
Explaining GNN-based Recommendations in Logic
Wenfei Fan

Beihang University, China
Shenzhen Institute of

Computing Sciences, China
University of Edinburgh

United Kingdom
wenfei@inf.ed.ac.uk

Lihang Fan
Beihang University, China

fanlh@buaa.edu.cn

Dandan Lin∗
Shenzhen Institute of

Computing Sciences, China
lindandan@sics.ac.cn

Min Xie
Shenzhen Institute of

Computing Sciences, China
xiemin@sics.ac.cn

ABSTRACT
This paper proposes Makex (MAKE senSE), a logic approach to ex-
plaining why a GNN-based modelM(𝐿,𝑀) recommends item 𝑀 to
user 𝐿 . It proposes a class of Rules for ExPlanations, denoted asREPs
and de!ned with a graph pattern Q and dependency 𝑁 → M(𝐿,𝑀),
where 𝑁 is a collection of predicates, and the model M(𝐿,𝑀) is
treated as the consequence of the rule. Intuitively, givenM(𝐿,𝑀),
we discover pattern Q to identify relevant topology, and precon-
dition 𝑁 to disclose correlations, interactions and dependencies of
vertex features; together they provide rationals behind prediction
M(𝐿,𝑀), identifying what features are decisive forM to make pre-
dictions and under what conditions the decision can be made. We
(a) de!ne REPs with 1-WL test, on which most GNN models for
recommendation are based; (b) develop an algorithm for discov-
ering REPs for M as global explanations, and (c) provide a top-𝑂
algorithm to compute top-ranked local explanations. Using real-life
graphs, we empirically verify that Makex outperforms previous
explanation methods in terms of !delity, sparsity and e"ciency.

PVLDB Reference Format:
Wenfei Fan, Lihang Fan, Dandan Lin, Min Xie. Explaining GNN-based
Recommendations in Logic. PVLDB, 18(3): 715 - 728, 2024.
doi:10.14778/3712221.3712237

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/SICS-Fundamental-Research-Center/Makex.

1 INTRODUCTION
Graph neural networks (GNNs) have found prevalent use in recom-
mender systems since they accurately model user preferences from
historical user-item interactions by exploring multi-hop relation-
ships between users and items in graph-structured data [29, 45, 81].
A variety of GNN-based recommendation models have been trained
e.g., [13, 15, 16, 19, 34, 37, 39, 40, 44, 46, 47, 52, 62, 67, 71, 73, 75, 78,
81] (surveyed in [29, 76]), and deployed at e.g., Pinterest [81], Ten-
cent [45, 87], Alibaba [65], Amazon [3, 4, 48] and Uber [6].

With this comes the need for explaining GNN-based recommen-
dationsM(𝐿,𝑀), to tell why an item 𝑀 is recommended to user 𝐿 .
∗Dandan Lin is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.
doi:10.14778/3712221.3712237

The reason is twofold, (a) to provide the users with insights and
establish their trust in the predictions [42, 43, 57], and (b) help
developers debug ML models by revealing errors or bias in training
data that result in adverse and unexpected behaviors [50].

Explaining GNN-based predictions has been approached as fol-
lows: (a) self-explainable GNN models build explanations in a spe-
ci!c model and generate explanations when making a prediction;
e.g., Ripplenet [64], KPRN [70], TMER [18], RuleRec [53], PGPR [77]
and KGIN [68] discover meta-paths from knowledge graphs (KGs)
as explanations; and (b) post-hoc methods generate explanations
after a model makes a prediction, e.g., GraphLime [38], GNNEx-
plainer [82], PGExplainer [49], SubgraphX [85] andGraphMask [59]
extract subgraphs and/or features as explanations.

There are several concerns about these methods. (1) These meth-
ods extract meta-paths/subgraphs and/or features as explanations,
but do not discern what features are decisive and under what condi-
tions the recommendations can be made. (2) The e#ectiveness of ex-
planations is often measured in terms of (a) !delity for how faithful
explanations are to predictions, as the ratio of GNN predictions that
the explanations successfully reproduce, and (b) sparsity for how
concise an explanation is [84], as the ratio of the number of selected
edges to the number of all edges in a graph. Higher !delity indi-
cates thatmore discriminative structures/features are identi!ed, and
lower sparsity means that explanations capture mostly important
information only. The previous explanation methods often yield
!delity and/or sparsity that do not meet the expectations of practi-
tioners. (3) These methods focus on local explanations for a predic-
tion M(𝐿,𝑀) at speci!c user 𝐿 and item 𝑀, but do not give global
explanations to reveal rationales behind the general behavior ofM.
Example 1: Consider a fraction of a real-life graph𝑃 in Figure 1(a)
(the bottom-right shows a simpli!ed version). A GNN modelM1
recommends a movie 𝑄 “Everything Everywhere All at Once” to
a user 𝑅 “Mike”, denoted by M1 (𝑅, 𝑄). As a local explanation for
M1 (𝑅, 𝑄), SubgraphX [85] extracts a subgraph from𝑃 that includes
most of the edges within 2 hops of 𝑅 and 𝑄 , as shown in Figure 1(b).
However, it does not tell us which features are decisive. GNNEx-
plainer [82] returns both a subgraph and a batch of vertex features,
as shown in Figure 1(c). However, the subgraph is disconnected and
does not tell the connection between 𝑅 and 𝑄 . Besides, the extracted
features are the same for all vertices, and do not reveal di#erent
impacts of various vertices on theM1 prediction. !

In light of these, we propose Makex (MAKE senSE), a logic
method to explain GNN-based recommendations.Makex introduces
a class of logic rules, referred to REPs (Rules for ExPlanations).
Given a GNN modelM, we discover REPs Q[𝐿,𝑀] (𝑁 → M(𝐿,𝑀)),

715

https://doi.org/10.14778/3712221.3712237
https://github.com/SICS-Fundamental-Research-Center/Makex
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712237
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Various local explanations for why modelM1 recommends movie 𝐿 to user 𝑀

where Q is a graph pattern, and 𝑁 is a collection of predicates.
When M recommends item 𝑂 to user 𝑃 , Q identi!es topology of 𝑃
and 𝑂 relevant to the decision, and 𝑁 discloses conditions on ver-
tex features. Intuitively, these rules provide global explanations to
reveal what edges and features are most responsible for M recom-
mendation. They can also deduce local explanations for a prediction
M(𝑃,𝑂) at user 𝑃 and item 𝑂, in terms of satis!ed REPs and their
witnesses (topological matches and vertex features identi!ed by Q
and 𝑁) as evidence. Moreover, they reveal not only decisive vertex
features but also the correlations, interactions and dependencies of
the features as conditions under which M recommends 𝑂 to 𝑃 .

Example 2: Continuing with Example 1, we discover REPs forM1
as its global explanations. As will be seen in Section 6, for a GNN
model on a dataset, we can typically discover 110 REPs on average.

We also deduce local explanations with the discovered REPs. An
example local explanation is shown in Figure 1(d), with an REP

𝑄1 = Q1 [𝑃0,𝑂0] (𝑁1 → M1 (𝑃0,𝑂0)),
where𝑁1 is 𝑃0 .sex = Male↑𝑃1 .sex = Male↑𝑃2 .rating ↓ 6↑𝑃3 .id =
𝑂1 .id↑ 𝑃4 .genre = Action↑𝑃5 .genre = Action↑𝑂0 .genre = Action.
As shown at the top of Figure 1(d), the pattern Q1 and logic
conditions 𝑁1 of 𝑄1 explain whyM1 recommends a movie 𝑂0 to a
male user 𝑃0 because (a) 𝑃0 has watched at least two action movies
before (which have the same genre as 𝑂0), (b) 𝑃0 has a male friend
𝑃1 who likes high rating movie 𝑃2 (rating ↓ 6) directed by 𝑃3,
and (c) 𝑂0 is an award-winning movie directed by 𝑃3 (i.e., 𝑂1 since
𝑃3 .id = 𝑂1 .id). By !nding matches of this REP in the graph, a local
explanation forM(𝑀, 𝐿) at user 𝑀 and movie 𝐿 can be deduced, as
shown at the bottom of Figure 1(d). It concretizes REP 𝑄1 and says
that the action movie 𝐿 is recommended to Mike because Mike has
watched two action movies before, the movie won the 95th academy
award for best picture, and it is directed by “Daniel Scheinert”, the
director of a favorite movie of a male friend Peter of Mike.

Compared to Figures 1(b) and (c),Makex extracts (1) just decisive
topology and features, instead of complex subgraphs and one-size-
!t-all features; and (2) not only features but also logic conditions
under which theML prediction is made. Moreover, (3)Makexmines
REPs in line with the aggregation of neighbor information in GNNs,
by means of easy-to-interpret graph patterns, logic conditions and
1-dimensional Weisfeiler-Leman (1-WL) test [72] (see below). !

Contribution & organization.Makex is novel in the following.

(1) REPs: Rules for explanations (Section 2).Makex proposes REPs
of the form Q[𝑃,𝑂] (𝑁 → M(𝑃,𝑂)). Departing from prior rules, an
REP takes a given GNNmodelM(𝑃,𝑂) of interest as its consequence.
The pattern Q and precondition 𝑁 reveal topology and conditions
on vertex features for M(𝑃,𝑂) to recommend item 𝑂 to user 𝑃 ,
respectively. We de!ne Q as a pair of star patterns to pick most
relevant features, such that it is tractable to check matches of Q
in a graph. In addition to traditional predicates, 𝑁 supports the
1-WL test [72] as a predicate. Intuitively, the 1-WL test is a graph-
theoretic technique used for comparing the structure of graphs (e.g.,
to check whether two graphs can be distinguished), and has been
widely used in e.g., network analysis and computational chemistry.
Since “most existing GNN models for link prediction are based on
1-WL test” [32, 35, 54, 79], the 1-WL test can be used to explain the
behaviors of GNN-based recommendations in principle.

(2) Makex: A system (Section 3). Given any GNN-based modelM
and user-item interaction graph𝑅 (enriched with data from knowl-
edge bases),Makex !rst discovers a set ω of REPs in𝑅 guided byM,
i.e., givenM, it identi!es topology Q and precondition 𝑁 on vertex
features forM to make predictions. The set ω of REPs reveals the
general behaviors of M and provides global explanations for M.
Then wheneverM recommends item 𝐿 to user 𝑀,Makex employs
ω to generate local explanations for predictionM(𝑀, 𝐿) (see below).
(3) Rule discovery (Section 4). We present the algorithm underlying
Makex for discovering REPs. As opposed to previous rule discovery
algorithm, this algorithm learns REPs that pertain to a given GNN
model M. To faithfully simulate M’s predictions, it !rst !nds the
patterns of REPs by adapting Monte Carlo tree search (MCTS) [14,
61, 85], and then selects precondition𝑁 of decisive predicates under
each pattern Q with a divide-and-conquer approach on paths.

(4) Top-ranked local explanations (Section 5). When M(𝑀, 𝐿) pre-
dicts true in graph 𝑅 , Makex identi!es local explanations for the
prediction. It !nds REPs of ω that are applicable to 𝑀 and 𝐿 , and
their witnesses at 𝑀 and 𝐿 . It proposes ranking criteria for REPs and
witnesses, and develops a top-𝑆 algorithm such that when there
are multiple rules applicable and/or a rule has multiple witnesses,
it returns top-ranked explanations. The algorithm is in polynomial
time (PTIME). It employs pruning strategies for early termination.

(5) Experimental study (Section 6). Using real-life graphs, we empir-
ically !nd the following. (a)Makex provides e"ective local explana-

716

�1
�2 �5

�1
�2

�3 �4

�5

itr=1
�3 �4

G

�1
�2

�3 �4

�5

itr=2
Figure 2: An example of 1-WL test

tions, e.g., the !delity and sparsity of its top-1 explanation are 0.893
and 0.00225% on average, 80.62% and 3 orders of magnitude better
than the baselines, respectively. (b) Makex is e"cient in providing
local explanations, 75.8X faster than baselines on average, e.g., it
takes only 0.38s to generate top-1 explanation on a graph with 119K
vertices and 3.7M edges. (c) The global explanations byMakex have
higher recognizability and reliability than the baselines by up to
72% and 95%, respectively, i.e.,Makex is faithful to GNN predictions.
(d)Makex is faster than existing global methods by up to 7X.

We discuss related work in Section 7 and future work in Section 8.

2 RULES FOR EXPLANATIONS
We start with basic notations and review the 1-WL test (Section 2.1).
We then present the syntax and semantics of REPs (Section 2.2).
Frequently-used notations are summarized in Table 1 (more in [10]).
2.1 Star Patterns and 1-WL Test
Assume two countably in!nite sets of symbols, denoted by ω and
ε, for (vertex and edge) labels and attributes, respectively.
Graphs. We consider directed labeled graphs, speci!ed as 𝑃 =
(𝑆 , 𝑇, 𝑈, 𝑉𝐿), where (a)𝑆 is a !nite set of vertices; (b) 𝑇 ↑ 𝑆 ↓ω↓𝑆
is a !nite set of edges, in which 𝑊 = (𝑄, 𝑋, 𝑄 ↔) denotes an edge labeled
with 𝑋 ↗ ω from vertex 𝑄 to 𝑄 ↔; (c) each vertex 𝑄 ↗ 𝑆 has label 𝑈(𝑄)
from ω; and (d) each vertex 𝑄 ↗ 𝑆 carries a tuple 𝑉𝐿 (𝑄) = (𝑌1 =
𝑍1, . . . ,𝑌𝑀 = 𝑍𝑀) of attributes of a !nite arity, where 𝑌𝑁 ↗ ε and 𝑍𝑁
is a constant, written as 𝑄 .𝑌𝑁 = 𝑍𝑁 , and 𝑌𝑁 ω 𝑌 𝑂 if 𝑎 ω 𝑏 , represent-
ing features of 𝑄 . Di#erent vertices may carry di#erent attributes,
which are not constrained by a schema like relational databases.
Paths. A path 𝑐 from a vertex 𝑄0 in𝑃 is a list 𝑐 = (𝑄0, 𝑄1, . . . , 𝑄𝑀↘1, 𝑄𝑀)
such that (𝑄𝑁↘1, 𝑋𝑁↘1, 𝑄𝑁) is an edge in𝑃 labeled with 𝑋𝑁↘1 (𝑎 ↗ [1,𝑑]).
We consider simple paths on which each vertex appears at most
once. The last vertex 𝑄𝑀 is called the leaf of 𝑐 . A vertex 𝑄𝑁 is a child
of 𝑄𝑁↘1 if there is an edge (𝑄𝑁↘1, 𝑋𝑁↘1, 𝑄𝑁) in 𝑇, and 𝑄𝑁↘1 is a parent
of 𝑄𝑁 . The length |𝑐 | of 𝑐 is the number 𝑑 of edges on 𝑐 .
GNN recommendation models. A 𝑒-layer GNN-based recommenda-
tion modelM consists of three basic parts [29, 34, 41, 66, 68, 74]: (1)
a set of user embeddings {e𝑃𝑄 }, (2) a set of item embeddings {e𝑃𝑅 },
both of which are learned by aggregating the information from the
𝑒-hop neighbors; and (3) a scoring function F that takes {e𝑃𝑄 } and
{e𝑃𝑅 } as input and computes the 𝑅-𝑄 preference score 𝑀̂𝑄𝑅 . If 𝑀̂𝑄𝑅 is
above a prede!ned threshold,M recommends item 𝑄 to user 𝑅.

