
Laser: Buffer-Aware LearnedQuery Scheduling in
Master-Standby Databases

Yuwei Huang

Department of Computer Science, Tsinghua University

hyw22@mails.tsinghua.edu.cn

Guoliang Li

Department of Computer Science, Tsinghua University

liguoliang@tsinghua.edu.cn

ABSTRACT

Master-standby database deployment is a commonly adopted data-

base architecture in modern production environments, thanks to its

fault tolerance and high availability. However, despite the architec-

ture’s widespread application in various online services, relatively

few research efforts have been made to improve its overall query

performance. When a sequence of queries arrive, existing methods

of scheduling them across master and standby servers still rely

on rules or heuristics, which may overlook some potential opti-

mization directions such as buffer utilization. If we can efficiently

reuse the database buffers resident in memory through intelligent

query scheduling, the average response time of user queries can be

significantly reduced as opposed to reading data from disk.

To address this issue, in this paper, we introduce a new buffer-

aware query scheduling system named Laser. The system integrates

a lightweight learned model that can directly map a query to the

data blocks it accesses. Then, based on the predictions of the queries,

we develop adaptive query scheduling algorithms to perform query

allocation as well as query rearrangements, aiming to maximize

the overall buffer hit rate while also maintaining load balance. The

proposed system requires no pre-training, and can adjust to unseen

workloads on the fly through constant model updates and query

re-allocation. In our experiments, we observe a reduction of ∼80%
in query completion time compared to other traditional heuristic-

based methods, with relatively low extra overhead added to the

critical path of query execution.

PVLDB Reference Format:

Yuwei Huang and Guoliang Li. Laser: Buffer-Aware Learned Query

Scheduling in Master-Standby Databases. PVLDB, 18(3): 743 - 755, 2024.

doi:10.14778/3712221.3712239

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/hyw498169842/LASER.

1 INTRODUCTION

For commercial databases, high availability and reliability are two

vital properties that are generally required to fulfill its service-level

agreement (SLA), and a common solution is the master-standby

replication architecture that usually consists of a master node,

which is responsible for all write queries and some read queries,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.

doi:10.14778/3712221.3712239

and multiple standby nodes, which are responsible for read-only

queries. Such allocation of workloads brings great improvement to

the database’s throughput as it reduces the burden on individual

nodes in case of peak load. The data stored in each node are essen-

tially the same, thus the standby nodes can also serve as backups for

the master node to provide availability and reliability. Data updates

on the master node are synchronized to standby nodes via redo

logs. Master-standby replication architecture is well supported by

databases like MySQL [20], PostgreSQL [24], and openGauss [16].

For query scheduling in master-standby replication databases,

a critical optimization direction is buffer utilization. Consider an

example where there is only one big table in a two-node database

and the buffer pool on each node can only accommodate half of the

table data blocks. A workload consists of 2 queries that scan the

first half of data blocks followed by 2 queries that scan the second

half. Then, with naive Round-Robin scheduling, each node would

receive both types of queries, resulting in complete buffer misses.

However, if the scheduler takes buffer utilization into account and

allocates the same type of queries to the same node, the overall

execution time can be vastly reduced due to buffer hits.

To promote buffer utilization, existing literature mainly adopts

heuristic-based methods [23, 27] or addresses specialized queries [6,

21, 34]. These studies, while effective under specific settings, may

have problems in more general cases. For example, [23] requires Ma-

terialized Query Table (MQT) which is an auxiliary data structure

that occupies extra disk space and presents difficulty for adaptation

to write queries. It also assumes batched arrival of queries in order

to perform joint allocation of MQTs and queries. [27] calculates

query similarities solely based on SQL texts, which is inaccurate as

query access patterns are not directly reflected by the predicates.

It also overlooks load balancing which is another critical aspect in

query scheduling. To summarize, these works have the following

limitations. First, they require prior knowledge of the queries in

the workload such as query patterns, which largely depends on the

insights from domain experts. Second, they do not build explicit

maps between queries and their access patterns (i.e., which data

blocks will be accessed by the query), either calculating similari-

ties solely with query texts or relying on the database to provide

such information, which is not generally available. Third, they lack

the ability to learn from and adapt to complex workloads that are

constantly changing or contain write queries. Finally, they pay rel-

atively little attention to load balancing, which is also an important

metric in master-standby query scheduling.

Challenges. There are four main challenges for efficient buffer-

aware query scheduling in master-standby databases. First, it is

necessary to predict the access pattern of each incoming query

before execution so as to decide which data blocks are to be loaded

into memory (C1). Second, smart scheduling algorithms need to

743

https://doi.org/10.14778/3712221.3712239
https://github.com/hyw498169842/LASER
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712239
https://www.acm.org/publications/policies/artifact-review-and-badging-current

be developed to promote buffer utilization based on the predicted

query access patterns while also maintaining load balance among

all database nodes (C2). Third, the scheduling system should be able

to handle various queries and adapt to both workload and database

shifts during runtime (C3). Finally, the whole solution cannot add

too much overhead to the critical path of query execution (C4).

Our Approach. To tackle the above challenges, we propose Laser,
a buffer-aware LeArned query SchEduling system for masteR-

standby databases. Specifically, to addressC1, the system integrates

a light-weight query-to-block model (Section 4), which can directly

map a query to the data blocks it accesses. To address C2, we pro-

pose a set of self-adaptive scheduling algorithms (Section 5) to

promote both buffer utilization and load balance, which include

adaptive query allocation and selection. To address C3, we design

self-adjustable parameters in the scheduling algorithms as well as

mechanisms to strengthen the self-adaptation ability of the system

(Section 6), including a model trainer to update and synchronize

the query model on the fly and a DB monitor to detect and handle

possible database shifts. To addressC4, we decouple the lightweight

query model at the client side with the training process at the server

side, and make most of the scheduling decisions in parallel to query

execution. We show by extensive experiments (Section 7) that our

system can significantly accelerate query response with relatively

little overhead added to the critical path of query execution.

Contributions.We make the following contributions:

(1) We identify the need of efficient query scheduling in master-

standby database scenarios and formulate this problem under both

static and dynamic settings. We propose Laser, a buffer-aware

learned query scheduling system that is able to tackle this problem.

(2) We propose a highly modular lightweight query model that can

directly map a query to its access pattern.

(3) We design adaptive scheduling algorithms that can simultane-

ously promote database buffer utilization as well as load balance,

with the ability to self-adjust on the fly.

(4) We present mechanisms that enable Laser to handle complex

dynamic query workloads, including query re-allocation, online

model training, and database monitoring.

(5)We conduct extensive experiments on 5 different datasets against

traditional heuristic-based methods and achieve ∼80% reduction in

query completion time, with relatively low overhead added to the

critical path of query execution.

2 PROBLEM STATEMENT

In this section, we define the problem of Query Scheduling in a

master-standby replication database setting, with input of either

a static query set or a dynamic query stream. We also discuss the

design principle for this problem.

2.1 Static Query Scheduling

Consider a master-standby replication database with 𝑛 ≥ 2 nodes

(1 master node and 𝑛 − 1 standby nodes). Along with that, a proxy

layer (or JDBC/ODBC) is also deployed to gather all the user queries

and make scheduling decisions for them. Specifically, the decisions

include which nodes the queries should be sent to and in what order

they should be processed. The allocated queries are then executed

locally on the database nodes. Once a query is completed, the proxy

layer collects the result and sends it back to the corresponding user.

Under the static setting, all user queries arrive at time 𝑡0 = 0 and

thus form a static query set𝑄 (e.g., batch processing in OLAP). The

problem of Static Query Scheduling is then defined as follows.

Definition 2.1 (Static Query Scheduling). Given 𝑛 master-standby

database nodes and a static query set 𝑄 with |𝑄 | = 𝑚, we aim to

find an allocation function 𝑓 : 𝑄 → {1, 2, . . . , 𝑛} and an ordering

function𝑔 : 𝑄 → {1, 2, . . . ,𝑚} such that the following is minimized:

min

𝑓 :𝑄→{1,2,...,𝑛}
𝑔:𝑄→{1,2,...,𝑚}

∑︂
𝑞∈𝑄

ct
(︁
𝑞, 𝑓 (𝑞);𝑔(𝑞)

)︁
, (1)

where ct(𝑞, 𝑘 ; 𝑖) denotes the completion time (i.e., the time at which

the proxy layer collects the full result set) of query 𝑞 when it is

executed as the 𝑖-th query on node𝑘 . Sometimeswe caremore about

the maximum completion time, and the corresponding optimization

objective would change to:

min

𝑓 :𝑄→{1,2,...,𝑛}
𝑔:𝑄→{1,2,...,𝑚}

max

𝑞∈𝑄
ct
(︁
𝑞, 𝑓 (𝑞);𝑔(𝑞)

)︁
. (2)

Both (1) and (2) are called the problem of Static Query Scheduling.

2.2 Dynamic Query Scheduling

Under the dynamic setting, each query 𝑞 now comes with a times-

tamp 𝑡𝑞 , and we can take the difference between completion time

ct and the timestamp 𝑡𝑞 as its actual query response time. Also,

the desired allocation function 𝑓 and ordering function 𝑔 are now

dependent on query arrival time, i.e., they take the extra parameter

𝑡𝑞 ∈ R≥0 as input. Taking these factors into consideration, we state
the Dynamic Query Scheduling problem as follows.

Definition 2.2 (Dynamic Query Scheduling). Consider the same

problem setting as in Definition 2.1, except that each query 𝑞 is

now associated with a timestamp 𝑡𝑞 , we aim to find an allocation

function 𝑓 : 𝑄 × R≥0 → {1, 2, . . . , 𝑛} and an ordering function

𝑔 : 𝑄 × R≥0 → {1, 2, . . . ,𝑚} such that the following is minimized:

min

𝑓 :𝑄×R≥0→{1,2,...,𝑛}
𝑔:𝑄×R≥0→{1,2,...,𝑚}

∑︂
𝑞∈𝑄

[︁
ct
(︁
𝑞, 𝑓 (𝑞, 𝑡𝑞);𝑔(𝑞, 𝑡𝑞)

)︁
− 𝑡𝑞

]︁
, (3)

where ct(𝑞, 𝑘 ; 𝑖) is the same as described in Definition 2.1. Opti-

mization of (3) is called the problem of Dynamic Query Scheduling.

