cloud
service also derived from MySQL.
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Figure 10: Real workload results (numbers above bars give
average latency in ms)
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Figure 11: Adaptation to high-level load balancing

Workloads and datasets We test with the popular KV transac-
tional benchmark YCSB+T [13],the widely-used OLTP benchmark
TPC-C [8], and a real shopping cart workload collected from our
production environment. As MGR’s KV support is built on MySQL,
we tested YCSB+T by adapting SysBench [21]. Our YCSB+T dataset
contains 30 million rows (20GB). Our TPC-C workload has 200
warehouses (20GB), focusing on update-intensive New-order trans-
actions. The shopping cart workload consists of 75% read, 8% insert,
and 17% update transactions, accessing a 70GB dataset in 48 tables.
In PolyBase, one node only deploys one shard.
Recoloring parameters . We set decay_time to 60s, following
Redis [39]. We empirically chose a ;>>:0⌘403 of 5, a <8=_5 A4@
of 10, and saved approximately 100K (AB8I4) correlated rows. The
mining table size = is set to 1250 rows, as in prior work [50].

6.3 Major Use Scenarios
Baseline real workload. We begin with a baseline scenario where
requests possess a natural a�nity to users’ residence locations. The
tests run the real production shopping cart workload within the
European group (R1-R3). Requests are distributed to regions by the
user ID primary key, which simulates the typical locality around
end users’ base location, driven by 200 client threads per region.

Figure 10 shows PolyBase’s clear advantage in both throughput
and latency (average and tail): by implicitly and gradually recogniz-
ing each user’s “home region”, it colors his/her frequently accessed
row accordingly and bene�ts from local accesses. Here we paid
to use CRDB’s commercial version (“CRDB-c”), which indeed sig-
ni�cantly outperforms its open-source counterpart and the other
baselines in most cases. PolyBase, however, roughly doubles the
CRDB-c throughput, with half average/tail latency.

As we give per-region results here, in most cases R1 performs the
best, due to its relatively low latency to both R2 and R3. Interestingly,
for DynaMast R2 o�ers the highest throughput, as it happens to
host the global site selector, saving one RTT for requests there.
Load balancing upon request burst. Next, we examine onemajor
source of cross-region requests based on real-world scenarios from
Alibaba Cloud when one region undergoes a major workload burst,
due to regional events or promotions. Modern cloud infrastructure
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Figure 12: Adaptation to user mobility

allows easy detection of such bursts and quick load balancing action
to spread the extra load tomultiple nearby regions. Tests in Figure 11
simulate such a scenario by increasing the number of client threads
at R2 to 300, while the other two stay at 100. The surge is identi�ed
with a con�gurable throughput threshold (25 KTPS here) and time
threshold (30s), then handled by diverging 1/3 of the over�ow to
R1 and R3 each.

The per-region throughput timelines of PolyBase behave as ex-
pected: the R1/R3 throughput steadily increases, �nally reaching
around 9.24% above their base level before load balancing, con-
sistent with the load increase. The gradual increase re�ects the
e�ect of each row warming up to meet the hotness criterion before
its recoloring. Requests diverted to R1/R3 enjoy mostly local data
accesses due to recoloring, despite paying one RTT per transaction.

For DynaMast, we make the test more friendly by putting its
global site selector in R2, thus its R2 throughput matches that of
PolyBase before load-balancing. However, after requests are spread,
its R2 throughput comes down while R1/R3 throughput does not
signi�cantly pick up, with a huge gap in between, as all requests still
need to be checked with the global site selector (R2). The penalty
is especially harsh for reads, which compose 80% of the shopping
cart workload. Here the R2 reads enjoy high throughput (no RTTs
in checking with the site selector, no logs to replicate), while the
R1/R3 reads pay one RTT. PolyBase’s R1/R3, on the other hand,
knows each row’s color by simply checking its cLabel, making reads
diverted to data recolored to a region truly “local”.
User mobility. Another source of cross-region access is user mo-
bility, for which we simulate a scenario with users taking road trips
following customer demand in Alibaba Cloud. Here we compare
two groups of users from the same home region (R2 again), with
the “stay” group doing staycations, while the “travel” group taking
three types of vacation itineraries: round trip to R1, round trip to
R3, and a multi-city trip of visiting R3 and R1, before returning to
R2. Figure 12 reports the aggregate throughput for the two groups,
again comparing PolyBase and DynaMast.