Pattern matching. We now review star-shaped dual patterns [22].
Star patterns. A star pattern is 𝑓 [𝐿0, 𝐿] = (𝑆𝑆 , 𝑇𝑆 , 𝑈𝑆 , 𝑔), where (1)
𝑆𝑆 (resp. 𝑇𝑆) is a set of pattern vertices (resp. edges) as de!ned
above; (2) 𝑈𝑆 assigns a label of ω to each vertex in 𝑆𝑆 ; (3) 𝐿 is a
list of distinct variables, and 𝑔 is a bijective mapping from 𝐿 to the
vertices of 𝑓 ; (4) 𝐿0 is a designated variable in 𝐿 , referred to as the
center of𝑓 ; and (5) for each 𝑕 ↗ 𝐿 , there exists a single path from 𝐿0
to 𝑕 and moreover, 𝑕 has at most one child, except 𝐿0. For variables
𝑕 ↗ 𝐿 , we use 𝑔 (𝑕) and 𝑕 interchangeably if it is clear in the context.

Intuitively, 𝑓 [𝐿0, 𝐿] has a star shape with center 𝐿0. The center
denotes a user/item; it collects properties linked from 𝐿0 via paths.

type

prom
otedBy

receive

�0

user

bu
y

�1
cell

phone

�2

�0

�1
coupon

�2

coupon

cell
phone �3

recom
m

end

�0

�1

song

user

�0
user �0

�1

�2

ha
s

user

�3

watch

�0

movie

type

movie��

�3

�4

watc
h

movie

from subject

movie

inv_from

�5

�6

type

movie

ha
s

in
v_

ha
s

�1

�2

type

movie

has

in
v_

ha
s type

has�7

�8
movie

inv_has

prom
otedBy

receive

�0

user

bu
y

�1
cell

phone

�2

�0

�1
coupon

�2

coupon

cell
phone �3

recom
m

end

�0

�1

song

user

�0
user �0

�1

�2

ha
s

user

�3

watch

�0

movie

type

movie��

watc
h

movie

�4

ha
s

�1

�2

user

movie

 watc
h_by

watch

�3

�4

user

movie

watch_by

watc
h

Figure 3: Dual star patterns
Dual patterns. A dual pattern is Q[𝐿0,𝑀0] = ≃𝑓𝑇 [𝐿0, 𝐿],𝑓𝑈 [𝑀0, 𝑀̄]⇐,
where𝑓𝑇 [𝐿0, 𝐿] and𝑓𝑈 [𝑀0, 𝑀̄] are disjoint star patterns. i.e.,𝑓𝑇 and
𝑓𝑈 have no common vertices. Intuitively, 𝑓𝑇 (resp. 𝑓𝑈) represents
user 𝐿0 (resp. item 𝑀0), collecting its properties. The use of dual
patterns is consistent with GNNmodels that compute user and item
embeddings separately before recommendation. Here the stars 𝑓𝑇
and 𝑓𝑈 may have heterogeneous structures in a schemaless graph.

Example 3: As shown in Figure 1(d), dual pattern Q1 depicts the
properties of users and items for making recommendations in Ex-
ample 1. Note that the centers of star patterns are marked gray. !

Matches. Amatch of a star pattern𝑓 in a graph𝑃 is a homomorphic
mapping 𝑖 from the pattern vertices in 𝑓 to 𝑃 such that (a) for
each vertex 𝑅 ↗ 𝑆𝑆 , 𝑈𝑆 (𝑅) = 𝑈(𝑖(𝑅)), and (b) for each pattern edge
(𝑅, 𝑋,𝑅↔) in 𝑓 , (𝑖(𝑅), 𝑋,𝑖(𝑅↔)) is an edge in graph 𝑃 .

Amatch of a dual patternQ[𝐿0,𝑀0] = ≃𝑓𝑇 ,𝑓𝑈⇐ in graph𝑃 is a ho-
momorphic mapping 𝑖 from the pattern vertices in𝑆𝑆𝐿 ⇒𝑆𝑆𝑀 to𝑃 .

In the sequel, we refer to a star-shaped dual pattern simply as a
pattern when it is clear in the context. We refer to a match 𝑖 of Q
as a match pivoted at (𝑅, 𝑄) if 𝑖(𝐿0) = 𝑅 and 𝑖(𝑀0) = 𝑄 .
1-WL test. We review 1-dimensional Weisfeiler-Leman (1-WL)
test [72]. Given a graph 𝑃 = (𝑆 , 𝑇, 𝑈, 𝑉𝐿) in which all vertices are
initialized with the same color, 1-WL test works by iterative color
re!nement for vertex classi!cation (cf. [31]): for all colors 𝑗 in the
current iteration and all vertices 𝑅 and 𝑄 of color 𝑗 , 𝑅 and 𝑄 get
di#erent colors in the next iteration if there exists some color 𝑘
such that 𝑅 and 𝑄 have di#erent numbers of neighbors of color 𝑘 .
This re!nement iterates until no more changes can be made.
Example 4:Consider the graph in Figure 2 [88]. Initially, all vertices
are marked white. Then the coloring is re!ned iteratively. In the
!rst iteration, 𝑄1 and 𝑄5 are marked with di#erent colors since they
have 3 and 2 white children, respectively. After two iterations, no
more changes can be made and the !nal coloring is shown, where
𝑄2 and 𝑄3 have the same color and are put into the same class. !

Properties. The following have been established about 1-WL test.

(1) The 1-WL test takes at most 𝑙 ((|𝑆 | + |𝑇 |)log|𝑆 |) time (cf. [31]).
(2) GNNs are at most as powerful as the 1-WL test in distinguishing
graph structures [31, 32, 54, 79]. Moreover, most GNN recommenda-
tion models are based on 1-WL [35], which compute link prediction
scores by aggregating pairwise node representations. Hence 1-WL
can explain the behaviors of those GNN recommenders in principle.

2.2 REPs: Syntax and Semantics
We next de!ne rules for explaining GNN-based recommendations.
Explaining rules. We start with predicates of the rules.
Predicates. We de!ne a logic predicate of a dual pattern Q[𝐿0,𝑀0] =
≃𝑓𝑇 [𝐿0, 𝐿],𝑓𝑈 [𝑀0, 𝑀̄]⇐ in one of the following forms:

𝑚 ::= 𝐿 .𝑌 ⇑ 𝑀 .𝑛 | 𝑕 .𝑌 ⇑ 𝑗 | 1WL(𝐿,𝑀0) | 1WL(𝐿0,𝑀),

717

(a) Makex (b) SubgraphX (c) GNNExplainer

Feature mask

� movieNotations � type� subject � cinematographer

movie ��
user�2

�1

w
rit

te
n

_b
y

�1

�1

�1

�76

�37

�1

watch
watch

watch

...
(m

or
e)

�77

�130
...

(more)

watch

watch
ed_by

...
(m

ore
)

ac
te

d_
by

acted_by

ha
s

�78

watch

wa
tch

�2

ac
ted

_b
y

watc
he

d_
by

�2

watc
he

d_
by

�3

watched_by �303

...
(m

ore)

from�26 �1

user
� �

produced_by movie

�1 watc
hed_by

�1

�2

�22�1
shoot�21

shoot

act�1 �23

watch�1 �1

openingflim�1 �27

watch�20 �20

watch�2 �2

�25
write�1

shoot�2 �24

...
(m

or
e)

...
(m

or
e)

� user � writer � actor � festival � producer

(d) PGExplainer

��
watch

�1

�1
�2

�3
�4�5

�6

�7

watch

watchw
atchwa

tch

watch

watch

watc
h

�2

�8

watch

wa
tch

w
at

ch

user movie

�3
watch�9 �4 �10

has�7 �1

watch �5
watch�11 �6

movie
�user �

�1

�2watch

�1w
at

ch

has �1
watc

h

�3

genre=Drama

1WL(m1,v)

has

w
atch watch

ed_by

genre=Drama

gender=Male

gender=Male

produced_by

Figure 4: Case study

where ⇑ is one of =,ω, <, ⇓, >, ⇔; 𝐿 ↗ 𝐿 and 𝑀 ↗ 𝑀̄ are variables in
𝑓𝑇 and𝑓𝑈 , respectively, and variable 𝑕 ↗ 𝐿⇒𝑀̄; 𝑗 is a constant;𝑌 and
𝑛 are attributes in ε. We refer to 𝐿 .𝑌 ⇑ 𝑀 .𝑛 and 𝑕.𝑌 ⇑ 𝑗 as variable
predicate and constant predicate of Q, respectively. We refer to
1WL(𝐿,𝑀0) as 1-WL predicate, which predicts true for the existence
of an edge (𝐿0, 𝑋,𝑀0) if 𝐿 and 𝑀0 are in the same class by 1-WL test
and (𝐿0, 𝑋, 𝐿) is an edge in 𝑓𝑇 . Intuitively, if a GNN recommends 𝐿
to 𝐿0 and if 𝑀0 and 𝐿 are characterized “the same”, then the model
should recommend 𝑀0 to 𝐿0 as well; similarly for 1WL(𝐿0,𝑀).
REPs. A Rule 𝑜 for ExPlaining GNN-based model M is de!ned as:

Q[𝐿0,𝑀0] (𝑁 → M(𝐿0,𝑀0)),
where Q[𝐿0,𝑀0] is a dual pattern, 𝑁 is a conjunction of logic predi-
cates of Q[𝐿0,𝑀0], andM is a GNN model. Here 𝐿 and 𝑀 in variable
predicate 𝐿 .𝑌 ⇑ 𝑀 .𝑛 are the leaf/center of stars 𝑓𝑇 and 𝑓𝑈 in Q, re-
spectively; each vertex carries at most one such predicate. We refer
to Q and 𝑁 → M(𝐿0,𝑀0) as the pattern and dependency, and 𝑁 and
M(𝐿0,𝑀0) as the precondition and consequence of 𝑜 , respectively.

One can plug in an arbitrary GNN-based recommendation model
M, e.g., PinSAGE [81], HGT [36] and KGAT [66]. HereM(𝐿0,𝑀0)
is true if and only if M predicts that the strength of how user 𝐿0
likes item 𝑀0 is above a prede!ned threshold.

Intuitively, (a) pattern Q[𝐿0,𝑀0] !nds relevant sub-structures
of user 𝐿0 and item 𝑀0 inspected by M, and each variable 𝑕 in
Q may carry various attributes (features); and (b) precondition 𝑁
catches the interactions and dependencies of features. Together Q
and 𝑁 explain why M suggests 𝑀0 to 𝐿0. In particular, 𝐿 .𝑌 ⇑ 𝑀 .𝑛
compares features between the associated leaves or pivots, and
1WL predicates check whether there exists an edge between 𝐿0 and
𝑀0 by utilizing the classi!cation of variables in Q by the 1-WL test.

We consider REPs that take the same recommendation modelM
as their consequence, referred to as REPs pertaining to modelM.
Example 5: Below are example REPs with patterns in Figure 3.
(1) An REP 𝑜1 is given in Example 2 to explain why model M1
recommends movie 𝑀0 to user 𝐿0. It extracts the important features
of 𝐿0 and 𝑀0 from the movie-watching history and social links of 𝐿0.
(2) 𝑜2 = Q2 [𝐿0,𝑀0] (𝑁2 → M2 (𝐿0,𝑀0)), where 𝑁2 is 𝐿0 .occupation
= College Student ↖𝐿1 .brand = 𝑀0 .brand↖𝐿2 .id = 𝑀1 .id↖𝑀1 .type =
Education Pricing. Here 𝑜2 says that if 𝐿0 is a college student, she
has bought a phone 𝐿1 before and received a coupon that can be
used to buy 𝑀0, a cell phone of the same brand promoted with
education pricing [8], thenM2 suggests cell phone 𝑀0 to user 𝐿0.
(3) 𝑜3 = Q3 [𝐿0,𝑀0] (1WL(𝐿0,𝑀1) ↖ 𝑁3 → M(𝐿0,𝑀0)), where 𝑁3
is 𝐿0 .occupation = Classical Musician ↖𝑀1 .occupation = Classical
Musician. It tells that M suggests song 𝑀0 to user 𝐿0 because (a)
both 𝐿0 and 𝑀1 are classical musicians (by 𝑁3), and (b) 𝐿0 and 𝑀1 are

in the same class by 1WL and 𝑀0 was recommended to 𝑀1 before.
(4) An REP to explain KGAT is 𝑜𝑉 = Q𝑉 [𝐿0,𝑀0] (𝑁𝑉 → M𝑉 (𝐿0,
𝑀0)), where Q𝑉 is shown in Figure 3 and 𝑁𝑉 is 𝐿0 .gender = Male ↖
1WL(𝐿1,𝑀0) ↖ 𝐿3 .genre = Drama↖𝑀1 .gender = Male↖𝑀2 .genre =
Drama↖𝑀3 .gender = Male↖𝑀4 .genre = Drama. It says that movie
𝑀0 is recommended to a male 𝐿0 byM𝑉 because (a) 𝐿0 has watched a
Drama movie 𝐿3 before that has the type 𝐿4, (b) 𝐿0 has also watched
a movie 𝐿1 that has the same class as movie 𝑀0 predicted by 1WL,
(c) 𝑀0 has been watched by two males 𝑀1 and 𝑀3, and both of them
also watched Drama movies 𝑀2 and 𝑀4. Intuitively, 𝐿0 has the same
preference as those who watched movie 𝑀0, 𝑀0 has the same type
as a movie watched by 𝐿0, and thus, 𝑀0 is recommended to 𝐿0.

A match of𝑓𝑉 is shown in Figure 4(a); it highlights the subgraph
(specifying, e.g., the watching history of 𝐿0) and important features
(e.g., the genre, gender and 1WL information). This witness repro-
duces the KGAT recommendation of a movie 𝑄 “Bird on a Wire” to
a user 𝑅 (ID 7989) on MovieLens [33]; i.e., KGAT on the subgraph
yields the same prediction as on the entireMovieLens graph.

In comparison, although SubgraphX also reproduces the predic-
tionM𝑉 (𝑅, 𝑄), its explanation subgraph (Figure 4(b)) is denser than
the one identi!ed by Makex since it includes most edges within
2 hops of 𝑅 and 𝑄 , e.g., 76 edges from user 𝑅1 to a movie that was
also watched by user 𝑅, and 303 edges from movie 𝑄 to a user.
GNNExplainer (Figure 4(c)) provides a disconnected subgraph that
includes only three edges from the perspective of movie 𝑄 but many
edges unrelated to either user 𝑅 or movie 𝑄 . Worse still, all vertices
in the explanation share the same mask on feature vectors and this
explanation fails to reproduce the predictionM𝑉 (𝑅, 𝑄). PGExplainer
(Figure 4(d)) cannot reproduce the prediction either. Its explanation
not only misses important edges from the perspective of user 𝑅 or
movie 𝑄 , but also includes noisy edges, e.g., (𝑅1,watch,𝑝1), since it
learns edge importance for all training pairs at once. We conducted
a user study by using this case (see Section 6 for more details). !

