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ABSTRACT
This paper develops Planar (Plug and play PRAM), a single-machine
system for graph analytics by reusing existing PRAM algorithms,
without the need for designing new parallel algorithms. Planar
supports both out-of-core and in-memory analytics. When a graph
is too big to fit into the memory of a machine, Planar adapts PRAM
to limited resources by extending a fixpoint model with multi-core
parallelism, using disk as memory extension. For an in-memory
task, it dedicates all available CPU cores to the task, and allows
parallelly scalable PRAM algorithms to retain the property, i.e., the
more cores are available, the less runtime is taken. We develop a
graph partitioning and work scheduling strategy to accommodate
subgraph I/O, balance memory usage and reduce runtime, beyond
traditional partitioners for multi-machine systems. Using real-life
graphs, we empirically verify that Planar outperforms SOTA in-
memory and out-of-core systems in efficiency and scalability.
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1 INTRODUCTION
A host of single-machine systems have been developed for graph
analytics via multi-core parallelism, e.g., [6, 31, 49, 56, 57, 63, 68,
71, 77, 80, 85, 86, 91]. These systems typically adopt a vertex-centric
(VC) or edge-centric (EC) parallel model. A VC (resp. EC) program
pivots computation around each vertex (resp. edge); it may only di-
rectly access its local data and adjacent edges (resp. endpoints), but
it has to exchange information with “remote” entities via message
passing. VC/EC is often inefficient in programming and execution
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[6, 26, 35, 74]. It is nontrivial to program for problems that are con-
strained by “joint” conditions on multiple vertices, e.g., subgraph
isomorphism [28]. Moreover, the local scope of VC/EC operations
often incurs redundant computation [74], and its message-passing
model introduces extra synchronization complexity [5]. These over-
heads are often excessive, leading to limited scalability and high
COST [60] of a graph system under a shared-memory architecture.

On the other hand, parallel models have been studied for shared-
memory architectures for decades, notably PRAM (Parallel Random
Access Machine) [27, 32, 76]. PRAM allows multiple processors to
work in parallel via single-instruction-multiple-data (SIMD), and syn-
chronize via shared memory. A large number of PRAM algorithms
are already in place, and many of them are provably work-time
optimal [38] or parallelly scalable, i.e., they guarantee that the more
processors are used, the less parallel runtime is taken [48].

Is it possible to develop a single-machine graph system in which
one can plug existing PRAM algorithms, and the system executes
the algorithms to make the most of multi-core parallelism and the
shared memory of the machine? This way, the users do not have
to think like a vertex/edge and develop new parallel algorithms
starting from scratch; instead, they can simply leverage the decades
of work on PRAM and make effective use of the well-developed
PRAM algorithms, capitalizing on their scalability and efficiency.

It is, however, nontrivial to run PRAM algorithms in a single-
machine system. The PRAM model assumes that the memory is
large enough to load the entire dataset at once, and there are a poly-
nomial number of processors [7, 34]. In contrast, a single-machine
system has a fixed number of CPU cores, limited memory capacity
and disk I/O bandwidth. One has to simulate a polynomial number
of cores assumed by PRAM. Worse yet, for out-of-core processing of
graphs that are too large to fit into the main memory of a machine
at once, it needs to use disk as memory extension [6, 31, 49, 57,
68, 80, 91]. Such systems have to carefully partition graphs and
schedule I/O and CPU operations so that their CPUs do not have
to wait for long for subgraphs to be loaded into the memory.

Contributions & Organization. This paper develops Planar (Plug
and play PRAM), a single-machine system for running PRAM algo-
rithms for graph analytics. Underlying Planar are the following.
(1) Parallel model (Section 3). Planar proposes a unified parallel
model for both in-memory and out-of-core tasks. For a query class
Q, it takes as input an existing PRAM algorithm A and a graph
𝐺 . When 𝐺 fits into the memory of a single machine, it executes
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algorithmA on𝐺 with all available cores.When the graph is too big,
it partitions 𝐺 into subgraphs such that each subgraph can fit into
the memory, and uses the secondary storage as memory extension.
It loads the subgraphs into memory one by one, and runs SIMD
for multi-core parallelism on each in-memory subgraph with all
available cores. It iterates the computation over all subgraphs until
it reaches a fixpoint, adapting the graph-centric model (GC) [26].

The parallel model makes the first effort to adapt PRAM to phys-
ical machines in the real world. It simplifies parallel graph pro-
gramming by reusing existing PRAM algorithms, and retains their
parallel scalability for in-memory tasks. For out-of-core tasks, it
extends the data partitioning parallel model of GC [26] with multi-
core parallelism and shared-memory synchronization.
(2) Partitioning and scheduling (Section 4). We study a new prob-
lem, which aims to overlap CPU and I/O operations, balance the
use of limited memory and cope with the dynamic behaviors of it-
erative rounds; these new challenges are not encountered by graph
partitioners for multi-machine systems. We show the intractabil-
ity of the problem, and develop an effective joint partitioning and
scheduling strategy. As preprocessing, we partition the graph into
small blocks; at runtime, we adapt to available memory and system
bottleneck dynamically via grouped block processing.
(3) Experimental evaluation (Section 5). Using real-life and syn-
thetic graphs, we empirically find the following. For weakly con-
nected components (WCC), single-source shortest path (SSSP),
PageRank (PR), vertex coloring (Coloring), minimum spanning tree
(MST), and random walk (RW), (a) Planar outperforms the state-
of-the-art (SOTA) out-of-core systems by 34.42× on average, up to
302.01×. (b) On average it is 5.62× faster than the SOTA in-memory
system. For parallelly scalable PRAM algorithms, it beats the SOTA
by 5.91–9.58×; with 6× cores, it speeds up by 3.36×. (c) Its adaptive
partitioning and scheduling strategy improves performance by 1.87–
2.12×. (d) It performs as well as the SOTA multi-machine systems
that use 4–10 machines, saving the monetary cost by at least 81.7%.

We discuss PRAM in Section 2 and future work in Section 6. We
defer proofs and Planar programs to [2] for the lack of space.

Related work. We categorize the related work as follows.
Parallel models. Several models are in place for graph analytics. (1)
Vertex-centric (VC) [58, 63, 71] and edge-centric (EC) [57, 68, 91]
models parallelize computation centered around graph neighbor-
hoods, by programming from the perspective of a single vertex/edge.
This makes some graph algorithms inefficient for, e.g., graph
simulation [23]. (2)Graph-centric model (GC) [21, 26] parallelizes se-
quential graph algorithms across subgraphs, for user to think like a
graph. (3)Hybrid model [92] adopts the data partitioning parallelism
of GC and operation-level parallelism of VC at a single machine.

PRAM [27, 32, 76] supports SIMD parallelism for general com-
putation. It facilitates interprocessor communication and synchro-
nization via shared memory. However, several practical difficulties
arise in mapping PRAM algorithms onto real-life physical machines
[7], e.g., the fixed number of CPU cores and limited memory ca-
pacity. Some programming models, e.g., ICE [30] and XMTC [50],
allow users to write lockstep programs similar to PRAM algorithms.
These models, however, do not support out-of-core computing.

Planar proposes a parallel model to fit single-machine shared-

memory parallelism. As opposed to message passing-based VC/EC,
it supports subgraph-based processing beyond neighborhood, and
synchronizes via shared memory, reducing redundant work and
I/O. Moreover, it simplifies parallel graph programming by reusing
existing PRAM algorithms and retaining their parallel scalability.

Planar extends GC in the following. GC was designed for multi-
machine systems that load all subgraphs just once to different ma-
chines and process the subgraphs simultaneously via message pass-
ing. It supports neither intra-subgraph parallelism nor out-of-core
computation. In contrast, Planar targets multi-core parallelism at a
single machine. It separates (a) intra-subgraph parallelism via SIMD
parallelism and shared-memory synchronization of PRAM, from
(b) inter-subgraph parallelism by simulating the fixpoint model
of GC and partitioning/scheduling graphs for out-of-core tasks. It
supports both in-memory and out-of-core computations.

Planar simplifies the VC programming and execution of hybrid
[92] by reusing PRAM programs, retaining their parallel scalability,
and demanding neither code revamp nor manual tuning of hybrid.
Single-machine systems. (1) In-memory ones [31, 56, 63, 71, 85, 86,
88] assume that a graph can be loaded entirely into memory.
They adopt variants of VC/EC [63, 85, 86], and improve data lo-
cality via scheduling [85]. (2) Semi-external systems (Blaze [45]
and [54, 87]) fit all vertex data in memory, and load (immutable)
edge data from the secondary storage on-demand. They cannot
handle graphs with a large number of vertices. (3) Out-of-core sys-
tems [6, 45, 49, 54, 57, 68, 77, 87, 91] use disk as memory exten-
sion, and focus on reducing the I/O cost of swapping data between
the disk and memory. CLIP [6] adopts an asynchronous model to
reduce redundant synchronization cost of EC, which may com-
promise the correctness. All the previous systems adopt VC/EC,
exceptMiniGraph [92] that employs a hybrid model. (4) Hardware-
accelerated systems [18, 44, 57, 79, 83, 89] leverage GPUs or FPGAs to
accelerate graph computations. However, this hardware introduces
additional costs and programming complexity, deviating from the
cost-efficient and general-purpose design objectives. In contrast,
Planar emphasizes affordability and simplicity, providing a com-
petitive performance without relying on specialized hardware [2].

