
A CPU-GPU Hybrid Labelling Algorithm for Massive Shortest
DistanceQueries on Road Networks

Jiajia Li

Yongzhi Chen

Shenyang Aerospace University

ShenYang, China

lijiajia@sau.edu.cn

chen1490727038@gmail.com

Mengxuan Zhang

Australian National University

Canberra, Australia

mengxuan.zhang@anu.edu.au

Lei Li

DSA Thrust, HKUST (GZ), China

CSE, HKUST, Hong Kong SAR

thorli@ust.hk

ABSTRACT

Shortest distance computation is a fundamental operation in graph-

related applications, especially in location-based services. The most

efficient method is hop-labeling, which can answer queries in mi-

croseconds. However, when the traffic condition changes dynami-

cally, they need a long time to maintain or an even longer time to

re-construct, making it hard to catch up with numerous or frequent

updates. As a result, real-life applications still rely on slow graph

searching algorithms. To improve the hop labeling construction

efficiency, we resort to GPU for its high parallelism power and pro-

pose the G2H index. Specifically, we first analyze the relation of the

graph partitions, index performance, and parallelism to identify the

most suitable partition scheme for G2H, with a hybrid scheme and

optimized node ordering for faster contraction. Then, we propose

a label-pruning method to reduce the label construction workload

with several strategies designed to balance and improve the parallel

label construction. Finally, experiments on real-life networks show

that our G2H can finish construction within seconds for large urban

networks and under one minute for large region networks with

6M vertices, which is several times faster than the state-of-the-art

methods. Besides, G2H can answer hundreds of millions of queries

per second, achieving two orders of magnitude acceleration.

KEYWORDS

Shortest Distance, Tree Decomposition, GPU, Road Network

PVLDB Reference Format:

Jiajia Li, Yongzhi Chen, Mengxuan Zhang, and Lei Li. A CPU-GPU Hybrid

Labelling Algorithm for Massive Shortest Distance Queries on Road

Networks. PVLDB, 18(3): 770 - 783, 2024.

doi:10.14778/3712221.3712241

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/sauccjy/GPU-H2H.

1 INTRODUCTION

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.

doi:10.14778/3712221.3712241

∗
Lei Li is the corresponding author.

Shortest distance query is a fundamental operation in location-

based services and graph-related computations. In real-life appli-

cations, travel time is often more important than travel distance

because it reflects the actual travel cost. While travel time along

road segments (i.e., edge weight of graph) varies with traffic condi-

tions, making road networks dynamic. However, between changes,

the network can be viewed as a static one at each timestamp, so we

continue to use the conventional term "shortest distance" here.

The dynamic network can be modeled as a set of network snap-

shots, where edge weights and network topology could change

between the snapshots. The number of changes between two snap-

shots is called update number, and the total update number per unit

time is called update frequency. Then, depending on the update

number and frequency, the dynamicity can be categorized into the

following scenarios: 1)When there is no update between snapshots,
the network is essentially static. Then hop-labeling distance index

[2, 4, 5, 10, 17, 32, 44] is the most efficient method that can answer

distance queries in microseconds and handle millions of queries

per second with only one server. However, it usually takes a long

time for index construction; 2) When there are a few updates, or the
frequency is low, the index maintenance methods [18, 46, 58, 61–

64, 68, 69] could take some time for index update to support correct

query answering; 3) When there are a large number of updates or
the update frequency is high such that the index maintenance or

re-construction cannot finish before next update, then online search

[16, 22] is the only available option [63]. Though some batch pro-

cessing methods are proposed [23, 31, 52, 59, 60] to further improve

the query efficiency, they are still thousands of times slower than

the index-based one, so they require thousands of servers to handle

millions of queries in real-time.

Motivation. Consequently, to the best of our knowledge, no

method can process distance queries at the million level per second

in a highly dynamic environment. Hop-labeling is the only method

that can address large query demand, but its maintenance cannot

handle frequent updates [63]. Therefore, in this work, we resort to

accelerating the index construction so that it can handle highly dy-

namic networks even when the entire graph changes. Specifically,

the current state-of-the-art distance index for road networks is H2H

[44], which is also the fundamental structure for many advanced

distance indexes [13, 28, 29, 36–38, 45, 65]. But it still takes several

minutes to construct on networks with millions of vertices, which

can hardly catch upwith the highly frequent update. As its construc-

tion efficiency cannot improve theoretically, efforts are mainly put

on providing better vertex orders or tree structure [10, 17, 25, 66],

770

https://doi.org/10.14778/3712221.3712241
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712241
https://www.acm.org/publications/policies/artifact-review-and-badging-current

but with marginal improvement. So, how to accelerate the H2H

construction significantly is still an important open problem.

On the other hand, GPU has become an essential component

in modern computation due to its SIMD (Single Instruction Multi-

ple Data) paradigm with huge number of cores and large memory

bandwidth. Besides, it has shown success in large graph compu-

tation tasks [14, 19, 20, 35, 40, 48, 51, 55]. However, the efficient

solution for H2H construction and query answering on GPU has

been overlooked. Therefore, we aim to propose a GPU-based H2H

index (named G2H) that is fast in index construction and query

processing such that a single machine can handle a huge number

of queries in highly dynamic road networks.

Challenges. However, it is non-trivial to make the best use of

GPU’s SIMD paradigm. Firstly, constructing H2H in parallel [33,

36, 64] is based on the existing graph partitioning results [15] with

the partitions running in parallel. There are at most a few hundred

partitions for one road network, as existing graph partitioning

approaches mainly aim at minimizing cut or balancing partitions.

Although it works fine on the CPU since its thread number is usually

not larger than a few hundred, it cannot fully exploit the GPU’s

parallel potential with tens of thousands of parallel computing units.

Besides, the first vertex contraction phase in index construction

has very large data coupling, so it naturally favors larger partition

running in serial, which further makes it harder for GPU. Therefore,

we first analyze the relations between the graph partition, index

performance, and parallelism to identify the most suitable partition

scheme for G2H support hundreds of thousands of contraction

threads that run conflict-free in parallel. Next, after observing and

analyzing the trends of GPU and CPU computation behavior when

contracting on the higher-level partitions, we propose a GPU-CPU

hybrid contraction method to take advantage of both of them.

Secondly, because vertex order is a crucial factor as it determines

the index structure, index size and construction time [17, 25, 34, 66],

we analyze the influence of hierarchical partitioning on the vertex

order theoretically and then propose a Decomposition Tree Height

(DTH) ordering to improve index structure with little influence on

contraction efficiency.

Thirdly, the GPU’s SIMD nature requires the data space to be

allocated and transferred to the GPU’s memory beforehand with

few branches of operations. However, in the first vertex contraction

phase, the space cannot be settled as it changes dynamically. To

solve this problem, we propose an upper-bound estimation. During

the second label construction phase, there would be an exponential

number of data transfers. To avoid the explosion, we propose a

shared data allocation. In terms of label construction thread coordi-

nating, we propose two frontier selection strategies to avoid thread

divergence and a TD-based parallel granularity to exploit the large

thread number further for faster construction.

Finally, label construction is time-consuming since it involves

a significant amount of computation. To alleviate this workload,

we conduct a theoretical analysis of hop labeling and identify re-

dundancy in the current indexes. Building on this, we propose

a label-pruning method that effectively reduces the computation

workload by half without compromising the query quality.

Contributions. Our contributions are summarized below:

• We propose G2H, the first GPU-based hop labeling index that

can construct an index in seconds and answer queries in 𝑛𝑠;

• We propose a conflict-free parallel contraction method that has

a parallelism degree of hundreds of thousands with hierarchical

partitioning, a DTH order to refine the index structure, and a

CPU-GPU hybrid contraction scheme for fast contraction;
• We propose several data allocation strategies and parallel thread

coordination strategies to fully take advantage of GPU’s SIMD;

• We propose a label pruning method to reduce label computation

time by half.

• Our experimental studies on real-life road networks validate the

superiority of G2H compared with the state-of-the-arts.

2 PRELIMINARIES

In this section, we first introduce the basic concepts formally. Then,

we introduce the H2H index [44] that we aim to parallelize, followed

by GPU architecture that our proposed algorithm relies on.

2.1 Basic Concepts

Let 𝐺 = (𝑉 , 𝐸) be a weighted road network with vertex set 𝑉 and

edge set 𝐸 ⊆ 𝑉 ×𝑉 . Each vertex 𝑣 ∈ 𝑉 denotes road intersection.

Each edge 𝑒 (𝑢, 𝑣) ∈ 𝐸 denotes road segment and is associated with

a positive weight, also denoted as 𝑒 (𝑢, 𝑣) if unambiguous in the

context. For each vertex 𝑣 ∈ 𝑉 , its neighbors are denoted as 𝑁 (𝑣) =
{𝑢 |𝑒 (𝑢, 𝑣) ∈ 𝐸} with degree 𝑑𝑒𝑔(𝑣) = |𝑁 (𝑣) |. A path 𝑝 (𝑣1, 𝑣𝑘) =
⟨𝑣1, 𝑣2, 𝑣3, ..., 𝑣𝑘 ⟩ from 𝑣1 to 𝑣𝑘 is a sequence of consecutive vertices

where 𝑒 (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸,∀𝑖 ∈ [1, 𝑘), and its length is

∑
𝑒 (𝑣𝑖 , 𝑣𝑖+1). If it

has the minimum length among all paths from 𝑣1 to 𝑣𝑘 , then we say

path 𝑝 (𝑣1, 𝑣𝑘) is the shortest pathwith the shortest distance denoted
as 𝑑𝑖𝑠𝑡 (𝑣1, 𝑣𝑘). It should be noted that we use an undirected graph

in this work for easier presentation, while it is straightforward to

extend to the directed graph. A distance query 𝑞(𝑠, 𝑡) asks for the
shortest distance from 𝑠 to 𝑡 . For example in Figure 1-(a), 𝑞(𝑣2, 𝑣7) =
𝑑𝑖𝑠𝑡 (𝑣2, 𝑣7) = 7, and 𝑞(𝑣4, 𝑣6) = 𝑑𝑖𝑠𝑡 (𝑣4, 𝑣6) = 8.

2.2 H2H Shortest Distance Index

H2H [44] is a kind of 2-hop labeling shortest distance index [12]

based on tree decomposition [49], which is suitable for road net-

works due to their small treewidth [63]. In general, each 𝑣 ∈ 𝑉 is

assigned a label set 𝐿(𝑣) = {(𝑢,𝑑𝑖𝑠𝑡 (𝑢, 𝑣))}, where the projection
of 𝐿(𝑣) on the keys is called hub nodes 𝐶 (𝑣) = {𝑢 | (𝑢,𝑑𝑖𝑠𝑡 (𝑢, 𝑣)) ∈
𝐿(𝑣)}. Given a query𝑞(𝑠, 𝑡), its shortest distance can be calculated as
𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = min𝑥∈𝐶 (𝑠)∩𝐶 (𝑡) 𝑑𝑖𝑠𝑡 (𝑠, 𝑥)+𝑑𝑖𝑠𝑡 (𝑥, 𝑡) in𝑂 (|𝐶 (𝑠)∩𝐶 (𝑡) |)
time, where |𝐶 (𝑠) ∩ 𝐶 (𝑡) | is normally around hundreds in urban

road networks. The labels are correct when the common hubs are

the superset of the cuts between any two vertices.

The construction of H2H takes two phases: Vertex Contraction
and Label Assignment. In the first phase, the vertices are contracted

in a given order denoted as 𝑟 (𝑣). When contracting 𝑣 , we call its

neighbors decomposition neighbors, denoted as 𝑁𝐷 (𝑣), which forms

a cut between 𝑣 and the remaining part of 𝐺 . 𝑣 and 𝑁𝐷 (𝑣) along
with the edges between them form a tree node 𝑇 (𝑣) represented
by 𝑣 . For all neighbor pairs (𝑢,𝑤) with 𝑢,𝑤 ∈ 𝑁𝐷 (𝑣), if there is no
edge between them, we add a new edge 𝑒 (𝑢,𝑤) with edge weight

𝑒 (𝑢,𝑤) = 𝑒 (𝑢, 𝑣)+𝑒 (𝑣,𝑤) into𝐺 ; otherwise, we update its weight as

𝑒 (𝑢, 𝑣)+𝑒 (𝑣,𝑤) if 𝑒 (𝑢,𝑤) > 𝑒 (𝑢, 𝑣)+𝑒 (𝑣,𝑤). After that, 𝑣 along with

771

11 1010

6

12 13

14

15

16

2 9 3

41

87

5

3

71
11 2

2

2

2

3

2

1 2

6 4 2

111

5
1

16

41

8

6 4
2

111

5
1

2

(a) Example Road Network 𝐺!"#$% (b) Contraction of 𝑣&'

16 1 4 15 5 714 5 7

13 12 3

12 9 3

11 10 6

10 6

9 2 3

8 7 1

7 5 16 5

5 1 2

4 1 2 3

3 1 2

2 1

1

(c) Tree Decomposition of 𝐺!"#$%

11 1010

6

12 13

14

15

16

2 9 3

41

87

5

3

71
11 2

2

2

2

3

2

1 2

6 4
2

111

5
1

C DA

E FB

4

4

(d) Partitioning of 𝐺!"#$%

11 1010

6

12 13

14

15

16

2 9 3

41

87

5

3

71
11 2

2

2

2

3

2

1 2

6 4
2

111

5
1

C DA

E FB

4

11 1010

6

12 13

14

15

16

2 9 3

41

87

5

3

71
11 2

2

2

2

3

2

1 2

6 4
2

111

5
1

𝐺!"𝐺!!

4

𝐺"! 𝐺#"

𝐺""

𝐺$"

11 1010

6

12 13

14

15

16

2 9 3

41

87

5

3

71
11 2

2

2

2

3

2

1 2

6 4
2

111

5
1

!!"!!!
4

!"! !#"

!""