Justi!cation. REPs are de!ned to strike a balance between the
expressivity and complexity for explaining GNN recommendations.
(1) The reason for adopting dual star patterns is twofold. (a) Dual
patterns capture the rationales behind GNN recommendation mod-
els. They collect various neighboring information that users/items
receive for aggregation, by exploiting multiple paths, similar to
meta-paths that are widely-used in GNN models [36, 41, 66, 68].
Besides, we can learn di#erent sub-structures centered at users and
items, as GNN recommendation models compute user and item
embeddings separately. Thus, dual star patterns in REPs identify de-
cisive topology only, and make explanations faithful and sparse. As
will be seen in Section 6, REPs with such patterns are able to repro-
duce GNN predictions. (b) It is in PTIME (polynomial time) to check

718

Table 1: Notations
Notations De!nitions
𝑊 , Q[𝑇0, 𝑈0] graph, dual star pattern Q[𝑇0, 𝑈0] = ≃𝑆𝐿 [𝑇0,𝑇],𝑆𝑀 [𝑈0, 𝑈̄] ⇐
M(𝑇0, 𝑈0) a GNN model that predicts how user 𝑇0 likes item 𝑈0
1WL(𝑇, 𝑈) the predicate for 1-WL test
𝑋 , ϑ REP 𝑋 = Q[𝑇0, 𝑈0] (𝑌 → M(𝑇0, 𝑈0)) , a set of REPs
𝑍 a path 𝑍 = (𝑎0, 𝑎1, . . . , 𝑎𝑁) with length |𝑍 | = 𝑀
𝑏 a match of Q; a witness of 𝑋 if 𝑏 |= 𝑋

(𝑋,𝑏) an evidence (an applicable 𝑋 and a witness of 𝑋 for M(𝑄, 𝑅))
H(𝑂,𝑃) (ϑ,𝑊) the set of evidences for M(𝑄, 𝑅) by REPs in ϑ.
𝑐 (𝑋,𝑏) the ranking/importance score of (𝑋,𝑏)

𝑐 (𝑑) , 𝑐 (𝑎) the importance score of 𝑑, upper bound of all matches of 𝑎
ϖ,𝑒𝑄 a heap of top-𝑓 evidences, the 𝑓-th highest ranking score
𝑐 (𝑋) a score upper bound for all possible witnesses 𝑏 of 𝑋

𝑔𝑅 (𝑎),𝑔𝑆 (𝑎) a set of vertices 𝑑 in𝑊 s.t. there exists 𝑏 of 𝑍/𝑋 and 𝑏 (𝑎) = 𝑑

the existence of matches of such a pattern [22]. In contrast, pattern
matching is NP-complete for generic graph patterns (cf. [30]).
(2) We de!ne REPs such that it is in PTIME to compute explana-
tions with REPs (see Section 5). Moreover, since 1WL is at least as
powerful as most GNN-based recommendation models M, REPs
can explain di#erent predictions of suchM in principle.
(3) Departing from prior methods, e.g., SubgraphX, GNNExplainer
and PGExplainer, Makex starts from REPs as global explanations
and deduces local explanations; it develops very di#erent methods
to mine patterns, learn dependencies and rank explanations (see
Sections 3-5). As will be seen in Section 6, even if we equipped
GNNExplaier with REPs by replacing its input with a smaller sub-
graph deduced from REPs,Makex still beats it by up to 11.50% since
GNNExplainer cannot !nd decisive features for di#erent vertices.
Semantics. Denote by 𝑖 a match of the pattern Q of a REP 𝑜 =
Q[𝐿0,𝑀0] (𝑁 → M(𝐿0,𝑀0)) in 𝑃 , and by 𝑚 a predicate of 𝑁 . Match
𝑖 satis!es 𝑚 , denoted by 𝑖 |= 𝑚 , if the following conditions are
satis!ed: (a) when 𝑚 is 𝐿 .𝑌⇑𝑀 .𝑛, the vertex 𝑖(𝐿) (resp. 𝑖(𝑀)) carries
attribute 𝑌 (resp. 𝑛), and 𝑖(𝐿).𝑌 ⇑ 𝑖(𝑀).𝑛; similarly for 𝑕 .𝑌 ⇑ 𝑗 ,
(b) when 𝑚 is 1WL(𝐿,𝑀0) (resp. 1WL(𝐿0,𝑀)), the 1-WL test predicts
that 𝑖(𝑀0) (resp. 𝑖(𝐿0)) is in the same class as 𝑖(𝐿) that was already
linked to 𝑖(𝐿0) (resp. 𝑖(𝑀0)); and (c) forM(𝐿0,𝑀0),M predicts true
at (𝑖(𝐿0),𝑖(𝑀0)), i.e., it suggests to recommend 𝑖(𝑀0) to 𝑖(𝐿0).

For𝑜 = Q[𝐿0,𝑀0] (𝑁 → M(𝐿0,𝑀0)), we write𝑖 |= 𝑁 if𝑖 satis!es
all predicates in 𝑁 . We write 𝑖 |= 𝑜 if 𝑖 |= 𝑁 entails 𝑖 |= M(𝐿0,𝑀0).

A graph 𝑃 satis!es 𝑜 = Q[𝐿0,𝑀0] (𝑁 → M(𝐿0,𝑀0)), denoted
by 𝑃 |= 𝑜 , if for all matches 𝑖 of Q[𝐿0,𝑀0] in 𝑃 such that 𝑖 |= 𝑁 ,
𝑖 |= 𝑜 . We write 𝑃 |= ϑ for a set ϑ of REPs if for all 𝑜 ↗ ϑ, 𝑃 |= 𝑜 .

For a pair (𝑅, 𝑄) of user and item, we refer to mapping 𝑖 as a
witness of 𝑜 at (𝑅, 𝑄) if 𝑖 |= 𝑜 , 𝑖(𝐿0) = 𝑅 and 𝑖(𝑀0) = 𝑄 . We say that
REP 𝑜 is applicable at (𝑅, 𝑄) if there exists a witness at (𝑅, 𝑄).

3 MAKEX: AN EXPLANATION SYSTEM
This section presents an overview of Makex for generating logic
explanations for recommendations of GNN-based modelsM.

To simplify the discussion, we focus on CTR (click-through rate),
i.e., M(𝐿,𝑀) recommends item 𝑀 to user 𝐿 if the strength of its pre-
diction is above a prede!ned threshold. This said, our method can
also be adapted for top-𝑂 recommendation, which suggests to each
user 𝐿 at most 𝑂 items 𝑀 that have top rankedM(𝐿,𝑀) strengths.
Explanations. We !rst formalize the notions of global and local
explanations. Consider a GNN recommendation model M and a
user-item interaction graph 𝑃 (enriched with knowledge graphs).
Global explanations. Given M and a graph 𝑃 , Makex discovers a
set ϑ of REPs to explain the predictions ofM on𝑃 (see below). For

∑: Reps pertain-
ing to model ℳ

GNN model ℳ

(u,v) Graph G

Global explanations (Rule discovery)

Local explanations Top-k Pruning

Monte Carlo tree search

∑: Reps pertain-
ing to model ℳ

GNN model ℳ

(u,v) Graph G

Offline discovery

Online
explanation

Factual explanation Counterfactual explanation
top-k pruning remove edges modify features

Monte Carlo tree search

Factual explanation

Divide-and-conquer

Importance score

Figure 5: The work"ow ofMakex

GNNmodels such as PinSAGE [81],HGT [36] and KGAT [66] tested
in our experiments, the set ϑ includes at most 172 REPs in all real-
life datasets adopted (see Section 6). These REPs determine what
features are most responsible for M’s predictions, characterize the
general behaviors of modelM, cover di#erent cases ofM’s predic-
tions via the 1-WL test, and can serve as global explanations ofM.
Local explanations. Denote by H(𝑄,𝑅) (ϑ,𝑃) the set of pairs (𝑜,𝑖)
for all REPs 𝑜 ↗ ϑ applicable at (𝑅, 𝑄) and all witnesses 𝑖 of 𝑜 at
(𝑅, 𝑄) in 𝑃 , where each pair (𝑜,𝑖) is referred to as an evidence for
the predictionM(𝑅, 𝑄). For a pair (𝑅, 𝑄) of user and item in graph
𝑃 and a set ϑ of REPs for model M, the local explanations for M
to recommend item 𝑄 to user 𝑅 are simply de!ned as H(𝑄,𝑅) (ϑ,𝑃).

Here each evidence (𝑜,𝑖) ↗ H(𝑄,𝑅) (ϑ,𝑃) is a su"cient condition
for M to predict true at 𝑅 and 𝑄 . Let 𝑜 = Q(𝐿0,𝑀0) (𝑁 → M(𝐿0,
𝑀0)). Then 𝑖 exhibits how 𝑜 is enforced and says that M(𝑅, 𝑄) is
true because 𝑖 |= 𝑁 , providing factual explanation (see Example 5).

Modules. As shown in Figure 5, givenM and𝑃 as described above,
Makex !rst learns a set ϑ of REPs pertaining to modelM as global
explanations. Then whenever M suggests to recommend item 𝑄 to
user 𝑅, Makex computes local explanations for prediction M(𝑅, 𝑄)
upon request. It consists of the following main modules.
(1) Rule discovery (Section 4). Given graph 𝑃 and model M, it dis-
covers a set ϑ of REPs pertaining toM to capture features/patterns
forM to make predictions. The discovery is conducted once o"ine,
i.e., we re-use the set ϑ of REPs for each input user-item pair (𝑅, 𝑄).
The discovery is guided by M and thus, the REPs in ϑ !tM well.
(2) Local explanations (Section 5). Given the set ϑ and a pair (𝑅, 𝑄),
Makex computes the set H(𝑄,𝑅) (ϑ,𝑃) as local explanations forM
to recommend 𝑄 to 𝑅.Makex ranks the pairs (𝑜,𝑖) with importance
scores such that users are provided with top-ranked pairs at a time,
by developing a top-𝑂 algorithm with e#ective pruning strategies.

4 MODEL-GUIDED RULE DISCOVERY
This section develops an algorithm, RepsLearner, to discover REPs
that faithfully explain a given GNN model, unlike prior rule miners.
Criteria. We start with two measures to evaluate the quality of
REPs. Consider REP 𝑜 = Q[𝐿0,𝑀0] (𝑁 → M(𝐿0,𝑀0)) and graph 𝑃 .
Support. This is to measure how often an REP 𝑜 can be applied in
graph 𝑃 . More speci!cally, the support of 𝑜 in 𝑃 is de!ned as:

supp(𝑜,𝑃) = ||Q(𝐿0,𝑀0,𝑃,𝑁 ↖M(𝐿0,𝑀0)) ||.
Here Q(𝐿0,𝑀0,𝑃,𝑁 ↖M(𝐿0,𝑀0)) is the set of pairs (𝑖(𝐿0),𝑖(𝑀0))
for all matches 𝑖 of Q in𝑃 such that 𝑖 |= 𝑁 ↖M(𝐿0,𝑀0). Intuitively,
the higher supp(𝑜,𝑃) is, the more frequent 𝑜 can be applied to 𝑃 .
Con!dence. It measures how strong the connection between the pre-
condition𝑁 and predictionM(𝐿0,𝑀0) is. The con!dence of𝑜 in𝑃 is:

conf (𝑜,𝑃) = supp(𝑜,𝑃)
||Q(𝐿0,𝑀0,𝑃,𝑁) ||

.

REP discovery. We formalize the discovery problem as follows.

719

MCTS for (un,vn)

GNN model ℳ

Graph G

Training pairs
(u1,v1) ... (un,vn)

...

...

Monte Carlo tree search Subgraphs

... ...

Extract
Random

walk

Paths

Compose

Dual star
patterns

...

Pattern generation

path ⍴�

X1,1

X1,N

...

Xi,1

Xi,N

...

�: �[�0, �0](� → ℳ(�0, �0))

 Q1

 Qn

MCTS for (u1,v1)

path ⍴1

Pattern
Precondition

Precondition
mining

∑: Reps pertain-
ing to model ℳ

Greedy
Frequency Difference

Greedy
Frequency Difference

pivots

 Q ...

Figure 6: Overview of RepsLearner
↙ Input: A graph 𝑃 , a GNN modelM, a support threshold 𝑞 > 0,

a con!dence threshold 𝑟 > 0, and positive integers 𝑠1 and 𝑠2.
↙ Output: A set ϑ of REPs pertaining to M such that for each
𝑜 ↗ ϑ, we have supp(𝑜,𝑃) ⇔ 𝑞 , conf (𝑜,𝑃) ⇔ 𝑟 , and Q has at
most 𝑠1 paths where each path has at most 𝑠2 variables.

Here 𝑠1 and 𝑠2 are mostly to control the cost of rule discovery.
Overview. As outlined in Figure 6, RepsLearner learns REPs as
global explanations for a given GNN model M mainly in two step.
(1) Pattern generation: It !rst generates dual patterns Q[𝐿0,𝑀0] =

≃𝑓𝑇 ,𝑓𝑈⇐ pertaining toM. To do this, (a) it computes a subgraph
for each user-item pair (𝑅, 𝑄), by adaptingMonte Carlo tree search
(MCTS). (b) Then it uses random walks starting from user 𝑅 (resp.
item 𝑄) in the subgraph to get a list of paths; these paths compose
star patterns 𝑓𝑇 (resp. 𝑓𝑈) centered at 𝐿0 (resp. 𝑀0).

(2) Precondition mining: It then mines a set of frequent (i.e., high
support) and diverse preconditions𝑁 using a divide-and-conquer
approach and pairs each 𝑁 with Q[𝐿0,𝑀0] to form !nal REPs.
Below we present the details of the two steps of RepsLearner.

(1) Pattern generation. The adapted MCTS and random walks work
to get a set of star patterns retaining the predictions ofM as follows.
(a) Monte Carlo tree search (MCTS). For each pair (𝑅, 𝑄) in 𝑃 , ifM
predicts true at (𝑅, 𝑄), we build a search tree in which the root is
associated with the 𝑒-hop neighborhood graph𝑃𝑃 (𝑅, 𝑄) of 𝑅 and 𝑄
since a 𝑒-layer GNN model M aggregates information from the 𝑒-
hop neighbors of 𝑅 and 𝑄 ; each of the other tree nodes is associated
with a connected subgraph of 𝑃𝑃 (𝑅, 𝑄). A MCTS iteration selects a
path from the root to a leaf. Then the subgraph𝑃sg (𝑅, 𝑄) at the leaf is
evaluated, by comparing the recommendation strengths ofM(𝑅, 𝑄)
on𝑃sg (𝑅, 𝑄) vs. on𝑃𝑃 (𝑅, 𝑄). Themost promising subgraph𝑃sg (𝑅, 𝑄)
is returned for (𝑅, 𝑄) such that M could reproduce its prediction in
𝑃𝑃 (𝑅, 𝑄), i.e., M(𝑅, 𝑄) predicts the same in𝑃sg (𝑅, 𝑄) as in𝑃𝑃 (𝑅, 𝑄).