Planar supports a new parallel model to speed up in-memory
and out-of-core graph computations, outperforming SOTA of both
types (Section 5). For out-of-core execution in particular, it proposes
an adaptive strategy for partitioning and scheduling, to cope with
the dynamic runtime behavior, and reduce I/O and parallel runtime.
These challenges are not encountered by in-memory systems.
Multi-machine systems [19–21, 26, 35, 55, 62, 74, 78, 81, 90] support
big graph analytics by scaling out. Such systems adopt a shared-
nothing architecture: they partition the input graph, and load the
fragments to the machines at once; all workers process their local
fragments in-memory in parallel, and synchronize via message
passing. The communication cost and workload balancing among
workers are thus two vital issues to performance. Rather than scal-
ing out with multiple machines, Planar seeks cost-effective scaling
up. It meets new challenges, e.g., limited memory and excessive I/O.
Graph partitioning. For multi-machine systems, the topic has been
well studied (see [12, 14] for surveys). (1) Edge-cut [8, 40, 41, 47, 72]
partitions vertices into disjoint sets and cuts edges. It promotes
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Algorithm 1: Algorithm A forWCC (Shiloach et al. [70]).
Status Declaration: 𝑆𝑉 = {𝑝 } where 𝑝 (𝑣) = 𝑣 for each 𝑣 ∈ 𝑉 ;
Input: Graph𝐺 = (𝑉 , 𝐸, 𝐿) . /*vertex represented by numeric ID. */
Output: The number of weakly connected components in𝐺 .
1 while 𝐸𝑖 not empty do
2 parallel for each 𝑒 = ⟨𝑢, 𝑣⟩ ∈ 𝐸 do Graft(⟨𝑢, 𝑣⟩) ;
3 parallel for each 𝑣 ∈ 𝑉 do PointerJump(𝑣) ;
4 parallel for each 𝑒 = ⟨𝑢, 𝑣⟩ ∈ 𝐸 do Contract(⟨𝑢, 𝑣⟩) ;
5 return the number of distinct values in 𝑝 ;
Procedure Graft (⟨𝑢, 𝑣⟩):
6 if 𝑝 (𝑢 ) ≠ 𝑝 (𝑣) then
7 swap 𝑢 and 𝑣 if 𝑝 (𝑢 ) > 𝑝 (𝑣) ; /* ensure 𝑝 (𝑢 ) ≤ 𝑝 (𝑣) . */
8 𝑝 (𝑝 (𝑣) ) := 𝑝 (𝑢 ) ; /* graft the pseudo-tree of 𝑣 to that of 𝑢. */

Procedure PointerJump (𝑣):
9 repeat 𝑢 := 𝑝 (𝑣) ; 𝑝 (𝑣) := 𝑝 (𝑢 ) ;

10 until 𝑝 (𝑢 ) = 𝑢; /* halt if 𝑢 is the root of its pseudo-tree. */
Procedure Contract (⟨𝑢, 𝑣⟩):
11 if 𝑝 (𝑢 ) = 𝑝 (𝑣) then remove edge ⟨𝑢, 𝑣⟩;

locality but may lead to imbalanced fragments [33]. (2) Vertex-cut
[18, 37, 59, 65, 66, 84, 89] partitions edges into disjoint sets and
allows mirrored vertices. It balances partitions at the cost of locality
[15]. Recent out-of-core systems, e.g., [57, 91], employ a 2D parti-
tioner, which enables fast indexing with massive border vertices. (3)
Hybrid [9, 15, 17, 22, 52, 90] strikes a balance by combining the two.
Representative heuristics include MDBGP [9] and an application-
driven partitioner [22], designed for VC and GC, respectively.

The conventional partitioners mostly aim to reduce the replica-
tion factor and the balancing ratio. As will be seen in Section 4, these
are not of primary concerns for out-of-core systems; in contrast,
Planar tackles a unique joint partitioning and scheduling problem.
(1) It develops a partitioner by advocating connectivity among sub-
graphs and locality within a subgraph, not the balancing ratio. (2)
It conducts subgraph grouping and scheduling decisions adaptively
at runtime, a mechanism not considered by prior partitioners.

2 PRELIMINARIES
This section reviews basic notations and PRAM algorithms.

Graphs. Assume a countably infinite alphabet Ω for labels. Con-
sider graph𝐺 = (𝑉 , 𝐸, 𝐿), directed or undirected, where𝑉 is a finite
set of vertices; 𝐸 ⊆ 𝑉 × Ω × 𝑉 is a finite set of edges, such that
each edge is labeled with a label in Ω; moreover, each vertex 𝑣 in𝑉
carries a label 𝐿(𝑣) ∈ Ω to represent properties.

Partition strategies. Given a graph 𝐺 and a number𝑚, a graph
partitioner P partitions 𝐺 into fragments F = (𝐹1, . . . , 𝐹𝑚) such
that each 𝐹𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐿𝑖 ) is a subgraph of 𝐺 , 𝐸 =

⋃
𝑖∈[1,𝑚] 𝐸𝑖 and

𝑉 =
⋃

𝑖∈[1,𝑚] 𝑉𝑖 . We use 𝐹𝑖 .𝐵 to denote the set of border entities
(vertices and edges) that are shared by at least two subgraphs.

PRAM. PRAM is a theoretical model that simplifies the design and
analysis of parallel algorithms, particularly in a shared-memory en-
vironment. It abstracts the complexities of hardware, assuming the
availability of a large number of processors and unlimited shared
memory. It supports SIMD parallelism among all processors in syn-
chronization, and allows memory random access in constant time.

Decades of research have developed a rich set of PRAM graph
algorithms. Compared to algorithms designed for message-passing
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Figure 1: WCC computation over sample graph𝐺 with Algorithm 1.

models, they are often provably scalable and more efficient, and
make a better fit to multi-core parallelism with shared memory of a
single machine. For a class Q of graph queries, a PRAM algorithm
A takes as input a query 𝑄 ∈ Q and graph 𝐺 . It is specified by the
following for data, parallelism and computation logic [27, 32, 76].
(1) Status declaration. Given 𝐺 as a set of data arrays for (𝑉 , 𝐸, 𝐿),
algorithm A declares and initializes a set of status variables, which
are auxiliary data structures used by A that represent the interme-
diate states of𝐺 . These include (a) variables associated to individual
graph elements, i.e., a set of vertex (resp. edge) status, denoted by 𝑆𝑉
(resp. 𝑆𝐸 ), one for each vertex (resp. edge) in 𝐺 ; and (b) variables
that represent the overall state of 𝐺 , i.e., a set 𝑆𝐺 of global status,
which is particularly important for coordinating the overall control
flow, e.g., maintaining counters or flags that influence algorithm
termination. We use 𝑆 (𝐺) to denote tuple (𝑆𝑉 , 𝑆𝐸 , 𝑆𝐺 ), referred to
as the status of 𝐺 w.r.t. 𝑄 , keeping track of the computation.
(2) Processor allocation. With intermediate state 𝑅(𝐺) = (𝐺, 𝑆 (𝐺))
in shared memory, A conceptually assigns each processor to a
unique memory location (e.g., a vertex or an edge) for SIMD paral-
lelism, allowing read, compute or write operations on 𝑅(𝐺). Note
thatA assumes 𝑛 processors where 𝑛 is a polynomial in |𝑉 | and |𝐸 |.
(3) Lockstep. Algorithm A specifies its logic of computation in a
sequence of operations for SIMD parallelism, possibly with con-
ditionals and loops. Each operation is called a lockstep executing
SIMD instructions with synchronization enforced by a barrier at
the end of each lockstep. The locksteps produce the final state
𝑅′ (𝐺) = A(𝑄,𝐺) at the end of the sequence, which yields 𝑄 (𝐺).
Example 1: Consider WCC. Given a graph 𝐺 = (𝑉 , 𝐸, 𝐿), it counts
the number of maximum subgraphs of𝐺 in which all vertices are
connected to each other via a path, regardless of the edge direction.

The PRAM algorithm A of [70] is shown Algorithm 1. Using
|𝐸 | + |𝑉 | processors, it computes WCC of 𝐺 in 𝑂 (log |𝑉 |) time. It
maintains a disjoint set of pseudo-trees. A pseudo-tree rooted at
vertex 𝑟 , denoted by Λ(𝑟 ), is a tree-like structure where each vertex
𝑣 has a parent 𝑝 (𝑣) that points to another vertex inΛ(𝑣), except that
the root 𝑟 is its own parent, i.e., 𝑟 = 𝑝 (𝑟 ). Algorithm A iteratively
merges these pseudo-trees based on edge connectivity, maintaining
the invariant that all vertices in the same pseudo-tree are weakly
connected. On graph 𝐺 of Figure 1, it works as follows.
(1) Status. AlgorithmA declares a parent pointer 𝑝 (𝑣) for each 𝑣 ∈ 𝑉 ,
initialized to itself and represented as dashed arrows in Figure 1.
The pointers are stored as an array 𝑝 within the vertex status 𝑆𝑉 .
(2) Processors. It virtually allocates a processor to each edge in 𝐸

and each vertex in 𝑉 , allowing all to be processed in parallel.
(3) Locksteps. A maintains and updates parent pointers 𝑝 (𝑣) in a
loop that comprises three lockstep operations. Figure 1 illustrates
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changing parent pointers as the red dashed arrows in each lockstep,
and removed edges in light colors. (a) Graft (Line 2). All edges 𝑒 =
⟨𝑢, 𝑣⟩ are checked in parallel. If 𝑢 and 𝑣 belong to different pseudo-
trees Λ(𝑟 ) and Λ(𝑟 ′), respectively, a merge is performed by grafting
Λ(𝑟 ) ontoΛ(𝑟 ′), thus forming a larger pseudo-tree. In Figure 1, Itera-
tion 1 of grafting results in two pseudo-trees rooted at 1 and 2, while
Iteration 2 further merges them into one. (b) Pointer jump (Line 3).
The parent pointers for all vertices are updated in parallel. For each
vertex 𝑣 in a pseudo-tree Λ(𝑟 ), the parent pointer 𝑝 (𝑣) is updated so
that 𝑝 (𝑣) = 𝑟 . This ensures that all vertices in a pseudo-tree point
directly to the root (see Figure 1). (c) Contract (Line 4). All edges
are checked in parallel, to remove ones internal to a pseudo-tree.

Algorithm A continues to iterate through these locksteps until
no edges remain in𝐺 (Line 1). At this point, it returns the number
of distinct pseudo-tree roots asWCC of 𝐺 (Line 5). 2

As shown above, compared to VC/EC programs, PRAM algo-
rithms (1) support beyond-neighborhood direct memory accesses,
not restricting the operations within the neighborhood of each ver-
tex; (2) exploit shared memory for synchronization, not via message
passing; and (3) feature inherent load balancing among processors.
Moreover, unlike VC/EC that may require nontrivial efforts in al-
gorithm development, PRAM is backed by a rich set of existing
algorithms, which simplifies both programming and debugging.

3 A PARALLEL COMPUTATION MODEL
This section introduces the parallel model of Planar, including how
to program (Section 3.1) and execute (Section 3.2) a graph algorithm.
We also discuss its benefits over prior parallel models (Section 3.3).

3.1 Programming with Planar
We aim to “plug” existing PRAM algorithms in a single-machine
system. However, this is nontrivial. PRAM assumes (a) unlimited
memory and a unit access cost, and (b) a polynomial number of
cores such that one can process all edges with different cores in
parallel. These are beyond the reach of a real-life machine; e.g.,
when graphs are too large to fit into its memory, we have to use
secondary storage as memory extension; with this comes I/O cost.