!$"

Figure 1: Road Network 𝐺𝑡𝑜𝑡𝑎𝑙 , its Tree Decomposition, and Hierarchical Partitioning

Table 1: Decomposition Tree 𝑁𝐷 (𝑣𝑖) and H2H Label 𝐿
3−𝑡𝑜𝑡𝑎𝑙 ,

𝐿
4−𝑡𝑜𝑡𝑎𝑙 . Tradition H2H Label is the same as 𝐿

4−𝑡𝑜𝑡𝑎𝑙

𝑣𝑖 𝑁𝐷 (𝑣𝑖)
𝐿
3−𝑡𝑜𝑡𝑎𝑙 𝐿

4−𝑡𝑜𝑡𝑎𝑙
DIS POS DIS

𝑣
1

∅ 0 0 0

𝑣
2

(𝑣
1
, 8) 8, 0 0, 1 8, 0

𝑣
3

(𝑣
1
, 4), (𝑣

2
, 7) 4, 7, 0 0, 1, 2 4, 7, 0

𝑣
4

(𝑣
1
, 2), (𝑣

2
, 6), (𝑣

3
, 2) 2, 6, 2, 0 0, 1, 2, 3 2, 6, 2, 0

𝑣
5

(𝑣
1
, 4), (𝑣

2
, 4) 4, 4, 0 0, 1, 2 4, 4, 0

𝑣
6

(𝑣
2
, 3), (𝑣

5
, 2) 6, 3, 2, 0 2, 3 6, 3, 2, 0

𝑣
7

(𝑣
1
, 1), (𝑣

5
, 3) 1, 7, 3, 0 0, 2, 3 1, 7, 3, 0

𝑣
8

(𝑣
1
, 1), (𝑣

7
, 5) 1, 12, 8, 5, 0 0, 3, 4 1, 9, 5, 2, 0

𝑣
9

(𝑣
2
, 1), (𝑣

3
, 6) 9, 1, 6, 0 1, 2, 3 9, 1, 6, 0

𝑣
10

(𝑣
2
, 1), (𝑣

6
, 2) 8, 1, 4, 2, 0 3, 4 8, 1, 4, 2, 0

𝑣
11

(𝑣
6
, 1), (𝑣

10
, 10) 7, 4, 3, 1, 10, 0 3, 4, 5 7, 4, 3, 1, 3, 0

𝑣
12

(𝑣
3
, 5), (𝑣

9
, 1) 9, 2, 5, 1, 0 2, 3, 4 9, 2, 5, 1, 0

𝑣
13

(𝑣
3
, 2), (𝑣

12
, 3) 6, 5, 2, 4, 3, 0 2, 4, 5 6, 5, 2, 4, 3, 0

𝑣
14

(𝑣
5
, 2), (𝑣

7
, 2) 3, 6, 2, 2, 0 2, 3, 4 3, 6, 2, 2, 0

𝑣
15

(𝑣
5
, 2), (𝑣

7
, 2) 3, 6, 2, 2, 0 2, 3, 4 3, 6, 2, 2, 0

𝑣
16

(𝑣
1
, 1), (𝑣

4
, 1) 1, 7, 3, 1, 0 0, 3, 4 1, 7, 3, 1, 0

its edges are removed from the graph. For example in Figure 1-(b),

when contracting 𝑣16, we add edge 𝑒 (𝑣1, 𝑣4) with weight 1 + 1 = 2

and then delete edges 𝑒 (𝑣1, 𝑣16) and 𝑒 (𝑣4, 𝑣16). When all vertices

are contracted, we have a set of tree nodes {𝑇 (𝑣)}. To construct a

tree decomposition of 𝐺 , we set 𝑇 (𝑤) (with𝑤 the last contracted

vertex) as the tree root. For each remaining vertex 𝑣 , we connect

𝑇 (𝑣) as the child of 𝑇 (𝑢) where 𝑢 has the smallest order in 𝑁𝐷 (𝑣).
For example, in Figure 1-(c),𝑇 (𝑣16)’s parent is𝑇 (𝑣4) because 𝑣4 has
smaller order than 𝑣1. The decomposition neighbors 𝑁𝐷 (𝑣) for each
vertex are listed in the second column.

In the second phase, we calculate the label set 𝐿(𝑣) for each
vertex 𝑣 in a top-down manner where 𝐶 (𝑣) = {𝑢} with {𝑇 (𝑢)} the
ancestor set of 𝑇 (𝑣). Specifically, 𝑑𝑖𝑠𝑡 (𝑣, 𝑎) (𝑎 ∈ 𝐶 (𝑣)) is calculated
as𝑑𝑖𝑠𝑡 (𝑣, 𝑎) =𝑚𝑖𝑛{𝑒 (𝑣,𝑢)+𝑑𝑖𝑠𝑡 (𝑢, 𝑎) |∀𝑢 ∈ 𝑁𝐷 (𝑣)}. This procedure
is correct because 𝑇 (𝑢) is always an ancestor of 𝑇 (𝑣) and its label

has been constructed previously. The complete label set is shown

in the last column of Table 1.

When answering 𝑞(𝑠, 𝑡), H2H first finds the Lowest Common

Ancestor (LCA) [6] of 𝑠 and 𝑡 in the tree because the vertices in

it are the cuts between 𝑠 and 𝑡 . Then the shortest distance is the

smallest one among the addition values of these two hop labels.

For example, to answer 𝑞(𝑣8, 𝑣14), we find their LCA is 𝑇 (𝑣7) with
cuts {𝑣7, 𝑣5, 𝑣1}. Then 𝑑𝑖𝑠𝑡 (𝑣8, 𝑣14) =𝑚𝑖𝑛{𝑑𝑖𝑠𝑡 (𝑣8, 𝑣7)+𝑑𝑖𝑠𝑡 (𝑣7, 𝑣14),
𝑑𝑖𝑠𝑡 (𝑣8, 𝑣5) + 𝑑𝑖𝑠𝑡 (𝑣5, 𝑣14), 𝑑𝑖𝑠𝑡 (𝑣8, 𝑣1) + 𝑑𝑖𝑠𝑡 (𝑣1, 𝑣14)} = 4.

2.3 GPU Architecture

GPU is a data-oriented computing device that achieves high paral-

lelism through SIMD (Single Instruction Multiple Data). Its basic

physical computing unit is the Streaming Processor (SP), while a

batch of SPs forms its smallest execution unit, i.e., the Streaming

MultiProcessor (SM). The basic logical computing unit is the thread,

while a set of threads forms the basic logical execution unitWarp,
which contains 32 threads in NVidia GPU. A Block is a logical group-
ing of threads (typically 32 to 1024) that execute the same code and

share the same memory, while a set of blocks form a larger logical

unit Grid. Such architecture with thousands of threads favors codes

with enormous repeated computations rather than multi-branch

codes, otherwise only partial computation can benefit from utiliz-

ing GPU. Finally, because GPU and CPU normally have separate

memory, it takes extra time for data allocation and transmission

between them.

Although GPU and CPU both use threads to support parallelism,

they are different in the following ways: 1) CPU’s thread number

is smaller while GPU’s is much larger; 2) It takes longer time for

CPU to switch and construct threads but very little time for GPU;

3) Threads in CPU runs separately while threads in GPU has to

do exactly the operation at the same time. Therefore, when one

thread finishes in the CPU, we can switch to another thread to fill

the vacancy. But in GPU, we have to wait for all threads to finish,

and it could be long if there are many branches in the program or

the thread load is imbalanced. This phenomenon is called thread
divergence. Next, we formally define our problem as follows:

Problem Statement. Given a road network 𝐺 (𝑉 , 𝐸), we aim to

use GPU to reduce H2H index construction time and improve its

query efficiency.

3 CONTRACTION OPTIMIZATION

In this section, we accelerate the first vertex contraction through

parallelization. As introduced in Section 2.2, vertices are contracted

in serial in the original H2H. However, if we follow any serial order

to parallelize contraction, wemay suffer from conflicts. For instance,

if we contract 𝑣12 and 𝑣13 at the same time, they would conflict

in adding edge 𝑒 (𝑣9, 𝑣13) and 𝑒 (𝑣3, 𝑣12), while contracting 𝑣11, 𝑣13,
𝑣14 and 𝑣16 in parallel has no conflict. Therefore, we first resort to

partition to identify the conflict-free parallelization opportunities

in Section 3.1. Then, we adapt the contraction process to GPU and

propose a hybrid scheme in Section 3.2. Finally, we propose a fast

tree height order to refine order in Section 3.3.

3.1 Conflict-Free Parallel Contraction

To enable parallel processing on graphs, partitioning [3, 15, 24,

26, 42] is widely used in large graph systems [39, 41, 54] and also

pathfindings [11, 30, 36, 56, 57, 67]. However, most of these appli-

cations only utilize the partition results with at most two levels

[64]: the lower level partitions could run in parallel and an op-

tional upper level (i.e., overlay graph) organizes the connections

among partitions. However, such a structure cannot fully utilize

the high parallelism of GPU because its power is restricted by the

772

lower-level partition number, in which the inner-partition index

construction still runs in serial. In other words, if we have more

partitions, then we can have higher parallelism. Therefore, in this

section, we discuss the potential of parallelism and further give the

parallel contract rank by introducing the Partition Rank Tree.

3.1.1 Contraction Conflict. We first analyze the obstacle of par-

allel contraction through the following theorem:

Theorem 1 (Contraction Conflict Condition). The
parallel contraction of 𝑣𝑖 and 𝑣 𝑗 have a conflict if and only if they
have the same decomposition neighbor 𝑣𝑘 .

Proof. When contracting a node 𝑣𝑖 ∈ 𝑉 , its operations involve

𝑣𝑖 and 𝑁𝐷 (𝑣𝑖). Then, only the following data would be changed: 1)

The removal of 𝑣𝑖 and its connected edges {𝑒 (𝑣𝑖 , 𝑣𝑘) |𝑣𝑘 ∈ 𝑁𝐷 (𝑣𝑖)}.
This operation introduces no conflict because all this information is

unique for 𝑣𝑖 ; 2) The insertion of a non-existing edge {𝑒 (𝑣𝑘 , 𝑣𝑥) |𝑣𝑘 , 𝑣𝑥
∈ 𝑁𝐷 (𝑣𝑖)} would require new space in 𝑁𝐷 (𝑣𝑘) (suppose 𝑣𝑘 has

higher order than 𝑣𝑥), so it could introduce conflict when 𝑁𝐷 (𝑣𝑘) is
also accessed by another thread; 3) The weight update of 𝑒 (𝑣𝑘 , 𝑣𝑥)
could also introduce conflict when 𝑣𝑘 and 𝑣𝑥 also belong to 𝑁𝐷 (𝑣 𝑗)
and 𝑒 (𝑣𝑘 , 𝑣𝑥) is accessed or updated when 𝑣 𝑗 is contracted. In sum-

mary, the conflict among vertex contractions could happen only

with common decomposition neighbor(s). □

In Figure 1-(b), 𝑣8 and 𝑣16 have a common neighbor 𝑣1. When

we contract 𝑣16, a new edge 𝑒 (𝑣1, 𝑣4) is added to 𝑁𝐷 (𝑣1), which
could also be accessed by 𝑣8 during its contraction (case 2). In

terms of Case 3, 𝑣14 and 𝑣15 have common ancestors 𝑣5 and 𝑣7, so

when they are contracted in parallel, updating 𝑒 (𝑣5, 𝑣7) is conflicted.
Therefore, avoiding conflict is crucial to parallel contraction, which

can be achieved by identifying the non-conflict vertices through

the following corollary:

Corollary 2 (Non-Conflict Vertex Pair). For any 𝑣𝑖 and
𝑣 𝑗 , if 𝑁𝐷 (𝑣𝑖) ∩ 𝑁𝐷 (𝑣 𝑗) = 𝜙 , they can contract in parallel with no
conflict and are called non-conflict vertex pairs.

3.1.2 Hierarchical Graph Partition. To identify the non-conflict
vertices, we resort to edge-cut graph partitioning. Generally, the

road network 𝐺 is divided into multiple subgraphs {𝐺𝑖 |1 ≤ 𝑖 ≤ 𝑘}
such that

⋃
𝑖∈[1,𝑘] 𝑉 (𝐺𝑖) = 𝑉 ,𝑉 (𝐺𝑖) ∩ 𝑉 (𝐺 𝑗) = 𝜙 (∀𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈

[1, 𝑘]). ∀𝑣 ∈ 𝐺𝑖 , we say 𝑣 is a boundary vertex if there exists a

neighbor of 𝑣 in the another subgraph, that is∃𝑢 ∈ 𝑁 (𝑣), 𝑢 ∈ 𝐺 𝑗 (𝑖 ≠
𝑗). The corresponding edge is called boundary edge. Otherwise, 𝑣 is
an inner vertex. In 𝐺𝑖 (1 ≤ 𝑖 ≤ 𝑘), we denote the inner vertex set as
𝐼𝑖 and the boundary vertex set as 𝐵𝑖 . The opportunity of parallel

vertex contraction can be revealed through the following lemma:

Lemma 3. Given two partitions 𝐺𝑖 and 𝐺 𝑗 , then any 𝑣𝑖 ∈ 𝐼𝑖 and
𝑣 𝑗 ∈ 𝐼 𝑗 have no conflict and can contract in parallel.

Proof. 𝑁 (𝑣𝑖) ∩ 𝑁 (𝑣 𝑗) ⊆ 𝐵𝑖 ∩ 𝐵 𝑗 = 𝜙 □

Therefore, the contractions among partitions can run in parallel

while those within each partition still need to run in serial, and the

partition number determines the number of threads or degree of

parallelism. Then, a good partition result should satisfy the follow-

ing properties: 1) It should generate a large number of partitions to

fully utilize the GPU’s parallelism potential; 2) The vertex number

2,3,6,9,10,11,12,13

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

1,4,5,7,8,14,15,16

𝐺!

𝐺"" 𝐺#"

2,6,10,11 3,9,12,13 5,7,14,15 1,4,8,16
𝐺"# 𝐺## 𝐺$# 𝐺%#

(a) Partition Tree

9

1,2,3,4,5,6

7,8

𝑅!

𝑅"" 𝑅#"

10,11 12,13 14,15 16

𝑅"# 𝑅## 𝑅$# 𝑅%#

(b) Partition Rank Tree

Figure 2: Partition Tree and Rank Tree

in different partitions should be similar such that the workload

among threads could be balanced; 3) The partition size should be

small such that each thread’s serial contraction workload is small

with fewer branches.

To fulfill the above properties, we propose to partition the graph

recursively until each partition has at least 3 vertices (as it takes at

least three vertices to contract) and cannot be partitioned anymore.

The recursive partition could keep the partition size as small as

possible (smaller workload with few branches) while increasing the

partition number (larger thread number). Specifically, we use𝐺ℎ
𝑖
to

denote the 𝑖𝑡ℎ partition on theℎ𝑡ℎ layer and the original graph is𝐺0
.

In general, for each𝐺ℎ
𝑖
partition, the hierarchical graph partitioning

methods [24, 47] partition it into𝑘 partition {𝐺ℎ+1
1

, · · · ,𝐺ℎ+1
𝑘
}, with

𝑘 being a tunable parameter and normally at least 4. However, we

find that 𝑘 = 2, which is the smallest partition number, is the

most suitable to our contraction requirements due to the following

reasons: 1) A larger 𝑘 decreases the overall thread number (each

time reduces by 𝑘 instead of 2), so the parallelism drops faster;

2) A larger 𝑘 increases the partition sizes faster so the workload

and thread size increases. Therefore, we utilize the hierarchical

partitioning methods [24, 47] with fanout of 2 for contraction. A

partition example is illustrated in Figure 1-(d). We first divide 𝐺

into 𝐺1

1
and 𝐺1

2
(the green ones) and then continue to divide them

into subgraphs 𝐺2

1
, 𝐺2

2
, 𝐺2

3
and 𝐺2

4
.