Not surprisingly, DynaMast and PolyBase remain similar
throughput for the “stay” group. When the “travel” group departs
(at 10s), both experience a throughput dip as requests become cross-
region. PolyBase quickly recovers by recoloring user data to the
new regions, even exceeding its original throughput since R2 has
higher latency to both R1 and R3. In contrast, DynaMast stabilizes
at lower throughput as traveling users continue relying on the site
selector in R2. Later, PolyBase brie�y dips again when a third of
the ’travel’ group moves from R3 to R1 but promptly recovers.
Crash Recovery. Another scenario important to any application
is fault tolerance in the event of regional failures. Here we check
a demanding scenario requiring intercontinental recovery, using
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Figure 13: PolyBase recovery upon region-wide failure

Figure 14: YCSB+Tperformance (CRDB tail latency truncated,
up to 5000ms)
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Figure 15: Per-request RTT count breakdown (10% remote
ratio, 50 threads)

regions R4-R6, each with 100 client threads. Figure 13 portraits
PolyBase’s aggregate throughput over time, with R4 shut down at
around the 35-second mark, resulting in a 1/3 throughput loss. In
about 5 seconds, the underlying Paxos consensus group led by R4
re-elects a new leader (R5), with the latter taking over requests orig-
inally routed to R4. Subsequently, PolyBase’s throughput rebounds
rapidly, albeit stabilizing at a lower overall level, as cross-region
request forwarding results in higher per-transaction latency. As
discussed in Section 4.2, all the rows colored to R4 will now be con-
sidered as having the R5 color (with cLabel updated upon access).

6.4 Benchmark Performance
YCSB+T. With PolyBase’s advantages showcased in the previous
set of experiments, we now examine its behavior in unfriendly
settings, starting with a set of YCSB+T tests with varying ratios
of transactions that require remote data access, conducted within
the intercontinental region group. Here each client transaction
contains 10 interactive updates, issued to its nearest region. Sim-
ulating regional locality, each client has an exclusive data access
range. In addition, certain data ranges are shared among all clients
to emulate random and dynamic data tra�c across regions. We
manipulate such tra�c by setting the ratio of these inter-region
transactions within the workload at three levels: 0, 10%, and 50%.
Note that the set of data initially assigned to the Paxos group led
by the local region is not identical to its client-side exclusive range.
More importantly, the “cross-region accesses” evaluated are indeed

Figure 16: TPC-C performance (CRDB tail latency truncated,
up to 7500ms)

Table 2: TPC-C throughput comparison w. Aurora
R4 R5 R6

Aurora 450.1 2.3 2.3
PolyBase 1590.6 1410.7 1421.2

random, unlike the dynamic yet consistent region switches assessed
in the previous tests. They instead present a worst-case scenario
for PolyBase, where it �nds little reason or bene�t from recoloring.

Figure 14 reports results with escalating concurrency (num-
ber of threads) and varying cross-region transaction ratios. As
expected, PolyBase signi�cantly outperforms other baselines, im-
proving throughput up to 1.2-21.8⇥ and reducing P95 latency by
1.14-30.5⇥. CRDB and MGR, lacking e�ective data regional a�nity
detection, maintain consistent but low performance across all test
cases. In contrast, both DynaMast and PolyBase exploit data access
locality to promote local executions, though their performance also
degrades signi�cantly as the cross-region transaction ratio grows.