Note that for dynamic query streams, maximum completion time

does not make much sense as it is heavily influenced by the query

timestamps. Therefore, we treat the sum of query completion time

as the only optimization goal in this setting.

2.3 Insights

Before introducing our Laser framework, we make some analysis of

the predefined problem. Clearly, directly modeling the completion

time of a query is rather complicated, as it requires large amounts

of information including (i) Network latency, (ii) Query complexity,

(iii) Available OS resources, (iv) Database load condition, and (v)

Impact of preceding queries. Moreover, under the dynamic setting,

only part of the queries can be seen during a scheduling process,

rendering it impossible to find the global optimum of Equation (3)

even with all the information above. On the other hand, as the proxy

layer only connects to the query interface of backend databases, it

cannot access low-level OS information such as memory usage or

744

CPU load. The aforementioned impracticality of a direct solution

pushes us to find efficient workarounds.

Wemake the observation that, among the factors which influence

query completion time, some are mostly hardware-dependent (net-

work latency, OS resources, etc.), and some are workload-intrinsic

(query complexity). Therefore, we mainly focus on the impact of

preceding queries on the current query’s execution. Inspired by the

intuition that queries accessing similar data blocks should be sent

to the same node and executed consecutively, our Laser system

features a query model that can map a query to the blocks it scans,

and scheduling algorithms that group similar queries onto each

node while keeping load balance. This design principle helps to

improve the overall buffer hit rate and eventually contributes to ear-

lier query completion. The implementation details of our proposed

system will be discussed in the following sections.

3 SYSTEM OVERVIEW

In this section, we present an overview of our Laser system, illus-

trating its various components and how they interact with each

other in a typical query workflow.

3.1 Laser Architecture

Figure 1 shows the architecture of our Laser System. The system

serves as a proxy layer (or in JDBC/ODBC) between applications

and backend database servers. To external users, the system func-

tions exactly the same as a normal database connection interface,

with all the implementation details and deployment configurations

hidden behind the scene. The interface provides basic functionalities

for handling user requests such as querying and result-retrieving.

In the following paragraphs, we will provide a brief introduction

to the various components inside the Laser system.

Query Model. User queries from external applications are first

processed by the query model. The model, with the assistance of

auxiliary information (e.g., database schema), takes the queries as

input and outputs vectorized query features indicating their access

patterns. Here the access pattern of a query refers to the data blocks

it accesses. Such predictions serve as a guidance for the subsequent

query allocation process, as they can be effectively used to mea-

sure the similarity between different queries. The model adopts a

lightweight MLP structure, which incurs relatively low overhead,

and can run efficiently even without dedicated hardware like a

Graphics Processing Unit (GPU). Under our experimental setting,

with batched processing, the query model takes an amortized 3ms

to encode each query without GPU, which is relatively affordable.

Allocator. The allocator is the central component in our system

which is responsible for allocating user queries among backend

database servers. For example, a naive round-robin allocator may

distribute the queries in circular order according to their arrival

time. In our Laser system, the query allocation process is performed

using an adaptive greedy allocation algorithm, which takes both

query access patterns predicted by the query model and current

workload conditions on each node into consideration. The weights

associated with the two factors are dynamically adjusted during

system operation based on query run-time statistics.

Database Connectors. The DB Connectors are a group of

worker threads that directly communicate with backend database

Laser

Apps

Query Model

SQL Query MLP Model Access Pattern

Allocator

DB Connectors

Adaptive Greedy
Allocation

Access
Pattern

Load
Condition

DB Connector 1
…

DB Connector n

Backend Host
Master Node

DB Server

Model Trainer

Raw Data

Preprocess

Training Data Queue Model Training

Feed

DB Monitor

Database Schema

Number of Blocks

Execution Statistics

Standby Nodes

DB Server
Standby 1

DB Server

…
Adaptive Greedy

Selection

DB Connections

Local Query Queue

DB Connections

Local Query Queue

Standby 2

Figure 1: Architecture of the Laser system.

servers. Each DB Connector maintains multiple connections to one

database node and contains a local query queue that stores the

queries sent by the allocator. The queries in the queue are contin-

uously fetched and executed by the corresponding DB Connector.

Note that instead of processing the queries in the order they are

received, we develop an adaptive greedy selection algorithm to

choose the most appropriate queries each time for execution. This

algorithm is able to make a trade-off between query cost and buffer

friendliness and, similar to the adaptive algorithm in the allocator,

can adjust its weights on the fly according to runtime feedbacks.

Once a query is completed, the DB Connector retrieves the result

and returns it back to the applications. At regular intervals, the

pending queries in the local query queues are collected back for

query re-allocation, which we will explain later in Section 6.

Model Trainer. The model trainer is a component running on

the master node. It maintains a structural copy of the query model

and trains it in the background. To generate training data, every

certain period of time, the trainer takes a snapshot of the buffered

blocks in each database node. When a query completes, the trainer

finds the snapshots that match the query’s life cycle, calculates

their differences, and transforms the results into processable train-

ing data. These converted training data reside in a training data

queue and are used for background model training. Periodically,

the weights of the trained model are synchronized to the front-end

model to capture the newest workload and database characteristics.

DB Monitor. The DB monitor also runs on the master node.

This component keeps track of useful database metadata while the

system is serving application queries, including schema information

and the number of blocks in each table. These metadata can be used

as auxiliary input for the query model. Note that during system

running, some metadata may be modified due to write queries.

In case of this, the monitor constantly detects possible shifts and

informs the model trainer to discard the expired data when changes

occur. The monitor can also collect query execution statistics.

3.2 Query Workflow

A typical query workflow in our Laser system is illustrated in Fig-

ure 2. First, the user queries are sent to the query model for access

pattern prediction. After that, the queries along with their access

patterns are collected by the allocator, which then makes allocation

decisions based on both query access patterns and the load condi-

tions inside each node. This process aims to group similar queries

745

① user query
Laser

② access pattern

⑤ query execution
Q1 Q3 Q4Q2

Applications

Backend Databases

Query Model
③ query allocation

Local Query Queue
DB Connector

Allocator

④ query selection

unfinished queries

⑥ query results

failed queries

Figure 2: Query workflow in the Laser system.

together while preserving load balance. The allocated queries are

placed in the local query queues of the corresponding DB Connec-

tors. When queries are available in the queue and there exist an

idle connection, the DB Connector selects the most suitable query

at the time and execute it through backend servers. Finally, after

the query completes, its result is returned back to the applications.

In real scenarios, some queries may fail to execute due to various

reasons (e.g., deadlock). When such failure occurs, the DB Connec-

tor automatically retries up to a preset limit. If the retry limit is also

reached, the failed query will be returned to the query model and

put in a temporary queue. During runtime, Laser periodically trig-

gers a re-allocation process for the queries in the temporary queue

as well as the waiting queries in each local query queue. Essentially,

this process re-computes the access patterns of the queries and

then re-schedules them, as if they were newly arrived. By doing

re-allocation, we can leverage the latest query model parameters

and adaptive algorithm weights to improve from previous alloca-

tion decisions. Note that query scheduling and query execution

are performed following the producer-consumer paradigm, so they

will not block each other and harm the overall query performance.

4 QUERY MODEL

The query model is one of the most important components in Laser.
In this section, we first introduce how we encode the queries (§ 4.1)

and model their access patterns (§ 4.2), and then highlight the

concise modular structure of the query model which enables both

fast inference and quick response to database schema shifts (§ 4.3).

4.1 Query Encoding

Various query encoding methods have been proposed in the litera-

ture, ranging from SQL-based one-hot encoding [12] to plan-based

tree encoding [28, 36, 40]. Different query encodings possess differ-

ent levels of expressiveness and complexity, making them suitable

in different scenarios. Under the problem setting of this paper, we

aim to embed the access features of a query into its encoding. Clearly,
SQL text alone is not sufficient for this purpose, as it may contain

both pre-scan and post-scan filters which are hard to distinguish.

In fact, we find that only the pre-scan filters matter when it comes to
determining which data blocks are to be accessed. Therefore, to obtain
more accurate insights, we turn to the query plans generated by

backend servers. Unlike most existing works which encode the en-

tire plan tree, we focus only on the operators that contain necessary

query access features, i.e., the scan operators. By eliminating irrel-

evant operators, we reduce the computational overhead of query

encoding, which aligns with our lightweight design principle.

Specifically, given a query to be encoded, we first obtain its execu-

tion plan through database functionalities (e.g., EXPLAIN command

Seq. Scan
role_type

Idx. Scan
cast_info
(id < 10)

Scan Type
Table Name
Index Name
Index Cond.

Scan 1 Scan 2

SELECT ci.movie_id
FROM cast_info AS ci,
 role_type AS rt
WHERE ci.id < 10
 AND rt.role = 'actor';

❶ SQL Query ❷ Query Plan

σrole=‘actor’

⋈nested
ρci.movie_id

❸ Scan Operators
Index Scan
cast_info

cast_info_pkey
id < 10

Seq. Scan
role_type

None
None

❹ Encodings (break down by parts)

[0 1 0] [1 0 … 0] [1 0 … 0]
[0 0 … 0] [1 … 0 1 0 0 10]

[1 0 0] [0 1 … 0] [0 0 … 0]
[0 0 … 0] [0 … 0 0 0 0 0]

Scan 1

Scan Type Table Name Index Name

Join Condition Range Predicate

Scan 2

Figure 3: Query encoding process in Laser.

in PostgreSQL), and then finds all its scan operators. For each scan

operator, we further extract the following four types of features:

• Scan Type. The type of the scan operator, such as Sequential

Scan, Index Scan, and Index Only Scan.