To speed up, we only build subgraphs for a subset of user-item
pairs, and drop those with isomorphic 𝑒-hop neighborhoods. As
will be observed in Section 6, this strategy can cover enough expla-
nation scenarios so as to achieve good global performance.
(b) Random walks. Since it is time-consuming to get all eligible paths
in 𝑃sg (𝑅, 𝑄), we simulate random walks from user 𝑅 in 𝑃sg (𝑅, 𝑄),
each of which produces a path. To avoid unending walking, we
adopt an 𝑠-termination probability for simulation. More speci!-
cally, a path starts from 𝑅 and at each step, it either (a) terminates
with 𝑠 probability, or (b) moves to an out-neighbor of the current
vertex with (1↘𝑠) probability. For each simulated path with at most
𝑠2 steps, we extract a path pattern by replacing the vertices (resp.
edges) by pattern vertices (resp. edges) with the same labels. By com-
posing at most𝑠1 most frequently-visited path patterns for each star
pattern𝑓𝑇 , we obtain a number of star patterns to represent the sub-
structure pivoted at user 𝑅; similarly for 𝑓𝑈 at item 𝑄 . Taking each
𝑓𝑇 and 𝑓𝑈 together, we get a dual pattern Q[𝐿0,𝑀0] = ≃𝑓𝑇 ,𝑓𝑈⇐.
(2) Precondition mining. For each Q[𝐿0,𝑀0], we propose a divide-

and-conquer approach to mining preconditions 𝑁 to form REPs,
in three steps. (a) The pattern Q is !rst divided into independent
paths. (b) For each path 𝑐 , we generate a set X𝑍 of 𝑡 independent
candidate preconditions (see below), i.e.,X𝑍 = {𝑁𝑍,1,𝑁𝑍,2, ...,𝑁𝑍,𝑕 },
where 𝑡 is a hyper-parameter and each 𝑁𝑍,𝑁 is a precondition (𝑎 ↗
[1,𝑡]), i.e., a conjunction of predicates, on path 𝑐 . (c) We compose
the paths of Q, where each path 𝑐 is associated with a candidate𝑁𝑍
in X𝑍 , into candidate REPs 𝑜 = Q[𝐿0,𝑀0] (↖𝑍↗Q𝑁𝑍 → M(𝐿0,𝑀0))
and select those that are above the support/con!dence thresholds.
Generating candidate preconditions. Given a path 𝑐 = (𝑕0, 𝑕1, . . . ,
𝑕𝑀), the preconditions inX𝑍 are generated one by one, until𝑡 candi-
date preconditions are in place. We show how the 𝑎-th precondition
𝑁𝑍,𝑁 in X𝑍 is generated after we get 𝑎 ↘ 1 preconditions in X𝑍 . We
!rst initialize 𝑁𝑍,𝑁 as empty. Then we traverse the path 𝑐 in rounds,
starting from the center 𝑕0 to the leaf 𝑕𝑀 , to select the promising
predicates de!ned on each variable. Speci!cally, at the 𝑏-th round
(𝑏 ↗ [0,𝑑]), we process predicates de!ned on variable 𝑕 𝑂 and add
promising predicates to 𝑁𝑍,𝑁 by using a greedy strategy (see below).

To decidewhich predicates 𝑚 should be added to𝑁𝑍,𝑁 , we consider
both the support of 𝑁𝑍,𝑁 ↖ 𝑚 (i.e., whether the resulting precondi-
tion can be frequently applied in 𝑃) and its di#erence compared
with those already in X𝑍 . To measure this di#erence, we de!ne
di!(𝑁𝑍,𝑁 ↖ 𝑚,X𝑍 ,𝑃) to be the number of pairs (𝑖(𝐿0),𝑖(𝑀0)) such
that 𝑖 satis!es 𝑁𝑍,𝑁 ↖ 𝑚 but not any of the !rst 𝑎 ↘ 1 preconditions
in X𝑍 . Then we de!ne an indicator score for 𝑚 on 𝑁𝑍,𝑁 to be:
𝑢 (𝑁𝑍,𝑁 , 𝑚) = 𝑣𝑐 · ||Q(𝐿0,𝑀0,𝑃,𝑁𝑍,𝑁 ↖ 𝑚) || +𝑣𝑖 · di!(𝑁𝑍,𝑁 ↖ 𝑚,X𝑍 ,𝑃),
where𝑣𝑐 and𝑣𝑖 are weights such that𝑣𝑐 +𝑣𝑖 = 1. Intuitively, the
predicates with high indicator scores are preferred and added to
𝑁𝑍,𝑁 . As will be seen in Section 6, the larger the value of𝑡 , the better
the performance of the discovered rules as global explanations.
1WL predicates. We pre-compute the classes of all vertices in𝑃 by
the 1-WL test and treat the class as a constant attribute for a vertex.
If two vertices 𝐿 and𝑀0 have the same class and if 𝐿 is recommended
to 𝐿0, we conclude that 1WL(𝐿,𝑀0) holds; similarly for 1WL(𝐿0,𝑀).

Example 6: We show how RepsLearner !nds 𝑜1 in Figure 1. After
generating the pattern Q1 by MCTS and random walks, Q1 is !rst
divided into multiple paths, e.g., (𝐿0, 𝐿1, 𝐿2, 𝐿3) and (𝐿0, 𝐿4). Con-
sider 𝑐 = (𝐿0, 𝐿4), 𝑡 = 2 and assume that the !rst precondition in
X𝑍 is 𝑁𝑗 = {𝐿0 .sex = Male, 𝐿4 .genre = Action}. We prefer diverse
preconditions, e.g., 𝑁𝑘 = {𝐿0 .sex = Female, 𝐿4 .genre = Romance}
instead of 𝑁𝑉 = {𝐿0 .sex = Male, 𝐿4 .genre = Thriller}, so that more
matches can !nd satis!able preconditions in X𝑍 ; similarly for other
paths. By composing the results of all paths of Q1, we can get 𝑜1. !

Complexity. Denote by (a) 𝑗mcts the unit cost for computing
a subgraph via MCTS for a given training pair (see [14, 61] for
more); (b) |𝑤 | the number of random walks simulated on a given
subgraph; and (c) |T | the number of training pairs used. Then
RepsLearner takes 𝑙 (𝑗mcts |T | + |𝑤 | |T |) time to generate 𝑙 (|T |)
patterns. Besides, for each pattern Q, RepsLearner generates

720

�� � ∈ � ��1(�) �(�)

�
�0 � 1
�1 �1, �2 0.9
�2 �4, �5, �6 0.5
�3 �8, �9 0.6

(b) The vertex set ��1 for �1

0.6 0.9 0.6

0.5 0.3
0.2

0.4

0.4 0.6

(a) A subgraph pivoted at

1
� ℎ(�) ∆�

�1
�1 0
�2 0.3

�3
�8 0
�9 0.2

� ℎ(�) ∆�

�2

�4 0.2
�5 0
�6 0

(c) Indicator score ∆�

�� � ∈ � ��1(�)

�
�0 �
�1 �1

�2 �4, �5

�3 �8, �9

(d) ��1 after removing �2

Figure 7: Algorithmic examples

𝑙 (𝑡𝑙1) preconditions to form candidate REPs, since Q has at most
𝑠1 paths and each path has 𝑡 candidate preconditions, where each
precondition of a path can be generated in 𝑙 (𝑠2𝑗𝑎) time, where
𝑗𝑎 is the unit cost for selecting predicates for a variable 𝑕, resulting
in 𝑙 (𝑗mcts |T | + |𝑤 | |T | + 𝑠1𝑠2𝑗𝑎𝑡 |T | + 𝑡𝑙1 |T |) total time.

5 TOP-RANKED LOCAL EXPLANATIONS
This section develops an algorithm to generate evidences as local
explanations for GNN recommendations. The problem is as follows.
↙ Input: Graph 𝑃 , a set ϑ of REPs pertaining to model M, and

a user-item pair (𝑅, 𝑄) in 𝑃 withM(𝑅, 𝑄) = true.
↙ Output: The set H(𝑄,𝑅) (ϑ,𝑃) of evidences for M(𝑅, 𝑄); each

evidence is a pair (𝑜,𝑖) for 𝑜 ↗ ϑ and a witness 𝑖 of 𝑜 at (𝑅, 𝑄).
A PTIME algorithm. An algorithm for computing H(𝑄,𝑅) (ϑ,𝑃)
works as follows: for each REP 𝑜 = Q[𝐿0,𝑀0] (𝑁 → M(𝐿0,𝑀0)) in
ϑ, !nd all matches 𝑖 of Q in 𝑃 at (𝑅, 𝑄) and check whether 𝑖 |= 𝑜 ;
if so, add (𝑜,𝑖) to H(𝑄,𝑅) (ϑ,𝑃). Here 𝑖 is computed by assembling
the witnesses of paths in each star of 𝑓 at its center, and a witness
of a path is inductively de!ned on its vertices via scattered matches
(see Section 5.3). Moreover, by the de!nition of REPs, we verify
that it is in PTIME to check whether 𝑖 |= 𝑜 (see Theorem 1).

However, this algorithm may not work very well in practice.
(a) When 𝑃 is dense, it is still costly to !nd all witnesses of 𝑜 at
(𝑅, 𝑄) although it is in PTIME. (b) There are possibly multiple REPs
applicable at (𝑅, 𝑄) and multiple witnesses of 𝑜 at (𝑅, 𝑄) for each
𝑜 . The users may not want the enumeration of all these. Instead,
they want “top-ranked” evidences so that each evidence serves as
an explanation for the prediction at (𝑅, 𝑄). In light of these, we
develop a top-𝑂 algorithm for computing top-ranked evidences.

5.1 Ranking Score
Since each evidence (𝑜,𝑖) in H(𝑄,𝑅) (ϑ,𝑃) consists of an applicable
REP 𝑜 and a witness 𝑖 of 𝑜 , we de!ne the ranking score of an evi-
dence (𝑜,𝑖), denoted by 𝑥 (𝑜,𝑖), by taking both its rule importance
and witness importance into account. Formally, we de!ne:

𝑥 (𝑜,𝑖) = 𝑥 (𝑜) · 𝑥𝑋 (𝑖),
where 𝑥 (𝑜) is the rule importance for measuring the amount of
information expressed in 𝑜 , and 𝑥𝑋 (𝑖) is the witness importance for
characterizing the strength of 𝑖 for the prediction of M(𝑅, 𝑄). The
higher the score, the more important the rule/witness (see below).
Intuition. Below we present the intuition of rule/witness impor-
tance. Interested readers can !nd the detailed de!nitions in [10].
(a) Rule importance. For 𝑜 = Q[𝐿0,𝑀0] (𝑁 → M(𝐿0,𝑀0)), de!ne

𝑥 (𝑜) = 𝑥𝑋 (Q) · 𝑥𝑋 (𝑁),
where 𝑥𝑋 (Q) and 𝑥𝑋 (𝑁) are the importance of patternQ and precon-
dition𝑁 , respectively. For the pattern importance, we consider both
the number of paths and the length of the paths to prioritize suc-
cinct pattern, while for precondition importance, we adopt the GINI
value as an e#ective criterion for measuring how well 𝑁 divides
witnesses into di#erent classes according to the predictions ofM.

Input: A graph𝑊 , a set ϑ of REPs, a pair (𝑄, 𝑅) , and an integer 𝑓 .
Output: A heap ϖ of top-𝑓 evidences in𝑊 at (𝑄, 𝑅) .
1. sort REPs 𝑋 in ϑ in decreasing order based on 𝑐 (𝑋) ; ϖ := ∝;
2. for each REP 𝑋 = Q[𝑇0, 𝑈0] (𝑌 → M(𝑇0, 𝑈0)) in ϑ do
3. compute𝑔𝑆 for 𝑋 ; 𝑐 (𝑎) = max𝑇↗𝑈𝑆 (𝑉) 𝑐 (𝑑) ;
4. 𝑒𝑄 := the 𝑓-th highest score in ϖ; 𝑐 (𝑋) := 𝑐 (𝑋) ·

)︄ [︄
𝑉↗𝐿̄⇒𝑀̄ 𝑐 (𝑎)

]︄
;

5. while 𝑐 (𝑋) > 𝑒𝑄 do
6. (𝑑, 𝑎) := SelectVertexUB(𝑔𝑆) ;
7. while 𝑏 = NextMatch(𝑑,𝑊,𝑋) and 𝑏 ω ∝ do
8. if 𝑐 (𝑋,𝑏) > 𝑒𝑄 then update ϖ and𝑒𝑄 by (𝑋,𝑏) ;
9. 𝑔𝑆 (𝑎) := 𝑔𝑆 (𝑎) \ {𝑑}; re!ne𝑔𝑆 ; compute (tighter) 𝑐 (𝑋) ;
10. return ϖ;

Figure 8: Top-𝑂 algorithm TopkEx

(b) Witness importance. Even for the same 𝑜 , its witnesses are not
equally potent for recommendation. Suppose 𝑜 suggests movie 𝑀
to user 𝐿 if 𝐿 has watched similar movie 𝑕 in the graph and 𝑕 .rating
⇔ 6. Consider two witnesses 𝑖𝑗 and 𝑖𝑘 of 𝑜 , where 𝑖𝑗 (𝑕) and 𝑖𝑘 (𝑕)
map to “Titanic” [2] and “A Walk in the Clouds” [1], respectively.
Although both satisfy 𝑕.rating ⇔ 6, 𝑖𝑗 is more promising since (a)
the actual rating of 𝑖𝑗 (𝑕) = 7.9 is higher than 𝑖𝑘 (𝑕) = 6.7; (b) 𝑖𝑗 (𝑕)
was rated by 1.3M users, as opposed to 36K of 𝑖𝑘 (𝑕); thus 𝑖𝑗 (𝑕) is a
hub vertex which will contribute more to the !nal recommendation.

Motivated by this, we quantify the witness importance 𝑥𝑋 (𝑖) for
each 𝑖, by summing up the scores of each vertex in 𝑖, i.e.,

𝑥𝑋 (𝑖) =
⌊︄

𝑎↗𝑇⇒𝑈̄
𝑥 (𝑖(𝑕)),

where 𝑥 (𝑖(𝑕)) is the score of 𝑖(𝑕) and it is de!ned by considering
both actual values and degrees of vertices. Intuitively, we assign a
larger score to a vertex with a larger degree (or with a actual value
closer to the “optimal” value, e.g., a higher rating is more desirable).
Summary. Taken together, the score of (𝑜,𝑖) can be written as:

𝑥 (𝑜,𝑖) = 𝑥 (𝑜) · 𝑥𝑋 (𝑖) = 𝑥 (𝑜) ·
)︄⌊︄

𝑎↗𝑇⇒𝑈̄ 𝑥 (𝑖(𝑕))
]︄
.