DynaMast, due to its design of having a single global “site selec-
tor”, experiences heavier performance decline, with PolyBase wins
by 1.2-1.7⇥ in throughput and 1.1-2.0⇥ in P95 latency. In particular,
forcing all requests to go through the global site selector to query
the data primary region, DynaMast hurts local transactions, which
do not access remote data at all (the 0% cross-region ratio case).

Figure 15 zooms into one test case, showing the breakdown of
queries by the number of wide-area RTTs and the average latency
for PolyBase and DynaMast. Both systems require one RTT per
transaction for global log replication via Paxos. However, PolyBase
eliminates wide-area RTTs for 90% of requests through adaptive re-
coloring, making these requests local. In contrast, DynaMast’s cen-
tralized primary site management increases RTT counts. Although
it uses row-level reassignment, two-thirds of its “local” accesses
incur an additional RTT to con�rm ownership via a remote global
site selector. The latency gap widens further with asynchronous
log replication (Figure 2), as the baseline RTT is removed.
TPC-C. Figure 16 presents similar test cases but with TPC-C. The
results are also quite similar to that of YCSB+T: compared to Dyna-
Mast, the strongest among the baselines, PolyBase brings a through-
put improvement of 61%, 64%, and 28% at the three cross-region
ratio levels respectively, with corresponding latency reduction.
Global cloud database comparison. We compare PolyBase with
the Aurora Global Database (MySQL version), aligning regions (R4-
R6) and resources for a fair cross-region behavior comparison. Here,
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we focus on their cross-region relative behavior. Both systems use
asynchronous replication, with Aurora restricting writes to a single
primary region (R4). Table 2 shows Aurora’s R5/R6 throughput is
under 1% of R4’s, while PolyBase achieves more consistent cross-
region performance, albeit with higher throughput in R4 due to its
lower latency to R5/R6.
Scanworkload. Finally, we evaluate scan performance by adapting
YCSB-E to create a workload quite unfriendly to PolyBase. In the
test, 100 threads in R1 execute scans (each with a length of 5000
records, around 30% non-local), while another 20 threads in R2+R3
issue writes to impose a heavy log application overhead on R1.

When scanning mixed-color data, PolyBase incurs a latency of
11.00 ms, a modest 13% increase over pure local scans (9.68 ms
with no concurrent updates). This slowdown, due to waiting for
Paxos log application from other regions under snapshot isolation
(see Section 3.1), is minor given the average 30 ms cross-region
RTT. Overall, PolyBase improves transaction latency globally, as
the 13% latency increase for the mixed-color scans is easily o�set
by the latency savings from write transactions that would have
been cross-region.

6.5 Other Optimizations
This series of tests further evaluates the performance impact of
PolyBase’s internal optimizations.
Global hotness-aware scheduling. Firstly, we evaluate PolyBase
hotness-aware recoloring, using YCSB+T with 100 client threads
each in R4-R6. Every transaction has 5 queries, with 10% of queries
and 40% of transactions access remote-owned data. Unlike tests in
Section 6.4, the 10% remote access overlaps with local accesses in the
“home region,” requiring conservative recoloring. Without hotness-
aware recoloring, PolyBase is hyper-sensitive and indiscriminately
recolors each row to the region accessing it. Hotness-aware recol-
oring reduces the median latency by 63%, the P95 tail latency by
27%, and the number of recolor operations by 90%.
Correlation-aware proactive recoloring. We then assess Poly-
Base “color prefetching” using access correlation mining with a
YCSB+T workload following a Zip�an-0.99 distribution, where 80%
of accesses target 36% of the data. In this setup, 36% of “hot” rows are
paired and accessed by transactions with two queries. The test runs
on R4 and R6. Our results indicate that without correlation-aware
recoloring, the average latency is approximately 500 ms, around 3
RTTs, which means one recoloring (2 RTTs) plus log replication (1
RTT). Proactive recoloring improves overall throughput by up to
30.8%, roughly removing one RTT with recoloring by association,
even when the two regions have 100% overlapping hot datasets.
Deterministic transaction processing. We further check Poly-
Base’s performance under deterministic transactions, comparing
with two state-of-the-art geo-replicated deterministic databases,
SLOG [40] and Detock [31]. For fairness, we adopted a batching
request submission model in PolyBase, where the write sets of trans-
actions can be known ahead of the batch’s execution. Our results
show that PolyBase outperforms SLOG and Detock by up to 3.35⇥
and 2.05⇥, respectively, due to their design ine�ciencies. SLOG
relies on a single global Paxos module, while Detock struggles with
scalability limitations and extended wait times due to its heavy,
graph-based concurrency control.