To close this gap, we propose a parallel model to make practical
use of PRAM graph algorithms. We (1) decompose out-of-core com-
putation into in-memory tasks; and (2) run a PRAM algorithm on
each in-memory task to leverage multiple cores and shared memory.
This is enabled by a simple, high-level programming abstraction.

For a query class Q, the user needs to provide three functions:
(1) PEval, an existing batch PRAM algorithm that evaluates queries
𝑄 ∈ Q on a subgraph; (2) IncEval, an existing incremental PRAM
algorithm that refines partial results with border updates; and (3)
Assemble, an aggregator for final results. To further simplify pro-
gramming, each of these functions can be implemented using high-
level primitives specialized for PRAM, i.e., concurrent data struc-
tures and PRAM operators. The handling of partitioned graphs and
synchronization is mostly hidden from users; the only addition is
the definition of functions to resolve conflicts in border updates.

PEval. Batch function PEval takes as input a query 𝑄 ∈ Q and
a subgraph 𝐹𝑖 of 𝐺 (𝑖 ∈ [1,𝑚]); it computes the partial result
𝑄 (𝐹𝑖 ) at state 𝑅𝑖 = A(𝑄, 𝐹𝑖 ) on 𝐹𝑖 by PRAM algorithm A. More
specifically, PEval initializes partial status 𝑆 (𝐹𝑖 ) = (𝑆𝑉𝑖 , 𝑆𝐸𝑖 , 𝑆𝐺 ),

Algorithm 2: Planar program forWCC.
Status Declaration: 𝑆𝑉 = {𝑝 } where 𝑝 (𝑣) = 𝑣 for each 𝑣 ∈ 𝑉 ;
StatusAggr: (𝑝 (𝑣), 𝑝′ (𝑣) ) ⇒ min{𝑝 (𝑣), 𝑝′ (𝑣) }.
Function PEval ( subgraph 𝐹𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐿𝑖 ) ) :
1 while 𝐸𝑖 not empty do
2 EApply( (∀𝑒 ∈ 𝐸𝑖 ) ⇒ Graft(𝑒 ) ) ;
3 VApply( (∀𝑣 ∈ 𝑉𝑖 ) ⇒ PointerJump(𝑣) ) ;
4 EApply( (∀𝑒 ∈ 𝐸𝑖 ) ⇒ Contract(𝑒 ) ) ;
5 return state 𝑅𝑖 on 𝐹𝑖 ;
Function IncEval ( partial result 𝑅𝑖 , updates Ψ[𝐹𝑖 ] ) :
6 VApply( (∀𝑣 ∈ Ψ[𝐹𝑖 ] (𝑝 ) ) ⇒ 𝑝 (𝑝 (𝑣) ) := Ψ[𝐹𝑖 ] (𝑝 (𝑣) ) ) ;
7 VApply( (∀𝑣 ∈ 𝑉𝑖 ) ⇒ PointerJump(𝑣) ) ;
8 return updated partial state 𝑅𝑖 ;
Function Assemble ( partial results 𝑅1, 𝑅2, . . . , 𝑅𝑚 ) :
9 return the number of distinct values in 𝑝 ;

where 𝑆𝑉𝑖 (resp. 𝑆𝐸𝑖 ) is the status variables associated with vertices
(resp. edges) in 𝐹𝑖 . The partial evaluation process evaluates 𝑄 over
𝐹𝑖 ; it returns updated status 𝑆 (𝐹𝑖 ) as part of state 𝑅𝑖 , keeping track
of the computation. It also extracts round updates, which consist of
changes to the border vertices/edges and their status. As PEval con-
cludes on subgraph 𝐹𝑖 , round updates are aggregated into a global
cache Ψ, which resolves the conflicting updates to border entities.

PEval may implement an existing batch PRAM algorithm A for
Q. One only needs to extend it with the following.
(1) Declare status in A. Function PEval declares the status 𝑆 (𝐺) of
𝐺 , by making use of concurrent data types. Status 𝑆 (𝐺) includes
◦ vertex status 𝑆𝑉 (resp. edge status 𝑆𝐸 ) in an array of length |𝑉 |

(resp. |𝐸 |), indexed by vertex (resp. edge) identifiers; and
◦ global status 𝑆𝐺 as variables that are globally accessible.
Given subgraph 𝐹𝑖 , PEval initializes partial status 𝑆 (𝐹𝑖 ) = (𝑆𝑉𝑖 ,

𝑆𝐸𝑖 , 𝑆𝐺 ), where 𝑆𝑉𝑖 (resp. 𝑆𝐸𝑖 ) is the subset of variables in 𝑆𝑉 (resp.
𝑆𝐸 ) that are associated with vertices/edges in 𝐹𝑖 . It maintains the
partial state 𝑅𝑖 = (𝐹𝑖 , 𝑆 (𝐹𝑖 )), which is persisted onto secondary
storage upon task completion to keep track of the computation.
(2) Specify aggregators. PEval on different subgraphsmaymake con-
flicting updates to status variables of border entities. To resolve the
conflicts, PEval specifies two aggregation functions: (a) StatusAggr
for status variables, and (b)MutateAggr for edge mutations. At the
end of PEval, Planar aggregates border updates by applying both.
(3) Implement function body. Function PEval is essentially PRAM
algorithm A. It applies a sequence of synchronized parallel opera-
tions over 𝐹𝑖 and initial status 𝑆 (𝐹𝑖 ) to produce state𝑅𝑖 , where direct
and concurrent memory accesses are granted for each operation.

The lockstep operations of A are directly streamlined as if users
were programming sequentially, using PRAM operators:
(a) VApply(𝑓𝑉 ): vertex parallel operator, which applies a function

𝑓𝑉 to a set of vertices in parallel. Here 𝑓𝑉 is the procedure of A
for processing each vertex 𝑣 . It can access any variables relevant
to 𝑣 in partial status 𝑆 (𝐹𝑖 ), and may mutate the graph (see below).

(b) EApply(𝑓𝐸 ): edge parallel operator, similar to VApply.
Both parallel operators are synchronized; we place an implicit

synchronization barrier after each invocation ofVApply and EApply.
Within each parallel operator, all reads to 𝑅𝑖 precede any write.

To support PRAM algorithms that transform the topological
structure, functions 𝑓𝑉 and 𝑓𝐸 may invoke an additional primitive:
(c) Mutate(𝑒, 𝑒′): replace an existing edge 𝑒 with a new edge 𝑒′.
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Figure 2: WCC computation over partitioned𝐺 with Planar.

Example 2: Now we show the PEval program for A of Example 1.
As shown in Algorithm 2, PEval (1) declares status along the same
lines; (2) defines a StatusAggr function for 𝑆𝑉 ; and (3) implements
the three locksteps using VApply and EApply (Lines 1–4).

Figure 2 depicts the execution of PEval over 𝐺 . Assume that 𝐺
is partitioned into subgraphs 𝐹1 and 𝐹2 via vertex-cut (by “cutting”
through vertex 𝑣5), such that either can be processed completely
in memory. Planar first processes 𝐹1, produces a single pseudo-
tree rooted at 𝑣2, and generates an update in a set Ψ indicating
𝑣5’s parent to be 𝑣2; it then processes 𝐹2 along the same line, and
aggregates updates to 𝑝 (𝑣5) by taking the minimum. It finishes
with Ψ = {𝑝Ψ (𝑣5) : 𝑣1} and subgraphs as pseudo-trees of height 1
(indicated by 𝑝); function IncEval will later take these as input. 2

IncEval. The incremental function takes as input query𝑄 , subgraph
𝐹𝑖 , stale partial state 𝑅𝑖 and relevant subset Ψ[𝐹𝑖 ] of updates. It
updates the partial state incrementally in-place via 𝑅𝑖 = A(𝑄, 𝑅𝑖 ⊕
Ψ[𝐹𝑖 ]), where 𝑅𝑖 ⊕ Ψ[𝐹𝑖 ] denotes integration of Ψ[𝐹𝑖 ] with 𝑅𝑖 ; it
adopts incremental evaluation so as to make maximum reuse of the
last-round computation. In the end, Planar resets stale values in Ψ
to a clean slate for the next round of IncEval execution.

Function IncEval implements an incremental PRAM algorithm
AΔ for query class Q, sharing the status declaration and aggrega-
tors of PEval. We may deduce AΔ from A following [25] such that
AΔ guarantees correctness and minimal incrementalization cost.

Example 3: Continuing with Example 2, IncEval implements an
incrementalized A for Planar, where the last round partial results
consist of only a set of height-1 pseudo-trees. Algorithm 2 shows
IncEval works on 𝐹𝑖 as follows: (1) it incorporates aggregated
updates in Ψ[𝐹𝑖 ] in parallel, such that for each border vertex 𝑣

in 𝐹𝑖 , its aggregated status update 𝑝Ψ (𝑣) overrides 𝑝 (𝑝 (𝑣)), the
parent of 𝑣 ’s parent (Line 6); and (2) a subsequent parallel pointer
jumping (Line 7) maintains the pseudo-trees with height 1.

Figure 2 also illustrates the execution of IncEval. Working over
𝐹1, update {𝑝Ψ (𝑣5) : 𝑣1} sets 𝑝 (𝑣2) = 𝑣1; vertex 𝑣1 then becomes a
border vertex shared by 𝐹1 and 𝐹2. Then, pointer jumping changes
the parent of all vertices in 𝐹1 to 𝑣1. IncEval generates no further
update to 𝑆𝑉 ; thus, it triggers Assemble upon completion. 2

Assemble takes partial state 𝑅𝑖 (𝑖 ∈ [1,𝑚]) and partitions F as
input, and combines 𝑅𝑖 to get the final answer 𝑄 (𝐺). It is triggered
when IncEval makes changes to neither 𝐹𝑖 nor 𝑆 (𝐹𝑖 ) (𝑖 ∈ [1,𝑚]).

Example 4: Assemble in Algorithm 2 simply counts distinct roots
of all pseudo-trees in 𝑝 , following Line 5 of Algorithm 1. 2

3.2 Parallel Model
Given a query𝑄 ∈ Q and a graph𝐺 , the parallel model coordinates
the execution of PEval, IncEval and Assemble, no matter whether
the computation fits into the memory of a single machine or not.
Out-of-core computation. If graph 𝐺 exceeds the memory capacity,
Planar partitions 𝐺 into 𝑚 subgraphs F = (𝐹1, 𝐹2, . . . , 𝐹𝑚) such
that each 𝐹𝑖 and its status 𝑆 (𝐹𝑖 ), are small enough to be processed
in-memory. While Planar may use any graph partitioners P [8, 13,
22, 33, 42, 46], we will develop an “optimal” one in Section 4.