Example 7: Consider 𝑜1 in Example 5. Take a path 𝑐𝑇 = (𝐿0, 𝐿1,
𝐿2, 𝐿3) of Q1 and its match 𝑖1 (𝑐𝑇) = (𝑅,𝑣2,𝑣5,𝑣8) in Figure 7(a)
as an example, where 𝑥 (𝑣) of each𝑣 = 𝑖(𝐿) is colored in red. Then[︄
𝑑↗𝑏1 (𝑍𝐿) 𝑥 (𝑣) = 1 + 0.9 + 0.3 + 0.4 = 2.6. Suppose after summing

up the importance scores for all matching vertices in 𝑖1 (𝑜1),
𝑥𝑋1 (𝑖1) is 3.2. If the rule importance of 𝑜1 is 0.9, then the ranking
score of evidence (𝑜1,𝑖1) is 𝑥 (𝑜1,𝑖1) = 𝑥 (𝑜1) · 𝑥𝑋1 (𝑖1) = 2.9. !

Problem. Based on the ranking score, we de!ne the top-𝑂 problem.
↙ Input: 𝑃 , ϑ, (𝑅, 𝑄) as above, and a positive integer 𝑂 .
↙ Output: A set ϖ of 𝑂 evidences s.t. each (𝑜,𝑖) ↗ ϖ is inH(𝑄,𝑅) (ϑ,
𝑃), and 𝑥 (𝑜,𝑖) ⇔ 𝑥 (𝑜 ↔,𝑖↔) for all (𝑜 ↔,𝑖↔) ↗ H(𝑄,𝑅) (ϑ,𝑃) \ ϖ.

5.2 Pruning with Score Upper Bound
Instead of computing the scores of every evidence, we utilize a
pruning strategy to !lter out those evidences unlikely to the top-𝑂 .
Pruning strategy.Given anREP𝑜 , the core of our pruning strategy
is a score upper bound, denoted by 𝑥 (𝑜), of the ranking scores of all
evidences involving 𝑜 , i.e., 𝑥 (𝑜) ⇔ 𝑥 (𝑜,𝑖) where 𝑖 is an arbitrary
witness of 𝑜 . If 𝑥 (𝑜) is small, all witnesses of 𝑜 cannot constitute
high-ranked evidences and thus, they may be pruned early.

Formally, we compute the score upper bound 𝑥 (𝑜) as follows:
𝑥 (𝑜) = 𝑥 (𝑜) ·

)︄⌊︄
𝑎↗𝑇⇒𝑈̄ 𝑥 (𝑕)

]︄
, (1)

where 𝑥 (𝑕) is the score upper bound of all vertices in 𝑃 that can

721

be mapped to a variable 𝑕 ↗ 𝐿 ⇒ 𝑀̄, i.e., 𝑥 (𝑕) = max′𝑏 of 𝑋 𝑥 (𝑖(𝑕)).
One may want to compute 𝑥 (𝑕) by enumerating all witnesses 𝑖 of
𝑜 in 𝑃 for the maximum 𝑥 (𝑖(𝑕)). However, it is costly to explicitly
enumerate all witnesses. Below we propose a more e"cient method.
Score upper bounds. Given an REP 𝑜 and pair (𝑅, 𝑄), we compute its
witnesses pivoted at (𝑅, 𝑄) by decomposing Q into sets of disjoint
paths and validating their witnesses independently. The complete
witnesses of 𝑜 are obtained by combining the results for all paths.

Denote by 𝑐 the path from center 𝐿0 (resp. 𝑀0) to a leaf of 𝑓𝑇
(resp. 𝑓𝑈). We compute the witnesses of 𝑐 = (𝑕0, . . . , 𝑕𝑀) pivoted at
𝑅 (resp. 𝑄), by adopting a notion of scattered matches of each 𝑕𝑁 ↗ 𝑐 .
(1) Scattered matches. For 𝑕𝑁 ↗ 𝑐 (𝑎 ↗ [0,𝑑]), the scattered matches of
𝑕𝑁 in 𝑃 include all vertices𝑣𝑁 of 𝑃 satisfying re!nement conditions:
(a) 𝑈(𝑣𝑁) = 𝑈𝑆 (𝑕𝑁), (b) 𝑣𝑁 satis!es all constant predicates and 1-
WL predicates on 𝑕𝑁 in 𝑁 , and (c) when 𝑎 < 𝑑, there is an edge
(𝑣𝑁 , 𝑋,𝑣𝑁+1) in 𝑃 such that𝑣𝑁+1 is a scattered match of 𝑕𝑁+1.

Similarly, we de!ne the following. For 𝑕𝑁 ↗ 𝑐 (𝑎 ↗ [0,𝑑]), the
inverse scattered matches of 𝑕𝑁 in𝑃 include all vertices𝑣𝑁 in𝑃 such
that re!nement conditions (a) and (b) are satis!ed as above, and (c)
when 𝑎 > 0, there is an edge (𝑣𝑁↘1, 𝑋,𝑣𝑁) in 𝑃 such that 𝑣𝑁↘1 is a
scatteredmatch of 𝑕𝑁↘1. The bidirectional scatteredmatches of 𝑕𝑁 con-
tain vertices𝑣𝑁 such that re!nement conditions (a) and (b) are sat-
is!ed as above and (c) if 𝑕𝑁 has a child (resp. parent) in 𝑐 , then there
exists an edge (𝑣𝑁 , 𝑋,𝑣𝑁+1) (resp. (𝑣𝑁↘1, 𝑋,𝑣𝑁)) in 𝑃 such that𝑣𝑁+1
(resp.𝑣𝑁↘1) is a bidirectional scattered match of 𝑕𝑁+1 (resp. 𝑕𝑁↘1).

Note that when there is a variable predicate de!ned across two
paths 𝑐𝑇 and 𝑐𝑈 , the two paths are processed together and we con-
sider an additional re!nement condition, i.e., whether the variable
predicate is satis!ed, when computing the bidirectional scattered
matches. Otherwise, each path is processed independently.
(2) PTIME process.Denote by𝑦𝑍 (𝑕) (resp.𝑦𝑍) the set of bidirectional
scattered matches of 𝑕 (resp. all variables) in 𝑐 . We compute 𝑦𝑍 by
iteratively checking the re!nement conditions of (inverse) scattered
matches of variables from 𝑐 in 𝑃 by dynamic programming.

Intuitively, a complete match of 𝑐 via homomorphism maps the
entire set of variables from 𝑐 as a whole. In contrast, the scattered
matches are de!ned on distinct variables from 𝑐 , while they re-
cursively enforce (partial) requirements on edge connections as in
standard pattern matching, reducing (possibly) exponential com-
plete matches to 𝑙 (|𝑃 | |𝑐 |) scattered matches. Moreover, since the
satisfaction of predicates in 𝑁 is also enforced, the matches are wit-
nesses of 𝑐 . By induction on the path and the semantics of scattered
matches, one can verify that every bidirectional scattered matches
of 𝑕 in𝑦𝑍 (𝑕)must appear in complete witnesses of 𝑐 . Indeed, we can
assemble𝑦𝑍 (𝑕) of di#erent 𝑕 ↗ 𝑐 to restore complete witnesses of 𝑐 .

Denote by𝑦𝑋 the union set of𝑦𝑍 for all paths 𝑐 in𝑜 . Once𝑦𝑋 (𝑕)
is computed where𝑦𝑋 (𝑕) = 𝑦𝑍 (𝑕) for 𝑕 ↗ 𝑐 , the score upper bound
𝑥 (𝑕) of the vertices in 𝑃 that are mapped to 𝑕 is max𝑑↗𝑔𝑆 (𝑎) 𝑥 (𝑣).
Note that 𝑦𝑋 can be computed in PTIME (see [10] for a proof).

Theorem 1: Given (𝑅, 𝑄),𝑃 and 𝑜 , it is in PTIME to compute the set
𝑦𝑋 of bidirectional scattered matches pivoted at (𝑅, 𝑄). !

Example 8: Consider 𝑜1 in Example 5. To illustrate, we focus on a
subgraph pivoted at 𝑅 and 𝑦𝑋1 for 𝑐 = (𝐿0, 𝐿1, 𝐿2, 𝐿3) in Figure 7.

The set 𝑦𝑋1 is shown in Figure 7(b). Based on 𝑦𝑋1 , one can

compute the bound 𝑥 (𝑕) for each 𝑕 in 𝑜1, by taking the maximum
score of vertices in𝑦𝑋1 (𝑕), e.g., 𝑥 (𝐿1) = max{𝑥 (𝑣1), 𝑥 (𝑣2)} = 0.9.!

5.3 Top-k Algorithm
We now present our top-𝑂 algorithm, denoted by TopkEx.
Overview. To get top-𝑂 evidences, we process REPs in ϑ one by one.
For each𝑜 , we compute the score upper bound 𝑥 (𝑜) (see Equation 1)
for all possible evidences involving𝑜 . Moreover, wemaintain a heap
ϖ of size 𝑂 for top-𝑂 evidences found so far. Denote by 𝑧𝑓 the 𝑂-th
highest ranking score of evidences in ϖ. If 𝑥 (𝑜) < 𝑧𝑓 , no witnesses
of 𝑜 can contribute to the top-𝑂 , and thus, we stop processing 𝑜 .
Otherwise, if 𝑥 (𝑜) ⇔ 𝑧𝑓 , some witnesses of 𝑜 may make a top-𝑂
evidence. Then we strategically inspect the witnesses of 𝑜 , so that
on the one hand, promising evidences are examined with high
priority, and on the other hand, the score bounds can be gradually
tightened and witnesses leading to low-ranked evidences are more
likely to be pruned directly, without computing their exact scores.

If 𝑥 (𝑜) ⇓ 𝑧𝑓 for all REPs 𝑜 in ϑ, we terminate the algorithm
early and ϖ is returned as the desired set of top-𝑂 evidences.
Algorithm. Algorithm TopkEx implements this in Figure 8. It !rst
sorts REPs in ϑ in the decreasing order of rule importance (line
1). Then for each 𝑜 in ϑ, we compute the set 𝑦𝑋 ; as a by-product,
this gives an upper bound 𝑥 (𝑕) for each variable 𝑕 and an upper
bound 𝑥 (𝑜) for all possible witnesses 𝑖 of 𝑜 (see Equation 1, lines
3-4). If 𝑥 (𝑜) ⇔ 𝑧𝑓 (i.e., some witnesses of 𝑜 may make a top-𝑂 ev-
idence), we select a “promising” vertex𝑣 in 𝑦𝑍 (𝑕) via procedure
SelectVertexUB (line 6) and process all witnesses 𝑖 with 𝑖(𝑕) = 𝑣
via procedure NextMatch (lines 7-9). The witnesses leading to
highly ranked evidences will update ϖ and𝑧𝑓 (line 8). After all wit-
nesses with 𝑖(𝑕) = 𝑣 are processed,𝑣 is removed from 𝑦𝑋 (𝑕) and
𝑦𝑋 is re!ned accordingly, by checking the re!nement conditions for
each vertex in 𝑦𝑋 ; this may in turn lead to a possibly tighter upper
bound 𝑥 (𝑜) (line 9). This process continues until 𝑥 (𝑜) ⇓ 𝑧𝑓 (line 5),
i.e., when none of not-yet-processed witnesses of 𝑜 can contribute
to the top-𝑂 evidences. Then we stop the processing of 𝑜 . Finally,
when the score upper bounds of all REPs in ϑ are no larger than𝑧𝑓 ,
TopkEx terminates early, and ϖ is returned as the top-𝑂 set (line 10).
Procedure SelectVertexUB. Given a set𝑦𝑋 , this procedure returns a
vertex𝑣 in 𝑦𝑋 (𝑕). Recall that after processing all witnesses 𝑖 with
𝑖(𝑕) = 𝑣 , this 𝑣 will be eventually removed from 𝑦𝑋 (𝑕), and the
bound 𝑥 (𝑕), which is de!ned to be the maximum score of vertices in
𝑦𝑋 (𝑕), can be possibly tightened. Therefore, we select𝑣 so that 𝑥 (𝑕)
is reduced as much as possible and more witnesses are pruned early.

Speci!cally, for each 𝑣 ↗ 𝑦𝑋 (𝑕) (𝑕 ω 𝐿0,𝑀0), we de!ne an indi-
cator ϱ𝑑 , expressing the reduction of 𝑥 (𝑕) if𝑣 is removed, i.e.,

ϱ𝑑 = max𝑑↔ ↗𝑔𝑆 (𝑎) 𝑥 (𝑣 ↔) ↘max𝑑↔ ↗𝑔𝑆 (𝑎)\{𝑑} 𝑥 (𝑣 ↔),
where the !rst (resp. second) term is the bound 𝑥 (𝑕) before (resp. af-
ter)𝑣 is removed from𝑦𝑋 (𝑕). Then the vertex𝑣 with the maximum
ϱ𝑑 is selected by SelectVertexUB as the next vertex to be processed.
Procedure NextMatch. Taking 𝑃 , 𝑜 and the selected 𝑣 ↗ 𝑦𝑋 (𝑕)
as input, NextMatch returns witnesses 𝑖 such that 𝑖(𝑕) = 𝑣 one
by one. For each path 𝑐 where 𝑕 ↗ 𝑐 , its matching results can
be obtained via depth !rst search (DFS) from𝑣 . We maintain the
results for each path in designated structures and combine the
results of all paths to generate the complete witnesses 𝑖 of 𝑜 .

722

Example 9: Let the current ϖ have 𝑂 = 3 and 𝑧𝑓 = 2.7 (not
shown). TopkEx !rst computes the bound 𝑥 (𝑕) for each 𝑕 in 𝑜1
as in Example 8. Suppose after summing up 𝑥 (𝑕) for all 𝑕 by Equa-
tion 1, the current score bound 𝑥 (𝑜1) is 2.9. Since 𝑥 (𝑜1) > 𝑧𝑓 , we
call SelectVertexUB to get the vertex 𝑣2 with the maximum ϱ𝑑
(= max𝑑↔ ↗{𝑑1,𝑑2 } 𝑥 (𝑣 ↔)↘max𝑑↔ ↗{𝑑1 } 𝑥 (𝑣 ↔) = 𝑥 (𝑣2)↘𝑥 (𝑣1) = 0.3,
Figure 7(c)). Three witnesses of 𝑐 with 𝑖(𝐿1) = 𝑣2 can be identi!ed
via DFS, i.e., 𝑖1 (𝑐) = (𝑅,𝑣2,𝑣5,𝑣8),𝑖2 (𝑐) = (𝑅,𝑣2,𝑣5,𝑣9) and
𝑖3 (𝑐) = (𝑅,𝑣2,𝑣6,𝑣9). Suppose we !nd that only 𝑥 (𝑜1,𝑖1) = 2.9 >
𝑧𝑓 . We then update ϖ with (𝑜1,𝑖1) and𝑧𝑓 gets tighter (2.9). Finally,
we remove𝑣2 from 𝑦𝑋1 (𝐿1) and re!ne 𝑦𝑋1 , e.g., the removal of𝑣2
leads to the removal of𝑣6 from𝑦𝑋1 (𝐿2) since𝑣2 is the only parent
of 𝑣6 that is in 𝑦𝑋1 (𝐿1) and thus, 𝑣6 is no longer a bidirectional
scattered match of 𝐿2 (Figure 7(d)). The bound 𝑥 (𝑜1) is re-computed
based on the updated𝑦𝑋1 . If 𝑥 (𝑜1) is now less than𝑧𝑓 , TopkEx stops
processing 𝑜1 and proceeds to the next REP in ϑ. When 𝑥 (𝑜) ⇓ 𝑧𝑓
for all REPs 𝑜 in ϑ, TopkEx terminates early and returns ϖ. !