3.1.3 Hierarchical Parallel Node Ordering and Contraction.
Now we discuss the relation between the contraction result on the

hierarchical partitioned graph and the original one through node

ordering. Firstly, the partitioned results can be represented by the

following structure:

Definition 1 (Partition Tree). Given a road network 𝐺

and its hierarchical partitions 𝐺ℎ . For any partition 𝐺𝑘
𝑖
(𝑘 < ℎ), it is

connected as a parent node of the 𝑘 + 1 layer subgraphs partitioned
from it. Then a tree structure is formed.

Figure 2-(a) shows a 3-layer partition tree of Figure 1-(d). We

show each subgraph’s boundary vertices in bold. The relation be-

tween the neighboring layers’ boundary vertex is shown below:

Property 1 (Inter-Layer Boundary Inclusion). For any
partition 𝐺𝑘

𝑖
(𝑘 < ℎ), its boundary vertex set 𝐵𝑘

𝑖
is a subset of its

children’s boundary vertex set.

It is easy to prove that new boundaries would be introduced

by partitioning while the old ones still serve as boundaries. The

contractions among non-boundary vertices within one partition

are conducted in serial, while those in the same-layer partitions are

in parallel. Then, if we only keep the contracted vertex at each layer,

we obtain a Partition Rank Tree as shown in Figure 2-(b), with the

contracted vertices of𝐺
𝑗
𝑖
denoted by 𝑅

𝑗
𝑖
. Such a rank tree provides

us with a tool to analyze the index equivalence with the original

H2H index. We first define a set of ordering below.

773

Definition 2 (Hierarchical Parallel Node Ordering

Set). Given a partition rank tree, we can form a set of serial node
orders according to the following rules:

(1) ∀0 ≤ 𝑘 < ℎ, 𝑅𝑘 ’s order is higher than 𝑅𝑘+1;
(2) Within each 𝑘-layer, for any pair of 𝑣𝑖 ∈ 𝐺𝑘

𝑖
and 𝑣 𝑗 ∈ 𝐺𝑘

𝑗

from different partition, their relative order can be arbitrary;
(3) Within each partition, the vertex relative orders are fixed.

Rule 1 requires 𝑅0’s order higher than 𝑅1’s, which is higher

than 𝑅2’s. Rule 2 allows the 𝑅2
𝑖
’s orders arbitrary. For instance,

orders among 𝑣10, 𝑣12, 𝑣14 and 𝑣16 could be arbitrary, and orders

among 𝑣9, 𝑣7, 𝑣8 can also be arbitrary. Rule 3 requires the orders

of 𝑣10 lower than 𝑣11, 𝑣12 lower than 𝑣13, and 𝑣14 lower than 𝑣15
(suppose each partition’s inner vertex follows the ID-increasing

order). In this way, we can generate a set of node orders like

⟨𝑣10, 𝑣11, 𝑣12, 𝑣13, 𝑣14, 𝑣15, 𝑣16, 𝑣9, 𝑣7, 𝑣8, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6⟩, ⟨𝑣10, 𝑣16,
𝑣13 , 𝑣12, 𝑣11, 𝑣14, 𝑣15, 𝑣7, 𝑣9, 𝑣8, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6⟩.

The following theorem proves that orders following the above

definition are equivalent with the same index constructed.

Theorem 4. The serial orders generated by the hierarchical par-
allel node ordering set are equivalent as they create the same tree
structure and the same H2H label.

Proof. Firstly, within each partition on the same layer, its tree

structure is only determined by the contraction order of its inner

vertices, but not the relative order with inner vertices from other

partitions because they are separated by boundary vertices and do

not have common neighbors. Secondly, as the parent partition’s

inner vertex order is always higher than their children’s, the tree

structure between layers is also fixed. Therefore, the tree structure is

fixed as long as each partition’s inner vertex order is relatively fixed,

so this set of orders would construct the same tree decomposition,

which further determines the same label. □

Now we can derive the following parallel contraction procedure

that generates the equivalent order and label:

(1) The contraction is conducted in the unit of layers from lower

to higher in the partition rank tree;

(2) The partitions of the same layer are contracted in parallel;

(3) The contraction within the same partition is contracted in serial.

Therefore, the degree of parallelism is the number of partitions of

each layer, and the round of parallelism is the number of layers.

3.2 GPU-CPU Hybrid Contraction

In this section, we first present how to conduct the parallel con-

traction on GPU, then we propose a GPU-CPU hybrid contraction

scheme to further improve contraction efficiency.

3.2.1 GPUData Allocation. Unlike CPU, which can access mem-

ory randomly, GPUs’ SIMD nature requires threads’ data space to

be pre-allocated. However, the contraction operations would insert

new edges to the contracted vertex’s neighbors 𝑁𝐷 (𝑣𝑖) dynami-

cally, which is unknown before all the vertices lower than it has

been contracted. So it is impossible to accurately determine and

allocate the data spaces. Nevertheless, as there must exist an upper

bound of the data allocation for any vertex, in the following, we

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
(a) Contract Time var switch Device Height

2

4

6

8

10

12

14

Co
nt

ra
ct

 T
im

e
(s

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
(b) Contract Quality

0.0

0.5

1.0

1.5

2.0

La
be

l S
ize

 (G
B)

0.4

0.6

0.8

1.0

ve
rte

x
ra

te

0

200

400

600

800

He
ig

ht

GPU Time CPU Time Label Size Contracted Vertex Ratio Height

Figure 3: Contract Time and Index Quality Trend for FLA

propose to estimate the contracted Node size Upper Bound (NUB)
rather than the actual size.

Specifically, as all the contractions are conducted within parti-

tions, then for any 𝑣𝑖 ∈ 𝐺 𝑗 , we denote its node size upper bound

as 𝑁𝑈𝐵𝐺 𝑗
(𝑣𝑖). Since the contraction would only increases 𝑁𝐷 (𝑣𝑖)

rather than reducing it, lower bound of 𝑁𝑈𝐵𝐺 𝑗
(𝑣𝑖) could be ini-

tialized as its current |𝑁𝐷 (𝑣𝑖) |. Then, depending on the type of the

vertex, we discuss them separately:

Case 1: Inner vertex from the lowest layer. Because all the inner ver-
tices in one partition would be contracted, the newly added neigh-

bor number could not exceed |𝐼𝑖 |. Besides, since the boundaries

could also exist in 𝑁𝐷 (𝑣𝑖), the maximum size is |𝑉𝑖 |. Because the
initial value is no larger than |𝑉𝑖 | (otherwise, it would contain ver-

tices from other partitions), then the upper bound𝑁𝑈𝐵𝐺𝑖
(𝑣𝑖) = |𝑉𝑖 |.

It should be noted that 𝑉𝑖 here refers to the contracted subgraphs

but not the original partition results.

Case 2: Boundary Vertex. Because the boundaries do not contract
in this round (layer) of contraction, its 𝑁𝐷 (𝑣𝑖) increases by at most

|𝑉𝑖 |. Besides, the boundaries also connect to boundaries from other

partitions, which is denoted by 𝑁𝑜𝑢𝑡 (𝑣𝑖). Then, the upper bound
of 𝑁𝑈𝐵𝐺𝑖

(𝑣𝑖) = |𝑉𝑖 | + |𝑁𝑜𝑢𝑡 (𝑣𝑖) |. It should be noted that 𝑁𝑜𝑢𝑡 (𝑣𝑖)
would also change during sub graph merging.

For example, the upper bound 𝑁𝑈𝐵𝐺2

1

(𝑣11) of the inner vertex
𝑣11 in sub-graph 𝐺2

1
is |𝑉 2

1
| = 4; The upper bound 𝑁𝑈𝐵𝐺2

2

(𝑣9)
of the boundary vertex 𝑣9 in sub-graph 𝐺2

2
is |𝑉 2

2
| + |𝑁𝑜𝑢𝑡 (𝑣9) | =

4+1 = 5. Then the same 𝑣9 would become an inner vertex in𝐺1

1
, and

this time its upper bound 𝑁𝑈𝐵𝐺1

1

(𝑣9) is𝑚𝑎𝑥 (|𝑉 1

1
|, 𝑁𝑈𝐵𝐺2

1

(𝑣9)) =
𝑚𝑎𝑥 (4, 5) = 5. It should be noted that NUB is the maximum possible

𝑁𝐷 (𝑣𝑖) size but not the actual size.

3.2.2 Hybrid Contraction. Although GPU can provide high par-

allelism, it does not necessarily guarantee faster index construction

for all the layers. As shown in Figure 3-(a), the GPU contraction is

faster than GPU for the lower levels, but it soars up for the higher

levels. This corresponds to the contracted vertex ratio, as the last

few vertices form a nearly complete graph that can hardly be paral-

lelized. Figure 3-(b) shows the tree height and label size, which are

the smallest when the GPU time and CPU time intersect in (a).

Therefore, to take advantage of GPU’s high efficiency and CPU’s

high quality, we propose the GPU-CPU hybrid contraction scheme.

Because the network structure is rather stable, we test all the con-

tracted layer and select the one with the fastest contraction time

as the default threshold. After that, the remaining vertices would

perform the global contraction on CPU in serial. More importantly,

this trade-off ensures that the average degree is not too high dur-

ing global contraction, avoids imbalance between partitions, and

provides opportunity for order optimization.

774

3.3 Decomposition Tree Height Order

The order of vertices has a fundamental impact on every aspect

of the distance labeling (construction time, index size, query time)

as it determines the index structure. In the context of H2H, it is

the tree height that determines the label size and the tree width

that determines the query efficiency. A good order could reduce

these two factors and provide better index quality. As discussed

in Theorem 4, the partitioned-based parallel contraction generates

a set of orders that are equivalent to a serial node order, which is

unknown beforehand. Then, a question arises naturally: to what

extent could this order be improved during parallel contraction?

We first analyze this order to identify the optimization oppor-

tunities: 1) the relative orders between layers cannot be changed

as the partitions are contracted layer by layer, and the layers are

determined by the balanced hierarchical partition algorithm; 2) the

orders among the same-layer-different-partition inner vertices can

still be arbitrary as they would not affect the tree structure; 3) it

leaves the order of the same-partition inner vertices; 4) In the CPU

contraction phase of the hybrid contraction, we have a chance to

re-order all the remaining vertices. Therefore, in this section, we

aim to improve the order of each inner partition vertices during

their contraction. Specifically, the remaining vertices contracted on

CPU serial can also served as a sub graph.

The essence of hop labeling is the graph vertex cut: for any two

vertices 𝑠 and 𝑡 , a set of cut vertices exists such that if we remove

them, 𝑠 and 𝑡 would belong to two separate components. Therefore,

the shortest path must pass through at least one cut vertices. The

common set of 𝑠 and 𝑡 ’s labels is their cuts, and it is achieved by

using the LCA of 𝑠 and 𝑡 as the cuts in H2H. Obviously, the cut

size (tree width), or 𝑁𝐷 in our case, should be as small as possible.

As 𝑁𝐷 is formed through contraction, then the earlier contracted

vertex would not appear in the latter contracted vertex’s 𝑁𝐷 . In

other words, if a vertex wants to appear in more vertex pairs’ cut,

it should be contracted later with a higher order. Then the problem

is converted to which vertex should have higher order and appear

in more vertex pair’s cut? Apparently, it should be the vertices

that appear on more vertex pair’s shortest paths, which can be

quantified by the Betweenness Centrality (BC). However, it takes
𝑂 (|𝑉 | · (|𝑉 |𝑙𝑜𝑔|𝑉 | + |𝐸 |)) [8] to compute, which is intolerable during

contraction. Fortunately, we only need to order the inner vertices

in the subgraph, which determines this sub-tree’s structure, so we

only need an approximate BC on the tree.

Definition 3 (DecompositionTreeHeight (DTH)). Given
a subgraph 𝐺𝐷 (𝑉𝐷 , 𝐸𝐷) during contraction, ∀𝑣𝑘 ∈ 𝑉𝐷 , there exists a
set 𝑃𝑖 = ⟨𝑣1, 𝑣2, 𝑣3, ..., 𝑣𝑘 ⟩, where 𝑣1 is the first decomposed vertex in
𝑃𝑖 with 𝑣2 ∈ 𝑁𝐷 (𝑣1), 𝑣3 ∈ 𝑁𝐷 (𝑣2),..., and 𝑣𝑘 ∈ 𝑁𝐷 (𝑣𝑘−1). Because
it is a path, the size of 𝑃𝑖 represents the lower bound of this partial
tree height. If more than one such set exists, the largest of them is
called 𝑣𝑘 ’s DTH and denoted as 𝐷𝑇𝐻 (𝑣𝑘).

Although the exact DTH can only be obtained after the tree is

constructed, we can utilize it reversely to optimize the tree. Firstly,

we present how to compute 𝐷𝑇𝐻 accumulately. Algorithm 1 shows

the pseudocode of contraction. We first initialize the DTH of all the

inner vertices to 0. Then, after contracting a vertex 𝑣𝑡 , we update

all its neighbors’ DTH (Line 12). Specifically, 𝑣 𝑗 ’s new DTH is the

larger one of its current DTH and 𝐷𝑇𝐻 (𝑣𝑡) + 1. This is because

4

6

2

3

1

5
3

72

4

6

4

2

4

2

(a) Sub-graph
remaining 𝑣! to 𝑣"

5

4

3

2 1

6 6

2

1

4 5

3

Order 6,1,2,3,4,5 Order 6,5,3,4,1,2

(b) MDE Order (c) DTH Order

𝒔

𝒕

𝒔

𝒕

𝒌 𝒔

𝒕

𝒌

𝒔

𝒕

𝒌

(a) Type 1 (b) Type 2 (c) Type 3 (d) Type 4

Figure 4: Decomposition Tree Example for Sub-graph 𝐺0

DTH is always the longest one, and we can always accumulate it

from the starting vertex as defined in Definition 3. This procedure

is integrated into the contraction, so when a vertex is contracted,

its exact DTH is determined. Besides, it does not introduce extra

complexity. The remaining problem is selecting the next vertex to

contract, and we propose the following order strategy:

Definition 4 (DTH Order Strategy). The vertices are
sorted first on 𝐷𝑇𝐻 (𝑣𝑖) + 𝑁𝐷 (𝑣𝑖), then their current degree |𝑁𝐷 |,
and finally, their ID to break a tie.