• Table Name. The name of the base relation to be scanned.

• Index Name. The name of the index to be used. This can be

none if no index is involved in the scan operator.

• Index Condition. The conditions that determine which indexes

are to be visited by an index-related scan operator.

We currently focus on row-format storage and the selected columns

are not included in the features. The scheme can be easily extended

to support column-format storage by adding the column features

into query encoding and subsequent query model design. Note that

post-scan filters are also present in the scan operator, which we

ignore as they do not affect the scanning process. For Scan Type,
Table Name, and Index Name features, we encode them directly

using one-hot encoding, with database schema information known

in advance. The Index Condition feature, however, consists of two

major categories that should be handled differently. One category

is join conditions, such as "a.id = b.id", which contain multi-

ple columns from different tables. For these conditions, we first

represent them as global join ids, and then convert the ids into

one-hot encodings. The other category is range predicates, such as

"a.id < 10", which only contain a single index column. For these

conditions, we encode the column and the operator with one-hot

encodings and attach the value right behind. Note that more com-

plicated conditions other than the two rarely appear in index scans,

so we do not consider them for simplicity of model design. Finally,

the encodings corresponding to those two categories are concate-

nated together to ensure a fixed encoding length. The whole query

encoding process described above is demonstrated in Figure 3.

4.2 Access Pattern Modeling

To build the desired query-to-block mapping, besides encoding the

queries, we also need to model the access pattern of each query into

a mathematical form that is suitable for prediction and comparison.

A naive approach would be to construct a block-access bitmap and

use binary values to indicate which data blocks of a table are to be

scanned. However, as the number of blocks in each table may be

extremely large, it is beyond the capability of a lightweight model

to predict for each data block individually. Suppose, for example,

an 8GB table is stored as 8KB blocks on the disk, then for each

query on this table, we need to make approximately 10
6
binary

predictions using the bitmap representation, which is impractical.

746

0 0 1 1 1 1 0 1 1 1 0 0block-access bitmap

downsized vector 0.33 1.00 0.67 0.33

Figure 4: An example of the downsizing process.

0.5 0.6 0.7 0.8 0.9

Correlation Coefficients

Figure 5: Box-plot of correlation between query access pat-

terns and database buffer state changes.

To tackle the problem above, we have to reduce the dimension-

ality of the block-access bitmap. Inspired by prior work [28, 43],

we divide the data blocks of a table into a fixed number of buckets.

Specifically, for a table with 𝐵 data blocks, we first choose an appro-

priate bucket number 𝑁 , and then assign each bucket with ⌈𝐵/𝑁 ⌉
blocks consecutively. Given a block-access bitmap, we calculate the

percentage of marked bits (i.e., accessed blocks) inside each bucket

and combine the resultant values in [0, 1] to form a new vector.

This vector can be viewed as a downsized version of the original

bitmap. Below is an example of the process.

Example 4.1. Suppose a table with 12 data blocks is divided into

4 buckets, each corresponding to 3 blocks. A query on this table has

block-access bitmap [0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0]. Then, as shown in

Figure 4, after the downsizing process, the query’s access pattern

is modeled as a vector [0.33, 1.00, 0.67, 0.33].

Despite its lossy nature, the downsizing process is still favorable

due to the following reasons. First, the similarity information be-

tween queries are largely preserved. For different queries on the

same table, the overlapping bits in their block-access bitmaps will

contribute to the same buckets in the downsized vector. Conversely,

if two queries take values 𝑥 and 𝑦 respectively in the same bucket,

then it is guaranteed that even in the worst-case scenario, at least

max(𝑥 + 𝑦 − 1, 0) of data blocks in the bucket are accessed by both

queries. Second, the representation length is independent of the

actual size of the tables, thus we do not need to design models with

different output dimensionality specifically for each table. Last, the

length of the downsized vector is flexible, which provides a trade-off

between representation granularity and computation complexity.

As the vector length 𝑁 increases, we can capture more fine-grained

similarity information at the cost of higher model requirements

and longer processing time. The impact of 𝑁 on query scheduling

performances will be studied later in the experimental Section.

It is worth mentioning that query access patterns have direct

links with database buffer states. Specifically, the data blocks repre-

sented in the access pattern of a query are very likely to exist in the

database buffer pool after its execution, unless the buffer pool is not

large enough to accommodate all the accessed blocks. This is due to

the fact that common buffer replacement algorithms like LRU tend

to keep recently accessed blocks inside the buffer pool. To verify

this correlation, we generate 100 index-only range scan queries

whose actual access patterns are easily obtainable and collect the

Scan Type

Table Name

Index Name

Index Condition

ScanEncoder

Linear

Linear

ReLU

ReLU

Hidden State

BufferPredictor

Up-sampling

Linear 2

ReLU

Sigmoid

Linear 3

Linear 1
Prediction Heads

.2 .3.6

0 1.8

0 00

Access Patterns

Index 1

Table 1

Table 2
(Masked)

.2 .3.6 0 1.8 0 00

0 00 0 00 .7 0.2

Uniform Scan Representation
Scan 1

Scan 2
.2 .3.6 0 1.8 .7 0.2

Query Representation

Masked Selection Concatenate

Position-wise Max

①
② ③ ④

⑤

⑥

Query Model

Figure 6: Architecture of the Query Model.

newly buffered blocks (i.e., database buffer state changes) after ex-

ecuting each of them. The collected blocks are represented and

downsized in the same way as query access patterns. We then plot

the correlation coefficients of the 100 pairs of query access patterns

and buffer state changes in Figure 5. As we can see, the query access

patterns have a strong positive correlation with database buffer

state changes, with over 75% of the correlation coefficients larger

than 0.8. This correlation is critical since we will later simulate the

changes inside database buffer pools with query access patterns

(Section 5.3) and collect database buffer states as training data for

the query model (Section 6.2).

4.3 MLP Model Structure

Since our Laser system is designed as a client-side interface, it is

important that the query model does not incur too much compu-

tational overhead so as not to harm the end-to-end query perfor-

mance, especially when no dedicated hardware for running the

model (e.g., a GPU) is available. Also, as the database schema may

not be consistent during long-term operation, the structure of the

query model need to be flexible in order to avoid retraining from

scratch each time a table is added or removed. To address these

issues, we employ a lightweight and modular MLP model design

which is not only efficient in training and inference, but also able

to quickly adapt to schema changes without completely altering its

structure. Details of the query model are depicted in Figure 6.

Our query model functions at the granularity of scan operators.

Given an encoded query, we first use a two-layer ScanEncoder to
convert each of its scan operators into a hidden state, and then uti-

lize a two-layer BufferPredictor to calculate the final access patterns.
Output of the model is normalized into the [0, 1] interval. Note that
we set different prediction heads for different tables or indexes, and

use the Table Name and Index Name parts of the scan encoding as

masks to choose from them. Such modular design prevents different

relations from intervening with each other during model training

and makes parallel processing possible. Also, it is convenient to

add or delete prediction heads in case of database schema changes

without needing to restructure the entire model and discard all

current model parameters (more detailed discussion in Section 6.3).

Output of the prediction head is a vector of predefined length (i.e.,

number of buckets as described in Section 4.2).

Clearly, for tables and indexes not involved in the scan opera-

tor, the corresponding access patterns are zero vectors. To make

747

model predictions of different inputs comparable, we concatenate

the access patterns of all relations together to form a unified repre-

sentation for each scan operator, which is of length N_RELATIONS
× N_BUCKETS. When a query contains multiple scan operators, we

merge the model predictions of all these operators using position-

wise max function to derive the representation of the query itself.

Model Bypass. In fact, for some scan operators, we can optimize

their model prediction process with prior knowledge about how the

database actually performs them. For example, an index-only scan

will not access any data block of the base table, while a sequential

scan will access every data block of the base table and ignore the

index blocks. Therefore, if we know in advance that Scan 1 in

Figure 6 is an index-only scan, we may manually set the first 3 digits

of its representation corresponding to table 1 as (0, 0, 0). Similarly,

if Scan 2 is a sequential scan, we may set the last 3 digits of its

representation corresponding to table 2 as (1, 1, 1). Such process

brings three benefits. First, we can save computational overhead

for model inference, which is crucial as it lies in the critical path

of query response. Second, the injected prior knowledge is more

accurate than that learned by the query model, which can help the

allocator to better measure the query similarities. Third, the process

provides a good start point for model predictions when the system

initializes. In this way, Laser can achieve higher quality and lower

latency even without pre-training, as later verified in Section 7.8.

5 SCHEDULING ALGORITHM

The scheduling algorithms are another critical part in our Laser
system, which includes adaptive greedy allocation in the allocator

and adaptive greedy selection in the DB Connectors. In this section,

we first explain our optimization goals (§ 5.1), and then introduce

the implementation details of each of these algorithms (§ 5.2, § 5.3).

5.1 Optimization Goals

The ultimate goal of the Laser system is to reduce the end-to-end

completion time of a given query set or a time-dependent query

stream, as formally defined in Section 2. Here we focus on the dy-

namic setting as it is a more general case. We first show that the

problem in Eq. (3) is NP-hard. In fact, consider a special case of our

problem by ignoring the ordering function 𝑔, then optimization for

𝑓 would be a clustering problem that groups queries onto each node.

Consider another special case by ignoring the allocation function

𝑓 , then optimization for 𝑔 would be a Travelling Salesman Problem

(TSP) that needs to take into account the impact of consecutive

queries. Another major challenge in solving Eq. (3) is that the com-

pletion time ct is an abstract function which is difficult to compute.

To this end, we propose 3 optimization strategies that are easier to

handle and can help reduce ct: (i) group similar queries together

for better buffer utilization and faster execution, (ii) promote load

balance to alleviate the long-tail problem of query completion, (iii)

prioritize short queries as a query’s execution time is counted in

the completion time of all its successors.