Complexity. Denote by 𝑗match the unit cost for computing or
re!ning the set 𝑦𝑋 of bidirectional scattered matches for a given
𝑜 ; as remarked earlier, it is in PTIME by dynamic programming
(Theorem 1). For each 𝑦𝑋 , it is re!ned each time when a vertex is
removed (line 9 in Figure 8), leading to at most |𝑦𝑋 |max times of
re!nement on 𝑦𝑋 , where |𝑦𝑋 |max is the maximum size of 𝑦𝑋 for
all 𝑜 which is also a polynomial as remarked earlier. Thus, for |ϑ|
REPs in ϑ, TopkEx takes 𝑙 (𝑗match |ϑ| |𝑦𝑋 |max) time in total.

6 EXPERIMENTAL STUDY
Using real-life graphs, we experimentally evaluated the e#ective-
ness and e"ciency of our local and global explanations.
Experimental setting. We start with the experimental setting.
Datasets. We used four real-life graphs 𝑃 : (1) MovieLens [33], a
bi-directed graph for movie recommendation that has 21K vertices
and 2.6M edges, (2) Yelp [7], a user-business review dataset with
119K vertices and 3.7M edges, (3) CiaoDVD [5], a user-movie rating
dataset with 93K vertices and 4.6M edges, and (4) Lthing [86], a
user-book review dataset with 589K vertices and 1.8M edges. Except
the user-item interaction graphs, Yelp, CiaoDVD and Lthing also
include social relationships among users. Besides, each graph was
enriched by using relevant knowledge graphs, e.g., Freebase.

Following the prior work [21, 36, 66], we randomly picked
70%/10%/20% interaction history of each user in each dataset as the
training/validation/testing set. For each observed user-item interac-
tion pair, we treated it as a positive instance and did negative sam-
pling to pair the user with an item that s/he did not interact before.
GNN models. We selected three GNN-based recommendation mod-
elsM on heterogeneous graphs: (1) PinSAGE [81], a widely-used
model that generates vertex embeddings by sampling and aggre-
gating features from a vertex’s neighborhoods. (2) HGT [36], a
transformer-based method that designs a vertex- and edge-type de-
pendent attention mechanism to handle the graph heterogeneity. (3)
KGAT [66], a classical model that applies an attentive neighborhood
aggregation mechanism on holistic graphs to learn user/item rep-
resentations. Among these, PinSAGE is a basic GNN model while
HGT and KGAT are representative GNN models incorporating KGs.
Rules. For PinSAGE, HGT and KGAT, we discovered 98, 99 and 145

REPs onMovieLens, 52, 46 and 86 REPs on Yelp, 172, 141 and 158
REPs on CiaoDVD, and 79, 56 and 79 REPs on Lthing, respectively.
Baselines. We implemented Makex in Python and C++, adopting
Pytorch for the deep learning-related computations.

We compared with four baselines for local explanations: (1)
GNNExplainer [82], (2) PGExplainer [49], (3) SubgraphX [85] and
(4) PGMExplainer [63]. GNNExplainer extracts important sub-
graphs and vertex features by maximizing mutual information be-
tween subgraphs and predictions; PGExplainer outputs subgraphs
as factual explanations by adopting a deep neural network to param-
eterize generation of explanations; SubgraphX returns subgraphs
based on Shapley values; and PGMExplainer returns subgraphs
of conditional probabilities by exploiting a Bayesian network.

We tested two baselines for global explanations: DAG [50] and
DAGmini, both of which output a set Ssg of subgraphs as global ex-
planations. DAG uses a randomized greedy algorithm to !nd global
explanations that approximately !t an objective function. Since
DAG runs out of memory on all datasets, we adapted it to DAGmini
for generating candidate graph patterns with sampling strategies.

We adapted these to link prediction on heterogeneous graphs.We
did not pick other methods (see the related work) as baselines since
they either publish no source code or are infeasible to be adapted for
link prediction tasks, e.g., GraphMask [59] is not compared since
it focuses on star graphs and question answering tasks, rather than
link prediction; XGNN [83] is not compared since it takes as the
input the manually-designed graph patterns, which requires the
pre-knowledge about speci!c datasets; and GNNInterpreter [69] is
tailored for graph classi!cation tasks and it requires to feed into
memory all graphs from the target class in the training set; it renders
out of memory when it is adapted for link prediction since it needs
to construct the𝑒-hop neighborhood for millions of user-item pairs.
Default parameters. By default, we set the support threshold 𝑞 (resp.
con!dence 𝑟) in RepsLearner as 150K, 50K, 1.5K and 50K (resp. 0.6,
0.6, 0.55 and 0.6) onMovieLens, Yelp, CiaoDVD and Lthing, respec-
tively. We mined REPs in which patterns have at most 10 vertices
and 8 edges. The value of 𝑡 for precondition mining is 3. For each
model on each dataset, we set (a) 𝑂 = 1 in top-𝑂 local explanations,
(b) 𝑠 = 0.8 for random walks, and (c) the weights 𝑣𝑐 = 0.3 and
𝑣𝑖 = 0.7. Besides, each model is best-tuned on each dataset, and the
threshold for CTR predictions are selected by using validation data.
Environment. The experiments were conducted on a single machine
powered by 256GB RAM, 32 processors with Intel(R) Xeon(R) Gold
5320 CPU @2.20GHz and one NVIDIA GeForce RTX 3090 GPU
with 25 GB memory. For the precondition mining in RepsLearner,
we used 25 threads for parallelism. For the lack of space, we report
results on some datasets; the results on the others are consistent.
Evaluation metrics. To evaluate the e#ectiveness of local explana-
tions [82, 84, 85], we used Fidelity, Sparsity and Feature ratio. Each
metric was evaluated on𝛥 randomly selected testing pairs (𝑅, 𝑄) for
which M recommends item 𝑄 to user 𝑅, where we set𝛥 = 1, 000.
(1) Fidelity. It measures whether a local explanation is faithful to
the model’s predictions, by inspecting the structures and features
identi!ed by an explanation. For each testing pair (𝑅, 𝑄), it checks
whether the GNN prediction on the explanation minimally di#ers

723

Table 2: Local e#ectiveness (Top-1)
GNN

Models Methods MovieLens Yelp CiaoDVD Lthing
fidelity sparsity fidelity sparsity fidelity sparsity fidelity sparsity

PinSAGE

PGExplainer 0.469 0.0426% 0.487 0.00494% 0.492 0.00351% 0.384 0.0284%
GNNExplainer 0.539 2.99% 0.782 0.0474% 0.461 0.0712% 0.559 0.00756%
SubgraphX 0.785 0.352% 0.818 0.352% 0.480 0.309% 0.671 0.032%
PGMExplainer 0.724 0.265% 0.763 0.044% 0.873 0.644% 0.692 0.0245%
Makex (ours) 0.914 0.000561% 1.0 0.000303% 0.921 0.000496% 0.774 0.000163%

HGT

PGExplainer 0.598 0.0330% 0.628 0.00425% 0.781 0.00524% 0.102 0.015%
GNNExplainer 0.638 2.70% 0.702 0.0486% 0.499 0.0592% 0.424 0.00212%
SubgraphX 0.791 0.417% 0.539 0.370% 0.466 0.205% 0.540 0.0197%
PGMExplainer 0.743 0.0504% 0.734 0.0274% 0.550 0.153% 0.476 0.00504%
Makex (ours) 0.985 0.000279% 0.997 0.000154% 0.887 0.000235% 1.0 0.000166%

KGAT

PGExplainer 0.480 0.0259% 0.607 0.00427% 0.553 0.00802% 0.110 0.019%
GNNExplainer 0.566 2.90% 0.645 0.0130% 0.382 0.196% 0.685 0.00211%
SubgraphX 0.814 0.359% 0.762 0.0918% 0.446 0.380% 0.496 0.0241%
PGMExplainer 0.800 0.0314% 0.729 0.0216% 0.590 0.143% 0.687 0.00467%
Makex (ours) 0.862 0.000254% 0.823 0.000154% 0.759 0.000243% 0.790 0.000689%

Movielens Yelp CiaoDVD Lthing
10−7

10−5

10−3

Fe
at

ur
e

R
at

io

PinSAGE HGT KGAT

Figure 9: Feature ratio (Top-1)

MovieLens Yelp CiaoDVD Lthing

100

102

104

Ti
m

e
(s

ec
on

ds
) Makex

PGExplainer
GNNExplainer
SubgraphX
PGMExplainer

GNNExplainer
SubgraphX
PGMExplainer

Figure 10: Local e$ciency (Top-1)

from that on the original graph. We de!ne its !delity as follows:
fidelity@𝑂 =

1
𝛥

· 1
𝑂

⌊︄
(𝑄,𝑅)

⌊︄𝑓

𝑁=1 (𝑀̂ (𝑁)(𝑄,𝑅) = 𝑀 (𝑄,𝑅)),

where 𝑀̂ (𝑁)(𝑄,𝑅) (resp. 𝑀 (𝑄,𝑅)) is the prediction for (𝑅, 𝑄) on the sub-
graph induced from the 𝑎-th explanation (resp. the original graph),
and (·) is an indicator function that returns 1 if 𝑀̂ (𝑁)(𝑄,𝑅) = 𝑀 (𝑄,𝑅) .
(2) Sparsity. It measures the ratio of edges selected by a local expla-
nation to all the edges in the entire graph. We de!ne

sparsity@𝑂 =
1
𝛥

· 1
𝑂

⌊︄
(𝑄,𝑅)

⌊︄𝑓

𝑁=1

#selected_edges(𝑁)(𝑄,𝑅)
|𝑇 | ,

where #selected_edges(𝑁)(𝑄,𝑅) is the number of edges in the 𝑎-th expla-
nation for (𝑅, 𝑄) and |𝑇 | is the number of edges in original graph𝑃 .

Intuitively, higher !delity indicates that more discriminative
structures/features are identi!ed; lower sparsity indicates that ex-
planations tend to capture the most important information only.
(3) Feature ratio. We also report the feature ratio, i.e., the average ra-
tio of features used in an explanation to the total number of features.

For global explanations, we used another two popular metrics
following [50, 83]: (1) overall recognizability that checks the recog-
nizability of GNN models on the set E of global explanations (i.e.,
E = ϑ and E = Ssg forMakex and DAGmini, respectively), i.e.,

recognizability =

[︄
exp↗E 𝑀̂ (exp)

|E | ,

where exp is an explanation in E (e.g., a canonical graph generated
from REP 𝑜 in ϑ; see [10] for details), and 𝑀̂ (exp) is the predicted
label of the GNN by feeding exp into the model; and (2) reliability
that computes the coverage of E on all testing pairs, i.e.,

reliability =
|⌋︄exp↗E testPairs(exp) |

#totalPairs .

where #totalPairs and testPairs (exp) are the total number of testing
pairs and the set of testing pairs that can be explained by exp (e.g.,
(𝑅, 𝑄) can be explained by 𝑜 if 𝑜 is applicable at (𝑅, 𝑄)), respectively.
Experimental results. We next report our !ndings.
Exp-1: E#ectiveness of local explanations.We !rst tested the
e#ectiveness of local explanations and present the sensitivity test.
E#ectiveness of top-1 explanation. As shown in Table 2, Makex is
more accurate than the baselines in !delity over the four datasets.
On average, the !delity of Makex is 0.893, 181.42%, 61.64%, 47.86%
and 31.56% higher than PGExplainer, GNNExplainer, SubgraphX
and PGMExplainer, respectively, up to 880.39%, 135.85%, 91.88% and
110.08%. This is becauseMakex !nds not only important subgraphs
but also discriminative features that SubgraphX, PGExplainer and

PGMExplainer fail to !nd, and GNNExplainer masks the same fea-
tures for all vertices (i.e., the features on di#erent vertices are of
equal importance in its explanations, which is, however, often not
true). The sparsity ofMakex outperforms all baselines by 3 orders
of magnitude on average, up to 4 orders of magnitude.

For feature ratios shown in Figure 9,Makex uses a small number
of features to explain GNNs on all datasets, and highlights important
features for each vertex. In contrast, SubgraphX, PGExplainer and
PGMExplainer do not consider features; GNNExplainer selects the
same subset of features for all vertices (not shown).

We also tested the sensitivity ofMakex to various parameters.
Varying 𝑂 . We varied 𝑂 in Makex from 1 to 15 for HGT model, to
test its impact on local explanations. As shown in Figure 11(a), the
!delity of HGT model on each dataset remains steady when 𝑂 in-
creases, indicating the e#ectiveness of ranking scores, i.e., more im-
portant explanations get higher priority. As shown in Figure 11(b),
when 𝑂 increases, the sparsity of HGT also remains steady since
TopkEx prioritizes succinct patterns. For feature ratios (not shown),
𝑂 has little impact since TopkEx prioritizes explanations by the de-
cisiveness of their features, instead of the number of features used.
Impact of REPs. To show the advantages of REPs over existing
graph rules, e.g., TIEs [21], for local explanations, we also com-
pared our TopkEx algorithm with (1) an adapted version of TopkEx,
by replacing REPswith TIEs, termed AdaptTIE, and (2) two adapted
versions of GNNExplainer, by replacing its input with smaller sub-
graphs deduced by TIEs and REPs, respectively, termed GNNExp-
TIE and GNNExp-Rep. As shown in Figure 11(c), for PinSAGE
model, the !delity of TopkEx outperforms all competitors on all
datasets. sinceREPs treat a GNNmodelM as their consequence and
support the 1-WL test, which TIEs fail to do, andGNNExplainer can-
not discriminate distinct feature e#ect on individual vertex. Besides,
the !delity of TopkEx is higher than GNNExp-Rep by up to 11.50%,
verifying the e#ectiveness of the ranking strategy in TopkEx.
User study.We conducted a user study on Amazon Mechanical Turk
(Mturk) [9], by inviting participants to indicate which explanation
in Figure 4 is better. We required each participant to be a master
worker (i.e., those have demonstrated excellency across a wide
range of tasks) in Mturk, and did not assume that they have back-
ground on ML or GNN recommendation. Therefore, we interpreted
each explanation in a plain and simple language to ensure that the
explanation is understandable for average persons (see the online
survey in [11]). Another user study about restaurant recommen-
dation is reported in [10]. We adopted the following four metrics:
(a) Reasonableness (Rea): Is the logic behind the explanation rea-
sonable? (b) Conciseness (Con): Is the information contained in the

724

1 5 10 15
0.0

0.5

1.0

Fi
de

lit
y

Movielens
Yelp

CiaoDVD
Lthing

(a) Fidelity of HGT: varying 𝑓
1 5 10 15

0

1

2

3

S
pa

rs
ity

(1
0−

6)

Movielens
Yelp

CiaoDVD
Lthing

(b) Sparsity of HGT: varying 𝑓
Movielens Yelp CiaoDVD

0.0

0.5

1.0

Fi
de

lit
y

TopkEx
AdaptTIE

GNNExp-TIE
GNNExp-Rep

(c) Impact of REPs for PinSAGE
Rea Con Dec All

0

25

50

75

S
el

ec
tio

n
R

at
io

(%
)

0

Makex
PGExplainer

GNNExplainer
SubgraphX

(d) User Study
Figure 11: Local sensitivity (E#ectiveness)

Makex-PinSAGE

FETopkNa-PinSAGE

Makex-HGT

FETopkNa-HGT

Makex-KGAT

FETopkNa-KGAT

100

400

1 5 10 15
0.25

0.75

Ti
m

e(
se

co
nd

s)

(a) Yelp: varying 𝑓 (Time)
0.2 0.4 0.6 0.8 1.0

0.0

0.3

0.6
Ti

m
e(

se
co

nd
s)

(b) CiaoDVD: varying |𝑊 |
Figure 12: Local sensitivity (E$ciency)

explanation concise? (c) Decisiveness (Dec): Does the explanation
only contain decisive factors for explaining the recommendation?
(d) Overall (All) that considers all above metrics simultaneously.