Planar executes algorithmA by decomposing computation over
large 𝐺 into manageable, in-memory PRAM tasks over subgraphs
in F . The tasks are organized in iterative rounds, synchronizing
via the shared memory. Each PRAM task is executed one at a time
without overlapping computation with others, using all available
CPU cores at once. Following the principle of GC [26], the process
of task decomposition and synchronization is made transparent.
In-memory computation. This is a special case under the parallel
model. When 𝐺 and its status 𝑆 (𝐺) for A fit entirely into memory,
Planar can work with partition F = (𝐺) directly. It has a single
PRAM task, by simulating A over 𝐺 with all available cores.

Task decomposition. For out-of-core computation, Planar decom-
poses it into in-memory PRAM tasks over subgraphs, as follows.
Iterative evaluation. Given a query𝑄 ∈ Q, Planar works iteratively
towards query result 𝑄 (𝐺), carrying out computation over each
subgraph. To simplify the discussion, we adopt the BSP model [75],
which separates computation in supersteps (rounds). A round starts
with each subgraph being evaluated locally, and concludes with a
global synchronization step, where border updates of all subgraphs
are aggregated. For 𝑡 ≥ 1, a new round 𝑡 +1 cannot start until round
𝑡 has completed; the updates generated in round 𝑡 are accessible
only in round 𝑡 + 1. This ensures that the computation across the
entire graph stays synchronized until a fixpoint is reached.

The iterative process has three phases: partial evaluation (PEval),
incremental computation (IncEval), and termination (Assemble).
Each phase takes a different PRAM function, as follows.
(1) Partial evaluation. The first round computes partial result 𝑄 (𝐹𝑖 )
for each subgraph 𝐹𝑖 ∈ F by executing function PEval in parallel
using all available cores. It also extracts round updates, which consist
of changes to the border vertices/edges and their status.
(2) Incremental computation. Starting from the second round, Planar
iteratively carries out one or more incremental evaluation rounds
over each subgraph 𝐹𝑖 ∈ F , by IncEval. Intuitively, an IncEval
round maintains the partial result at each subgraph, by refining it
incrementally in response to border updates of the last round.
(3) Termination. If an IncEval round ends up with no change to sta-
tus variables, Planar triggers function Assemble, which aggregates
partial results of all subgraphs and returns query answer 𝑄 (𝐺).
Each round. In each round, Planar iterates through all subgraphs
and executes one of the three functions, with all available cores.
It processes one subgraph in memory at a time without overlap-
ping computations of multiple subgraphs, by executing PRAM on a
physical machine with 𝑝 cores with a size-𝑝 thread pool. That is, a
round involves (at most)𝑚 “independent” tasks to cope with limited
memory and CPU cores. Moreover, Planar loads and processes each
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subgraph together with its associated status, overlapping computa-
tion with I/O to improve CPU and I/O bandwidth utilization. With
a subgraph under processing, it preloads the next into memory for
buffering and persists the previous one (with the partial state) onto
disk (see [2] for more details). This effectively creates a checkpoint
for the computation, providing some resilience for failure recovery.

Fixpoint. The out-of-core execution of Planar can be modeled as a
fixpoint computation over partition (𝐹1, 𝐹2, . . . , 𝐹𝑚) of 𝐺 . Follow-
ing [26], one can verify that the parallel model of Planar supports
all graph computations, which are covered by PRAM. The conver-
gence of the fixpoint computation is guaranteed under PIE model.
An assurance theorem and proof are deferred to [2].

3.3 Planar vs. VC/EC and GC
Taking WCC as an example, we compare the parallel model
of Planar with prior models. We also develop Planar programs
for SSSP, PR, Coloring, MST and RW; each implements a well-
established prior PRAM algorithm for the query class, preserving
the correctness and efficiency while requiring little modification.
Their analyses are consistent (deferred to [2] for the lack of space).
Parallel scalability. We adapt the parallel scalability of [48] to
characterize the effectiveness of parallel algorithms. Consider a se-
quential algorithmA′ for a query classQ, which takes 𝑡A′ ( |𝑄 |, |𝐺 |)
time to answer a query𝑄 ∈ Q over graph𝐺 ; and a parallel algorithm
A that takes 𝑡A ( |𝑄 |, |𝐺 |, 𝑝) time using 𝑝 cores. The speedup of A
over sequential A′ is 𝑠 ( |𝑄 |, |𝐺 |, 𝑝) = 𝑡A′ ( |𝑄 |, |𝐺 |)/𝑡A ( |𝑄 |, |𝐺 |, 𝑝).
We say that A is parallelly scalable relative to A′ if for any 𝑄

and 𝐺 , 𝑠 ( |𝑄 |, |𝐺 |, 𝑝)/𝑝 ≥ 𝜖 for some constant 𝜖 > 0. Intuitively, it
guarantees speedup ofA relative to a “yardstick” sequentialA′. In
principle, such A is able to reduce the cost of A′ with more cores.

Comparison with VC/EC. We start with VC/EC.

Example 5:A commonVC/EC algorithm forWCC is HashMin [82].
Given graph 𝐺 = (𝑉 , 𝐸), it assigns each vertex a unique ID, and
propagates the lowest ID across each connected component via
iterative message passing through edges. It takes 𝑂 (( |𝑉 | + |𝐸 |)𝐷)
time when 𝐺 fits in memory, where 𝐷 denotes the diameter of 𝐺 .

In contrast, Planar does𝑂 (( |𝑉 | + |𝐸 |) log𝐷) amount of work [70]
(see Examples 2–4). This is because A shrinks 𝐷 by half after each
round via topological mutations, reducing message propagation.
Neither A nor HashMin is parallelly scalable relative to sequential
BFS, as both incur polylog amount of redundant work. This said,
Planar guarantees linear speedup for up to |𝑉 | + |𝐸 | cores [70], but
VC does not due to contention over high-degree “hubs” nodes.

For large𝐺 with partition F = (𝐹1, . . . , 𝐹𝑚), Planar takes at most
⌈log min{𝑚,𝐷}⌉ rounds, with beyond-neighborhood computation
of GC and contracting subgraphs. In contrast, HashMin takes 𝐷
rounds in the worst case, incurring much more I/O. 2

Benefits. The parallel model of Planar makes a better fit to single-
machine graph processing than VC/EC, as demonstrated by Exam-
ple 5 and analyses with other common graph algorithms [2].

For in-memory workloads, Planarmay do less work than VC/EC
by taking a more efficient PRAM algorithm A/ moreover, if A has
proven parallelly scalable. Planar retains the property. In contrast,
VC/EC struggles with aggregating messages at high-degree “hub”

vertices, which become stragglers and reduce parallel speedup.
Moreover, Planar supports direct beyond-neighborhood data

accesses, flexible control flows to skip unnecessary computation,
and graph topology mutations. These reduce redundant disk I/O.
Comparison with GC. Designed for multi-machine systems,
GC [26] itself is not a good fit for a single-machine system, be-
cause it (a) does not support intra-subgraph parallelism and (b)
requires expensive message passing for synchronization. As re-
marked in Section 1, the parallel model of Planar extends GC to
a shared-memory multi-core architecture by supporting (1) SIMD
intra-subgraph parallelism, (2) out-of-core computation and (3)
memory-based synchronization and graph partitioning/scheduling.

4 PARTITIONING AND SCHEDULING
This section develops a graph partitioning and scheduling strategy
for Planar. We start with unique challenges introduced by single-
machine systems (Section 4.1). We then formalize partitioning and
scheduling as an optimization problem and show its intractability
(Section 4.2), followed by our strategy for the problem (Section 4.3).
We focus on out-of-core Planar computations in this section.

4.1 Challenges
To process a graph 𝐺 that exceeds the memory capacity of a single
machine, Planar partitions 𝐺 into a set F of subgraphs. Most con-
ventional partitioning strategies are designed for multi-machine
systems. They strive to minimize the replication factor and bal-
ancing ratio [15, 22, 26, 33, 58], reducing the communication cost,
redundant work and stragglers. On the contrary, Planar synchro-
nizes via the shared memory for which the communication cost is
negligible; moreover, it serializes subgraph processing such that
workload skewness can hardly slow down computation. This said,
single-machine systems introduce the following unique challenges.
Dynamic behavior. The runtime behavior of a Planar program may
vary substantially across rounds. A PEval round loads each sub-
graph 𝐹𝑖 from disk, executes PRAM algorithm A and produces the
partial state 𝑅𝑖 . In contrast, an IncEval round reads 𝑅𝑖 of the last
round, runs incrementalAΔ, updates 𝑅𝑖 and persists it on disk. The
cost of IncEval depends heavily on the border updates from the last
round; the I/O depends on the size of 𝐹𝑖 . Moreover, the runtime
may change substantially in different IncEval rounds. Given this,
how should we partition graph 𝐺 for the best performance?

In contrast, this is not an issue for multi-machine systems.
Scheduling for CPU- vs. I/O-bound computation. Planar works out-
of-core by repeatedly swapping subgraphs in and out of memory. A
round of execution can be CPU-bound or I/O-bound. It is CPU-bound
if its total computational cost over all subgraphs is higher than the
total I/O cost; in this case, we should prevent I/O operations from
blocking computation. Otherwise, it is an I/O-bound round, i.e., the
I/O dominates the execution cost, for which we should maximize
the I/O bandwidth utilization. Both cases require that we schedule
the subgraph processing to maximally overlap the CPU and I/O
operations, whichever the bottleneck is.

Scheduling is not an issue for a multi-machine system, which (1)
amortizes the I/O cost by loading each subgraph just once; and (2)
processes all subgraphs at the same time with different machines.
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Granularity. Subgraphs should be large enough to improve locality,
reduce synchronization and redundant computation. However,
overly large subgraphs may consume too much memory, leaving
insufficient space for overlapping I/O. Can we balance granularity
to minimize overhead within the constraint of limited memory?

This tradeoff is not studied by prior partitioners, since multi-
machine systems assume sufficient memory for each worker and
partition the graph based on the number of available machines.

These challenges demand a joint optimization effort in both
partitioning and scheduling, taking into account the overlapping
of CPU and I/O operations as well as the memory constraint.