To explain the intuition, suppose 𝐷𝑇𝐻 (𝑣𝑖) < 𝐷𝑇𝐻 (𝑣 𝑗) and they
are neighbor to each other. If we contract 𝑣 𝑗 earlier than 𝑣𝑖 , then

𝐷𝑇𝐻 (𝑣 𝑗) does not change but 𝐷𝑇𝐻 (𝑣𝑖) would increase to larger

than 𝐷𝑇𝐻 (𝑣 𝑗); On the other hand, if we contract 𝑣𝑖 earlier, both of

their DTH do not change as 𝐷𝑇𝐻 (𝑣𝑖) + 1 ≤ 𝐷𝑇𝐻 (𝑣 𝑗).

Algorithm 1: DTH Optimized Contraction

Data: Sub-graph𝐺𝑖 and its inner vertex set 𝐼𝑖
Result: Decomposition Tree 𝐷𝑇 = {𝑁𝐷 (𝑣𝑖) }.

1 forall 𝑣𝑗 ∈ 𝐼𝑖 do
2 𝐷𝑇𝐻 (𝑣𝑗) ← 0; ⊲ DTH Initialization

3 𝑃𝑄 ← 𝐼𝑖 ; ⊲ Priority Queue with DTH Strategy

4 while 𝑃𝑄 not empty do

5 𝑣𝑡 ← 𝑃𝑄 ’s top vertex; 𝐷𝑇 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑁𝐷 (𝑣𝑡)) ;
6 forall Neighbor pair (𝑣𝑗 , 𝑣𝑘) in 𝑁𝐷 (𝑣𝑡) do
7 if 𝑒 (𝑣𝑗 , 𝑣𝑘) not exist or 𝑒 (𝑣𝑗 , 𝑣𝑘) > 𝑒 (𝑣𝑗 , 𝑣𝑡) + 𝑒 (𝑣𝑡 , 𝑣𝑘) then
8 Add or Update edge 𝑒 (𝑣𝑗 , 𝑣𝑘) in𝐺𝑖 ;

9 𝑒 (𝑣𝑗 , 𝑣𝑘) ← 𝑒 (𝑣𝑗 , 𝑣𝑡) + 𝑒 (𝑣𝑡 , 𝑣𝑘) ;

10 forall 𝑣𝑗 in 𝑁𝐷 (𝑣𝑡) do
11 Delete edge 𝑒 (𝑣𝑖 , 𝑣𝑗) in𝐺𝑖 ;

12 𝐷𝑇𝐻 (𝑣𝑗) =𝑚𝑎𝑥 (𝐷𝑇𝐻 (𝑣𝑗), 𝐷𝑇𝐻 (𝑣𝑡) + 1)
13 Delete 𝑣𝑡 from𝐺𝑖 and 𝑃𝑄 ;

14 return 𝐷𝑇 ;

For example, in Figure 4-(a), it is the last layer of the sub-graph

to contract. The MDE order used in the original H2H generates a

tree shown in (b). To utilize the DTH order, we first contract 𝑣6 with

minimum 𝐷𝑇𝐻 (𝑣6) + 𝑁𝐷 (𝑣6) = 0 + 2 = 2 and change 𝐷𝑇𝐻 (𝑣2) =
𝑚𝑎𝑥 (𝐷𝑇𝐻 (𝑣6)+1, 𝐷𝑇𝐻 (𝑣2)) = 1,𝐷𝑇𝐻 (𝑣5)=𝑚𝑎𝑥 (0+1, 0) = 1. Next,

𝑣5 with 𝐷𝑇𝐻 (𝑣5) +𝑁𝐷 (𝑣5) = 1+2 = 3 and minimum 𝑁𝐷 (𝑣𝑡) = 2 is

contracted. It change 𝐷𝑇𝐻 (𝑣2) to𝑚𝑎𝑥 (𝐷𝑇𝐻 (𝑣5) + 1, 𝐷𝑇𝐻 (𝑣2)) =
𝑚𝑎𝑥 (1 + 1, 1) = 2, 𝐷𝑇𝐻 (𝑣1)=𝑚𝑎𝑥 (1 + 1, 0) = 2. Thirdly, 𝑣3 with

𝐷𝑇𝐻 (𝑣3) +𝑁𝐷 (𝑣3) = 0+ 3 = 3 , 𝑁𝐷 (𝑣3)=3 and ID=3 is selected and
change𝐷𝑇𝐻 (𝑣2) =𝑚𝑎𝑥 (𝐷𝑇𝐻 (𝑣3) +1, 𝐷𝑇𝐻 (𝑣2)) =𝑚𝑎𝑥 (0+1, 2) =
2, 𝐷𝑇𝐻 (𝑣4) =𝑚𝑎𝑥 (0 + 1, 0) = 1. Obviously, DTH order generates a

shorter tree (c) than MDE.

4 LABEL CONSTRUCTIONWITH GPU

In this section, we present how to construct labels in parallel with

GPU. This is the most time-consuming phase as it takes more than

775

4

6

2

3

1

5
3

72

4

6

4

2

4

2

(a) Sub-graph
remaining 𝑣! to 𝑣"

5

4

3

2 1

6 6

2

1

4 5

3

Order 6,1,2,3,4,5 Order 6,5,3,4,1,2

(b) MDE Order (c) DTH Order

𝒔

𝒕

𝒔

𝒕

𝒌 𝒔

𝒕

𝒌

𝒔

𝒕

𝒌

(a) Type-1 (b) Type-2 (c) Type-3 (d) Type-4

Figure 5: Path Types

half of the total index construction time. Specifically, we first an-

alyze the path types that lay the foundation for the later analysis

in Section 4.1. Then, we analyze the label structures to reduce the

label construction workload in Section 4.2. After that, we present

the GPU version of parallelized label construction with thread orga-

nization to unleash to full power in Section 4.3. Finally, we present

how to answer distance queries in Section 4.4.

4.1 Path and Label Types

Firstly, depending on the orders of the starting vertex 𝑠 , ending

vertex 𝑡 , and intermediate vertices 𝑘 , we classify all the shortest

paths into the following four types, as illustrated in Figure 5:

Type-1: A single edge with no intermediate vertex;

Type-2: Intermediate vertices are all lower than 𝑠 and 𝑡 ;

Type-3: Intermediate vertices are all between 𝑠 and 𝑡 ;

Type-4: A least one intermediate vertex is higher than 𝑠 and 𝑡 .

The above categorization is complete because 1) Type-1 and the

other three divide the complete path set into with-intermediate

and without-intermediate; 2) Type-2 distinguishes the without-

intermediate with all lower than 𝑠 and 𝑡 , Type-3 covers the in-

between, and Type-4 covers the remaining cases. In addition, these

four types have no overlapping.

Because the contraction is conducted from the bottom up with

lower vertices contracted first to preserve the shortest distance

between two higher neighbors, the contraction result 𝑁𝐷 only

contains Type-1 and Type-2 paths [58], and the label construction

phase further adds Type-3 and part of Type-4 paths into the index,

with the remaining Type-4 paths computed on the fly during query

with 2-hops. In the following, we analyze the completeness and

redundancy of these labels.

Specifically, ∀𝑣𝑖 ∈ 𝐺 , its ancestor vertices on the tree are denoted

as 𝐴𝑁𝐶 (𝑣𝑖). Then 𝑣𝑖 and 𝐴𝑁𝐶 (𝑣𝑖) together with their correspond-

ing 𝑁𝐷 s forms a sub-graph denoted as 𝐺𝑣𝑖 (𝑉𝑖 , 𝐸𝑖). This sub-graph
has the following properties: 1) ∀𝑣𝑘 ∈ 𝐴𝑁𝐶 (𝑣𝑖), 𝑟 (𝑣𝑘) > 𝑟 (𝑣𝑖);
2) 𝐸𝑖 contains all information about paths passing through lower

order vertices. For example in Figure 6, 𝑣8’s ancestor 𝐴𝑁𝐶 (𝑣8) =
{𝑣7, 𝑣5, 𝑣2, 𝑣1} forms subgraph 𝐺𝑣8 shaded in yellow, and 𝑣14’s an-

cestor 𝐴𝑁𝐶 (𝑣14) = {𝑣7, 𝑣5, 𝑣2, 𝑣1} forms 𝐺𝑣14 shaded in blue.

To find the shortest distance from 𝑣𝑖 to 𝑣 𝑗 , we take the union

of their subgraphs to form a larger subgraph 𝐺𝑣𝑖+𝑣𝑗 , and this sub-

graph’s information is sufficient [44]. Their vertex intersection𝑉𝑣𝑖 ∩
𝑉𝑣𝑗 forms a cut between 𝑣𝑖 and 𝑣 𝑗 , so𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣 𝑗) =𝑚𝑖𝑛{𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣𝑘)+
𝑑𝑖𝑠𝑡 (𝑣𝑘 , 𝑣 𝑗) |𝑣𝑘 ∈ 𝑉𝑣𝑖 ∩𝑉𝑣𝑗 }. However, some of these two distances,

like 𝑑𝑖𝑠𝑡 (𝑣14, 𝑣1) and 𝑑𝑖𝑠𝑡 (𝑣8, 𝑣2), do not exist yet due to the lack

Type-3 and Type-4 indexes. The original H2H computes the dis-

tance from 𝑣𝑖 to all of its 𝐴𝑁𝐶 (𝑣𝑖) , which covers all Type-3 and

Type-4 paths. However, such an indiscriminate scheme introduces

redundancy and cannot reveal the parallel opportunity. Therefore,

we analyze the label construction and the corresponding data flow

by incrementally adding Type-3 paths and Type-4 paths to identify

1𝑣! :

1𝑣" : 2
1𝑣# : 2 5

1𝑣$: 2 5 7

1𝑣!%: 2 5 71𝑣& : 2 5 7 148

𝐿!"#!

Extra	for	𝐿$"#!

8

1
2

5
7

14

(a) Sub Graph
Combination of 𝐺%$ + 𝐺& (b) The Data Flow when Construct 𝐿%$ and 𝐿&.

Figure 6: Combination of Two Sub Graphs𝐺𝑣8 +𝐺𝑣14 , and Data

Flow Example for 𝐿3−𝑣𝑖𝑎𝑛𝑑𝐿4−𝑣𝑖 .

the feasibility of parallel label construction. For those labels cov-

ered Type-1-2-3 paths, we denote them as 𝐿
3−𝑡𝑜𝑡𝑎𝑙 , while 𝐿3−𝑣𝑖 for

only 𝑣𝑖 ’s. Similarly, for those labels covering all four path types, we

record them as 𝐿
4−𝑡𝑜𝑡𝑎𝑙 and 𝐿4−𝑣𝑖 for 𝑣𝑖 ’s. It should be noted that

𝐿
4−𝑡𝑜𝑡𝑎𝑙 is the same as the original H2H labels.

4.2 Label Computation Pruning

In this section, we analyze the label construction in detail.

4.2.1 H2H Label Construction Analysis. In H2H, each vertex

regards all its ancestors as hubs and computes the distance to them.

As the labels are constructed from tree root recursively, the com-

putation can utilize the previously constructed higher-order labels.

Therefore, we only need to describe the intermediate procedure of

label construction. Specifically, suppose 𝑣𝑖 is the current vertex to

construct labels, then the labels of 𝑣𝑖 would be 𝐿𝑣𝑖 = {(𝑣𝑖 , 𝑣 𝑗) |∀𝑣 𝑗 ∈
𝐴𝑁𝐶 (𝑣𝑖)}. The number of labels to construct is |𝐴𝑁𝐶 (𝑣𝑖) |. For each
𝐿𝑣𝑖 (𝑣 𝑗), it is computed as𝑚𝑖𝑛{𝑒 (𝑣𝑖 , 𝑣𝑘) + 𝐿𝑣𝑘 (𝑣 𝑗) |∀𝑣𝑘 ∈ 𝑁𝐷 (𝑣𝑖)}.
This is because𝑉𝐷 (𝑣𝑖) forms a cut from 𝑣𝑖 to its ancestors, and these

cut labels have already been computed. Finally, the computation

number for each vertex label is |𝐴𝑁𝐶 (𝑣𝑖) | × |𝑁𝐷 (𝑣𝑖) |.
For instance, in Figure 6-(b), 𝐿8 (𝑣1) = 𝑚𝑖𝑛{𝑒 (𝑣8, 𝑣1), 𝑒 (𝑣8, 𝑣2) +

𝐿𝑣2 (𝑣1), 𝑒 (𝑣8, 𝑣5) + 𝐿𝑣5 (𝑣1), 𝑒 (𝑣8, 𝑣7) + 𝐿𝑣7 (𝑣1)}. The same amount

of computations are required for 𝐿8 (𝑣2), 𝐿8 (𝑣5), and 𝐿8 (𝑣7). The
overall computation time is 4 × 4 = 16. As we can see, the above

procedure does not consider the relative orders of 𝑣𝑘 and 𝑣 𝑗 , so its

computation involves all the Type-3 and Type-4 paths.

4.2.2 Pruning with Type-3 Only Computation. In this section,

we propose to reduce the label construction workload by only

keeping the Type-3 paths in computation. In other words, all the

labels are 𝐿
3−𝑡𝑜𝑡𝑎𝑙 . The following theorem proves its correctness:

Theorem 5. 𝐿
3−𝑡𝑜𝑡𝑎𝑙 can find shortest distances with 2-hop.

Proof. Because 𝐿
3−𝑡𝑜𝑡𝑎𝑙 contains all Type-1,2,3 shortest paths,

it can find the shortest paths of these three types directly. Therefore,

we only need to prove 𝐿
3−𝑡𝑜𝑡𝑎𝑙 can find the shortest paths of Type-4.

Specifically, during two-hop label concatenation, there could only

be three cases: 1) No Type-4 paths, which can be handled with 𝐿3
labels; 2) Requires one Type-4 path in the two labels; and 3) Require

both labels to be Type-4 paths. Therefore, we only need to prove

the latter two cases:

Case 1: As illustrated in Figure 7-(a), 𝑝 (𝑠,𝑢) and 𝑝 (𝑢, 𝑡) are
linked by hub vertex 𝑢, where 𝑝 (𝑠,𝑢) is a Type-4 path with high-

est rank hub 𝑣 . Because 𝑝 (𝑠, 𝑣), 𝑝 (𝑢, 𝑣), and 𝑝 (𝑡,𝑢) are all Type-

1,2,3 paths, there must exist labels of 𝐿3−𝑠 (𝑣), 𝐿3−𝑢 (𝑣) and 𝐿3−𝑡 (𝑢).
Further, 𝐿3−𝑡 (𝑣) also exists because 𝑝 (𝑡, 𝑣) is also Type-3 path.