To avoid random choices by participants, we cross-checked the
validity of answers of each participant. More speci!cally, we pre-
sented two questions for each metric, which asked the participants
to select the best and best two explanations w.r.t. each metric, re-
spectively. If the top-2 explanations do not include the best one, the
response was marked as invalid. We received 58 responses in total,
out of which 45 are valid after cross-checking. The results are shown
in Figure 11(d), where 55.56% responses indicate that the explana-
tion of Makex has the best overall performance. GNNExplainer
and PGExplainer got low scores in Rea, due to the fragmentation
(e.g., 𝑅 and 𝑄 are disconnected) in their explanations. In contrast,
many users indicated that SubgraphX is reasonable, but its expla-
nation is the largest (i.e., the lowest Con), which is too dense to
digest. Note that although both SubgraphX andMakex use MCTS
for discovering important subgraphs, the explanation ofMakex is
not necessarily a subgraph of SubgraphX (e.g., path (𝑅,𝑝1, 𝛩1) in
Makex is not in SubgraphX, Figure 4), since SubgraphX returns a
subgraph for a speci!c user-item pair whileMakex applies a (top-
ranked) REP that is composed of selected paths and preconditions
faithful to the given GNN model; each REP is constructed by using
multiple user-item pairs with MCTS. Besides, Makex utilizes 1WL
predicates to avoid the isomorphic neighborhood information.
Exp-2: E$ciency of local explanations. We next evaluated the
e"ciency of TopkEx, by comparing it with an additional variant
FETopkna, which !nds all witnesses for each REP in ϑ, sorts the
evidences by scores, and returns the top-𝑂 ones. Using the default
REPs ϑ and 𝑂 = 1, we report the average time for each testing pair.
E$ciency. As shown in Figure 10, Makex is 75.8X faster than all
the baselines on average. On Yelp, its top-1 explanation takes 0.38s
on average. Although PGExplainer takes less time than Makex
on MovieLens, CiaoDVD, and Lthing datasets since it pre-trains
a neural network o$ine, it has worse !delity as shown in Table 2.
Varying 𝑂 . As shown in Figures 12(a) by varying 𝑂 from 1 to 15 on
Yelp, FETopkna is indi#erent to 𝑂 , since it enumerates all evidences
from 𝑃 regardless of 𝑂 . In contrast, TopkEx takes longer when 𝑂

gets larger since more evidences are checked, as expected. On Yelp,
TopkEx is 575X faster than FETopkna, up to 808X, verifying the
e#ectiveness of its pruning strategies for top-𝑂 explanations.
Varying |𝑃 |. We varied the scaling factor of 𝑃 from 20% to 100%
in Figure 12(b). All methods take longer given a larger graph, For
PinSAGE, TopkEx is 4.2X slower when |𝑃 | is from 20% to 100%.

Exp-3: E#ectiveness of global explanations.
E#ectiveness. In Figure 13(a), the average recognizability of Makex
on the three models is 72% and 24% (percentage points) higher than
DAGmini onMovieLens and CiaoDVD, respectively, and DAG runs
out of memory. Similarly, the reliability ofMakex is 95% and 30%
better than DAGmini onMovieLens and CiaoDVD in Figure 13(b),
respectively. It is because REPs discovery is guided by the given
GNN with 1-WL test, while DAGmini depends heavily on the candi-
date explanations mined by the frequent pattern mining method.
Varying #trainingPairs. We varied the ratio of training pairs used
for pattern generation from 25% to 100% in Figure 14(a). When
few training pairs are retained, some recommendation scenarios
are not covered, leading to low reliability. However, by using all
training pairs, the reliability of Makex is high, e.g., 1.0 for HGT on
Yelp, indicating thatMakex can cover di#erent cases in practice.
Varying 𝑡 . We varied the number 𝑡 of candidate preconditions for
each path from 1 to 5 in Figure 14(b). With larger 𝑡 , the reliability
of ϑ gets better, since there are more REPs that satisfy the sup-
port/con!dence thresholds, covering more testing pairs. We !nd
the reliability of ϑ becomes steady for 𝑡 ⇔ 3. In contrast, since the
recognizability is mainly impacted by the expressivity of REPs, not
the number of REPs in ϑ, it is %uctuant as 𝑡 gets larger (not shown).

Exp-4: E$ciency of global explanations.We next evaluated the
e"ciency of RepsLearner for providing global explanations.
E$ciency. In Figure 13(c), RepsLearner is up to 7X faster than the
baselines on all datasets for HGT. On CiaoDVD, it takes 1.17 hours
to !nd all REPs while DAGmini takes 8 hours. Since DAGmini fails
to !nish in 3 days on Yelp, we sampled 10% of training pairs for
DAGmini, which, however, still takes longer than RepsLearner.
Varying 𝑞 and 𝑟 . Varying support threshold 𝑞 from 150K to
400K on MovieLens, we report the runtime of the precondition
mining phase of RepsLearner in Figure 13(d). When 𝑞 increases,
it runs faster since larger 𝑞 can !lter more candidate rules by the
anti-monotonicity of support. In contrast, given a larger con!dence
threshold 𝑟 , RepsLearner gets slightly slower (not shown) since con-
!dence is not anti-monotonic, and hence more rules are checked.
Varying 𝑡 , 𝑠1 and 𝑠2. RepsLearner takes longer when 𝑡 , 𝑠1 or 𝑠2
gets larger, as expected, since more REPs are generated (not shown).

Summary. We !nd the following. (1)Makex gives e#ective local
explanations. Over four real-life graphs, its average !delity and

725

Movielens Yelp CiaoDVD
0.0

0.5

1.0

R
ec

og
ni

za
bi

lit
y

o.
o.

m
fo

rD
AG

o.
o.

m
fo

rD
AG

o.
o.

m
fo

rD
AG

0.72

0

1.0 1.0
0.91

0.67

Makex DAGmini

(a) Recognizability (Global)
Movielens Yelp CiaoDVD

0.0

0.5

1.0

R
el

ia
bi

lit
y

o.
o.

m
fo

rD
AG

o.
o.

m
fo

rD
AG

o.
o.

m
fo

rD
AG

0

0.95 1.0 1.0

0.67

0.97

Makex DAGmini

(b) Reliability (Global)
Movielens Yelp CiaoDVD

104

105

Ti
m

e
(s

ec
on

ds
)

o.
o.

m
fo

rD
AG

o.
o.

m
fo

rD
AG

o.
o.

m
fo

rD
AG

Makex DAGmini

(c) Time cost of HGT (Global)

150K 230K 320K 400K
0

100

200

300

Ti
m

e(
se

co
nd

s)

Makex-PinSAGE
Makex-HGT
Makex-KGAT

(d) MovieLens: varying 𝑚 (Time)
Figure 13: Global e#ectiveness and e$ciency

25% 50% 75% 100%
0.7

0.8

0.9

1.0

R
el

ia
bi

lit
y

Makex-PinSAGE
Makex-HGT
Makex-KGAT

(a) Yelp: varying #training
1 2 3 5

0.4

0.6

0.8

1.0
R

el
ia

bi
lit

y
Makex-PinSAGE
Makex-HGT
Makex-KGAT

(b) MovieLens: varying 𝑕
Figure 14: Global sensitivity (Reliability)

sparsity of top-1 explanations are 0.893 and 0.00225%, 80.62% and 3
orders of magnitude better than the prior methods on average, re-
spectively, with a small feature ratio. (2)Makex is e"cient. For each
user-item pair, it takes 0.38s on average to generate top-1 local ex-
planations on a graphwith 119K vertices and 3.7M edges. (3) TopkEx
is 575X faster than FETopkna on average on Yelp, up to 808X, ver-
ifying the e#ectiveness of our top-𝑂 method. (4) The set ϑ of REPs
provides good global explanations. Its recognizability and reliability
for global explanation are 32% and 42% higher than the baselines
on average, up to 72% and 95%, respectively. (5) RepsLearner is
faster than the prior global explanation methods by up to 7X.

7 RELATEDWORK
Explanation methods. Prior methods are classi!ed as follows.
(1) Ante-hoc self-explainable models. Such models provide explana-
tions by exploiting knowledge graphs (KGs), e.g., Ripplenet [64],
KPRN [70] and TMER [18] identify human-designed meta-paths
between users and items; RuleRec [53], PGPR [77] and KGIN [68]
discover meta-paths from KGs. Review information has also been
used, e.g., KEGNN [51] adopts the Gate Recurrent Unit (GRU) [20]
to generate textual explanation from KGs, and TGNN [60] devises
a sentence-enhanced topic graph from reviews. However, such a
GNN model cannot be extended to other GNN models once trained.
(2) Post-hoc explanation methods. These methods can be classi!ed
as follows. (a) Utilizing internal parameters, which are not always
accessible; such methods, e.g., CAM [55] and Sensitivity Analy-
sis (SA) [12], are not suitable for explaining recommendations. (b)
Utilizing surrogate models; e.g., GraphLime [38] selects vertices
and their 𝑒-hop neighborhood by utilizing Hilbert-Schmidt Inde-
pendence Criterion Lasso [80], and PGMExplainer [63] exploits
a Bayesian network. (c) Utilizing local information, which !nds
important subgraphs as explanations by !rst perturbing the input
graph and then iteratively selecting the subgraph with the maxi-
mum information gain, e.g., GNNExplainer [82], GraphMask [59],
PGExplainer [49], SubgraphX [85] and Zorro [28]. However, these
methods cannot tell precisely what features are decisive for an ML
model to make predictions and under what conditions the predic-
tions can be made. Moreover, they provide only local explanations.
(3) Rule-based methods. [17, 58] explain negative predictions with
rules of conjunction of constant predicates, which are globally-

consistent for all training data. However, they target relational data
and do not work on GNNs since they omit graph topology.
(4) Global explanations. Global explanations include, e.g.,GNNInter-
preter [69] via a numerical optimization approach, XGNN [83] using
reinforcement learning and DAG [50] with a randomized greedy
algorithm. However, these methods either require pre-processed
graph patterns as input or assume sub-structures for explanation as
a Gilbert random graph, which are often beyond reach in practice.

Makex di#ers from prior work in the following. (a) It proposes a
logic approach to explaining why a GNN-based modelM makes
a recommendation, by disclosing both graph patterns and logic
predicates to reveal the correlations, interactions and dependencies
of features, rather than meta paths or subgraphs (with one-size-!t-
all features). (b) It develops a method for automatically learning
a combination of patterns and predicates to explain M(𝐿,𝑀). (c)
It provides both local and global explanations for M(𝐿,𝑀). (d) It
o#ers higher !delity and lower sparsity, as shown in Section 6. (e)
It aims to explain di#erent behaviors ofM via 1-WL predicate.
Rules for graphs. Association rules have been studied to catch
the regularity among entities in graphs, e.g., GPARs [26], GFDs
[27] and GEDs [25], GARs [23] and TACOs [24]. To reduce the
cost, GCRs [22] and TIEs [21] adopt star patterns and restricted
predicates, where GCRs focus on graph cleaning and TIEs aim to
reduce false positives and false negatives of ML recommendations.

As opposed to the prior work, (1) for a given ML model M,
REPs treat M as the consequence of the rules, in order to discover
explanations for the predictions of M. (2) REPs embed the 1-WL
test [72] as a predicate, to o#er su"cient expressive power for
GNN recommendation models that are based on the 1-WL test [35].

8 CONCLUSION
The novelty ofMakex includes (1) REPs to (a) provide both global
and local explanations for GNN recommendations, (b) reveal not
only decisive topology and features but also conditions under which
the ML predictions are made, and (c) explain di#erent behaviors
of GNN predictions via, e.g., 1-WL test; (2) a GNN-guided algo-
rithm for discovering REPs pertaining to a given model M; and
(3) an algorithm for generating top-ranked local explanations. Our
experimental study has veri!ed thatMakex is promising in practice.

One topic for future work is to develop explanations for negative
ML prediction, i.e., bad outcomes. Another topic is to produce
explanation for fairness debugging [56], to explain biased behaviors.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Founda-
tion of China (62372030, 62302027, 62202313), Guangdong Basic and
Applied Basic Research Foundation 2022A1515010120, Longhua Sci-
ence & Technology Innovation Bureau 11501A20240704A24CA6C.

726

REFERENCES
[1] 1995. A Walk in the Clouds. https://www.imdb.com/title/tt0114887/?ref_=fn_

al_tt_1.
[2] 1997. Titanic. https://www.imdb.com/title/tt0120338/?ref_=nv_sr_srsg_0_tt_5_

nm_3_q_tit.
[3] 2017. Amazon GNN Recommender.

https://www.aboutamazon.in/news/workplace/how-amazons-augmented-graph-
neural-networks-helps-sellers-get-insights-into-consumer-preferences//.

[4] 2017. Amazon GNN Recommender in Product.
https://www.amazon.science/blog/using-graph-neural-networks-to-recommend-
related-products//.

[5] 2017. CiaoDVD movie ratings.
http://konect.cc/networks/librec-ciaodvd-movie_ratings/.

[6] 2017. Uber GNN Recommender.
https://www.uber.com/en-HK/blog/uber-eats-graph-learning//.

[7] 2021. Yelp dataset. https://www.yelp.com/dataset/.
[8] 2023. Save on Mac or iPad for college.

https://www.apple.com/us-edu/store.
[9] 2024. Amazon Mechanical Turk.

https://www.mturk.com/.
[10] 2024. Code, datasets and full version. https://github.com/SICS-Fundamental-

Research-Center/Makex.
[11] 2024. Survey on Best Explanations for Recommendation. https://forms.gle/

c8P1sJQGkKUxiwjm9.
[12] Federico Baldassarre and Hossein Azizpour. 2019. Explainability Techniques

for Graph Convolutional Networks. In ICML Workshop "Learning and Reasoning
with Graph-Structured Representations".

[13] Avishek Bose and William Hamilton. 2019. Compositional fairness constraints
for graph embeddings. In ICML. PMLR, 715–724.

[14] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and AI in games 4, 1 (2012), 1–43.

[15] Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin, and Yong Li. 2020. Bundle
recommendation with graph convolutional networks. In SIGIR. 1673–1676.