7 RELATEDWORK
In addition to prior work detailed in Section 2, we discuss other
relevant works in the following categories.
Dynamic sharding. Numerous systems utilize data migration
to adapt to dynamic workload locality, but either without trans-
action support (Akkio [4], Tuba [5]) or by analyzing workload
traces o�ine (Schism [12]). Some systems dynamically con�gure
replica location and Paxos roles for partitioned databases (Sharov
et al. [42]), while others support row-level primary region changes
for geo-distributed setups (L-Store [25], CRDB [48]). However, the
CRDB’s approach can cause excessive migrations and require client
involvement. In contrast, PolyBase is a fully geo-replicated database
with transaction support for dynamic workloads, using lightweight
metadata updates for reassignment instead of moving large physical
data copies across regions.
Consensus protocols. To eliminate the single leader bottle-
neck in Paxos, multileader and leaderless solutions were proposed.
Multileader solutions, like "2Paxos [38], ZooNet [24] and Swift-
Paxos [41], enhance parallelism for non-con�ict operations’ per-
formance. WPaxos and DPaxos [28] adapt to dynamic workloads
by allowing leaders to utilize geographically localized quorums.
Leaderless Paxos protocols like EPaxos [46] and Tempo [14] allow
replicas to commit non-con�icting operations opportunistically.
Mencius [7] employs a round-robin fashion for load balance, su�er-
ing long latency for cross-region con�icting operations. Unlike the
Paxos protocols, which only handle log replication at the database
commit stage, PolyBase dynamically adjusts Paxos group a�lia-
tions to fully support transaction processing and reduce latency
without modifying the Paxos protocol itself.
Geo-distributed database. Many approaches aim to reduce cross-
region latency in geo-distributed transactions. They range from
leveraging the optimistic concurrency control (OCC) protocol to
speed up transactions [16, 22, 29, 52], combining concurrency con-
trol with replication into one RTT [27, 51], overlapping the stages
of 2PC and replication during transaction execution [49], to adopt
a deterministic transaction model but with limited application
scopes [45]. In contrast, PolyBase targets geo-replicated DBs and
our recoloring protocol transforms most geo-distributed transac-
tions into local ones with large performance gains, without losing
support for general transactions.

8 CONCLUSION
PolyBase builds bridges atop a federation of isolated “Paxos islands”.
This innovative approach to geo-replicated databases fosters new
optimization avenues by shifting Paxos a�liation across multiple
Paxos groups at the �nest granularity. Through �exible and adapt-
able management, PolyBase signi�cantly improves transaction per-
formance and decouples geo-replication from sharding, thereby
revolutionizing the e�ciency and e�ectiveness of geo-replicated
databases, when adapting to data a�nity changes.

ACKNOWLEDGMENTS
We sincerely thank all anonymous reviewers for their insightful
feedback. This work was supported in part by the National Key
R&D Program of China under Grant No.2024YFB4505701. Cheng
Li is the corresponding author.

713



REFERENCES
[1] Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. 2020. DynaMast: Adap-

tive dynamic mastering for replicated systems. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1381–1392.