4.2 Partitioning and Scheduling Problem
Based on a general cost model for a Planar program, we formalize
the partitioning and scheduling problem and show its intractability.
Cost model. Consider a partition F of 𝐺 . We formulate the round
cost in terms of the computational and I/O costs for each 𝐹𝑖 .
Round cost. For round 𝑗 , denote by 𝐶A 𝑗

(𝐹𝑖 , 𝑝) the computational
cost over 𝐹𝑖 using 𝑝 processors, and by IO(𝐹𝑖 ) the I/O cost, which
is proportional to the size of the partial state 𝑅𝑖 , Assuming that
Planar processes subgraphs F = (𝐹1, . . . , 𝐹𝑚) in order and overlaps
CPU and I/O whenever possible, the round cost is

𝐶 𝑗 (F )= IO(𝐹1)+Σ𝑚𝑖=2 max{IO(𝐹𝑖 ),𝐶A 𝑗
(𝐹𝑖−1, 𝑝)}+𝐶A 𝑗

(𝐹𝑚, 𝑝). (1)
Intuitively, this model accounts for the sequential processing of
subgraphs and the overlapping of I/O and computation in a pipeline.
The longer duration between the computation and loading deter-
mines the subgraph cost. The round cost is thus the sum of all.
Peak memory usage. When processing the partial state 𝑅𝑖 of sub-
graph 𝐹𝑖 at runtime, let 𝑀A (𝐹𝑖 ) denote its peak memory usage.
This can be estimated as a function𝑀A (𝐹𝑖 ) = 𝜇A ( |𝑅𝑖 |), where 𝜇A
is determined by the space complexity of algorithm A.
Profiling. Once a Planar program is compiled, we feed in some
graphs as profiling tests, to (1) train a binary classification profiler
to determine qualitatively whether the PEval round is CPU- or I/O-
bound on the given machine; and (2) train function 𝜇A ( |𝑅𝑖 |) as a
regression model. The training samples include runtime parameters
e.g., subgraph sizes, degree skewness, and border updates.

The test inputs are small in size, of the same type as the real
input. In our experiments we used 4 graphs from 0.14–30.14GB in
size, and the entire profiling procedure takes 96s. The profiler can
accurately predict the bottleneck in >95% cases.

Problem statement. Consider a Planar program A. Given input
graph 𝐺 , 𝑝 cores and memory capacity 𝐵, we formulate the joint
partitioning and scheduling problem as an optimization problem
to find a partition F = (𝐹1, . . . , 𝐹𝑚) of 𝐺 , such that if subgraphs
are processed in order, the round cost is minimized and memory
capacity 𝐵 is never exhausted during execution. The objective is

arg minF 𝐶 𝑗 (F ),
subject to 𝑀A (𝐹𝑖 ) +𝑀A (𝐹𝑖+1) ≤ 𝐵, 𝑖 ∈ [1,𝑚 − 1] .

Its decision problem, denoted byDPSP, is to decide, given Planar
program A, graph𝐺 , integer𝑚, memory bound 𝐵, and cost thresh-
old 𝜂, whether there exists a valid partition F of 𝐺 such that if
subgraphs are processed in order, the round cost is at most 𝜂.

(b) Partition F1 and its dependency graph. D(F1) = 3.
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Figure 3: Partitions, branches and dependency graphs.

Theorem 1: DPSP is NP-hard. 2

Proof sketch: We show that DPSP is NP-hard for both I/O-bound
and CPU-bound A (see [2]), by reduction from the NP-complete
3-partition problem (cf. [28]). Given a set 𝐴 of positive integers, we
construct a graph 𝐺 , an integer𝑚, two positive numbers 𝐵 and 𝜂,
algorithm A (with memory usage𝑀𝐴 (𝐹𝑖 ) and round cost 𝐶 𝑗 (F )),
such that the set𝐴 can be partitioned into disjoint subsets𝐴1, 𝐴2 and
𝐴3 of equal sum iff there exists a partition F of𝐺 with𝑚 subgraphs
that meets both the memory bound 𝐵 and the cost threshold 𝜂. 2

4.3 Partitioning and Scheduling Strategies
Theorem 1 suggests that even with accurate cost estimations, an op-
timal partitioning and scheduling strategy still remains intractable.
Hence, we seek an efficient heuristic method that intuitively opti-
mizes performance based on observed workload characteristics.

Overview. We adopt a joint partitioning and scheduling strategy.
The idea is to (1) partition𝐺 speculatively into small “blocks” during
preprocessing, (2) group blocks into subgraphs that fit in memory
at runtime, and (3) schedule adaptively based on the bottleneck. In
other words, by processing graphs in manageable blocks, Planar
efficiently adjusts partitioning/scheduling based on real-time mea-
surements, circumventing the need for precise cost estimations.

At preprocessing, Planar decomposes𝐺 into a collection of small
blocks, to reduce the runtime decision space and the complexity
of grouping. It uses a new locality-aware branching technique
optimized for block connectivity and locality, to speedup processing
by facilitating update propagation and reducing border status.

To group blocks at runtime, Planar follows a state-of-the-art
partitioner to minimize replication and boost locality by reducing
border entities. As opposed to working with “static” subgraphs,
Planar (1) makes block grouping decisions adaptively at runtime
to cope with its dynamic behavior; (2) adopts different scheduling
strategies for CPU- and I/O-bound rounds to accommodate the
bottleneck; and (3) adjusts granularity based on runtime memory
usage to balance the “on-stage” and “off-stage” working memory.

Speculative partitioning. We first develop a speculative parti-
tioner that produces small blocks F of𝐺 . To simplify the discussion,
we adopt vertex-cut; it can be adapted to edge-cut or hybrid.
Motivation. Based on Equation 1, we identify key design objectives:
◦ Connectivity among subgraphs. Stronger connectivity boosts up-

date propagation across the entire graph, which leads to faster
convergence and fewer rounds in fixpoint computation.

◦ Locality within a subgraph. Better locality can (a) reduce the total
size of partial states and hence the I/O cost; and (b) lower the
IncEval round complexity. This is in principle consistent with
minimizing the replication factor for multi-machine partitioners.
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To this end, we develop a two-stage partitioning algorithm. In the
first stage, we model block connectivity using a dependency graph
(DG) and apply branch decomposition to minimize the diameter of
DG(F). The second stage refines blocks through greedy adjustment,
redistributing border edges and merging small blocks.
Dependency graph models the connectivity among blocks (sub-
graphs). Such a graphw.r.t. F = (𝐹1, . . . , 𝐹𝑚) is an undirected graph
DG(F ) = (𝑉DG, 𝐸DG, 𝐿DG). It has𝑚 vertices, where 𝑣𝑖 ∈ 𝑉DG de-
notes 𝐹𝑖 for each 𝑖 ∈ [1,𝑚]. An edge 𝑒𝑖 𝑗 exists between 𝑣𝑖 and 𝑣 𝑗
if 𝐹𝑖 and 𝐹 𝑗 share some entities; its weight 𝐿DG (𝑒𝑖 𝑗 ) denotes the
number of shared entities. We will see how𝑚 is determined shortly.

Denote by 𝐷 (F ) the diameter of DG(F ). Intuitively, the smaller
𝐷 (F ) is, the stronger the connectivity is. It takes fewer steps to
propagate an update throughout a small-diameter graph, benefiting
label-setting algorithms [43], e.g., WCC, SSSP and Coloring.

Example 6: Figures 3b and 3c show two ways of partitioning graph
𝐺 (Figure 3a). Partition F1 has a dependency graph whose diameter
is 3; F2 has 𝐷 (F2) = 1 despite that it has 1 more subgraph. 2

(1) Branch decomposition employs a greedy algorithm, denoted by
Decompose. It produces an arbitrary number of blocks. The idea is
to cut the graph through a high-degree vertex 𝑟 , boost the connec-
tivity and minimize 𝐷 (F ). It puts a few high-degree vertices on the
border, and strives to keep others within a block. We will further
reduce border entities via greedy adjustment and block grouping.

Consider w.l.o.g. connected𝐺 = (𝑉 , 𝐸). As shown in Algorithm 3,
after finding the highest-degree root vertex 𝑣𝑟 in 𝑉 , Decompose
breaks 𝑉 \ {𝑣𝑟 } into a disjoint set Λ of branches with procedure
SortBFSBranch (line 2). A branch 𝜆 in Λ is a set of vertices on the
same branch in a BFS tree rooted at 𝑣 , and can thus be reconstructed
into a block via procedure Expand, by adding edges that are incident
to its vertices. BFS traversal balances the height of each branch;
this limits the diameter of each expanded block and reduces within-
subgraph computation. The algorithm recurses if the expanded sub-
graph of a branch is too large to make a valid partition (lines 3–4).

Example 7: Continuing with Example 6, Decompose breaks𝐺 into
five branches (Figure 3c). The edges in light color connect separate
branches; they may be subject to adjustment later. 2

(2) Greedy adjustment. We next adjust F by (a) redistributing bor-
der entities, and (b) merging blocks that are too small in size. It
produces blocks whose number𝑚 is arbitrary yet more manageable.

With redistribution, our goal is to reduce border entities. More
specifically, we find each edge 𝑒 incident to a non-root border vertex
𝑣 , and migrate 𝑒 to another block with 𝑣 tentatively. The changes
are materialized if the total border entities are reduced.

Merging aims to (a) limit the number of blocks in F to reduce the
complexity of grouping, and (b) avoid small, scattered I/O requests
and improve disk bandwidth utilization. We will merge blocks
whose estimated memory usage is below a threshold. By default, we
set it to 256MB for full bandwidth utilization [73] over various SSDs.
Remark. Speculative partitioning introduces a one-time prepro-
cessing cost, higher than hash-based e.g.,VCut [84] and ECut [53].
Nevertheless, as we will show in Section 5, the cost can be amor-
tized over a few rounds of computation. Moreover, we implement
incremental partitioning [24] to cope with dynamic graphs.