776

𝑇!

𝑂𝑟𝑑𝑒𝑟

𝒔

𝒒

𝒑

𝒕

𝒖

𝒔 𝒕

𝒖

𝒗

𝒔

𝒌

𝒕𝟏

𝒕𝟐

𝒖

𝑇!

(a) Type-4 Case 1 (b) Type-4 Case 2 (c) 𝐿"# Extra

Figure 7: Type-4 Path Examples

Therefore, 𝑣 exists in both 𝑠 and 𝑡 ’s labels, so such a shortest path

𝑝 (𝑠, 𝑣,𝑢, 𝑡) could be computed by 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = 𝐿3−𝑡 (𝑣) + 𝐿3−𝑠 (𝑣).
Case 2: 𝑝 (𝑠,𝑢) and 𝑝 (𝑢, 𝑡) in Figure 7-(b) are two Type-4 paths

with highest vertex 𝑝 and 𝑞. Suppose 𝑟 (𝑝) > 𝑟 (𝑞), 𝑝 is the high-

est vertex in 𝑝 (𝑝, 𝑞), then 𝑝 (𝑝, 𝑞) is a Type-3 path and it exists in

𝐿3−𝑞 (𝑝). Then path 𝑝 (𝑠, 𝑝, 𝑞, 𝑡) is reduced to a Case 1 path, whose

distance can be computed by 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = 𝐿3−𝑡 (𝑝)+𝐿3−𝑠 (𝑝). □

For example, in Table 1, the third column lists the 𝐿
3−𝑡𝑜𝑡𝑎𝑙 of the

running example. The Case 1 shortest path 𝑝 (𝑣14, 𝑣7, 𝑣1, 𝑣8) with
hub 𝑣7, shortest distance 𝑑𝑖𝑠𝑡 (𝑣14, 𝑣8) could be calculated by high-

est vertex 𝑣1: 𝐿3−𝑣14 (𝑣1) + 𝐿3−𝑣8 (𝑣1) =1+3=4. The Case 2 shortest
path 𝑝 (𝑣11, 𝑣6, 𝑣10, 𝑣2, 𝑣9, 𝑣12) with hub 𝑣10, 𝑑𝑖𝑠𝑡 (𝑣11, 𝑣12) could be

calculated by highest rank hub 𝑣2: 𝐿3−𝑣11 (𝑣2) + 𝐿3−𝑣12 (𝑣2) =4+2=6.
The cost of only utilizing Type-3 labels is during query answer-

ing, it can only use 𝐿𝑠 ∩𝐿𝑡 to find the common hops but cannot use

LCA as the original H2H. Therefore, the query complexity increases

from 𝑂 (𝑚𝑎𝑥 (|𝑁𝐷 (𝑣𝑖) |)) to 𝑂 (𝑚𝑎𝑥 (𝐷𝑇𝐻)). However, this cost is
beneficial in real life because to utilize LCA, we need extra space to

store the location of LCA for each label which takes 𝑂 (Σ|𝑁𝐷 (𝑣𝑖) |)
space and also a global LCA index. The saved space would allow

us to make the best use of the precious GPU memory to answer

queries on larger networks.

Algorithm 2: Label 𝐿3−𝑣𝑖 Construction
Data: Decomposition Tree 𝐷𝑇 = {𝑁𝐷 (𝑣𝑖) } and 𝑣𝑖
Result: Label 𝐿3−𝑣𝑖

1 forall (𝑣𝑘 , 𝑒 (𝑣𝑖 , 𝑣𝑘)) ∈ 𝑁𝐷 (𝑣𝑖) in 𝑟 (𝑘) do
2 forall label 𝐿3−𝑣𝑘 (𝑣𝑗) ∈ 𝐿3−𝑣𝑘 do

3 𝐿3−𝑣𝑖 (𝑣𝑗) =𝑚𝑖𝑛 (𝐿3−𝑣𝑘 (𝑣𝑗) + 𝑒 (𝑣𝑖 , 𝑣𝑘), 𝐿3−𝑣𝑖 (𝑣𝑗)) ;

4 return 𝐿3−𝑣𝑖 ;

Algorithm 2 describes how to construct the 𝐿3 labels 𝐿3−𝑣𝑖 for
𝑣𝑖 . Instead of iterating from the ancestor’s perspective, we iterate

from the 𝑁𝐷 ’s perspective (line 1). This is because all the labels

of 𝑣𝑘 ∈ 𝑁𝐷 (𝑣𝑖) all have higher orders than 𝑣𝑘 and are Type-3

paths. Therefore, updating 𝑣 𝑗 ∈ 𝐴𝑁𝐶 (𝑣𝑖) through 𝑣𝑘 and 𝑣𝑘 ’s Type-

3 labels (line 2-3) does not involve Type-4 path and would not

introduce Type-4 Path. The reduced computations are illustrated in

the shade in Figure 7. The overall computation number of 𝐿𝑣𝑖 is

Σ𝑣𝑘 ∈𝑁𝐷 (𝑣𝑖) |𝐴𝑁𝐶 (𝑣𝑘) |. Because |𝐴𝑁𝐶 (𝑣𝑘) | smaller than 𝐴𝑁𝐶 (𝑣𝑖)
and it is decreasing as the order grows, the overall computation

number is much smaller than the original’s |𝐴𝑁𝐶 (𝑣𝑖) | × |𝑁𝐷 (𝑣𝑖) |.
Therefore, it is faster to construct labels.

Figure 6-(b) illustrates an example for constructing 𝐿𝑣14 and 𝐿𝑣8 .

When constructing 𝐿3−𝑣8 , all needed Type-3 paths are 𝑝 ⟨𝑣8, 𝑣7, 𝑣5⟩,
𝑝 ⟨𝑣8, 𝑣7, 𝑣2⟩, 𝑝 ⟨𝑣8, 𝑣7, 𝑣1⟩. They all can be enumerated by equation

𝐿3−𝑣8 (𝑣𝑖) = 𝐿3−𝑣8 (𝑣7) + 𝐿3−𝑣7 (𝑣𝑖), where 𝑣𝑖 ∈ {𝑣5, 𝑣2, 𝑣1}. Type-4
paths 𝑝 ⟨𝑣8, 𝑣1, 𝑣2⟩, 𝑝 ⟨𝑣8, 𝑣1, 𝑣5⟩, 𝑝 ⟨𝑣8, 𝑣1, 𝑣7⟩ are ignored but used to

construct 𝐿4−𝑣8 . Same as 𝑣14, five Type-3 paths can be enumerated

by equation 𝐿3−𝑣14 (𝑣𝑖) = 𝐿3−𝑣14 (𝑣7) + 𝐿3−𝑣7 (𝑣𝑖) and 𝐿3−𝑣14 (𝑣 𝑗) =
𝐿3−𝑣14 (𝑣5) + 𝐿3−𝑣5 (𝑣 𝑗), where 𝑣𝑖 ∈ {𝑣5, 𝑣2, 𝑣1} and 𝑣 𝑗 ∈ {𝑣2, 𝑣1}.
Ignoring Type-4 path 𝑝 ⟨𝑣8, 𝑣5, 𝑣7⟩. Compared to Tradition H2H, we

reduces 13 over 16 for 𝑣8 and 11 over 16 for 𝑣14 calculate time.

Compared to 𝐿
4−𝑡𝑜𝑡𝑎𝑙 , we reduces 3 over 6 for 𝑣8 and 1 over 6 for

𝑣14 calculate time.

4.3 Parallel Label Construction

In this section, we present how to construct labels withGPU through

shared data allocation for smaller memory consumption and accu-

rate estimation, BFS node-level ordering for coarse parallelism, and

neighbor-level finer parallelism for more threads.

4.3.1 Shared Data Allocation. In Algorithm 2, when comput-

ing 𝑣𝑖 ’s labels 𝐿𝑣𝑖 , we only need 𝑁𝐷 (𝑣𝑖) and all its corresponding

labels

⋃
𝑣𝑘 ∈𝑁𝐷 (𝑣𝑖) 𝐿𝑣𝑘 . Therefore, these labels share the same base

information, and we save lots of memory by not allocating them sep-

arately. Furthermore, because 𝑁𝐷 (𝑣𝑖) ⊆ 𝐴𝑁𝐶 (𝑣𝑖), we can further

merge 𝑁𝐷 (𝑣𝑖) into 𝐿𝑣𝑖 as initial values to further reduce memory

consumption. In terms of the memory size estimation, because the

labels are constructed in a top-downmanner, each time we go down

one level on the tree, the label size increases by 1. Then, the actual

data space size can be accumulated as the labels are constructed

from parents to children. For example, in Figure 6, data space for

𝐿𝑣14 can be calculated as |𝐿𝑣14 | = |𝐿𝑣7 | + 1. All vertices in 𝐿𝑣14 can

be allocated as 𝑉𝑣7 ∪ 𝑣14. All 𝑁𝐷 (𝑣14) can be merged to 𝐿𝑣14 before

calculate label. Due to the high efficiency of GPU in transmitting

large batches of whole data but the low efficiency of transmitting

fragmented data, we organize the pre-allocated labels into a hash

structure similar to Compressed-Sparse-Row-format (CSR) like Fig-

ure 8 and send them to GPUmemory before calculation. Specifically,

CSR contains a DIS array and a POS array. For each 𝑣𝑖 , the DIS array

stores the label distances from the tree root to its parent, and POS

stores the relative locations of 𝐿𝑣𝑖 (𝑁𝐷 (𝑣𝑖)) in DIS.

4.3.2 CPU and GPU Label Construction Parallelism. When

constructing any label, due to the dependency on their ancestor

labels, we can only parallelize the label construction of each differ-

ent branch from top to bottom. We use the following frontier to

organize this process efficiently and clearly:

Definition 5 (Frontier). The set of label construction tasks
𝐹𝑖 = {𝑓𝑗 } that is selected to construct together in parallel in the 𝑖𝑡ℎ

round is called a Frontier, and each 𝑓𝑗 = {𝐿𝑣𝑘 } ∈ 𝐹 is taken care by
one thread. |𝐹𝑖 | is the frontier size that indicates its parallel degree,
and the 𝑓𝑗 with the largest workload determines 𝐹𝑖 ’s running time.

Then, the next problem is how to determine the frontiers. For

example, with the tree in Figure 1-(c), we can have a frontier 𝐹 =

{{𝐿𝑣3 }, {𝐿𝑣5 }}when 𝐿𝑣1 and 𝐿𝑣2 have finished, with {𝐿𝑣3 } and {𝐿𝑣5 }
run in parallel. Or we can have 𝐹 = {{𝐿𝑣3 , 𝐿𝑣9 , 𝐿𝑣12 , 𝐿𝑣13 }, {𝐿𝑣𝑣

5

, 𝐿𝑣𝑣
6

,

𝐿𝑣10 , 𝐿𝑣11 }} under the same circumstance. However, the second

one 1) has a smaller thread number that is wasteful for GPU, and

2) has an uncontrollable and unbalanced workload that further

deteriorates efficiency. Therefore, we force each label construction

task to be in the unit of 𝐿𝑣𝑖 at this stage. In the following, we propose

three possible strategies for CPU and GPU.

777

Strategy 1 (Preempt Frontier C-PF). Given a thread pool
of size 𝜆, each thread only constructs one label set 𝐿𝑣𝑖 . Whenever a
𝐿𝑣𝑖 finishes, its children’s labels are added to the thread pool.

This strategy is suitable for CPU but not for GPU because even

if 𝑓𝑖 contains one 𝐿𝑣𝑖 , the threads in frontier still have different

workloads. What is worse, the preemption is against the GPU’s

SIMD synchronization nature, so the divergence is more severe.

Furthermore, it requires maintaining a dynamic executable label

queue, which can only be transferred from RAM to GPU, so the

total amount of transmission explodes.

Strategy 2 (Non-Preempt Frontier G-NPF). The frontier
is organized rigidly level-by-level in the tree, with the labels at the
same level forming a frontier and running together.

This strategy is suitable for GPU because the workloads of

threads in a frontier are nearly the same, which equals level number

𝑙𝑖 × 𝑁𝐷 (𝑣 𝑗), with the upper bound of 𝑙𝑖 ×𝑚𝑎𝑥 (𝑁𝐷 (𝑣 𝑗)). Moreover,

each 𝐹𝑖 is fixed with dynamicity in the thread queue, so data trans-

mission is small. What is better is that because the frontiers can be

determined beforehand, we can transfer them to the GPU together

before computation, allowing the GPU to focus on computing labels.

4.3.3 Refine Parallel Granularity. Although GNP-F is better

than C-PF on GPU, it still cannot outperform C-PF on CPU. This

is because the massive threads on the GPU are still limited by the

frontier size, which is the largest number of tree nodes at the same

level. For instance, the maximum frontier size is 10K in FLA, which

is still small for GPU and not enough to outperform CPU, while

most of the remaining frontiers are even smaller. Therefore, we

propose the following strategy to utilize GPU’s threads better.

Strategy 3 (Label-Level Frontier G-LL). Based on G-NF,
each 𝑓𝑖 is further decomposed from 𝐿𝑣𝑗 to {𝐿

𝑣𝑘
𝑣𝑗 |∀𝑣𝑘 ∈ 𝑁𝐷𝑣 𝑗 }.

Specifically, when constructing a label 𝐿𝑣𝑖 , the concatenation

through each vertex in 𝑁𝐷 (𝑣𝑖) do not affect each other. Moreover,

vertices in 𝑁𝐷 (𝑣𝑖) at a higher level have larger degrees but fewer
labels, while vertices at a lower level have smaller degrees but

more labels. This phenomenon makes the workload at different

levels more balanced. In addition, due to the average degree of

decomposition of the road network being around 3 to 4, the average

parallel granularity of the same layer increases by 3 to 4 times.

However, when using labels as frontiers, the same label may

encounter write conflicts when calculating the minimum value. For

example, when computing 𝐿3−𝑣13 (𝑣3), the distance from 𝐿3−𝑣12 (𝑣3)
or 𝐿4−𝑣9 (𝑣3) will cause a write conflict. Therefore, we use CUDA’s
atomic operation atomicMin to resolve it. What’s more, atomicMin
can solve the performance degradation caused by the use of branch

statements at the same time. Finally, G-LL frontiers also exist in the

𝐿4 labels so it can be transferred to GPU in intrinsically.

4.4 G2H Shortest Distance Query

Query Preparation. To reduce data transmission during query

processing, the index can be pre-loaded into GPU. Specifically, when

answering 𝑞(𝑠, 𝑡) we need all the labels to search common hops by

𝐴𝑁𝐶 (𝑠) ∩𝐴𝑁𝐶 (𝑡). Because GPU’s memory is small compared to

RAM, in order to use the same memory for larger networks, we

propose not to store the actual label vertex but only the distance

1

0 32 3

1 7 3 0

0 3 4

8 5 0

2 3 4

3 6 2 2 012

𝐿! Query
𝑣! 𝑣"

......