[2] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tev�k Kosar. 2019.
WPaxos: Wide area network �exible consensus. IEEE Transactions on Parallel
and Distributed Systems 31, 1 (2019), 211–223.

[3] Inc Amazon Web Services. 2023. Amazon Aurora Global Database. https://aws.
amazon.com/rds/aurora/global-database/. "[accessed-Sep-2024]".

[4] Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas, Igor
Zinkovsky, Luning Pan, Tony Savor, David Nagle, and Michael Stumm. 2018.
Sharding the Shards: Managing Datastore Locality at Scale with Akkio.. In OSDI.
445–460.

[5] Masoud Saeida Ardekani and Douglas B Terry. 2014. A self-con�gurable geo-
replicated cloud storage system. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). 367–381.

[6] Mahesh Balakrishnan, Chen Shen, Ahmed Jafri, Suyog Mapara, David Geraghty,
Jason Flinn, Vidhya Venkat, Ivailo Nedelchev, Santosh Ghosh, Mihir Dharamshi,
et al. 2021. Log-structured protocols in delos. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles. 538–552.

[7] Catalonia-Spain Barcelona. 2008. Mencius: building e�cient replicated state
machines for WANs. In 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 08).

[8] TPC Benchmark. 2022. TPC-C. http://www.tpc.org/tpcc/. "[accessed-Sep-2024]".
[9] Francesco Calabrese, Mi Diao, Giusy Di Lorenzo, Joseph Ferreira Jr, and Carlo

Ratti. 2013. Understanding individual mobility patterns from urban sensing
data: A mobile phone trace example. Transportation research part C: emerging
technologies 26 (2013), 301–313.

[10] James C Corbett, Je�rey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Je�rey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.

[11] CRDB. 2023. CRDB Follower Reads. https://www.cockroachlabs.com/docs/
stable/follower-reads. "[accessed-Sep-2024]".

[12] Carlo Curino, Evan Philip Charles Jones, Yang Zhang, and Samuel R Madden.
2010. Schism: a workload-driven approach to database replication and partition-
ing. (2010).

[13] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Röhm. 2014. YCSB+ T:
Benchmarking web-scale transactional databases. In 2014 IEEE 30th International
Conference on Data Engineering Workshops. IEEE, 223–230.

[14] Vitor Enes, Carlos Baquero, Alexey Gotsman, and Pierre Sutra. 2021. E�cient
replication via timestamp stability. In Proceedings of the Sixteenth European
Conference on Computer Systems. 178–193.

[15] Facebook. 2023. RocksDB. https://github.com/facebook/rocksdb. "[accessed-
Sep-2024]".

[16] Hua Fan and Wojciech Golab. 2019. Ocean vista: gossip-based visibility control
for speedy geo-distributed transactions. Proceedings of the VLDB Endowment 12,
11 (2019), 1471–1484.

[17] Alibaba Group. 2023. PolarDB Global Database Networks. https://www.
alibabacloud.com/help/en/polardb-for-mysql/latest/global-database-networks.
"[accessed-Sep-2024]".

[18] Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming Languages
and Systems (TOPLAS) 12, 3 (1990), 463–492.

[19] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[20] Antonios Katsarakis, Yijun Ma, Zhaowei Tan, Andrew Bainbridge, Matthew
Balkwill, Aleksandar Dragojevic, Boris Grot, Bozidar Radunovic, and Yongguang
Zhang. 2021. Zeus: locality-aware distributed transactions. In Proceedings of the
Sixteenth European Conference on Computer Systems. 145–161.

[21] Alexey Kopytov. 2022. Sysbench. https://github.com/akopytov/sysbench.
"[accessed-Sep-2024]".

[22] Tim Kraska, Gene Pang, Michael J Franklin, Samuel Madden, and Alan Fekete.
2013. MDCC: Multi-data center consistency. In Proceedings of the 8th ACM
European Conference on Computer Systems. 113–126.