Algorithm 3: Function Decompose.
Input: A connected graph𝐺 , memory budget 𝜏 .
Output: Vertex-cut subgraphs F of𝐺 .
1 if 𝑀A (𝐺 ) ≤ 𝐵 then return {𝐺 }; else init F := ∅;
2 find max-degree vertex 𝑣𝑟 in𝐺 ; Λ := SortBFSBranch(𝐺, 𝑣𝑟 ) ;
3 while Λ has non-empty head 𝜆 and𝑀A (Expand(𝜆) ) > 𝜏 do
4 F := F ∪ BranchGroup(Expand(𝜆) ) ; remove 𝜆 from Λ;

5 return F;
Procedure Expand (𝜆):
6 return 𝐹 = (𝑉 (𝜆), 𝐸𝐹 ) , where 𝐸𝐹 = {𝑒 ∈ 𝐺 | 𝑒.src ∈ 𝑉 (𝜆) };
Procedure SortBFSBranch (𝐺 , 𝑣):
7 tree𝑇 := BFS(𝐺, 𝑣) ; get𝑇 ’s branches Λ := {𝜆1, . . . , 𝜆 |𝑁 (𝑣) | };
8 return sorted Λ, decreasingly in𝑀A (Expand(𝜆) ), ∀𝜆 ∈ Λ;

Block grouping. Given a speculative partition F and memory
budget 𝜏 , grouping selects a set of pending blocks to process as a
single subgraph. The goal is to (1) promote locality within the group,
and (2) limit memory usage to 𝜏 . Note that groupings are temporary;
each subgraph is persisted as a separate file after computation.

At a high level, this is equivalent to partitioning the dependency
graph DG(F ) via edge-cut, so as to minimize the total weight of
border edges. To this end, we propose an algorithm calledGrouping.
It adapts the neighbor expansion heuristic of [84] to weighted de-
pendency graphs, which guarantees an optimal replication factor.

More specifically,Grouping selects a set 𝐹 of blocks, startingwith
a random vertex 𝑣1 inDG(F ). It works iteratively until the memory
budget 𝜏 is exhausted; each iteration adds one block (i.e., a vertex
in DG(F )) to 𝐹 . In the 𝑖-th iteration, it finds 𝑣𝑖 greedily based on

𝑣𝑖 = arg max
𝑣∈F\𝐹

Σ𝑖−1
𝑗=1𝐿DG (⟨𝑣, 𝑣 𝑗 ⟩). (2)

Intuitively, Grouping greedily adds blocks to 𝐹 , to maximally hide
border entities inside a group as “internal” entities. It is efficient.
In our experiments over large graph clueWeb (see Table 1), F has
328 blocks, and each grouping iteration takes a negligible ≤30 ms.

Example 8: Suppose that Planar takes 5-block F2 (Figure 3c) as
input, with a memory budget 𝜏 of two blocks. If we start with block
B1, the grouping strategy will group it with B2 and process both as
a single subgraph, since the two share the most border entities. 2

Adaptive scheduling. To overlap CPU and I/O operations, we split
the working memory into the off-stage area for buffering pending
blocks, and the on-stage area for computation. With the strategies
above, one question remains open: how can we balance the split,
by setting a memory budget 𝜏 for off-stage area?

We use different strategies for CPU- and I/O-bound rounds. At
each round, the profiler predicts the upcoming bottleneck utilizing
the statistics of subgraphs and runtime parameters of previous
rounds (if any). This prediction initializes the scheduling strategy,
which is adapted to real-time measurements as the round proceeds.
CPU-bound rounds. The goal is to ensure that I/O operations do not
block CPU computation. Thus, we attempt to keep CPUs busy at
all times, and may allow some gaps in block loading.

To prevent CPUs from starving, we adopt greedy strategies. (1)
With an empty off-stage area, we always load the smallest pending
block. (2) When the current on-stage area concludes computation,
we immediately group all blocks in the off-stage for computation.
(3) For the off-stage area, we reserve an upper bound 𝜏 = 𝐵/2, to
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Table 1: Graph datasets.
Name Type |𝑉 | |𝐸 | Mean Distance Data Size (GB)

friendster [1] social network 65.6M 1.8B 5.1 28.9
web-sk [67] Web 50M 1.9B 13.7 32.0

datagen [36] synthetic 29M 2.6B 12.5 80.7
clueWeb [67] Web 1.7B 7.9B 65.7 140.6
hyper12 [4] Web 273M 9B 42.8 143.0

allow sufficient buffering for the next group of blocks. Intuitively, to
improve CPU utilization in early rounds, we start with fine-grained
groupings; to speed up computation, we fine-tune the granularity.
Too small 𝜏 often leads to under-utilization of the working memory,
while too large 𝜏 may result in oscillations in grouping sizes.
I/O-bound rounds. Our objective is to ensure computation not to
block I/O. We strive to keep loading from the disk, and may tolerate
idling CPUs. To this end, we attempt to load as many blocks as
possible and process them as a group, until the aggregate memory
usage of the group exceeds budget 𝜏 . In contrast to CPU-bound
rounds, we set 𝜏 dynamically to maximize block grouping and
memory utilization. More specifically, we start with a lower bound
𝜏 = 𝐵/2, and gradually increase 𝜏 as long as the computation in the
on-stage area concludes before the off-stage area is saturated.

Example 9: Continuing with Example 8, suppose that Planar has
a working memory for 4 blocks. If the round is CPU-bound, it will
start computation with the smallest block B5, buffering B3 and B4
in the off-stage area for grouping. If the round is I/O-bound, it will
start a group of two blocks before commencing computation. 2

5 EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we evaluated Planar for its
(1) efficiency, (2) partitioning and scheduling strategy, (3) (parallel)
scalability, and (4) performance vs. multi-machine systems.

Experimental setting. We start with the setups.
Datasets. We used five real-life and synthetic datasets, as described
in Table 1. All graphs have been widely used in prior work, allowing
us to have a comparison under similar conditions. Among these,
datagen, clueWeb and hyper12 are among the few open-source
graphs that cannot fit in the memory of our main testbed. Here
datagen is a synthesized dataset in the LDBC [36] benchmark
suite; hyper12 is a BFS sample [51] of hyperlink [4]. The two
smaller graphs, friendster and web-sk, are similar in size but
have different distributions; they can reveal interesting insights.
Datasets were formatted and partitioned based on each system’s
requirements; no partitioning is required for in-memory workloads.

To study the impact of graph characteristics on system perfor-
mance, we generated a series of synthetic graphs using gMark [10],
of type bibliography and uniprot. Each graph has 100M vertices, with
an average degree ranging from 5–15, i.e., 0.5B–1.5B edges.
Baselines. We evaluated four out-of-core systems: VC-based
GraphChi [49], EC-based GridGraph [91] and Blaze [45], and
MiniGraph [92] with a hybrid model. We omittedMosaic [57] for
its now-discontinued Intel Xeon Phi coprocessor [61], and CLIP [6]
because it produces inconsistent results for multiple graph queries.

We tested SOTA in-memory systems Galois [63] and Ligra [71]
for (parallel) scalability; we omitted CoroGraph [88] as it can-
not handle graph with >4.3B edges. We also tested GPU systems

Table 2: Runtime statistics. Each round in Blaze is an EC superstep.
Query Dataset Metric Planar MiniGraph Blaze Planarstatic Planarrand

WCC

web-sk
Time (s) 56.9 237.3 (4.17×) 66.0 (1.16×) 137.8 (2.42×) 67.9(1.19×)
# Rounds 2 6 24 10 2
I/O (GB) 7.4 104.0 (14.05×) 28.5 (3.85×) 55.1 (7.45×) 7.4 (1.00×)

friend-
ster

Time (s) 54.7 130.3 (2.38×) 91.0 (1.66×) 142.6 (2.60×) 58.4 (1.07×)
# Rounds 2 3 16 3 2
I/O (GB) 7.0 54.5 (7.79×) 27.0 (3.86×) 26.1 (3.73×) 7.0 (1.00×)

SSSP

web-sk
Time (s) 19.2 366.5 (19.09×) 107.7 (5.61×) 156.7 (8.16×) 27.6 (1.44×)
# Rounds 2 18 58 17 3
I/O (GB) 11.0 201.1 (18.28×) 40.0 (3.64×) 85.8 (7.80×) 20.0 (1.82×)

friend-
ster

Time (s) 23.1 183.8 (7.96×) 96.8 (4.19×) 99.8 (4.32×) 30.3 (1.31×)
# Rounds 2 8 31 8 3
I/O (GB) 7.0 86.0 (12.29×) 36.4 (5.20×) 100.2 (14.31×) 12.0 (1.71×)

Subway [69] and CGGraph [16], and multi-machine Gluon [19] and
GraphScope [21]. All systems were tested in default configurations.

We also tested four variants of Planar: (1) Planarstatic, which
disables block grouping (see Section 4.3); (2) Planarrand, which
groups blocks randomly, not based on the heuristic of Equation 2;
(3) Planarpar, by allowing concurrent subgraphs processing; (4)
Planarpersist, which persists border updates on disks at each round,
and (5) Planarpar+persist, which enables both mechanism (3) and (4).

We evaluated four alternative partitioning strategies (Exp-2): (1)
VCut, a state-of-the-art vertex-cut heuristic [84]. (2) ECut of [53],
the edge-cut used byMiniGraph [92]. (3) 2DVCut, a vertex-cut par-
titioner used by GridGraph [91], Mosaic [57], and GraphScale [18].
(4) 1DVCut, the vertex-cut used by HitGraph [89]. They produce
the same number𝑚 of blocks as our speculative partitioner does.
Algorithms. We evaluated Planar programs forWCC, PR, Coloring,
SSSP,MST and RW (see [2] for implementation details), common
graph queries included in various benchmarks [3, 11]. Among these,
PR and Coloring are representative algorithms cast from VC/EC;
the others have the best known asymptotic complexity for the
query. For baselines, we used their out-of-box implementations
if available. Since GridGraph does not support Coloring or MST
out-of-box, we implemented their VC algorithms [29, 64].

Moreover, we tested various subgraph queries over bibliography,
counting 𝑘-stars (i.e., the number of papers with at least 𝑘 authors)
and 𝑘-hop paths (for paper impact analysis), where 𝑘 ∈ {3, 4, 5}.

For SSSP, we randomly picked 10 vertices and used them as
sources for each input graph. For RW, we initiated a walker at
every vertex; each walker takes a 5-step walk.

We have validated the correctness and consistency of system out-
puts. We present the average of each experiment over 5 repetitions.
We report results over some graphs; the other results are consistent.
Testbeds. Our main testbed is a workstation with a consumer-
grade CPU and limited memory. It is powered by an Intel Core
i9-7900X@3.30GHz CPU, with 13.75MB LLC and 20 cores, and 64GB
of DDR4-2666 memory. The graphs were loaded from a 1TB WD
Blue WDS100T2B0A SATA SSD, which has an average sequential
read throughput of 560MB/s. To further test the parallel scalability
for in-memory workloads (Exp-3), we used an enterprise-grade
server with 512GB of DDR4-2933 memory and 4× Intel Xeon Gold
5320@2.20GHz CPUs, each with 39MB LLC and 26 cores. Unless
noted otherwise, all system were tested with default configurations.

Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluated the efficiency and I/O of
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Table 3: Out-of-core system performance (in seconds). GraphChi could not finish within 5 hours for all queries over clueWeb and hyper12.

Query datagen clueWeb hyper12

Planar MiniGraph Blaze GridGraph GraphChi Planar MiniGraph Blaze GridGraph Planar MiniGraph Blaze GridGraph

WCC 60.9 85.8 (1.41×) 81.6 (1.34×) 104.4 (1.71×) 2688.6 (44.15×) 465.6 4219.4 (9.06×) 670.9 (1.44×) 7755.3 (16.66×) 203.2 7825.0 (38.51×) 340.5 (1.68×) >5h (>88.58×)
SSSP 29.1 42.3 (1.45×) 55.2 (1.90×) 146.7 (5.04×) 2483.4 (85.34×) 229.7 1062.9 (4.63×) 506.8 (2.21×) 1415.9 (6.16×) 91.9 2348.9 (25.56×) 115.1 (1.25×) >5h (>195.87×)
PR 61.0 100.7 (1.65×) 200.6 (3.29×) 185.6 (3.04×) 646.6 (10.60×) 529.3 2131.8 (4.03×) 623.8 (1.18×) 2537.2 (4.79×) 213.6 1175.6 (5.50×) 406.6 (1.90×) 1820.2 (8.52×)

Coloring 153.7 620.9 (4.04×) 190.4 (1.24×) 2105.3 (13.70×) 4381.5 (28.51×) 346.6 1719.1 (4.96×) 576.6 (1.66×) 2238.5 (6.46×) 218.6 15470.5 (70.77×) 346.1 (1.58×) >5h (>82.34×)
MST 71.6 147.2 (2.06×) 84.8 (1.18×) 118.9 (1.66×) 907.7 (12.68×) 390.6 >5h (>46.08×) 958.9 (2.45×) >5h (>46.08×) 252.4 >5h (>71.32×) 407.0 (1.61×) >5h (>71.32×)
RW 19.6 174.1 (8.88×) 99.8 (5.09×) 207.1 (10.57×) 3177.2 (162.10×) 64.0 1941.4 (30.33×) 297.4 (4.65×) 8391.5 (131.12×) 59.6 2067.2 (34.68×) 114.5 (1.92×) >5h (>302.01×)

Planar versus out-of-core baselines for various queries. Over two
small graphs, we imposed a 16GBmemory budget using cgroups to
study the out-of-core behavior. Table 2 reports the runtime statistics
of some algorithms compared with MiniGraph and Blaze, the best
performing baselines supportingGC and VC/EC, respectively. Over
large graphs, Table 3 reports the performance of all systems.
WCC. From Tables 2–3, we can see the following.
(1) On synthetic datagen (Table-3), Planar beats the four baselines
by 1.34–44.15×. Over real-life clueWeb and hyper12, it outperforms
MiniGraph by 9.06× and 38.51×, Blaze by 1.44× and 1.68× and
GridGraph by 16.66× and >88.58×, respectively, while GraphChi
cannot handle large graphs at this scale. Note that Planar is 2.29×
faster on hyper12 than on clueWeb, a graph with fewer edges, since
hyper12 has much fewer vertices (only 16.1% of clueWeb), allowing
more graph contractions during PEval and faster IncEval rounds.
(2) Over two small graphs, Planar is 2.38–4.17× faster than
MiniGraph, and 1.16–1.66× faster than Blaze (Table 2). Over
web-sk, Planar only takes 2 rounds due to its beyond-neighborhood
computation, and its partitioning strategy that promotes connectiv-
ity and hence reduces computation rounds. In contrast,MiniGraph
and Blaze take 6 and 24 rounds (i.e., supersteps), respectively. De-
spite the difference in the skeweness of two graphs, Planar has a
relative consistent performance; other systems vary greatly.

Here we omit the results of GridGraph and GraphChi; they take
at least 3.06× longer than Planar over various workloads.
(3) Planar substantially reduces I/O. On web-sk and friendster
(Table 2), its disk read is 90.9% and 74.1% less than MiniGraph and
Blaze on average, respectively. Besides taking fewer rounds, Planar
reduces I/O in IncEval rounds (Figure 4a), because (a) it contracts the
graph by removingmost edges in PEval and incurring little disk read
in the following rounds over clueWeb; and (b) it reduces I/O further
by skipping “inactive” subgraphs. This justifies speculative parti-
tioning, in which a small subgraph is more likely to become inactive.
SSSP. As shown in Tables 2–3, Planar outperforms the all four
competitors for SSSP over all graphs. (1) On the two large Web
graphs, it is 4.63–25.56×, 1.25–2.21× and 6.16–195.87× faster than
MiniGraph, Blaze and GridGraph, respectively. It does the job
within 4 min, while GraphChi does not finish in 5 hours. (2) On
the synthetic datagen, it beats the four baselines 1.45×–85.34×. (3)
Planar takes fewer rounds and 91.9% less disk read thanMiniGraph
on friendster, leading to a 7.96× speedup. The I/O reductions are
not as significant as with WCC, since Planar does not contract the
graph during SSSP computation. The speedup is greater (19.09×) on
web-sk. These verify that Planar is more effective on large-diameter
graphs, since its partitioner strives to improve subgraph connec-
tivity. It leads to faster convergence for GC computation; Planar
takes only 2 rounds on both graphs, whileMiniGraph takes 8–18

rounds. (4) Over friendster (resp. web-sk), Blaze generates 5.20×
(resp. 3.64×) of the disk I/O of Planar and takes 4.19× (resp. 5.61×)
longer, even though it leverages on-demand, fine-grained (4KB) I/O
to reduce disk reads. This highlights the effectiveness of beyond-
neighborhood computation in Planar, which substantially reduces
redundant computation, leading to 93.5–96.6% fewer rounds.
PR. For PR over all large graphs, Planar beats the baselines con-
sistently despite that they all execute the same algorithm. As
shown in Table 3, it outperformsMiniGraph,Blaze,GridGraph, and
GraphChi by at least 1.65×, 1.18×, 3.04× and 10.60×, respectively.
This is because Planar maximally overlaps computation and I/O,
optimized for shared-memory, multi-core concurrent data accesses.
Coloring. As shown in Table 3 and Figure 4b, (1) Planar is over 1.24×
faster, takes at least 97% fewer rounds, and generates 51.1% less
disk read, compared to EC/VC-based Blaze and GridGraph. The
improvements stem from its beyond-neighborhood computation,
which reduces redundant coloring fixes. (2) Planar beatsMiniGraph
by ≥ 4.04×, even though they both follow the same principle of GC
and execute the same algorithm. Figure 4b reveals two reasons for
this: (a) Planar takes 69.2% less I/O in the first round, benefiting from
the compact storage format (see Section ??); and (b) it reduces more
disk read in later rounds by skipping processing of more blocks.
MST and RW. As shown in Table 3, Planar consistently beats the
four baselines forMST and RW. (1) ForMST, Planar is at least 2.06×,
1.18×, 1.66× and 12.68× faster than MiniGraph, Blaze, GridGraph,
and GraphChi, respectively. This is due mainly to its more efficient
PRAM algorithm, which employs the graph-contraction mutations,
like WCC. (2) For RW, Planar beats the best performing baseline
by 1.92–5.09×, since Planar supports the random walk algorithm
of [39], which is more efficient than that of VC/EC and Hybrid.
Subgraph counting. As shown in Figure 4m over bibliography, Planar
answers all subgraph queries in 10s. For various star-counting
queries, its performance is relatively consistent, beating Blaze by
1.13× on average. For path counting, Planar runs faster over simpler
patterns, as expected. Its speedup over Blaze is 2.10–3.22×.

Exp-2: Ablation study. Next we tested the effectiveness of our
partitioning and scheduling strategy, as well as other design choices.
Varying 𝜏 . We varied the memory 𝜏 reserved for I/O buffering. As
shown in Figure 4c for WCC, setting 𝜏 = 0 or 𝜏 = 𝐵 effectively
disables the overlapping of CPU and I/O operations, causing
substantial slowdown. With 𝜏 = 𝐵/2, Planar performs the best
regardless of the partitioner, hence the V-shape of all lines. This
justifies our adaptive scheduling strategy (Section 4.3).
Impact of partitioners. We tested Planar with different partitioners
on clueWeb. As shown in Figure 4c forWCC with 𝜏 = 𝐵/2, our par-
titioner beats the alternatives consistently. It speeds up VCut, ECut,

765



0.2 0.6 1.0
0

10000

Ti
m

e
(s

) Planar MiniGraph GridGraph Blaze VCut ECut 2DVCut 1DVCut Galois Ligra Gluon GraphScope

1 10 100
Rounds

102

103

I/O
(G

B
)

(a) Accumulated I/O: clueWeb,WCC.

1 10 100
Rounds

102

103

I/O
(G

B
)

(b) Accumulated I/O: clueWeb, Coloring.

0 B/4 B/2 3B/4
τ

1

2

3

S
lo

w
do

w
n

(x
)

(c) Varying 𝜏 : clueWeb,WCC.

5 10 15 20
# Cores

400

1000

5000
10000

Ti
m

e
(s

)

(d) Varying 𝑝 : out-of-core,WCC.

5 10 15 20
# Cores

300

500

2000

4000

Ti
m

e
(s

)

(e) Varying 𝑝 : out-of-core, Coloring.

0.4 0.6 0.8 1.0
Scale factor

100

1000

10000

Ti
m

e
(s

)

(f) Varying |𝐺 | : out-of-core,WCC.

2000
4000
6000

16 32 48 64 80 96
# Cores

50

200

Ti
m

e 
(s

)

(g) Varying 𝑝 : in-memory,WCC.

16 32 48 64 80 96
# Cores

30

50

100

140

Ti
m

e
(s

)

(h) Varying 𝑝 : in-memory, PR.

16 32 48 64 80 96
# Cores

1000

2000

4000

Ti
m

e
(s

)

(i) Varying 𝑝 : in-memory, Coloring.

1000

0.4 0.6 0.8 1.0
Scale factor

50
100

Ti
m

e 
(s

)

(j) Varying |𝐺 | : in-memory,WCC.

2 4 6 8 10
# Nodes

0

200

400

600

800

Ti
m

e
(s

)

(k) Cloud efficiency: friendster.