𝑣#
POS:

DIS:

𝑣" 𝑣#
......

𝐿" Query
𝑣$%

𝑣$%

......2

Figure 8: CSR Label Example and Query Addressing Times

array. When 𝐿4 is used, a POS array is also needed. In addition, to

find the LCA in constant time, an extra 𝑂 (|𝑉 | + |𝑉 | × 𝑙𝑜𝑔2 (|𝑉 |))
space is needed to store the EULA and RMQ index [6]. Finally, if

the label is constructed by C-PF on CPU, we need to load it to GPU

first; if the label is constructed by G-NPF on GPU, we only need to

load the ones that are not in the GPU.

G2H Query Answering. Because labels are only read but not

changed during query processing, the shortest distance query can

run in parallel naturally. Unlike the CPU, which can answer the

queries individually thread by thread, the GPU shines at processing

a large number of queries while returning their results together.

Besides, there is a limit for the number of threads within per block,

and in our case, it is ≤1024. In order to trade-off between reduc-

ing the number of empty threads and responding to queries more

quickly, we set it to 256 for the 1.5M queries set, because it has

fewer empty threads and more threads per block.

In terms of the query procedure and efficiency, both 𝐿3 and 𝐿4
need to find 𝐿𝐶𝐴(𝑠, 𝑡) first. The difference is that 𝐿3 does not need
POS, so it needs the height of 𝐿𝐶𝐴(𝑠, 𝑡) to identify the length of their
common ancestors in the label set. In other words, it traverses 𝑠 and

𝑡 ’s DIS from the first one value to theℎ(𝐿𝐶𝐴(𝑠, 𝑡))𝑡ℎ value, and each

pair along them is guaranteed to be the same common ancestor,

while the latter ones are different. Besides, it takes two random

accesses to locate the beginning of the two DIS arrays. If uses 𝐿4, it

takes three random accesses to locate LCA’s POS and 𝑠 and 𝑡 ’s DIS

arrays. Then, instead of linear scans, it takes |𝑁𝐷 (𝐿𝐶𝐴(𝑠, 𝑡)) | times

of random accesses as vertices in𝑁𝐷 (𝐿𝐶𝐴(𝑠, 𝑡)) forms a smaller hub

set than 𝐴𝑁𝐶 (𝑠, 𝑡). Figure 8 shows the example of CSR Label and

the procedures for 𝐿3 and 𝐿4 queries. When answering 𝑞(𝑣8, 𝑣14),
𝐿3 only needs 2 random accesses and two linear scans, while 𝐿4
needs 1 random access for 𝑃𝑂𝑆 array in 𝑣7, 2 random access to

locate DIS arrays and 2 × |𝑁𝐷 (𝑣7) | = 6 random accesses to the 0
𝑡ℎ
,

2
𝑛𝑑

, and 3
𝑟𝑑

elements of them. Finally, when processing queries in

batches on fewer threads CPU, the random access time cannot be

ignored, which leads to lower efficiency on 𝐿4. On the other hand,

when using a large number of threads on GPU, the 𝐿4 computation

time saved by LCA can cover the insufficient addressing time, as

revealed in Table 4.

5 PERFORMANCE STUDIES

5.1 Experimental Settings

Environment. We run experiments on a server with i5-13600k

3.5GHz 20 threads CPU, a NVIDIA RTX 4090 24GBGPU, 32GBmem-

ory, and running Ubuntu 22.04. All algorithms are implemented in

CUDA C++ nvcc compiler with flags -O3 and -arch=sm_60.

Datasets. We use 13 public real-life networks shown in Table 2

from DIMACS [1] and OSM [43]. The Height represents the maxi-

mum Partition Tree Height, and -P Layers represents the layers of
GPU contraction.

778

Table 2: Datasets

Data Network |𝑉 | |𝐸 | Partition Depth -P Layer

NY New York 264, 346 733, 846 17 6

BAY San Francisco Bay Area 321, 270 800, 172 17 6

BJ Beijing 296, 381 774, 660 17 9

COL Colorado 435, 666 1, 057, 066 18 6

PAR Paris 461, 542 1, 272, 524 18 7

FLA Florida 1, 070, 376 2, 712, 798 19 7

NW Northwest USA 1, 207, 945 2, 840, 208 19 9

NE Northeast USA 1, 524, 453 3, 897, 636 19 7

CAL California and Nevada 1, 890, 815 4, 657, 742 20 9

LKS Great Lakes 2, 758, 119 6, 885, 658 20 8

EC East China 3, 008, 173 7, 793, 146 21 12

E Eastern USA 3, 598, 623 8, 778, 114 21 11

W Wastern USA 6, 262, 104 15, 248, 146 22 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(a) Contract Time

0

10

20

30

40

50

60

Ti
m

e(
s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(b) Tree Height

400

500

600

700

800

900

He
ig

ht

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
(c) Label Size

1.0

1.5

2.0

2.5

3.0

La
be

l S
ize

 (G
B)

XYCoord HC2L-like METIS SCOTCH

Figure 9: FLA Contract Time(s), Tree Height and Label

Size(MB) var -P Layer and Partitioning Methods

Algorithms. 1) H2H [44]: Original serial H2H; 2) HC2L and

HC2L
𝑝
[17]: Hierarchical Cut 2-hop Labelling and it’s CPU parallel

version; 3) DTH_only [25]: The top contract order is only sorted

by 𝐷𝑇𝐻 , not by 𝐷𝑇𝐻 + 𝑑𝑒𝑔𝑟𝑒𝑒 ; 3) G2H-C and G2H: Our methods

using DTH order and G2H-C is the CPU version.

5.2 Overall Performance Comparison

We compare our algorithm with H2H and HC2L in index construc-

tion and quality, as shown in Table 3. More details about hierarchical

node ordering version G2H-C are listed in Table 5.

Index Construction Time. Our method is 3.1× to 5.3× faster

than H2H and 1.2× to 3.7× faster than HC2L
𝑝
. Specifically, it takes

less than 2 seconds for urban megacity networks like New York, less

than 5.2 seconds for state-level networks, less than half a minute

for larger regions, and less than 1 minute for the largest𝑊 network.

The CPU version that utilizes our orderings is also faster than

the SOTA baselines, and its efficiency is comparable to the GPU

version when the network is not too big. This is because the data

allocation in GPU also takes time, and the detailed breakdown

will be discussed later. Nevertheless, G2H is the only one that can

construct index inW under 1 minute and its advantage grows larger

when the network is bigger because more layers of partitions could

utilize more threads.

Index Size and Tree Height. These two numbers are tightly

related as the tree height determines the label size. Firstly, HC2L

has the smallest tree height and smallest index size at the cost of

longer construction and query time. This is because its label is con-

structed directly on the hierarchical partition results without tree

decomposition. Secondly, G2H has a smaller index size and height

than H2H on smaller networks, which proves the effectiveness of

our DTH ordering. However, the benefit vanishes on the larger

networks, since DTH on these graphs is too balanced, which loses

its tree height-controlling power.

Graph Partitioning In this section, we compare the perfor-

mance of different partitioned methods: kd-Tree [7] that partition

the graph based on the medium value of 𝑥 and 𝑦 coordinates inter-

changeably; HC2L [17]; METIS [24] and SCOTCH [47]. As shown

in Figure 9, METIS achieves the fastest contraction time of 1.305s

when GPU contracted to layer 12 and the smallest label size of

1.103GB if further contracted to layer 6. SCOTCH is slightly worse.

HC2L performs best when only contracting one layer in GPU, but

its performance deteriorates dramatically for upper layers. There-

fore, we use METIS as the default partition method and use the

fastest layer number as the default. We also test the partition fanout

of 2, 4, 8, 16, 32, and 64 on W. Their contraction time is generally

increasing (11.04s, 11.86s, 12.49s, 15.12s, 18.46s, and 25.32s), while

label sizes are nearly the same. Therefore, it validates that fanout=2

is the best setting.

5.3 Contraction Performance

5.3.1 Effectiveness of DTH Order.
Contraction Time. In Figure 10, the first three bars are the contrac-

tion time. As we can see, our G2H takes only 1/3 to 1/2 of the H2H’s

contraction time. In addition, the GPU time on the contraction is

nearly invisible (detailed time is in Table 5), while the majority

of the time is spent on the higher level’s CPU global contraction.

In fact, it is these fast GPU contractions that contribute most to

the reduction in the overall contraction time. Finally, the DTH’s

reduction in tree height also contributes to reducing the global

contraction time.

Label Quality. As shown in Table 5, DTH-enabled G2H tends to

have smaller tree height and index but deteriorates to worse than

H2H on larger networks. This is because the small networks are

irregular at the city or state level then DTH has more chances to

optimize order. In the larger networks, the difference between each

vertex’s DTH becomes insignificant, and its benefit is not sufficient

to remedy the bad influence introduced by the partition order.

5.3.2 Effectiveness of Parallelism.
GPU vs CPU. As shown in Table 5, G2H-C conducts the parallel

contraction on CPU while G2H on GPU. Both of them conduct the

global contraction on CPU. When the graph is small, their time is

similar. But then the graph becomes larger, the time saved by GPU

is much larger. For instance, GPU parallel time on W only takes

3.87s while it takes 51.53s on CPU. In terms of the index size, CPU

is better than GPU on large graphs, and this is caused by the sorting

behavior in the dynamic sorting. Due to the thread limitation of

GPU kernel function, we can only use bubble sort on it, so the

order can hardly be the same. This results in most of the datasets

requiring GPU to obtain the minimum label, while W requires CPU,

although the contract on CPU takes more time.

5.4 Label Construction Performance

5.4.1 Influence of Allocation. As shown in the last two red

bars in Figure 10, the dark red is the allocation time, and it takes the

majority of the label construction time. The detailed allocation time

is shown in Table 6. Specifically, the allocation time also contains the

time of transferring the labels, BFS-frontier and TD-frontier from

RAM to GPU. It can be seen that the small batch memory allocation

of H2H actually occupies half of the label construction time. The

Pre-allocated space allows H2H to focus on spatial addressing and

computation, but not small dynamic data allocation.

779

Table 3: Index Construction Time, Index Size, and Tree Height

Data Set

Index Construction Time (s) Index Size(MB) Tree Height

H2H HC2L HC2L
𝑝

DTH_only G2H-C G2H H2H HC2L DTH_only G2H-C G2H H2H HC2L DTH_only G2H-C G2H

NY 4.1 8.58 1.72 20.9 1.58 1.26 389.21 181 1147.07 341.65 304.77 506 25 1294 423 376

BAY 2.54 7.01 1.29 2.7 1.34 0.95 379.41 133 741.84 293.57 251.74 404 25 637 321 255

BJ 12.09 31.48 6.52 6.21 2.37 2.5 659.4 500 1088.84 649.25 623.31 720 31 1000 638 614

COL 3.71 12.65 2.95 3.37 2.37 1.55 568.57 238 1148.16 680.98 595.41 466 26 726 481 426

PAR 51.03 OOT OOT 459.46 15.5 8.26 1544.04 / 5446.85 1975.08 1619.77 1054 / 3178 1222 987

FLA 10.47 33.97 7.29 7.89 8.09 2.96 1521.17 571 3034.32 1388.56 1260.67 521 30 804 417 400

NW 11.69 37.11 8.24 5.98 10.35 4.4 1790.14 649 3488.87 1610.84 1493.28 549 31 796 436 408

NE 29.93 98.24 18.67 77.24 21.17 8.38 3135.89 1615 9026.2 3650.67 3389.7 829 31 1714 791 693

CAL 29.4 89.77 20.22 55.92 22.54 9.05 3908.69 1669 11525.3 4103.83 3837.07 714 33 1647 681 650

LKS 102.08 241.72 47.56 198.88 64.55 20.34 9898.98 3791 22973.1 9313.68 8701.6 1326 31 2294 1034 986

EC 130.58 327.39 77.89 44.41 50.21 22.08 10556.5 4938 13699.7 9370.87 9007.28 1431 36 1376 950 947

E 83.23 311.65 66.37 40.09 78.79 21.66 10068 4440 16241.1 10539 10587.3 1023 33 1270 931 914

W 167.34 566.88 111.75 93.92 285.26 36.58 18273 7334 42146.2 17156.3 17921.5 1042 35 1849 919 931

H2H G2H-C G2H C-PF G-LL
(1) NY

0

2

4

Co
nt

ra
ct

 T
im

e
(s

)

H2H G2H-C G2H C-PF G-LL
(2) BAY

0

2

4

H2H G2H-C G2H C-PF G-LL
(3) COL

0

2

4

H2H G2H-C G2H C-PF G-LL
(4) FLA

0

5

10

15

H2H G2H-C G2H C-PF G-LL
(5) NW

0

5

10

15

H2H G2H-C G2H C-PF G-LL
(6) NE

0

20

40

H2H G2H-C G2H C-PF G-LL
(7) CAL

0

20

40

H2H G2H-C G2H C-PF G-LL
(8) LKS

0

50

100

150

Co
nt

ra
ct

 T
im

e
(s

)

H2H G2H-C G2H C-PF G-LL
(9) E

0

50

100

H2H G2H-C G2H C-PF G-LL
(10) W

0

100

200

H2H G2H-C G2H C-PF G-LL
(11) BJ

0

5

10

15

H2H G2H-C G2H C-PF G-LL
(12) PAR

0

25

50

75

H2H G2H-C G2H C-PF G-LL
(13) EC

0

100

200

0.2

0.4

0.6

0.2

0.4

0.6

0.50

0.75

1.00

1.0

1.5

2.0

1

2

2

3

4

5

2

4

6

Co
ns

tru
ct

 T
im

e
(s

)

5.0

7.5

10.0

12.5

5.0

7.5

10.0

12.5

10

15

20

0.50

0.75

1.00

1.0

1.5

2.0

5.0

7.5

10.0

12.5 Co
ns

tru
ct

 T
im

e
(s

)

GPU Contraction Time Global Contraction Time Allocate Label Time Calculate Label Time on CPU Multi-Thread Calculate Label Time on GPU

Figure 10: Contract Time Comparison for Contract Step and GPU Acceleration for Label Construction Step

Table 4: Query Time 𝑛𝑠 and Query per Second QpS

Data Set

Answer Query Time (𝑛𝑠) Throughput (million / s)