Inspired by the analysis above, we break the problem into 2

stages with smaller scales and more manageable objectives. Stage 1

of our scheduling framework is a constrained clustering problem.

Recall that after going through the query model, each query now is

associated with its representation, which is referred to as an access

pattern. With these access patterns, we can quantify the distance

between different queries. Specifically, given two queries 𝑞𝑥 , 𝑞𝑦
with access patterns 𝑥,𝑦 of length 𝐿, we define their distance as

𝑑 (𝑞𝑥 , 𝑞𝑦) :=
1

𝐿

𝐿∑︂
𝑖=1

|𝑥𝑖 − 𝑦𝑖 |. (4)

Here we use the 𝐿1 distance to directly reflect the difference be-

tween two access patterns and then normalize it into [0, 1]. Besides
query distance, another critical factor to take into account is query

complexity. To this end, we directly utilize the estimated execution

cost included in the query plans as the complexity measurement,

denoted as cost(𝑞). With these two functions defined, we can finally

formulate the Stage 1 Problem. Specifically, given 𝑛 database nodes

and𝑚 current visible queries, the Stage 1 Problem is defined as

min⋃︁𝑛
𝑖=1𝑄𝑖={1,2,...,𝑚}

max

𝑖∈{1,2,...,𝑛}
max

𝑞,𝑞′∈𝑄𝑖

𝑑 (𝑞, 𝑞′),

s.t.
∑︂
𝑞∈𝑄𝑖

cost(𝑞) < 𝜃, 𝑖 ∈ {1, 2, . . . , 𝑛}, (5)

where 𝑄𝑖 denotes the set of queries allocated to node 𝑖 and 𝜃 is

a cost threshold. We express the clustering criteria in Eq. (5) as

minimization of the maximal cluster diameter. Essentially, the Stage

1 Problem is a combination of strategies (i) and (ii) which group

similar queries together under load balance constraints.

Stage 2 of our scheduling framework is performed after queries

have been allocated to each node. The purpose of this stage is to

define an optimal query execution order within each node, and

the corresponding problem is a TSP. Specifically, consider a node 𝑖

with allocated query set 𝑄𝑖 . Suppose 𝑟 = |𝑄𝑖 | and 𝑃 is the set of all

permutations of 𝑄𝑖 , then the Stage 2 Problem is defined as

min

(𝑞1,𝑞2,...,𝑞𝑟) ∈𝑃

𝑟−1∑︂
𝑖=1

𝑑 (𝑞𝑖 , 𝑞𝑖+1),

s.t.
|︁|︁{︁(𝑖, 𝑗) : 𝑖 < 𝑗, cost(𝑞𝑖) > cost(𝑞 𝑗)

}︁|︁|︁ < 𝜏,

(6)

where 𝑑 (·, ·) and cost(·) are defined as in Eq. (5) and 𝜏 is a threshold

indicating the priority of short queries. The constraint in Eq. (6)

aims to control the number of inverse execution time pairs, i.e.,

short queries executed after long queries. Essentially, the Stage 2

Problem is a combination of strategies (i) and (iii) which prefer

similar queries to execute consecutively for better buffer utilization

while also taking into account the short query priorities.

5.2 Adaptive Greedy Allocation

To address the Stage 1 Problem, a straightforward idea is to adopt

common clustering algorithms such as K-Means. However, in dy-

namic scenarios, these algorithms are not suitable since queries

often arrive one by one and, more importantly, they are very time-

consuming. To satisfy the demand of allocating queries individually

and quickly, we develop the adaptive greedy allocation algorithm

which allocates queries according to adjustable scores. Specifically,

we first define the load factor of a node 𝑖 in a particular state as

𝑙𝑖 :=

∑︁
𝑞∈𝑄𝑖

cost(𝑞)∑︁𝑛
𝑗=1

∑︁
𝑞∈𝑄 𝑗

cost(𝑞) , (7)

where 𝑛 is the total number of database nodes and 𝑄 𝑗 is the set

of queries having been allocated to node 𝑗 . Taking values within

748

[0, 1], the load factor 𝑙𝑖 reflects the relative load condition of node 𝑖

compared to other nodes. We also keep track of the current cluster

center 𝑐𝑖 of each node 𝑖 , which is initialized as 0, during system

running. Essentially, 𝑐𝑖 is the average of the access patterns of

the queries in 𝑄𝑖 . When a new query arrives, the algorithm first

determines whether it is a write query, and if so, the query is directly

sent to the DB Connector of the master node. For a read query𝑞 that

can be executed on all nodes, the allocator calculates a weighted

score 𝑠𝑖 for each node 𝑖 as

𝑠𝑖 := 𝑑 (𝑞, 𝑐𝑖) +𝑤a ∗ 𝑙𝑖 , (8)

and selects the node with the lowest score to be the query’s desti-

nation. Intuitively, a low score 𝑠𝑖 suggests that the incoming query

is similar to those queries already allocated to node 𝑖 in terms of

access pattern, and that node 𝑖 is currently underloading. This cri-

teria is similar to the one used in the K-Means algorithm, but with

the constraint in Eq. (5) added as a penalty term. After the query is

sent to the DB Connector of the selected node, we update its center

and the load factors of all nodes to prepare for future allocation.

The weight𝑤a in Equation (8) is an adjustable parameter. If we

want to focus more on load balancing, then we can simply increase

the value of𝑤a, and vice versa. When Laser starts,𝑤a is initialized

to 0 to emphasize buffer hit rate. Every time a node runs out of

query, we check the local query queues of other DB Connectors, and

if there are waiting queries, we decide that the current load is not

balanced and increase𝑤a by a fixed step. Conversely, if the above

situation does not occur for a certain period of time, we decrease𝑤a

by the same step to redirect some focus back to buffer friendliness.

This tuning process is fully automatic and does not require human

intervention. The pseudo-code of the adaptive greedy allocation

algorithm can be found in our extended technical report [9].

5.3 Adaptive Greedy Selection

After allocation, the queries are placed in the local query queues

of the corresponding DB Connectors. The DB Connectors then

determine the order in which the queries are to be executed, which

is referred to as the Stage 2 Problem. As described in Section 5.1,

the Stage 2 Problem is a constrained TSP, thus there is currently no

polynomial-time algorithm for an optimal solution. On the other

hand, the queries in each local query queue do not form a static

set, thus even we can solve the TSP very efficiently, the optimal

solution may change when new queries arrive. Therefore, instead

of infeasibly searching for the global optimum of query execution

order, we focus on the best query to be executed each time, which is

both fast and stable in performance. Specifically, each DBConnector

maintains an estimation of the buffer state in the corresponding

database node, which is represented in the same form as access

patterns. The estimated vector, denoted as 𝑒 , is initialized as 0 and
updated using the Exponential Moving Average (EMA) mechanism:

𝑒 ← (1 − 𝛼) ∗ 𝑒 + 𝛼 ∗ 𝑥 . (9)

Here 𝛼 is a hyper-parameter within [0, 1]. The update in Equation 9

takes place whenever a query with access pattern 𝑥 is sent for

execution, thus 𝑒 is dynamically adjusted to simulate the database

buffer pool. With this estimation, we can calculate the distance

of each access pattern to the current database buffer state as in

Equation (4). In addition, we also consider the relative cost of each

query 𝑞 with respect to all the queries in the local query queue 𝑄 :

𝑟 (𝑞) := cost(𝑞)∑︁
𝑞′∈𝑄 cost(𝑞′) . (10)

When selecting a query to be executed, the DB Connector computes

the weighted score 𝑆 (𝑞) of each query 𝑞 as

𝑆 (𝑞) := 𝑑 (𝑞, 𝑒) +𝑤s ∗ 𝑟 (𝑞), (11)

and regards the query with the lowest 𝑆 (𝑞) as the best. Similar

to 𝑤a in Equation (8), the weight 𝑤s is also an adaptive parame-

ter that balances between buffer hit rate and short query priority.

Hence by minimizing 𝑆 (𝑞), we can simultaneously achieve the two

optimization goals described earlier in this section.

To update 𝑤s on the fly, we collect the execution time of all

queries over fixed time windows and count the number of inverse

pairs in each window, i.e., the constraint as formulated in Eq. (6).

For a random sequence of length 𝑁 , the expected number of inverse

pairs is 𝑁 (𝑁 − 1)/4. Therefore, if the counted number is large com-

pared to this expectation, we decide that𝑤s needs to be increased

to assign more priority to short queries. Conversely, if the counted

number is relatively small, we can decrease𝑤s to concentrate more

on buffer friendliness. Essentially, we move the constraint in Eq. (6)

to the objective function as a penalty term and use adaptive𝑤s to

balance the two. The pseudo-code of the adaptive greedy selection

algorithm can be found in our extended technical report [9].

6 DYNAMIC ADAPTATION

Besides the query model and scheduling algorithms, our Laser sys-
tem also features capabilities to adapt to complex dynamic query

workloads. In this section, we introduce how we revise query allo-

cation decisions based on newly acquired information (§ 6.1), how

we collect training data and update the query model in parallel to

serving user queries (§ 6.2), and how we react to possible database

shifts during runtime (§ 6.3).

6.1 Query Re-allocation

The algorithms described in Section 5 only consider the information

currently visible, which is very limited under dynamic settings. For

example, suppose there are two database nodes in the system, and

a workload consists of two types of queries Q1 and Q2, where 10

queries of type Q1 arrive before 10 queries of type Q2. Then, upon

seeing the Q1 queries, the algorithms will assign each of the nodes

5 queries to promote load balance. However, the global optimum

of query allocation in this scenario is to assign queries of the same

type to the same node, which the algorithms fail to accomplish. To

address this issue for similar dynamic workloads, we propose the

query re-allocation mechanism, as described below.