2 4 6 8 10
# Nodes

1

6

11

16

21

M
on

et
ar

y
C

os
t(

x)

(l) Cloud monetary cost: friendster.

3-star 4-star 5-star 3-path 4-path 5-path
Query Pattern

0

5

10

15

20

25

30

Ti
m

e
(s

)

(m) Subgraph counting: bibliography.

Planar Parallel Persist Both
Graph Query

0.5

1.0

1.5

2.0

S
pe

ed
up

Planar
Planarpar

Planarpersist

Planarpar+persist

(n) Ablation study: web-sk,WCC.

Planar Parallel Persist Both
Graph Query

0.5

1.0

1.5

2.0

S
pe

ed
up

Planar
Planarpar

Planarpersist

Planarpar+persist

(o) Ablation study: web-sk, PR.

5 7 11 15
# Average node degree

20

40

60

80

100

Ti
m

e
(s

)

bibliography
uniport

(p) Varying graph density:WCC.

Figure 4: Efficiency, scalability, partitioning and scheduling of Planar, and its performance vs. multi-machine systems.

2DVCut, 1DVCut by 2.12×, 2.04×, 1.87× and 1.63×, respectively.
On the server testbed, Planar takes 51.9 min for preprocessing,

while the other partitioners take 11.0–16.7 min. This is because
speculative partitioning involves local graph traversals and greedy
adjustments, which are more computationally intensive than the
edge bucketing in other methods. This said, it is an one-time cost
amortized over a few rounds of computation. Taking preprocessing
into account, Planar beatsMiniGraph after answering 1WCC or 2
Coloring queries. This demonstrates that the partitioning strategy
of Planar is effective and shows a quick return on investment.
Effectiveness of scheduling. Both grouped and ordered processing of
subgraphs make Planar faster. In our experiments, the trained pro-
filer can accurately predict the round bottleneck in >95% cases; it is
100% accurate forWCC and SSSP. Consider SSSP in Table 2. (1) On
friendster (resp. web-sk), Planarstatic took 4× (resp. 8.5×) more
rounds, generated 14.31× (resp. 7.80×) more disk read and became
4.32× (resp. 8.16×) slower. This is because adaptive grouped pro-
cessing elicits faster convergence, reducing redundant computation
of repetitive border updates and allowing to skip some subgraphs in
later rounds. (2) Planar beats Planarrand by 1.37× on average. This
justifies our ordering on subgraphs, which promotes the locality

for subgraph grouping. The results for the others are consistent.
Other techniques. We justified our design decisions to process sub-
graphs sequentially and cache border updates in-memory. Fig-
ures 4n–4o show that if we were to allow multiple subgraphs to
be processed concurrently, Planar would take 1.09–1.14× longer; if
we were to persist the updates to disk, it would be slowed by 1.26×.
The two collectively can speedup Planar by 1.64–1.68×.

Exp-3: Scalability. For both out-of-core and in-memory computa-
tion, we evaluated the scalability of Planar with the number 𝑝 of
CPU cores and the graph size |𝐺 |. We report the results of WCC
and Coloring; the results of the other queries are consistent.
Varying 𝑝 : out-of-core. Scaling the number 𝑝 of cores, we ranWCC
(Figure 4d) and Coloring (Figure 4e) over clueWeb. (1) For WCC,
Planar scales well with 𝑝 . It gets a 2.50× speedupwhen 𝑝 scales from
5 to 20 because its PEval round is CPU-bound. (2) It consistently
beats MiniGraph and GridGraph, which barely scale with 𝑝 due
to the I/O-bound rounds. (3) It outperforms Blaze only when 𝑝 >

10, because its PRAM algorithm is more computation-heavy than
HashMin [82] (by a constant factor, see Example 5). However, the
latter has limited parallelism; Planar speeds up substantially with
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more cores, while Blaze barely improves when 𝑝 ≥ 10 since it
cannot fully utilize the additional cores. (4) For Coloring, Planar is
much faster than all baselines for 𝑝 > 5 for similar reasons. It gets
2.10× faster with 4× cores, while other systems speedup <1.64×. Its
I/O-efficient GC rounds can benefit more from higher parallelism.
Varying |𝐺 |: out-of-core. We sampled graphs𝐺 from large clueWeb
using Edge Sampling [51], with a scale factor 𝜂 for the fraction of
edges to be sampled. As shown in Figure 4f when varying 𝜂 from 0.4
to 1.0 forWCC, Planar scales well with |𝐺 |. It takes 2.61× longer,
while it is 3.14× for MiniGraph, 2.68× for Blaze, and 5.33× for
GridGraph. We omit the results ofGraphChi, which is much slower.
Varying 𝑝 : in-memory. Varying 𝑝 from 16 to 96, Figures 4g–4i re-
port the speedup of Planar and in-memory baselines. (1) For WCC,
Planar is up to 1.95× and 28.39× faster than Galois and Ligra, re-
spectively. (2) It is 28.3% slower than MiniGraph when 𝑝 = 16;
yet it beats MiniGraph by 1.18×–1.26× with more cores. Consis-
tent with the out-of-core tests (Figure 4d), Planar scales better
than MiniGraph with cores. (3) Using 6× more cores for WCC
(resp. PR), it gets faster by 3.20× (resp. 2.33×), while it is only 1.98×
(resp. 2.28×) for MiniGraph, 1.61× (resp. 2.24×) for Galois. Ligra
scales as well as Planar, yet it is slower by magnitudes (omitted in
Figure 4h). (4) For parallelly scalable Coloring, Planar speeds up by
3.36×with 6×more cores, much better thanMiniGraph (2.02×) and
Galois (2.07×). This verifies that when the PRAM algorithm is par-
allelly scalable, it retains the property for in-memory computations.
Varying |𝐺 |: in-memory. Using all 104 cores, we further tested in-
memory systems by varying the size |𝐺 | of graph 𝐺 . As shown in
Figure 4j forWCC, by varying sampling factor 𝜂 from 0.4 to 1.0 over
clueWeb, Planar scales better with |𝐺 | than VC-based Ligra and
Galois; it takes 2.46× longer, while it is 3.37× for Galois and 4.59×
for Ligra. This justifies the parallel model of Planar, which supports
PRAM algorithms with better asymptotic complexity w.r.t. |𝐺 |. Its
scalability is comparable toMiniGraph (1.98×), since both imple-
ment efficient algorithms and can scale well with the graph size.
Sensitivity to graph topology. Over synthetic graphs forWCC, Fig-
ure 4p shows the performance of Planar under varying graph densi-
ties and types. It takes longer for denser graphs, as expected, scaling
almost linearly with the number of edges. Given a similar graph size,
it performs better over uniprot than more skewed bibliography.

Exp-4: Planar vs. multi-machine systems. We also evaluated the
performance and cost effectiveness of Planar versus multi-machine
systems GraphScope and Gluon. We deployed all systems in the
cloud. More specifically, we ran Planar on a single 8-vCPU 32GB-
memory instance. Gluon used instances of the same configuration;
GraphScope used multiple 8-vCPU 64GB-memory instances be-
cause it requires more than 32 GB in all cases of our experiment.
Resource demands. Single-node Planar supportsWCC computation
over large graphs; in contrast, multi-machine systems easily run out-
of-memory. Over clueWeb, for example, GraphScope (resp. Gluon)
required at least eight 64GB-memory (resp. four 32GB-memory)
nodes. This verifies that Planar lowers the bar of big graph analytics,
where large memory capacities are no longer a necessity.
Execution time. As shown in Figure 4k for WCC on friendster,
(1) using a single instance, Planar outperforms a 10-node Gluon

cluster by 2.33×, and performs comparably to a 4-node GraphScope
cluster. While GraphScope beats Planar when using 6+ instances
(each with 2× memory capacity), it requires an additional 200+s for
preprocessing, which is not counted in Figure 4k. (2) None of the
multi-machine system scales well. Scaling from 4 to 10 machines
(using 2.5× cores), Gluon and GraphScope run 1.2× and 1.4× faster,
respectively, as the communication cost gradually dominates. In
contrast, the more cores are available, the better Planar works.
Cost effectiveness. For WCC on friendster, Figure 4l shows the
monetary cost of Planar and multi-machine systems, calculated as
the real cloud expense. (1) Although GraphScope and Gluon run
faster with more resources, they do not scale cost-effectively, as also
observed by [60]. (2) The cost of GraphScope is 5.45× that of Planar
for a similar performance; Gluon, running much slower, spends at
least 6.61×more. This further justifies the need for a single-machine
system to make graph analytics accessible and affordable.

Application. Planar boosts real-world graph analytics for its cost
effectiveness. Consider an in-vehicle navigation system, to find the
shortest paths between two locations in a large route graph. With
limited computing resources, Planar offers an ideal solution, by
speeding up route planning and improving user experience.

Summary. We find the following. (1) Planar consistently out-
performs the SOTA single-machine systems. It beats out-of-core
MiniGraph, Blaze, GridGraph and GraphChi by up to 70.77×,
5.09×, 131.12× and 302.01×, respectively; it can handle workload
over large graphs that exceed the capacity of all four baselines. It
speeds up in-memory Galois and Ligra by up to 9.58× and 28.39×,
respectively. (2) Over various out-of-core workloads, it reduces the
I/O cost of the baselines by up to 94.5%. (3) Its partitioner beats
prior ones by at least 1.87×, up to 2.12×, and its scheduling strategy
consistently speeds up performance. (4) It scales well with large
graphs that do not fit in memory. For in-memory computation, on
average it is 3.36× faster when using 6× cores for parallelly scalable
PRAM algorithms. (5) It requires less memory and is consistently
faster than a 10-node Gluon cluster; it performs comparably to
GraphScope with 4 machines, saving the monetary cost by 81.7%.

6 CONCLUSION
The novelty of Planar includes the following. (1) Planar is the first
graph system that makes practical use of existing PRAM algorithms.
(2) It proposes a parallel model that unifies in-memory and out-of-
core graph computations, which goes beyond simple simulation
of PRAM; it separates inter-subgraph data-partitioned parallelism
from intra-subgraph SIMD parallelism to utilize multi-core paral-
lelism, a novel combination. (3) It studies a new graph partition-
ing/scheduling problem, and develops a strategy that solves the
unique challenges not met in multi-machine systems. Our experi-
mental study has validated that Planar is promising in practice.

One topic for future work is to equip Planar with GPU to speed
up analytics. Another topic is to fine-tune Planar for a designated
task, e.g., graph cleaning, for its best performance.
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