H2H(𝐿4) HC2L G2H(𝐿3) CPU-MT-𝐿3 CPU-MT-𝐿4 GPU-𝐿3 GPU-𝐿4 H2H(𝐿4) HC2L G2H(𝐿3) CPU-MT-𝐿3 CPU-MT-𝐿4 GPU-𝐿3 GPU-𝐿4

NY 371.74 130.15 218.96 29.84 41.01 2.29 2.03 2.69 7.68 4.57 33.51 24.38 436.49 493.58

BAY 313.72 93.75 180.31 24.15 32.38 1.39 1.21 3.19 10.67 5.55 41.41 30.89 718.39 825.76

BJ 619.74 248.48 379.9 60.8 79.89 10.82 8.41 1.61 4.02 2.63 16.45 12.52 92.44 118.96

COL 550.35 182.81 363.32 48.62 61.6 7.3 4.82 1.82 5.47 2.75 20.57 16.23 136.93 207.47

PAR 859.11 / 553.98 100.65 121.66 21.32 16.02 1.16 / 1.81 9.94 8.22 46.9 62.43

FLA 566.14 169.17 334.49 38.98 60.08 4.16 3.64 1.77 5.91 2.99 25.65 16.65 240.5 274.57

NW 597.76 166.52 359.1 41.41 64.04 4.79 4.05 1.67 6.01 2.78 24.15 15.62 208.9 247.16

NE 756.8 229.99 467.92 60.41 84.14 8.6 7.46 1.32 4.35 2.14 16.55 11.89 116.31 134.12

CAL 763.11 284.01 483.02 61.47 85.13 9.43 7.36 1.31 3.52 2.07 16.27 11.75 106.07 135.94

LKS 793.5 327.78 519.19 71.12 92.35 10.79 8.47 1.26 3.05 1.93 14.06 10.83 92.67 118.06

EC 847.4 380.46 554.63 77.81 102.62 13.67 10.31 1.18 2.63 1.8 12.85 9.74 73.17 97.01

E 866.35 353.77 565.42 79.05 106.04 13.87 11.06 1.15 2.83 1.77 12.65 9.43 72.09 90.44

W 906.84 396.1 584.97 83.47 110.27 14.99 11.73 1.1 2.52 1.71 11.98 9.07 66.73 85.22

In the GPU version, extra time is needed to transfer labels and

frontiers to the GPU, but as shown in Figure 10, the time for label

allocation is almost the same. This is because the time required for

a single large-scale transmission only accounts for a small portion

of total allocation time. Specifically, if the pre-allocation strategy

is not applied, the label construction on CPU will degrade to H2H.

Besides, it cannot be implemented on GPU because after the label

of each vertex is allocated in the global memory, too many pointers

need to be saved, and the GPU pointer stack is unable to withstand

such a large load. Finally, G-LL is the best strategy.

5.4.2 Effectiveness of Parallel Label Construction. As shown

in Figure 10, the light red is the CPU parallel, and the tiny yellow

is the GPU contraction time. Because the original H2H label con-

struction time is much longer than GPU, we list them in Table 6.

Although constructing in label calculation with frontier generated

by pre-BFS (C-PF) has reduced the label computation time by half,

it is not sufficient enough for GPU parallelism (G-NPF) to cover

Table 5: Contraction Time and Quality of G2H and G2H-C

Data

G2H-C G2H

Time (s) Quality Time (s) Quality

Total CPU Global Size (MB) Height Total GPU Global Size (MB) Height

NY 1.06 0.34 0.72 341.65 423 0.78 0.11 0.66 304.77 376

BAY 0.85 0.5 0.35 293.57 321 0.48 0.11 0.37 251.74 255

BJ 1.39 0.4 0.98 649.25 638 1.59 0.67 0.92 623.31 614

COL 1.45 0.79 0.66 680.98 481 0.67 0.08 0.59 595.41 426

PAR 12.67 0.73 11.94 1975.08 1222 6.32 0.13 6.19 1619.77 987

FLA 6.28 5.25 1.03 1388.56 417 1.3 0.23 1.08 1260.67 400

NWUSA 8.02 7.34 0.68 1610.84 436 2.24 1.48 0.76 1493.28 408

NEUSA 16.45 12.9 3.55 3650.67 791 4.3 0.69 3.61 3389.7 693

CALT 17.02 14.71 2.31 4103.83 681 4.07 1.74 2.34 3837.07 650

LKS 53.03 42.08 10.95 9313.68 1034 10.54 1.2 9.34 8701.6 986

EC 38.73 33.4 5.33 9370.87 950 12.18 7.17 5.01 9007.28 947

E 67.26 61.65 5.61 10539 931 11.75 6.57 5.17 10587.3 914

W 264.69 259.79 4.89 17156.3 919 18.45 12.95 5.5 17921.5 931

computation. Therefore, the computation branches and low par-

allelism lead to the longest construction time. Finally, because of

the high parallelism and lower branches of the G-LL, it can finish

construction in under 1s, which is 10× faster than C-PF.

5.4.3 Effectiveness of 𝐿3 Pruning. As shown in Table 6, when

constructed in serial (indicating the actual workload), 𝐿3 is always

faster than 𝐿4, so it proves the effectiveness of reducing the compu-

tation load. Moreover, some of the 𝐿3 time is smaller than 1/3 of 𝐿4,

780

Table 6: Label Construction Time Breakdown (s)

Data H2H

G2H (Allocation + Computation)

Allocation

Compute 𝐿4 Compute 𝐿3
Serial C-PF C-LL G-NPF G-LL Serial C-PF C-LL G-NPF G-LL

NY 1.24 0.41 0.29 0.11 0.63 1.35 0.07 0.24 0.1 0.63 0.59 0.06

BAY 0.84 0.42 0.2 0.07 0.37 0.46 0.04 0.17 0.07 0.24 0.36 0.04

BJ 1.91 0.73 0.68 0.26 1.29 5.65 0.18 0.47 0.17 2.16 1.18 0.14

COL 1.18 0.78 0.42 0.15 0.81 1.6 0.11 0.34 0.13 0.79 0.8 0.09

PAR 5.7 1.51 2.32 1.31 4.02 31.75 0.43 1.2 0.43 9.63 3.66 0.32

FLA 3.37 1.5 1.08 0.31 1.67 1.41 0.17 0.91 0.29 0.77 1.66 0.15

NW 3.5 1.96 1.18 0.37 1.82 1.59 0.2 1.01 0.35 0.85 1.8 0.18

NE 8.25 3.61 3.27 1.11 5.36 9.15 0.47 2.55 1 3.8 5.3 0.42

CAL 8.63 4.49 3.36 1.03 5.34 6.76 0.49 2.67 0.94 3.11 5.31 0.44

LKS 25.45 8.63 8.22 2.89 13.76 26.8 1.17 6.25 2.26 10.83 13.72 1.05

EC 32.83 8.68 9.4 2.8 15.09 20.91 1.21 7.47 2.37 9.3 15.3 1.1

E 22.65 8.62 8.64 2.91 14.64 20.44 1.29 6.98 2.56 8.71 14.68 1.2

W 42.49 16.06 14.07 4.52 23.81 19.02 2.08 11.72 3.87 9.88 24.14 1.98

which is lower than the theoretical acceleration ratio of 1/2. This

reveals a phenomenon: the actual proportion of Type-3 paths could

be higher than Type-4 paths.

5.5 Query Processing

We test the query time on 1.5M randomly generated queries and

report the single query time and Query per Second in Tabel 4. We

have tested 1 to 16 threads on CPU and find the query time is

almost flat after 16. For GPU, we evaluate that 256 threads/block

can achieve optimal performance. The first column set is the single

thread CPU query answering, which reflects the quality of node

order and index. Specifically, our method is always faster than the

original H2H, but slower than the SOTA HC2L for most of the

graphs. The second and the third column sets are the CPU parallel

version and GPU parallel version. Generally, The CPU parallel can

achieve 10× faster than the single thread version, and the GPU

parallel is another 10× faster on top of it. Consequently, the GPU

version can handle more than 100× more queries than the original

H2H, which is hundreds of millions on a single machine with a

single GPU. Finally, 𝐿4 is slower than 𝐿3 on CPU but faster on GPU.

This is because 𝐿3 does not need to find LCA and only needs to

traverse the hop array, while 𝐿4 needs to find LCA, traverse the

position array, and then do the hop concatenation. Such addressing

time will take up to 1/3 of the time. However, when querying on

GPU, 𝐿4 is faster because the parallel addressing time can be ignored

rather than less computation, and achieves 1.1× speed up.

5.6 Hardware Influence

We first test the influence of CPU in Table 7. The construction

time of 8753C is around 1.3× slower than i5, which corresponds

to the CPU frequency difference. As for the query performance,

although 8375C has 6× more threads than i5, its average query

efficiency is only 2.4× faster. Then we test the influence of GPU.

Because 4060 has a smaller memory, we only show the results that

it can hold. As shown in Table 8, 4090 is around 2-3× faster in

construction and 3-4× faster in query, which corresponds to the

CUDA core numbers.

6 RELATEDWORK

2-Hop Labeling [12]. It is the most efficient class of index for short-

est distance answering. They are also characterized by large index

size and slow index construction, which stops them from being

applicable in real-life dynamic scenarios. They can be roughly cate-

gorized into two types: 1) Cut-based methods like TEDI [53],m-Hop
[9], H2H [44], P2H [10], and HC2L [17]. These methods have a tree

structure to capture the cut information such that queries can be

Table 7: Influence of CPU

Data

Xeon(R) Platinum 8375C 2.9GHz (128 threads) i5-13600K 3.5GHz (20 threads)

Contract (s) Construct (s) Query (ns) Contract (s) Construct (s) Query (ns)

Global Serial C-PF C-LL 𝐿3 𝐿4 Global Serial C-PF C-LL 𝐿3 𝐿4

NY 0.89 0.36 0.54 1.19 14.46 19.4 0.59 0.29 0.11 0.63 29.84 41.01

BAY 0.42 0.24 0.43 0.78 11.51 13.94 0.29 0.2 0.07 0.37 24.15 32.38

BJ 1.39 0.86 0.77 2.03 34.21 35.69 0.82 0.68 0.26 1.29 60.8 79.89

COL 0.74 0.53 0.57 1.32 27.51 27.56 0.49 0.42 0.15 0.81 48.62 61.6

PAR 9.1 3.02 1.51 4.97 51.31 55.44 6.13 2.32 1.31 4.02 100.65 121.66

FLA 1.08 1.44 0.76 2.29 18.69 21.62 0.79 1.08 0.31 1.67 38.98 60.08

NW 0.69 1.59 0.79 2.18 20.44 26.77 0.45 1.18 0.37 1.82 41.41 64.04

NE 4.94 4.29 1.49 5.84 30.84 36.6 3.2 3.27 1.11 5.36 60.41 84.14

CAL 2.76 4.63 1.36 6.09 30.69 33.39 1.79 3.36 1.03 5.34 61.47 85.13

LKS 13.39 10.95 2.84 13.19 33.72 38.54 8.48 8.22 2.89 13.76 71.12 92.35

EC 6.46 12.96 3.19 13.7 40.08 42.21 3.99 9.4 2.8 15.09 77.81 102.62

E 6.68 11.99 2.89 13.8 39.25 44.06 4.1 8.64 2.91 14.64 79.05 106.04

W 5.83 19.53 4.67 18.45 43.3 48.11 3.67 14.07 4.52 23.81 83.47 110.27

Table 8: Influence of GPU

Data

NVidia 4090 24GB 16384 CUDA Cores NVidia 4060ti 8GB 4352 CUDA Cores

Contract Construct Query Contract Construct Query

Partition G-PF G-LL 𝐿3 𝐿4 Partition G-PF G-LL 𝐿3 𝐿4

NY 0.11 1.35 0.07 2.29 2.03 0.12 1.41 0.12 9.63 8.38

BAY 0.1 0.46 0.04 1.39 1.21 0.11 0.51 0.09 6.18 5.27

BJ 0.7 5.65 0.18 10.82 8.41 0.7 5.87 0.24 38.5 32.13

COL 0.08 1.6 0.11 7.3 4.82 0.08 1.74 0.18 24.92 17.97

PAR 0.13 31.75 0.43 21.32 16.02 0.14 32.99 0.62 73.54 60.22

FLA 0.24 1.41 0.17 4.16 3.64 0.23 1.58 0.25 14.69 11.96

NW 1.5 1.59 0.2 4.79 4.05 1.53 1.77 0.28 15.32 13.24

NE 0.69 9.15 0.47 8.6 7.46 0.72 9.82 0.72 27.63 25.93

CAL 1.72 6.76 0.49 9.43 7.36 1.79 7.43 0.76 29.51 24.44

answered faster. Among them, H2H is the fastest one to construct.

Nevertheless, these methods are only suitable for networks with

small treewidth like road networks; 2) Pruning-based methods like

PLL [5], GLL [27], PSL [32], and PCL [68]. These methods use pre-

defined node orders for pruning and do not have extra structure

to organize cuts so they can easily extend to parallel and can scale

to any network. However, their query performance is generally

slower than the cut-based methods.

GPU-based Graph Processing.GPU-based computation has shown

success in various graph computation tasks, like BFS [35], path

search [14], constraint path search [40], PageRank [20], subgraph

enumeration [21], nearest neighbor search [55], betweenness cen-

trality [50], and biclique counting [48]. However, none of them

works on the hop labeling.

7 CONCLUSION

In this paper, we propose the first GPU-enabled shortest distance

index G2H through conflict-free hierarchical graph partition and

parallel contraction, DTH vertex order optimization, label pruning,

and thread organization. As a result, the index construction time is

up to 5.3× faster than the original H2H. Consequently, we are able

to re-construct a distance index in a few seconds for large urban

cities and states, and under one minute for large networks with

more than 6 million vertices. Furthermore, it breaks the distance

QPS at hundreds of millions (10
8
) on a single machine for the first

time. This remarkable efficiency outperforms the existing index

maintenance in highly dynamic environments and finally makes

hop labeling practically in real-life applications.

ACKNOWLEDGMENTS

This work is supported by Key Research and Development Program

of Liaoning Province under Grant No.2023JH26/10300022, Natural

Science Foundation of China #62202116, Guangzhou-HKUST(GZ)

Joint Funding Scheme #2023A03J0135, Guangzhou Basic and Ap-

plied Basic Research Scheme #2024A04J4455, Guangdong-Hong

Kong Technology Innovation Joint Funding #2024A0505040012, and

Guangzhoumunicipality big data intelligence key lab #2023A03J0012.

781

REFERENCES

[1] [n.d.]. 9th DIMACS Implementation Challenge - Shortest Paths. http://users.

diag.uniroma1.it/challenge9/download.shtml.

[2] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.

2012. Hierarchical Hub Labelings for Shortest Paths. In Algorithms – ESA 2012,
Leah Epstein and Paolo Ferragina (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 24–35.