In essence, query re-allocation can be regarded as a revision

process, which aims to combine the information of newly arrived

queries into the previous allocation decision. Specifically, every

certain period of time, we collect all the pending queries in the local

query queues, re-compute their access patterns, and then re-allocate

them with the allocator. This process is done as if the queries were

newly arrived at the time. Since the number of queries to re-allocate

may be large, instead of processing one by one, we perform a cost-

bounded K-Means clustering which directly addresses the Stage

1 Problem, as shown in Algorithm 3 in our technical report [9].

749

Note that we allow a certain over-allocation ratio on each node

(i.e., the sum of allocated query costs is above average) as the query

costs cannot be perfectly evenly distributed. By doing re-allocation,

we are essentially utilizing all the visible information to revise the

allocation decisions for previous queries. In the example above, Q1

and Q2 would certainly belong to different clusters, thus we can

derive a closer-to-optimum solution through query re-allocation.

The re-allocation process can also benefit from the latest query

model and adaptive algorithm parameters. When load imbalance

is detected (see Section 5.2), we use query re-allocation to assign

some queries from busy DB Connectors to the idle DB Connector.

6.2 Online Model Trainer

As our query model is deployed without pre-training, it is neces-

sary to collect training data and tune the model during runtime to

improve accuracy and adapt to the newest workload pattern. This

is done through the online model trainer, which is a background-

running component at the backend host. Ideally, the trainer would

track the accessed blocks of each query and directly transform them

into a training pair. Nevertheless, such tracking could incur addi-

tional query execution overhead and not all database engines have

built-in support for it. To overcome this issue, we propose a more

efficient workaround. Instead of focusing on the access pattern of

each query, we keep track of the buffer state changes inside the

databases. Specifically, the model trainer periodically takes snap-

shots of the current buffer states inside each node and arrange them

into a time-ordered list. It also records the start time and finish time

of each query. When a query completes, the trainer finds the two

closest snapshots in the corresponding node that covers the entire

life cycle of the query and calculates their differences by examining

(1) blocks that newly appear in the later snapshot and (2) blocks

whose access count has increased in the later snapshot. After that,

we filter out the blocks which belong to relations irrelevant to the

query and divide the remaining blocks into buckets to form an

access pattern. The query and the access pattern are then paired

and put into the training data queue. Note that training data derived

in this way may be inaccurate, which is a compromise since we do

not want to intervene in the actual query execution process.

The training data queue is a sliding window of fixed size. When

a new training pair arrives, we evict the oldest item from the queue

to ensure data freshness. A global expiration time is set to avoid

overfitting the model on some of the data. Every certain period of

time, the trainer iterates through all the training data in the queue

and trains the query model for an epoch, using the common MSE

loss and Adam [11] optimizer. The trained model parameters are

synchronized to the frontend model in a regular manner to improve

its performance on the fly.

6.3 DB Monitor

As described in Section 4, the query encoding process and query

model structure highly rely on database metadata, such as schema

information and the number of blocks in each relation. To better

manage these metadata during runtime, we set up the DB monitor,

which also runs in the background at the backend host. Essentially,

the monitor can be viewed as a metadata server that is deployed

to alleviate the burdens of database nodes. It maintains a copy of

the needed information, answers metadata queries from the trainer,

and constantly updates in case database shifts occur due to complex

workloads that may contain write queries.

We mainly pay attention to two types of shifts that can be caused

by user queries. The first type comes from Data Manipulation Lan-

guage (DML), including INSERT, UPDATE, and DELETE queries. These
queries may change the number of blocks in the target relation as

well as the data distribution inside those blocks. In consideration

of this, when a DML query is detected, the monitor updates the

block number of the target relation and informs the trainer to dis-

card any training data that contains this relation. The second type

comes from Data Definition Language (DDL), which may directly

modify the database schema. In rare cases when a DDL statement

is detected, the monitor updates the corresponding metadata used

in query encoding phase and notifies the trainer to add/remove pre-

diction heads for new/deleted relations. Any incompatible training

pair after the schema modification is also erased from the train-

ing data queue. Note that we do not discard the model itself in

both scenarios, as it still preserves useful information about other

unchanged relations.

7 EXPERIMENTS

In this section, we evaluate our proposed system and compare with

baseline methods. We first introduce our experimental settings

(§ 7.1) and present the results for both static query scheduling

(§ 7.2) and dynamic query scheduling (§ 7.3). We will also make

an analysis of the overhead incurred by the Laser system (§ 7.4).

Effects of different query arrival rates (§ 7.5), number of concurrent

connections (§ 7.6), algorithm parameters (§ 7.7), percentage of pre-

trained data (§ 7.8), and access pattern sizes (§ 7.9) will be discussed

as well. In Section 7.10 and 7.11, we present ablation studies on

scan features and applied techniques in Laser. At the end of this

chapter (§ 7.12), we explore the performance of Laser on SSDs.

7.1 Experimental Settings

Environments.We deploy a master-standby replication database

with 3 nodes (1 master node and 2 standby nodes) on 3 identical

Ubuntu 22.04.3 LTS servers, each equipped with dual 2.20GHz In-

tel(R) Xeon(R) E5-2630 v4 CPUs and 128 GB of DDR4 RAM. All

these servers use HDDs as their permanent storage devices, which

have a rotational speed of 7200 RPM and a typical sequential read

speed of 200 MB/s. We use PostgreSQL v15.3 as the database engine

and configure physical replication slots to synchronize data be-

tween master and standby nodes. We utilize Linux Control Groups

to constrain the maximal memory usage of the database processes

according to different dataset sizes and set shared_buffers to be

25% of available memory across all our experiments.

Implementation. Our Laser system is written with Python 3.10.

The frontend layer implements various functionalities related to

query scheduling and wraps the Psycopg2 [25] adapter to communi-

cate with backend database nodes. The query model is constructed

and trained using PyTorch [22] API without CUDA acceleration.

We use 1024 buckets for access pattern modeling as it generally

produces good query performances in all experiments. The whole

system runs on the same server as the master node.

Datasets. We use the following datasets in our experiments.

750

• TPC-H [2] is a widely adopted OLAP benchmark consisting of

8 relations and 22 query templates. We use a scale factor of 10

(about 11 GB of data) and generate 1000 queries out of these

templates with distinct random seeds.

• TPC-DS [1] is also a popular OLAP benchmark with 24 relations

and 99 query templates. We use a scale factor of 10 (about 12 GB

of data) and generate 1000 queries with distinct random seeds.

• JOB [14] is an OLAP benchmark built upon the IMDB dataset,

which contains 21 relations and about 3.7 GB of raw data. We

sample from the 113 provided benchmark queries with replace-

ment to form a workload of 1000 queries.

• Sysbench [32] is a customizable database benchmark tool. We

use this tool to generate a dataset with 10 relations, each con-

taining about 1 GB of data. We also design an OLTP workload

with 1000 queries, of which 20% are update queries, 40% are

single-table select queries, and 40% are multi-table select queries.

• HTAP is a hybrid workload generated by Swarm64 Toolkit [31],

which contains 200 TPCH-like OLAP queries and 800 TPCC-

like OLTP transactions. The underlying database contains 12

relations and we use a scale factor of 10 (about 20 GB of data).

For TPC-H, TPC-DS, and Sysbench datasets, we constrain each

database process to use no more than 8 GB of memory and hence

set shared_buffers to be 2 GB. For JOB dataset, we limit database

memory usage as 1 GB and set shared_buffers to be 256 MB.

For HTAP dataset, we only allow 4 GB memory budget and 1 GB

shared_buffers to simulate more buffer-intense scenarios. We

avoid complex queries in the workload that take extremely long

time (more than 1 hour) to execute individually under our memory

constraints for experiment practicability. All queries are shuffled

randomly before being scheduled.

Baselines. We compare Laser with the following baselines.

• Round-Robin (RR) is a naive strategy that allocates the incom-

ing queries in cyclic order to each database node.

• Fixed-Table (FIX) is a heuristic-based method that assigns each

node with a pre-defined set of relations and allocates incoming

queries on these relations to the assigned node. Similar ideas

have been adopted in Meta Presto [30]. When a query involves

multiple relations, the strategy considers the first one.

• Minimal-Waiting (MIN) is a heuristic-based load balancing

method [26] that allocates each incoming query to the database

node with minimal number of waiting queries at that time.

• Quickest-Queueing (QCK) is also a heuristic-based load bal-

ancing method [26] that tracks the accumulated queueing time

on each node and allocates the incoming queries to the node

with the quickest queueing.

• CAS [27] is a heuristic-based method that calculates query simi-

larities based on signatures to promote buffer utilization.

For all these baselines, we implement both the basic version and the

version with query stealing, that is, a node with idle connections

would steal queries from another busy node. Query stealing can

be very beneficial when the workload distribution among database

nodes is highly imbalanced.

Metrics.We use the following metrics to measure the performance

of each scheduling method in our experiments.

• Average Execution Time is the mean of all queries’ actual exe-

cution time, i.e., not including the time spent on query scheduling

and queuing. This metric directly reflects the query optimization

ability of each method.

• Average Completion Time is the mean of all queries’ comple-

tion time, i.e., including the time spent on query scheduling and

queuing. This metric reflects the effectiveness of each method in

accelerating query response.

• Maximal Completion Time is the maximum of all queries’

completion time, i.e., the time when the last query is completed.

This metric can reflect the load balancing capability of each

method. We only use this metric in static query scheduling ex-

periments as mentioned in Section 2.

• Shared Buffers Hit Rate is the hit rate in database shared

buffers. This metric can serve as an indicator for buffer friendli-

ness. We do not include statistics from OS buffer cache as they

are hard to obtain from inside a database.

7.2 Static Query Scheduling

Under the static setting, all queries are visible at time 0 and thus

ready for scheduling. We maintain 8 DB connections for each node

and use the same table to warm up database buffer before conduct-

ing experiments on different scheduling strategies. Figure 7 shows

the performance of each method in terms of the aforementioned

metrics, and we make the following observations.