[16] Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng
Jin, and Yong Li. 2021. Sequential recommendation with graph neural networks.
In SIGIR. 378–387.

[17] Chaofan Chen, Kangcheng Lin, Cynthia Rudin, Yaron Shaposhnik, Sijia Wang,
and Tong Wang. 2018. An Interpretable Model with Globally Consistent Ex-
planations for Credit Risk. CoRR abs/1811.12615 (2018). arXiv:1811.12615
http://arxiv.org/abs/1811.12615

[18] Hongxu Chen, Yicong Li, Xiangguo Sun, Guandong Xu, and Hongzhi Yin. 2021.
Temporal Meta-path Guided Explainable Recommendation. In WSDM. ACM,
1056–1064.

[19] Tianwen Chen and Raymond Chi-Wing Wong. 2020. Handling information
loss of graph neural networks for session-based recommendation. In SIGKDD.
1172–1180.

[20] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
In NIPS 2014 Workshop on Deep Learning, December 2014.

[21] Lihang Fan, Wenfei Fan, Ping Lu, Chao Tian, and Qiang Yin. 2024. Enriching
Recommendation Models with Logic Conditions. Proc. ACMManag. Data (2024).

[22] Wenfei Fan, Wenzhi Fu, Ruochun Jin, Muyang Liu, Ping Lu, and Chao Tian. 2023.
Making It Tractable to Catch Duplicates and Con%icts in Graphs. Proc. ACM
Manag. Data 1, 1 (2023), 86:1–86:28.

[23] Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Chao Tian, and Jingren Zhou.
2020. Capturing Associations in Graphs. PVLDB 13, 11 (2020), 1863–1876.

[24] Wenfei Fan, Ruochun Jin, Ping Lu, Chao Tian, and Ruiqi Xu. 2022. Towards
Event Prediction in Temporal Graphs. PVLDB 15, 9 (2022), 1861–1874.

[25] Wenfei Fan and Ping Lu. 2019. Dependencies for Graphs. ACM Trans. Database
Syst. 44, 2 (2019), 5:1–5:40.

[26] Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu. 2015. Association Rules
with Graph Patterns. PVLDB 8, 12 (2015), 1502–1513.

[27] Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional dependencies for
graphs. In SIGMOD. ACM, 1843–1857.

[28] Thorben Funke, Megha Khosla, Mandeep Rathee, and Avishek Anand. 2022. Z
orro: Valid, sparse, and stable explanations in graph neural networks. IEEE
Transactions on Knowledge and Data Engineering (2022).

[29] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan
Quan, Jianxin Chang, Depeng Jin, Xiangnan He, and Yong Li. 2023. A survey
of graph neural networks for recommender systems: Challenges, methods, and
directions. ACM Transactions on Recommender Systems 1, 1 (2023), 1–51.

[30] Michael Garey and David Johnson. 1979. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company.

[31] Martin Grohe. 2020. word2vec, node2vec, graph2vec, X2vec: Towards a Theory
of Vector Embeddings of Structured Data. In PODS. ACM, 1–16.

[32] Martin Grohe. 2021. The Logic of Graph Neural Networks. In LICS. 1–17.

[33] F. Maxwell Harper and Joseph A. Konstan. 2016. The MovieLens Datasets:
History and Context. ACM Trans. Interact. Intell. Syst. 5, 4 (2016), 19:1–19:19.

[34] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and powering graph convolution network
for recommendation. In SIGIR. 639–648.

[35] Yang Hu, Xiyuan Wang, Zhouchen Lin, Pan Li, and Muhan Zhang. 2022. Two-
Dimensional Weisfeiler-Lehman Graph Neural Networks for Link Prediction.
CoRR abs/2206.09567 (2022).

[36] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In The Web conference 2020. 2704–2710.

[37] Chao Huang, Huance Xu, Yong Xu, Peng Dai, Lianghao Xia, Mengyin Lu, Liefeng
Bo, Hao Xing, Xiaoping Lai, and Yanfang Ye. 2021. Knowledge-aware coupled
graph neural network for social recommendation. In AAAI, Vol. 35. 4115–4122.

[38] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. 2022.
GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks.
TKDE 35, 7 (2022), 6968–6972.

[39] Wensen Jiang, Yizhu Jiao, Qingqin Wang, Chuanming Liang, Lijie Guo, Yao
Zhang, Zhijun Sun, Yun Xiong, and Yangyong Zhu. 2022. Triangle graph interest
network for click-through rate prediction. In WSDM. 401–409.

[40] Bowen Jin, Chen Gao, Xiangnan He, Depeng Jin, and Yong Li. 2020. Multi-
behavior recommendation with graph convolutional networks. In SIGIR. 659–
668.

[41] Jiarui Jin, Jiarui Qin, Yuchen Fang, Kounianhua Du, Weinan Zhang, Yong Yu,
Zheng Zhang, and Alexander J Smola. 2020. An e"cient neighborhood-based
interaction model for recommendation on heterogeneous graph. In SIGKDD.
ACM, 75–84.

[42] Pigi Kouki, James Scha#er, Jay Pujara, John O’Donovan, and Lise Getoor. 2019.
Personalized explanations for hybrid recommender systems. In International
Conference on Intelligent User Interfaces. 379–390.

[43] Johannes Kunkel, Tim Donkers, Lisa Michael, Catalin-Mihai Barbu, and Jürgen
Ziegler. 2019. Let me explain: Impact of personal and impersonal explanations on
trust in recommender systems. In CHI conference on human factors in computing
systems. 1–12.

[44] Zekun Li, Zeyu Cui, Shu Wu, Xiaoyu Zhang, and Liang Wang. 2019. Fi-GNN:
Modeling feature interactions via graph neural networks for CTR prediction. In
CIKM. 539–548.

[45] Dandan Lin, Shijie Sun, Jingtao Ding, Xuehan Ke, Hao Gu, Xing Huang, Chong-
gang Song, Xuri Zhang, Lingling Yi, Jie Wen, and Chuan Chen. 2022. PlatoGL:
E#ective and scalable deep graph learning system for graph-enhanced real-time
recommendation. In CIKM. 3302–3311.

[46] Meng Liu, Jianjun Li, Guohui Li, and Peng Pan. 2020. Cross domain recommen-
dation via bi-directional transfer graph collaborative !ltering networks. In CIKM.
885–894.

[47] Weiwen Liu, Qing Liu, Ruiming Tang, Junyang Chen, Xiuqiang He, and
Pheng Ann Heng. 2020. Personalized Re-ranking with Item Relationships for
E-commerce. In CIKM. 925–934.

[48] Xin Liu, Zheng Li, Yifan Gao, Jingfeng Yang, Tianyu Cao, Zhengyang Wang,
Bing Yin, and Yangqiu Song. 2024. Enhancing User Intent Capture in Session-
Based Recommendation with Attribute Patterns. Advances in Neural Information
Processing Systems 36 (2024).

[49] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng
Chen, and Xiang Zhang. 2020. Parameterized explainer for graph neural network.
NeurIPS 33 (2020), 19620–19631.

[50] Ge Lv and Lei Chen. 2023. On Data-Aware Global Explainability of Graph Neural
Networks. PVLDB 16, 11 (2023), 3447–3460.

[51] Ziyu Lyu, Yue Wu, Junjie Lai, Min Yang, Chengming Li, and Wei Zhou. 2022.
Knowledge enhanced graph neural networks for explainable recommendation.
IEEE Transactions on Knowledge and Data Engineering 35, 5 (2022), 4954–4968.

[52] Chen Ma, Liheng Ma, Yingxue Zhang, Jianing Sun, Xue Liu, and Mark Coates.
2020. Memory augmented graph neural networks for sequential recommendation.
In AAAI, Vol. 34. 5045–5052.

[53] Weizhi Ma, Min Zhang, Yue Cao, Woojeong Jin, Chenyang Wang, Yiqun Liu,
Shaoping Ma, and Xiang Ren. 2019. Jointly Learning Explainable Rules for
Recommendation with Knowledge Graph. CoRR abs/1903.03714 (2019). http:
//arxiv.org/abs/1903.03714

[54] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and Leman Go
Neural: Higher-Order Graph Neural Networks. In AAAI. 4602–4609.

[55] Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and
Heiko Ho#mann. 2019. Explainability methods for graph convolutional neural
networks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.
10772–10781.

[56] Romila Pradhan, Jiongli Zhu, Boris Glavic, and Babak Salimi. 2022. Interpretable
data-based explanations for fairness debugging. In SIGMOD. 247–261.

[57] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why should I
trust you?" Explaining the predictions of any classi!er. In SIGKDD. 1135–1144.

[58] Cynthia Rudin and Yaron Shaposhnik. 2023. Globally-Consistent Rule-Based
Summary-Explanations for Machine LearningModels: Application to Credit-Risk

727

https://www.imdb.com/title/tt0114887/?ref_=fn_al_tt_1
https://www.imdb.com/title/tt0114887/?ref_=fn_al_tt_1
https://www.imdb.com/title/tt0120338/?ref_=nv_sr_srsg_0_tt_5_nm_3_q_tit
https://www.imdb.com/title/tt0120338/?ref_=nv_sr_srsg_0_tt_5_nm_3_q_tit
https://www.apple.com/us-edu/store
https://github.com/SICS-Fundamental-Research-Center/Makex
https://github.com/SICS-Fundamental-Research-Center/Makex
https://forms.gle/c8P1sJQGkKUxiwjm9
https://forms.gle/c8P1sJQGkKUxiwjm9
http://arxiv.org/abs/1811.12615
http://arxiv.org/abs/1903.03714
http://arxiv.org/abs/1903.03714

Evaluation. J. Mach. Learn. Res. 24 (2023), 16:1–16:44.
[59] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. 2020. Interpreting

Graph Neural Networks for NLP With Di#erentiable Edge Masking. In ICLR.
[60] Jie Shuai, Le Wu, Kun Zhang, Peijie Sun, Richang Hong, and Meng Wang. 2023.

Topic-enhanced Graph Neural Networks for Extraction-based Explainable Rec-
ommendation. In SIGIR. 1188–1197.

[61] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy P. Lillicrap, Fan Hui, Laurent Sifre, George van den Driess-
che, Thore Graepel, and Demis Hassabis. 2017. Mastering the game of go without
human knowledge. Nature 550, 7676 (2017), 354–359.

[62] Jianing Sun, Wei Guo, Dengcheng Zhang, Yingxue Zhang, Florence Regol,
Yaochen Hu, Huifeng Guo, Ruiming Tang, Han Yuan, Xiuqiang He, and Mark
Coates. 2020. A Framework for Recommending Accurate and Diverse Items Using
Bayesian Graph Convolutional Neural Networks. In KDD. ACM, 2030–2039.

[63] Minh Vu and My T Thai. 2020. Pgm-explainer: Probabilistic graphical model ex-
planations for graph neural networks. Advances in neural information processing
systems 33 (2020), 12225–12235.

[64] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,
andMinyi Guo. 2018. RippleNet: Propagating User Preferences on the Knowledge
Graph for Recommender Systems. In CIKM. ACM, 417–426.

[65] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun
Lee. 2018. Billion-scale commodity embedding for e-commerce recommendation
in alibaba. In SIGKDD. ACM, 839–848.

[66] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019.
KGAT: Knowledge Graph Attention Network for Recommendation. In SIGKDD.
ACM, 950–958.

[67] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative !ltering. In SIGIR. 165–174.

[68] Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu,
Xiangnan He, and Tat-Seng Chua. 2021. Learning Intents behind Interactions
with Knowledge Graph for Recommendation. InWWW. ACM / IW3C2, 878–887.

[69] Xiaoqi Wang and Han Wei Shen. 2022. GNNInterpreter: A Probabilistic Gen-
erative Model-Level Explanation for Graph Neural Networks. In International
Conference on Learning Representations.

[70] Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng
Chua. 2019. Explainable Reasoning over Knowledge Graphs for Recommendation.
In AAAI. AAAI Press, 5329–5336.

[71] Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xian-Ling Mao, and Minghui
Qiu. 2020. Global context enhanced graph neural networks for session-based
recommendation. In SIGIR. 169–178.

[72] B. Yu. Weis!eler and A. A. Leman. 1968. The reduction of a graph to canonical
form and the algebra which appears therein. NIT 2 (1968).

[73] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang.
2019. A neural in%uence di#usion model for social recommendation. In SIGIR.
235–244.

[74] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural
networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.

[75] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan.
2019. Session-based recommendation with graph neural networks. In AAAI,
Vol. 33. 346–353.

[76] ShiwenWu,Wentao Zhang, Fei Sun, and Bin Cui. 2020. GraphNeural Networks in
Recommender Systems: A Survey. CoRR abs/2011.02260 (2020). arXiv:2011.02260
https://arxiv.org/abs/2011.02260

[77] Yikun Xian, Zuohui Fu, S. Muthukrishnan, Gerard de Melo, and Yongfeng Zhang.
2019. Reinforcement Knowledge Graph Reasoning for Explainable Recommen-
dation. In SIGIR. ACM, 285–294.

[78] Fengtong Xiao, Lin Li, Weinan Xu, Jingyu Zhao, Xiaofeng Yang, Jun Lang, and
Hao Wang. 2021. DMBGN: Deep Multi-Behavior Graph Networks for Voucher
Redemption Rate Prediction. In SIGKDD. ACM, 3786–3794.

[79] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In ICLR.

[80] Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Eric P Xing, and Masashi
Sugiyama. 2014. High-dimensional feature selection by feature-wise kernelized
lasso. Neural computation 26, 1 (2014), 185–207.

[81] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for Web-scale
recommender systems. In SIGKDD. 974–983.

[82] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. GNNExplainer: Generating Explanations for Graph Neural Networks. In
NeurIPS. 9240–9251.

[83] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. 2020. XGNN: Towards model-
level explanations of graph neural networks. In SIGKDD. ACM, 430–438.

[84] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. 2022. Explainability in
graph neural networks: A taxonomic survey. IEEE transactions on pattern analysis
and machine intelligence 45, 5 (2022), 5782–5799.

[85] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. 2021. On explain-
ability of graph neural networks via subgraph explorations. In ICML. PMLR,
12241–12252.

[86] Tong Zhao, Julian McAuley, and Irwin King. 2015. Improving latent factor
models via personalized feature projection for one class recommendation. In
CIKM. 821–830.

[87] Jiawei Zheng, Hao Gu, Chonggang Song, Dandan Lin, Lingling Yi, and Chuan
Chen. 2023. Dual Interests-Aligned Graph Auto-Encoders for Cross-domain
Recommendation in WeChat. In CIKM. ACM, 4988–4994.

[88] Markus Zopf. 2022. 1-WL expressiveness is (almost) all you need. In International
Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

728

https://arxiv.org/abs/2011.02260

	Abstract
	1 Introduction
	2 Rules for Explanations
	2.1 Star Patterns and 1-WL Test
	2.2 REPs: Syntax and Semantics

	3 Makex: An Explanation System
	4 Model-Guided Rule Discovery
	5 Top-Ranked Local Explanations
	5.1 Ranking Score
	5.2 Pruning with Score Upper Bound
	5.3 Top-k Algorithm

	6 Experimental Study
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