[23] Leslie Lamport. 2001. Paxos made simple. ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001) (2001), 51–58.

[24] K�r Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer. 2016. Mod-
ular composition of coordination services. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16). 251–264.

[25] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and
Zhengkui Wang. 2016. Towards a non-2pc transaction management in dis-
tributed database systems. In Proceedings of the 2016 International Conference on
Management of Data. 1659–1674.

[26] Robert Morris. 1978. Counting large numbers of events in small registers. Com-
mun. ACM 21, 10 (1978), 840–842.

[27] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Consolidating
Concurrency Control and Consensus for Commits under Con�icts.. In OSDI.
517–532.

[28] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2018. Dpaxos: Managing
data closer to users for low-latency and mobile applications. In Proceedings of
the 2018 International Conference on Management of Data. 1221–1236.

[29] Faisal Nawab, Vaibhav Arora, Divyakant Agrawal, and Amr El Abbadi. 2015.
Minimizing commit latency of transactions in geo-replicated data stores. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. 1279–1294.

[30] Jelani Nelson and Huacheng Yu. 2022. Optimal bounds for approximate counting.
In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems. 119–127.

[31] Cuong DT Nguyen, Johann K Miller, and Daniel J Abadi. 2023. Detock: High
Performance Multi-region Transactions at Scale. Proceedings of the ACM on
Management of Data 1, 2 (2023), 1–27.

[32] Diego Ongaro and John Ousterhout. 2015. The raft consensus algorithm. Lecture
Notes CS 190 (2015), 2022.

[33] Oracle. 2023. MySQL Group Replication. https://dev.mysql.com/doc/refman/5.7/
en/group-replication.html. "[accessed-Sep-2024]".

[34] Oracle. 2023. MySQL Next Key Locking. https://dev.mysql.com/doc/refman/8.0/
en/innodb-next-key-locking.html. "[accessed-Sep-2024]".

[35] Oracle. 2023. MySQL Server. https://github.com/mysql/mysql-server. "[accessed-
Sep-2024]".

[36] Oracle. 2023. Processing SQL Statements with JDBC. https://docs.oracle.com/
javase/tutorial/jdbc/basics/processingsqlstatements.html. "[accessed-Sep-2024]".

[37] Andy Palvo. 2023. What Are We Doing With Our Lives? Nobody Cares About
Our Research on Concurrency Control. https://www.cs.cmu.edu/~./pavlo/slides/
pavlo-keynote-sigmod2017.pdf. "[accessed-Sep-2024]".

[38] Sebastiano Peluso, Alexandru Turcu, Roberto Palmieri, Giuliano Losa, and Binoy
Ravindran. 2016. Making fast consensus generally faster. In 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE, 156–167.

[39] Redis. 2024. What is Redis. https://github.com/redis/redis. "[accessed-Sep-2024]".
[40] Kun Ren, Dennis Li, and Daniel J Abadi. 2019. Slog: Serializable, low-latency,

geo-replicated transactions. Proceedings of the VLDB Endowment 12, 11 (2019),
1747–1761.

[41] Fedor Ryabinin, Alexey Gotsman, and Pierre Sutra. 2024. {SwiftPaxos}: Fast
{Geo-Replicated} State Machines. In 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24). 345–369.

[42] Artyom Sharov, Alexander Shraer, Arif Merchant, and Murray Stokely. 2015.
Take me to your leader! online optimization of distributed storage con�gurations.
(2015).

[43] Je� Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric
Rollins, Mircea Oancea, Kyle Little�eld, David Menestrina, Stephan Ellner, et al.
2013. F1: A distributed SQL database that scales. (2013).

[44] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. 2020.
Cockroachdb: The resilient geo-distributed sql database. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 1493–1509.

[45] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J Abadi. 2012. Calvin: fast distributed transactions for parti-
tioned database systems. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 1–12.