First, our Laser system outperforms all the baselines by a large

margin in both execution time and completion time, which verifies

the effectiveness of the proposed method in accelerating query

execution and response. Such performance improvement can be

attributed to the fact that Laser always achieves the highest in-

database buffer hit rate across all experiments. As the complexity

of database schema increases, the advantage of our method be-

comes more obvious thanks to its ability to capture complicated

query access patterns. For example, on the TPC-DS dataset, Laser
reduces 74.7% of average execution time, 82.4% of average comple-

tion time, and 76.1% of maximal completion time compared to the

best-performing baseline FIX with query stealing.

Second, among all the baselines, FIX generally produces better

results. This finding further emphasizes the significance of buffer

friendliness in master-standby database query scheduling, as FIX is

one of the only 2 baselines to take this factor into consideration. The

other baseline CAS that also considers buffer utilization, however,

performs not that good on complex datasets such as TPC-DS. This

is probably due to its over-simplified encodings of join predicates.

Although FIX does not distinguish itself from other baselines in

terms of in-database buffer hit rate, its decent performance can be

due to more hits in the underlying OS buffer cache.

Third, MIN and QCK do not exhibit significantly superior per-

formance compared to the naive RR strategy. This is because both

methods require runtime statistics to adjust their scheduling deci-

sions, while, under the static setting, no such information is avail-

able when queries arrive.

Finally, query stealing generally improves the performance of

each baseline, especially in reducing maximal completion time.

This is due to the mechanism’s ability to promote load balance

among database nodes and eliminate long-tail distribution of query

completion time. Such capability is crucial to strategies like FIX

where query load distribution can be highly imbalanced, e.g., on JOB

751

0.0

1.0
Average

Execution
Time (s)

1e3 TPCH

0.0

1.0
1e3 TPCDS

0.0

2.0

1e2 JOB

0.0

1.0
1e2 SYSBENCH

0.0

1.0

1e2 HTAP

0.0

2.0Average
Completion

Time (s)

1e4

0.0

2.0

1e4

0.0

5.0

1e3

0.0

2.0
1e3

0.0

2.0
1e3

0.0

1.0Maximal
Completion

Time (s)

1e5

0.0

1.0
1e5

0.0

2.0 1e4

0.0

5.0

1e3

0.0

1.0

1e4

0.0

5.0
Buffer

Hit
Rate (%)

1e1

0.0

5.0

1e1

0.0

5.0

1e1

0.0

5.0

1e1

0.0

5.0
1e1

RR FIX MIN QCK CAS LASERw/o Steal w/ Steal RR FIX MIN QCK CAS LASER

Figure 7: Experiment results under the static setting.

and Sysbench datasets. Our method, on the other hand, naturally

supports query stealing through re-allocation, thus no additional

mechanism is needed to ensure load balance.

In conclusion, our Laser system can greatly improve query per-

formance and promote load balance through better buffer utilization

and query allocation, which are of great importance when it comes

to query scheduling in master-standby database scenarios.

7.3 Dynamic Query Scheduling

Under the dynamic setting, each query is associated with an arrival

timestamp, thus only queries arriving before 𝑡 are visible at time 𝑡 .

We utilize exponential distribution to generate these timestamps.

Specifically, given a desired query arrival rate 𝜆, we independently

sample arrival intervals 𝑠1, 𝑠2, . . . , 𝑠𝑛 from Exp(𝜆) and set the arrival
timestamp of query 𝑘 as 𝑡𝑘 =

∑︁𝑘
𝑖=1 𝑠𝑖 . Essentially, we model the

events of query arrival as a Poisson process.

Similar to the static setting, we maintain 8 DB connections for

each node and warm up database buffer states with the same rela-

tion for different methods. As query stealing generally improves

performance of the baselines, we omit experiments using their ba-

sic versions. For TPC-H, TPC-DS, and JOB datasets, we set query

arrival rate 𝜆 = 0.5/𝑠 , while for the Sysbench and HTAP dataset we

choose 𝜆 = 1/𝑠 . The same random seed is used before generating

arrival intervals for each experiment run. Figure 8 illustrates the

experiment results of all scheduling strategies.

As we can see, under the dynamic setting where information

is rather limited compared to the static one, our Laser system

still surpasses all the baselines in terms of the 3 metrics. Also, FIX

remains the best-performing baseline as before, which again proves

the importance of buffer friendliness in query scheduling. It is

worth noting that with query stealing, RR does not fall behind MIN

and QCK, which are heuristics primarily designed for dynamic

scenarios. Such a simple mechanism turns out to be effective in

balancing loads among database nodes. The effect of query arrival

rate 𝜆 on the overall performance will be discussed in Section 7.5.

7.4 Overhead Analysis

Besides buffer utilization, another major concern of our work is

to add as little extra overhead as possible to the query execution

process, especially in the critical path. The extra overhead here

includes time spent on retrieving query plans, predicting access

patterns, adaptive query allocation, adaptive query selection, and

possible re-allocation. Table 1 lists the time consumed by each of

these processes during experimentation on the JOB dataset with

respect to different number of queries. Note that the query selection

time in the table is the time to choose one best query from a query

queue of given length. As we can see, except query selection, other

0.0

1.0Average
Execution
Time (s)

1e3 TPCH

0.0

1.0
1e3 TPCDS

0.0

2.0

1e2 JOB

0.0

1.0 1e2 SYSBENCH

0.0

2.0 1e2 HTAP

0.0

2.0Average
Completion

Time (s)

1e4

0.0

2.0
1e4

0.0

5.0
1e3

0.0

2.0
1e3

0.0

2.0

1e3

0.0

5.0
Buffer

Hit
Rate (%)

1e1

0.0

5.0

1e1

0.0

5.0

1e1

0.0

5.0

1e1

0.0

5.0
1e1

RR FIX MIN QCK CAS LASERRR FIX MIN QCK CAS LASER

Figure 8: Experiment results under the dynamic setting.

0.1 0.5 1.0 5.0 inf
1.0

2.0

1e2
Avg. Execution Time (s)

0.1 0.5 1.0 5.0 inf
2.5

5.0
1e3

Avg. Completion Time (s)

0.1 0.5 1.0 5.0 inf

8.0
8.5

1e1
Buffer Hit Rate (%)

Query Arrival Rates

RR FIX LASER

Figure 9: Varying query arrival rates on JOB.

processes take only 1ms∼ 30ms per query, which is quite negligible

compared to the actual query execution time. The query selection

time, on the other hand, largely depends on the length of the query

queue as it requires a linear pass through all candidate queries.

Nevertheless, even with all 1000 queries in the same queue, this

process still takes less than 1 second to complete, which is also

relatively affordable. In fact, all these extra overheads combined

only account for less than 1% of average query execution time. More

importantly, the above processes are usually performed while the

database nodes are busy executing other queries, which means that

the consequent overhead would not be counted into the critical

path of query execution. In cases where these overheads do matter,

e.g., when scheduling very short-running queries, we suggest using

a smaller access pattern size to further accelerate the scheduling

processes as later discussed in Section 7.9. But generally speaking,

it can be concluded that our Laser system is a light-weight solution

towards query scheduling in master-standby databases.

7.5 Experiment on Query Arrival Rates

To better understand the differences between static and dynamic

scenarios, we conduct experiments with varying query arrival rates.

Specifically, we choose the JOB dataset as benchmark and use query

arrival rates ranging from 0.1 to 5. We also include the static sce-

nario where 𝜆 = ∞. For performance reference, we compare our

Laser system with two representative baselines RR and FIX. We

keep other settings the same as in previous dynamic query sched-

uling experiments. Figure 9 demonstrates the experiment results.

From the figures, we can find that as the query arrival rate in-

creases, both FIX and Laser have a performance gain, while RR

roughly stays the same. This is because with higher arrival rates,

more connection slots tend to be occupied concurrently, and buffer-

friendly strategies may benefit more from parallel execution due

to less data conflicts. Also, for our Laser system, a higher arrival

rate means more available workload information when making

allocation decisions. Note that Laser has a performance drop when

𝜆 = 0.1. This is because in such extreme scenarios, queries are

inevitably processed in a near-serialized manner, and many of our

key components (adaptive query selection, re-allocation, etc.) can

not be fully utilized. However, Laser still manages to beat the other

2 baselines with more accurate access pattern predictions.

752

Table 1: Time consumed by Laser processes. Numbers in bold are averaged consumptions.

#Queries

Plan Retrieval Model Prediction Query Allocation Query Selection Re-allocation

Sum. Avg. Sum. Avg. Sum. Avg. Avg. Sum. Avg.

1000 28.2381s 0.0282s 2.7484s 0.0027s 2.1029s 0.0021s 0.7995s 6.1459s 0.0061s

100 1.9022s 0.0190s 0.2486s 0.0025s 0.1867s 0.0019s 0.0786s 0.4357s 0.0044s

10 0.0867s 0.0087s 0.0193s 0.0019s 0.0185s 0.0019s 0.0079s 0.0505s 0.0050s

1 0.0109s 0.0109s 0.0024s 0.0024s 0.0023s 0.0023s 0.0020s 0.0151s 0.0151s

1 2 4 8 160.0

5.0
1e2
Avg. Execution Time (s)

1 2 4 8 16
2.5

5.0
1e3

Avg. Completion Time (s)

1 2 4 8 16
0.8
1.0
1.2

1e4
Max. Completion Time (s)

1 2 4 8 16

8.0
8.5

1e1
Buffer Hit Rate (%)

Number of Connections

RR FIX LASER

Figure 10: Varying the degree of parallelism on JOB.

0.1 0.3 0.5 0.7 0.9
(a)

0

50

100

Average Execution Time

0% 25% 50% 75%100%
(b)

0 25 50 100
(c)

32 64 128 256 512 1024
(d)

0

50

100

-ScanType
-IndexCond.

-Masking
LASER

(e)

FIX
-model

-alloc.
-select.