[46] Sarah Tollman, Seo Jin Park, and John Ousterhout. 2021. EPaxos Revisited. In
18th USENIX Symposium on Networked Systems Design and Implementation (NSDI
21). 613–632.

[47] Robbert Van Renesse and Deniz Altinbuken. 2015. Paxos made moderately
complex. ACM Computing Surveys (CSUR) 47, 3 (2015), 1–36.

[48] Nathan VanBenschoten, Arul Ajmani, Marcus Gartner, Andrei Matei, Aayush
Shah, Irfan Sharif, Alexander Shraer, Adam Storm, Rebecca Taft, Oliver Tan,
et al. 2022. Enabling the Next Generation of Multi-Region Applications with
CockroachDB. In Proceedings of the 2022 International Conference on Management
of Data. 2312–2325.

[49] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard Wong,
Kenneth Salem, and Tim Brecht. 2018. Carousel: Low-latency transaction pro-
cessing for globally-distributed data. In Proceedings of the 2018 International
Conference on Management of Data. 231–243.

[50] Juncheng Yang, Reza Karimi, Trausti Sæmundsson, Avani Wildani, and Ymir
Vigfusson. 2017. Mithril: mining sporadic associations for cache prefetching. In
Proceedings of the 2017 Symposium on Cloud Computing. 66–79.

[51] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres, Arvind Krishnamurthy,
and Dan RK Ports. 2018. Building consistent transactions with inconsistent
replication. ACM Transactions on Computer Systems (TOCS) 35, 4 (2018), 1–37.

[52] Weixing Zhou, Qi Peng, Zijie Zhang, Yanfeng Zhang, Yang Ren, Sihao Li, Guo
Fu, Yulong Cui, Qiang Li, Caiyi Wu, et al. 2023. GeoGauss: Strongly Consistent
and Light-Coordinated OLTP for Geo-Replicated SQL Database. Proceedings of
the ACM on Management of Data 1, 1 (2023), 1–27.

714

https://aws.amazon.com/rds/aurora/global-database/
https://aws.amazon.com/rds/aurora/global-database/
http://www.tpc.org/tpcc/
https://www.cockroachlabs.com/docs/stable/follower-reads
https://www.cockroachlabs.com/docs/stable/follower-reads
https://github.com/facebook/rocksdb
https://www.alibabacloud.com/help/en/polardb-for-mysql/latest/global-database-networks
https://www.alibabacloud.com/help/en/polardb-for-mysql/latest/global-database-networks
https://github.com/akopytov/sysbench
https://dev.mysql.com/doc/refman/5.7/en/group-replication.html
https://dev.mysql.com/doc/refman/5.7/en/group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-next-key-locking.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-next-key-locking.html
https://github.com/mysql/mysql-server
https://docs.oracle.com/javase/tutorial/jdbc/basics/processingsqlstatements.html
https://docs.oracle.com/javase/tutorial/jdbc/basics/processingsqlstatements.html
https://www.cs.cmu.edu/~./pavlo/slides/pavlo-keynote-sigmod2017.pdf
https://www.cs.cmu.edu/~./pavlo/slides/pavlo-keynote-sigmod2017.pdf
https://github.com/redis/redis

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Geo-Replicated Database and Paxos Setup
	2.2 Existing Dynamic Leadership Methods

	3 PolyBase Overview
	3.1 System Model
	3.2 Software Architecture

	4 Dynamic Row Coloring
	4.1 Row-Level Color Annotation
	4.2 Recoloring Protocol
	4.3 Correctness in Log Replication
	4.4 Supporting Database Integrity
	4.5 Overhead Discussions

	5 Coloring Policy
	5.1 Criteria for Recoloring
	5.2 Transaction Execution Optimization

	6 Evaluation
	6.1 Implementation Details
	6.2 Experimental Setup
	6.3 Major Use Scenarios
	6.4 Benchmark Performance
	6.5 Other Optimizations

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