LASER
(f)

0

100

200

50

75

100

Buffer Hit Rate

50

75

100

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
)

Bu
ffe

r H
it

Ra
te

 (%
)

Figure 11: Experiment results on JOB w.r.t. (a) EMA parame-

ter 𝛼 , (b) Over-allocation ratio, (c) Percentage of pre-trained

templates, (d) Access pattern sizes, (e) Ablation study on fea-

tures, (f) Ablation study on Laser components.

7.6 Experiment on Degree of Parallelism

In this subsection, we further examine the impact of different de-

grees of parallelism on the scheduling performance. Specifically,

we conduct experiments on the JOB dataset with the number of

connections on each database node ranging from 1 to 16. We use RR

and FIX as performance references like before. Other settings are

kept the same as in Section 7.2. Figure 10 demonstrates the results.

Generally speaking, increasing the degree of parallelism may

slow down individual query execution due to data and compu-

tation conflicts, while also improve the overall throughput with

more sufficient utilization of OS resources. This is verified by the

first graph where the average query execution time grows with

increased number of connections. When the number of connections

is below 8, the advantage of resource utilization is more dominant

in that both average completion time and maximal completion time

decrease with more connection slots. However, when the number

of connections exceeds 8, conflicts between queries become more

severe and the performances of all strategies drop. Thanks to better

buffer utilization, Laser still stands out when the other 2 baselines

are struggling with data conflicts and resultant buffer misses.

7.7 Experiment on Algorithm Parameters

In the following sections, we conduct experiments on JOB under

the same settings as in Section 7.2 unless otherwise specified. To

explore the sensitivity of Laser to the algorithm parameters, we test

its performance by varying the EMAweight 𝛼 in Equation 9 and the

over-allocation ratio in Section 6.1. Figure 11a and 11b illustrate the

results. From the figures, we can see that varying both parameters

does not severely impact the performance of Laser. With a smaller

𝛼 , the estimation 𝑒 in Equation 9 focuses more on the current buffer

state, while a larger𝛼 indicates stronger emphases on recent queries.

As it turns out, both strategies work well in our experiments. The

over-allocation ratio, on the other hand, is originally designed as a

relaxation parameter since the query costs cannot be distributed in

a perfectly even manner. According to our observation, this ratio

only affects the last few allocation decisions when some nodes

have reached their cost upper-bound, thus its impact on the overall

performance is relatively negligible. To conclude, the performance

of Laser is robust under a wide range of parameter settings.

7.8 Experiment on Model Pre-training

To verify the effectiveness of Laser without pre-training, we com-

pare its performance with 3 variants whose Query Model is pre-

trained on 25%, 50%, and 100% of query templates. Figure 11c shows

the results on average execution time and shared buffers hit rate.

As we can see, both metrics of Laser are comparable to those of

the variants with pre-training (only 10% longer execution time and

2% lower hit rate compared to fully pre-trained). This is because

the model bypass process gives the model a good start point for

estimating query access patterns even with randomly initialized

parameters. Note that the variant pre-trainedwith 25% of query tem-

plates performs slightly worse, this is probably due to the model’s

excessive focus on the biased training data. Overall, Laser’s perfor-
mance is still remarkable without model pre-training.

7.9 Experiment on Access Pattern Size

In this subsection, we study the impact of access pattern sizes on

query scheduling performances. Specifically, we adopt different

number of buckets ranging from 32 to 1024 for query access pat-

terns. Figure 11d illustrates the trends in average execution time

and shared buffers hit rate. As we can see, the influence of access

pattern sizes on query performances is relatively insignificant. With

32× more buckets (from 32 to 1024), the average execution time

only reduces by 13%. This is probably due to the fact that queries in

the benchmark are generated by a limited number of templates, and

a small access pattern size is sufficient to identify the differences

between those templates, thus producing a decent performance

gain. With larger access pattern sizes, the intra-template query sim-

ilarity information are better captured, and the query performances

continue growing. However, considering the relatively small bene-

fits brought by larger access patterns, it is advisable to use a small

number of buckets when computational overhead for Laser become

non-negligible compared to the actual query execution time.

7.10 Ablation Study for Scan Features

In this subsection, we study the importance of the scan features

including (i) Scan Type, (ii) Index Condition, (iii) Table Name and

753

0.0

1.0
1e2
Avg. Execution Time (s)

0.0

2.0
1e3

Avg. Completion Time (s)

0.0

5.0
1e3

Max. Completion Time (s)

0.0

5.0

1e1
Buffer Hit Rate (%)

RR FIX MIN QCK CAS LASERRR FIX MIN QCK CAS LASER

Figure 12: Experiment results on TPC-H using SSDs.

Index Name for masking. Specifically, we replace each of these

features with zero vectors and measure the scheduling performance

of Laser. We disable model bypass here for more direct comparison.

Figure 11e demonstrates the experiment results. As we can see,

removing any of these features would result in a performance drop

in terms of both execution time and buffer hit rate. This agrees with

our intuition that with more features, the query model is able to

learn more accurate access information. The decrease in scheduling

performance is, however, not that significant as in Section 7.9. The

reason behind this is also similar, i.e., the query model is able to

identify different query templates using a subset of features.

7.11 Ablation Study for Applied Techniques

To better investigate how much each applied technique in Laser
contributes to performance improvements, we make an ablation

study. Specifically, we measure the performance of 3 variants of

Laser: (i) w/o Query Model (use a table bitmap as each query’s ac-

cess pattern instead), (ii) w/o Adaptive Allocation (use RR instead),

(iii) w/o Adaptive Selection (use FIFO instead). We also include

the best-performing baseline FIX as a reference for comparison.

Figure 11f shows the experiment results on average execution time

and shared buffers hit rate. As we can see, without the above 3 com-

ponents, the average execution time of queries increases by 41.7%,

117.3%, and 63.5% respectively. The corresponding shared buffers

hit rate also drops by 1% to 5%. Therefore, we can conclude that all

techniques in Laser are important for performance improvements.

It is also worth noting that all 3 variants are still superior to FIX.

7.12 Experiment on SSDs

In this subsection, we study the impact of faster storage devices

(SSDs) on the overall performance trend. Specifically, we conduct

the same experiments as in Section 7.2 on TPC-H using a SATA

SSD whose typical sequential read speed is 500 MB/s. Figure 12

shows the experiment results. As we can see, our proposed method

Laser still outperforms all of the baselines in the 4 metrics, which

verifies the effectiveness of Laser on faster storage devices. The rel-

ative performance differences between different methods, however,

become less significant. This is due to the fact that with SSDs, the

time penalty caused by buffer misses is smaller than using HDDs.

Also, with faster devices, the proportion of query execution time

spent on reading data and dealing with conflicts vastly decreases.

8 RELATEDWORK

Learned Database components. Learning-based database com-

ponents have drawn massive attention and shown outstanding

performances [45]. Common research interests in this direction

include learned knob tuning [15, 33, 44], learned indexes [4, 13, 17],

and learned cardinality estimation [12, 37, 39]. Regarding learned

query scheduling, Zhang et al. [43] and Sabek et al. [28] both come

up with solutions based on Reinforcement Learning, addressing the

issue of single-server scheduling with different levels of granularity.

Amazon Auto-WLM [29] focuses on concurrency scaling and short

query acceleration in database clusters with the help of learned

query latencies. To the best of our knowledge, there is currently no

existing work that applies machine learning techniques for buffer-

aware query scheduling in master-standby database scenarios.

Database Query Scheduling. Query scheduling is a classic prob-

lem in the database field, whose scopes range from single-server

scheduling [28, 35, 43] to multi-server scheduling [6, 10, 19, 21],

operator-level scheduling [7, 8, 18] to query-level scheduling [3, 5,

23], and static query set scheduling [43] to dynamic query stream

scheduling [28, 29]. Our work focuses on dynamic query-level

scheduling in master-standby replication database scenarios. In

this regard, prior works mainly apply heuristic-based strategies.

For example, Waas et al. [34] address a special type of workload

where access patterns of queries are easily accessible, and make

scheduling decisions based on both query costs and server-query

distances. Rohm et al. [27] propose to extract query signatures from

SQL texts, based on which they calculate query similarities and

make scheduling decisions according to cache benefits. Phan et

al. [23] utilize Materialized Query Table (MQT) to reduce query ex-

ecution time on each DB server and propose searching heuristics to

assign different servers with different MQTs and queries. The above

solutions are promising under their respective settings, however,

they more or less require prior knowledge about the workload and

thus cannot quickly learn from or adapt to unseen load patterns.

Also, these works mainly consider read-only workloads while write

queries are also common in master-standby databases, which may

cause database shifts during runtime.

Locality-aware Query Processing. Locality awareness is an im-

portant factor in multi-server query processing, as locally cached

data can be accessed much faster than from remote connection.

Existing literature has explored approaches to improve data local-

ity from various aspects, including data partitioning [42], query

scheduling [41], and query evaluation [38]. Laser differs from them

in that we consider master-standby scenarios where each node,

despite holding a full copy of the database, may have non-static

local data that is constantly changing in database buffer.

9 CONCLUSION

We study the problem of efficient query scheduling in master-

standby databases. We formulate this problem under both static

and dynamic settings. Based on the insights, we propose our Laser
system, which can maximize buffer utilization while maintaining

load balance. The system incorporates a lightweight query model

that can map a query to its access patterns, a set of self-adaptive

algorithms that can make wise and timely scheduling decisions,

and mechanisms to train the model and monitor database shifts on

the fly. Experiments on different datasets and workloads verify the

effectiveness of our system against heuristic-based baselines.

ACKNOWLEDGMENTS

This paper was supported by National Key R&D Program of China

(2023YFB4503600), NSF of China (61925205, 62232009, 62102215),

Zhongguancun Lab, Huawei, and Beijing National Research Center

for Information Science and Technology (BNRist). Guoliang Li is

the corresponding author.

754

REFERENCES

[1] TPC-DS Benchmark. 2021. https://www.tpc.org/tpcds/. [Accessed 2023-05].

[2] TPC-H Benchmark. 2022. https://www.tpc.org/tpch/. [Accessed 2023-05].

[3] Yun Chi, Hakan Hacígümüş, Wang-Pin Hsiung, and Jeffrey F Naughton. 2013.

Distribution-based query scheduling. Proceedings of the VLDB Endowment 6, 9
(2013), 673–684.

[4] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,

et al. 2020. ALEX: an updatable adaptive learned index. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 969–984.

[5] AA Diwan, S Sudarshan, and Dilys Thomas. 2006. Scheduling and caching in

multi-query optimization. In International Conference on Management of Data
COMAD, Delhi, India.

[6] Youngmoon Eom, Jinwoong Kim, and Beomseok Nam. 2015. Multi-dimensional

multiple query scheduling with distributed semantic caching framework. Cluster
Computing 18 (2015), 1141–1156.

[7] Minos N Garofalakis and Yannis E Ioannidis. 1996. Multi-dimensional resource

scheduling for parallel queries. ACM SIGMOD Record 25, 2 (1996), 365–376.

[8] Jana Giceva, GustavoAlonso, Timothy Roscoe, and TimHarris. 2014. Deployment

of query plans on multicores. Proceedings of the VLDB Endowment 8, 3 (2014),
233–244.

[9] Yuwei Huang and Guoliang Li. 2024. Laser: Buffer-Aware Learned Query

Scheduling in Master-Standby Databases [technical report]. https://github.com/

hyw498169842/LASER/blob/master/report/LASER_tech_report.pdf. [Accessed

2024-12].

[10] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and

Andrew Goldberg. 2009. Quincy: fair scheduling for distributed computing

clusters. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. 261–276.

[11] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[12] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and

Alfons Kemper. 2018. Learned cardinalities: Estimating correlated joins with

deep learning. arXiv preprint arXiv:1809.00677 (2018).

[13] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,

Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass learned

index. In Proceedings of the third international workshop on exploiting artificial
intelligence techniques for data management. 1–5.

[14] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and

Thomas Neumann. 2015. How good are query optimizers, really? Proceedings of
the VLDB Endowment 9, 3 (2015), 204–215.

[15] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. Qtune: A query-aware

database tuning system with deep reinforcement learning. Proceedings of the
VLDB Endowment 12, 12 (2019), 2118–2130.

[16] Guoliang Li, Xuanhe Zhou, Ji Sun, Xiang Yu, Yue Han, Lianyuan Jin, Wenbo Li,

Tianqing Wang, and Shifu Li. 2021. opengauss: An autonomous database system.

Proceedings of the VLDB Endowment 14, 12 (2021), 3028–3042.
[17] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A

learned index structure for spatial data. In Proceedings of the 2020 ACM SIGMOD
international conference on management of data. 2119–2133.

[18] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,

Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, et al.

2021. Greenplum: a hybrid database for transactional and analytical workloads.

In Proceedings of the 2021 International Conference on Management of Data. 2530–
2542.

[19] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,

and Mohammad Alizadeh. 2019. Learning scheduling algorithms for data pro-

cessing clusters. In Proceedings of the ACM special interest group on data commu-
nication. 270–288.

[20] MySQL. 1995. https://www.mysql.com/. [Accessed 2023-05].

[21] Beomseok Nam, Minho Shin, Henrique Andrade, and Alan Sussman. 2010. Mul-

tiple query scheduling for distributed semantic caches. J. Parallel and Distrib.
Comput. 70, 5 (2010), 598–611.

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,

and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance

Deep Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett

(Eds.). Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-

pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[23] Thomas Phan andWen-Syan Li. 2008. Load distribution of analytical query work-

loads for database cluster architectures. In Proceedings of the 11th international
conference on Extending database technology: Advances in database technology.
169–180.

[24] PostgreSQL. 1996. https://www.postgresql.org/. [Accessed 2023-05].

[25] Psycopg2. 2010. https://www.psycopg.org/. [Accessed 2023-05].

[26] Mazedur Rahman, Samira Iqbal, and Jerry Gao. 2014. Load balancer as a service

in cloud computing. In 2014 IEEE 8th international symposium on service oriented
system engineering. IEEE, 204–211.

[27] Uwe Rohm, Klemens Bohm, and H-J Schek. 2001. Cache-aware query routing

in a cluster of databases. In Proceedings 17th International Conference on Data
Engineering. IEEE, 641–650.

[28] Ibrahim Sabek, Tenzin Samten Ukyab, and Tim Kraska. 2022. Lsched: A workload-

aware learned query scheduler for analytical database systems. In Proceedings of
the 2022 International Conference on Management of Data. 1228–1242.

[29] Gaurav Saxena, Mohammad Rahman, Naresh Chainani, Chunbin Lin, George

Caragea, Fahim Chowdhury, Ryan Marcus, Tim Kraska, Ippokratis Pandis, and

Balakrishnan Narayanaswamy. 2023. Auto-WLM: Machine learning enhanced

workload management in Amazon Redshift. In Companion of the 2023 Interna-
tional Conference on Management of Data. 225–237.

[30] Yutian Sun, Tim Meehan, Rebecca Schlussel, Wenlei Xie, Masha Basmanova,

Orri Erling, Andrii Rosa, Shixuan Fan, Rongrong Zhong, Arun Thirupathi, et al.

2023. Presto: A Decade of SQL Analytics at Meta. Proceedings of the ACM on
Management of Data 1, 2 (2023), 1–25.

[31] Swarm64. 2020. https://github.com/swarm64/s64da-benchmark-toolkit. [Ac-

cessed 2024-08].

[32] Sysbench. 2020. https://github.com/akopytov/sysbench. [Accessed 2023-05].

[33] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.

Automatic database management system tuning through large-scale machine

learning. In Proceedings of the 2017 ACM international conference on management
of data. 1009–1024.

[34] Florian Waas and Martin L Kersten. 2000. Memory aware query scheduling in a
database cluster. CWI (Centre for Mathematics and Computer Science).

[35] Benjamin Wagner, André Kohn, and Thomas Neumann. 2021. Self-tuning query

scheduling for analytical workloads. In Proceedings of the 2021 International
Conference on Management of Data. 1879–1891.

[36] Fang Wang, Xiao Yan, Man Lung Yiu, Shuai LI, Zunyao Mao, and Bo Tang.

2023. Speeding Up End-to-end Query Execution via Learning-based Progressive

Cardinality Estimation. Proceedings of the ACM on Management of Data 1, 1

(2023), 1–25.

[37] Jiayi Wang, Chengliang Chai, Jiabin Liu, and Guoliang Li. 2021. FACE: A nor-

malizing flow based cardinality estimator. Proceedings of the VLDB Endowment
15, 1 (2021), 72–84.

[38] Qiufen Xia, Weifa Liang, and Zichuan Xu. 2014. Data locality-aware query

evaluation for big data analytics in distributed clouds. In 2014 Second International
Conference on Advanced Cloud and Big Data. IEEE, 1–8.

[39] Zongheng Yang, Eric Liang, Amog Kamsetty, ChenggangWu, Yan Duan, Xi Chen,

Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019. Deep

unsupervised cardinality estimation. arXiv preprint arXiv:1905.04278 (2019).
[40] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement

learning with tree-lstm for join order selection. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1297–1308.

[41] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott

Shenker, and Ion Stoica. 2010. Delay scheduling: a simple technique for achieving

locality and fairness in cluster scheduling. In Proceedings of the 5th European
conference on Computer systems. 265–278.

[42] Erfan Zamanian, Carsten Binnig, and Abdallah Salama. 2015. Locality-aware

partitioning in parallel database systems. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 17–30.

[43] Chi Zhang, Ryan Marcus, Anat Kleiman, and Olga Papaemmanouil. 2020. Buffer

pool aware query scheduling via deep reinforcement learning. arXiv preprint
arXiv:2007.10568 (2020).

[44] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,

Yangtao Wang, Tianheng Cheng, Li Liu, et al. 2019. An end-to-end automatic

cloud database tuning system using deep reinforcement learning. In Proceedings
of the 2019 international conference on management of data. 415–432.

[45] Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. 2020. Database meets

artificial intelligence: A survey. IEEE Transactions on Knowledge and Data Engi-
neering 34, 3 (2020), 1096–1116.

755

https://www.tpc.org/tpcds/
https://www.tpc.org/tpch/
https://github.com/hyw498169842/LASER/blob/master/report/LASER_tech_report.pdf
https://github.com/hyw498169842/LASER/blob/master/report/LASER_tech_report.pdf
https://www.mysql.com/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.postgresql.org/
https://www.psycopg.org/
https://github.com/swarm64/s64da-benchmark-toolkit
https://github.com/akopytov/sysbench

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Static Query Scheduling
	2.2 Dynamic Query Scheduling
	2.3 Insights

	3 System Overview
	3.1 Laser Architecture
	3.2 Query Workflow

	4 Query Model
	4.1 Query Encoding
	4.2 Access Pattern Modeling
	4.3 MLP Model Structure

	5 Scheduling Algorithm
	5.1 Optimization Goals
	5.2 Adaptive Greedy Allocation
	5.3 Adaptive Greedy Selection

	6 Dynamic Adaptation
	6.1 Query Re-allocation
	6.2 Online Model Trainer
	6.3 DB Monitor

	7 Experiments
	7.1 Experimental Settings
	7.2 Static Query Scheduling
	7.3 Dynamic Query Scheduling
	7.4 Overhead Analysis
	7.5 Experiment on Query Arrival Rates
	7.6 Experiment on Degree of Parallelism
	7.7 Experiment on Algorithm Parameters
	7.8 Experiment on Model Pre-training
	7.9 Experiment on Access Pattern Size
	7.10 Ablation Study for Scan Features
	7.11 Ablation Study for Applied Techniques
	7.12 Experiment on SSDs

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