[3] Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and Sebastian Schlag. 2017.

Engineering a direct k-way hypergraph partitioning algorithm. In 2017 Pro-
ceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments
(ALENEX). SIAM, 28–42.

[4] Takuya Akiba, Yoichi Iwata, Ken-ichi Kawarabayashi, and Yuki Kawata. 2014.

Fast shortest-path distance queries on road networks by pruned highway labeling.

In Proceedings of the Meeting on Algorithm Engineering & Expermiments (Portland,
Oregon). Society for Industrial and Applied Mathematics, 147–154.

[5] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data (New
York, USA). ACM, 349–360.

[6] Michael A Bender and Martin Farach-Colton. 2000. The LCA problem revisited.

In LATIN 2000: Theoretical Informatics: 4th Latin American Symposium. Springer,

88–94.

[7] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative

searching. Commun. ACM 18, 9 (1975), 509–517.

[8] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of
mathematical sociology 25, 2 (2001), 163–177.

[9] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Hong Cheng, and Miao Qiao. 2012. The

exact distance to destination in undirected world. The VLDB Journal 21 (2012),
869–888.

[10] Zitong Chen, Ada Wai-Chee Fu, Minhao Jiang, Eric Lo, and Pengfei Zhang.

2021. P2H: Efficient Distance Querying on Road Networks by Projected Vertex

Separators. In SIGMOD (Virtual Event, China). ACM, 313–325.

[11] Theodoros Chondrogiannis and Johann Gamper. 2016. ParDiSP: A partition-

based framework for distance and shortest path queries on road networks. In

2016 17th IEEE International Conference on Mobile Data Management (MDM),
Vol. 1. IEEE, 242–251.

[12] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2002. Reachability

and distance queries via 2-hop labels. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (San Francisco, California) (SODA
’02). Society for Industrial and Applied Mathematics, 937–946.

[13] Tangpeng Dan, Xiao Pan, Bolong Zheng, and Xiaofeng Meng. 2023. Double

Hierarchical Labeling Shortest Distance Querying in Time-dependent Road

Networks. In 2023 IEEE 39th International Conference on Data Engineering (ICDE).
IEEE, 2077–2089.

[14] Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens. 2014.

Work-Efficient Parallel GPU Methods for Single-Source Shortest Paths. In 2014
IEEE 28th International Parallel and Distributed Processing Symposium. 349–359.

[15] Daniel Delling, Andrew V Goldberg, Ilya Razenshteyn, and Renato F Werneck.

2011. Graph partitioning with natural cuts. In 2011 IEEE International Parallel &
Distributed Processing Symposium. IEEE, 1135–1146.

[16] E. W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numer.
Math. 1, 1 (dec 1959), 269–271.

[17] Muhammad Farhan, Henning Koehler, Robert Ohms, and Qing Wang. 2023.

Hierarchical Cut Labelling - Scaling Up Distance Queries on Road Networks.

SIGMOD 1, 4, Article 244 (dec 2023), 25 pages.

[18] Muhammad Farhan, QingWang, and Henning Koehler. 2022. Batchhl: Answering

distance queries on batch-dynamic networks at scale. In Proceedings of the 2022
International Conference on Management of Data. 2020–2033.

[19] Chuang-Yi Gui, Long Zheng, Bingsheng He, Cheng Liu, Xin-Yu Chen, Xiao-Fei

Liao, and Hai Jin. 2019. A survey on graph processing accelerators: Challenges

and opportunities. Journal of Computer Science and Technology 34 (2019), 339–

371.

[20] Wentian Guo, Yuchen Li, Mo Sha, and Kian-Lee Tan. 2017. Parallel personalized

pagerank on dynamic graphs. Proceedings of the VLDB Endowment 11, 1 (2017),
93–106.

[21] Wentian Guo, Yuchen Li, and Kian-Lee Tan. 2020. Exploiting reuse for gpu

subgraph enumeration. IEEE Transactions on Knowledge and Data Engineering
34, 9 (2020), 4231–4244.

[22] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A Formal Basis for the

Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics 4, 2 (1968), 100–107.

[23] Manuel Hotz, Theodoros Chondrogiannis, Leonard Wörteler, and Michael Gross-

niklaus. 2021. Online landmark-based batch processing of shortest path queries.

In Proceedings of the 33rd International Conference on Scientific and Statistical
Database Management. 133–144.

[24] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme

for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1

(1998), 359–392.

[25] Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. 2010. Distributed

time-dependent contraction hierarchies. In Experimental Algorithms: 9th In-
ternational Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-22, 2010.
Proceedings 9. Springer, 83–93.

[26] Deyu Kong, Xike Xie, and Zhuoxu Zhang. 2022. Clustering-based partitioning for

large web graphs. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 593–606.

[27] Kartik Lakhotia, Rajgopal Kannan, Qing Dong, and Viktor Prasanna. 2019. Plant-

ing trees for scalable and efficient canonical hub labeling. Proceedings of the
VLDB Endowment 13, 4 (2019), 492–505.

[28] Jiajia Li, Cancan Ni, Dan He, Lei Li, Xiufeng Xia, and Xiaofang Zhou. 2023.

Efficient k NN query for moving objects on time-dependent road networks. The
VLDB Journal 32, 3 (2023), 575–594.

[29] Jiajia Li, Xing Xiong, Lei Li, Dan He, Chuanyu Zong, and Xiaofang Zhou. 2023.

Finding Top-k Optimal Routes with Collective Spatial Keywords on Road Net-

works. In 2023 IEEE 39th International Conference on Data Engineering (ICDE).
368–380.

[30] Lei Li, Sibo Wang, and Xiaofang Zhou. 2019. Time-dependent hop labeling on

road network. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 902–913.

[31] Lei Li, Mengxuan Zhang, Wen Hua, and Xiaofang Zhou. 2020. Fast Query

Decomposition for Batch Shortest Path Processing in Road Networks. In 2020
IEEE 36th International Conference on Data Engineering (ICDE). 1189–1200.

[32] Wentao Li, Miao Qiao, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2019.

Scaling Distance Labeling on Small-World Networks. In Proceedings of the 2019
International Conference on Management of Data (Amsterdam, Netherlands).

Association for Computing Machinery, 1060–1077.

[33] Wentao Li, Miao Qiao, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin.

2020. Scaling up distance labeling on graphs with core-periphery properties. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 1367–1381.

[34] Ye Li, Leong Hou U, Man Lung Yiu, and Ngai Meng Kou. 2017. An experimental

study on hub labeling based shortest path algorithms. Proceedings of the VLDB
Endowment 11, 4 (2017), 445–457.

[35] Hang Liu and H Howie Huang. 2015. Enterprise: breadth-first graph traversal

on GPUs. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–12.

[36] Ziyi Liu, Lei Li, Mengxuan Zhang, Wen Hua, Pingfu Chao, and Xiaofang Zhou.

2021. Efficient constrained shortest path query answering with forest hop

labeling. In 2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 1763–1774.

[37] Ziyi Liu, Lei Li, Mengxuan Zhang, Wen Hua, and Xiaofang Zhou. 2022. FHL-cube:

multi-constraint shortest path querying with flexible combination of constraints.

Proceedings of the VLDB Endowment 15, 11 (2022), 3112–3125.
[38] Ziyi Liu, Lei Li, Mengxuan Zhang, Wen Hua, and Xiaofang Zhou. 2024. Ap-

proximate Skyline Index for Constrained Shortest Pathfinding with Theoretical

Guarantee. In 2024 IEEE 40th International Conference on Data Engineering (ICDE).
IEEE, 4222–4235.

[39] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,

and Joseph M. Hellerstein. 2012. Distributed GraphLab: a framework for machine

learning and data mining in the cloud. PVLDB 5, 8 (apr 2012), 716–727.

[40] Shengliang Lu, Bingsheng He, Yuchen Li, and Hao Fu. 2020. Accelerating exact

constrained shortest paths on GPUs. PVLDB 14, 4 (dec 2020), 547–559.

[41] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-

scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135–146.

[42] Ruben Mayer and Hans-Arno Jacobsen. 2021. Hybrid edge partitioner: Parti-

tioning large power-law graphs under memory constraints. In Proceedings of the
2021 International Conference on Management of Data. 1289–1302.

[43] OpenStreetMap contributors. 2017. Planet dump retrieved from

https://planet.osm.org . https://www.openstreetmap.org.

[44] Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and Qing Zhu. 2018.

When Hierarchy Meets 2-Hop-Labeling: Efficient Shortest Distance Queries on

Road Networks. In Proceedings of the 2018 International Conference on Manage-
ment of Data (Houston, TX, USA). ACM, 709–724.

[45] Dian Ouyang, Dong Wen, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin.

2020. Progressive top-k nearest neighbors search in large road networks. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 1781–1795.

[46] Dian Ouyang, Long Yuan, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin.

2020. Efficient shortest path index maintenance on dynamic road networks with

theoretical guarantees. PVLDB 13, 5 (jan 2020), 602–615.

[47] François Pellegrini and Jean Roman. 1996. Scotch: A software package for static

mapping by dual recursive bipartitioning of process and architecture graphs.

In High-Performance Computing and Networking: International Conference and
Exhibition HPCN EUROPE 1996 Brussels, Belgium, April 15–19, 1996 Proceedings 4.
Springer, 493–498.

782

http://users.diag.uniroma1.it/challenge9/download.shtml
http://users.diag.uniroma1.it/challenge9/download.shtml
 https://www.openstreetmap.org

[48] Linshan Qiu, Zhonggen Li, Xiangyu Ke, Lu Chen, and Yunjun Gao. 2024. Accel-

erating Biclique Counting on GPU. In 2024 IEEE 40th International Conference
on Data Engineering (ICDE). IEEE Computer Society, Los Alamitos, CA, USA,

3191–3203.

[49] Neil Robertson and Paul D Seymour. 1984. Graph minors. III. Planar tree-width.

Journal of Combinatorial Theory, Series B 36, 1 (1984), 49–64.

[50] Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit V Çatalyürek. 2013.

Betweenness centrality on GPUs and heterogeneous architectures. In Proceedings
of the 6th Workshop on General Purpose Processor Using Graphics Processing Units.
76–85.

[51] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo Liu, and

Qiang-Sheng Hua. 2018. Graph processing on GPUs: A survey. ACM Computing
Surveys (CSUR) 50, 6 (2018), 1–35.

[52] Jeppe Rishede Thomsen, Man Lung Yiu, and Christian S Jensen. 2012. Effective

caching of shortest paths for location-based services. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data. 313–324.

[53] Fang Wei. 2010. TEDI: efficient shortest path query answering on graphs. In

Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data. 99–110.

[54] Da Yan, Guimu Guo, Md Mashiur Rahman Chowdhury, M Tamer Özsu, Wei-

Shinn Ku, and John CS Lui. 2020. G-thinker: A distributed framework for mining

subgraphs in a big graph. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). IEEE, 1369–1380.

[55] Yuanhang Yu, Dong Wen, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin.

2022. GPU-accelerated proximity graph approximate nearest Neighbor search

and construction. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 552–564.

[56] Ziqiang Yu, Xiaohui Yu, Nick Koudas, Yueting Chen, and Yang Liu. 2024. A

Distributed Solution for Efficient K Shortest Paths Computation Over Dynamic

Road Networks. IEEE Transactions on Knowledge and Data Engineering (2024).

[57] Yuanyuan Zeng, Yixiang Fang, ChenhaoMa, Xu Zhou, and Kenli Li. 2024. Efficient

Distributed Hop-Constrained Path Enumeration on Large-Scale Graphs. SIGMOD
2, 1 (2024), 1–25.

[58] Mengxuan Zhang, Lei Li, Wen Hua, Rui Mao, Pingfu Chao, and Xiaofang Zhou.

2021. Dynamic hub labeling for road networks. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 336–347.

[59] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. 2019. Efficient Batch

Processing of Shortest Path Queries in Road Networks. In 2019 20th IEEE Inter-
national Conference on Mobile Data Management (MDM). 100–105.

[60] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. 2020. Stream processing

of shortest path query in dynamic road networks. IEEE Transactions on Knowledge
and Data Engineering 34, 5 (2020), 2458–2471.

[61] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. 2021. Efficient 2-Hop

Labeling Maintenance in Dynamic Small-World Networks. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE). 133–144.

[62] Mengxuan Zhang, Lei Li, Goce Trajcevski, Andreas Züfle, and Xiaofang Zhou.

2023. Parallel hub labeling maintenance with high efficiency in dynamic small-

world networks. IEEE Transactions on Knowledge and Data Engineering 35, 11

(2023), 11751–11768.

[63] Mengxuan Zhang, Lei Li, and Xiaofang Zhou. 2021. An experimental evaluation

and guideline for path finding in weighted dynamic network. PVLDB 14 (2021),

2127–2140.

[64] Mengxuan Zhang, Xinjie Zhou, Lei Li, Ziyi Liu, Goce Trajcevski, Yan Huang,

and Xiaofang Zhou. 2023. A Universal Scheme for Partitioned Dynamic Shortest

Path Index. arXiv preprint arXiv:2310.08213 (2023).
[65] U Zhang, Long Yuan, Wentao Li, Lu Qin, and Ying Zhang. 2021. Efficient label-

constrained shortest path queries on road networks: A tree decomposition ap-

proach. Proceedings of the VLDB Endowment (2021).
[66] Bolong Zheng, Yong Ma, Jingyi Wan, Yongyong Gao, Kai Huang, Xiaofang Zhou,

and Christian S. Jensen. 2023. Reinforcement Learning based Tree Decomposi-

tion for Distance Querying in Road Networks. In 2023 IEEE 39th International
Conference on Data Engineering (ICDE). 1678–1690.

[67] Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, Lizhu Zhou, and Zhiguo Gong. 2015.

G-Tree: An Efficient and Scalable Index for Spatial Search on Road Networks.

IEEE Transactions on Knowledge and Data Engineering 27, 8 (2015), 2175–2189.

[68] Xinjie Zhou, Mengxuan Zhang, Lei Li, and Xiaofang Zhou. 2024. Scalable Dis-

tance Labeling Maintenance and Construction for Dynamic Small-World Net-

works. In 2024 IEEE 40th International Conference on Data Engineering (ICDE).
IEEE, 4573–4585.

[69] Xinjie Zhou, Mengxuan Zhang, Lei Li, and Xiaofang Zhou. 2025. High Through-

put Shortest Distance Query Processing on Large Dynamic Road Networks. In

2025 IEEE 41st International Conference on Data Engineering (ICDE). IEEE.

783

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Basic Concepts
	2.2 H2H Shortest Distance Index
	2.3 GPU Architecture

	3 Contraction Optimization
	3.1 Conflict-Free Parallel Contraction
	3.2 GPU-CPU Hybrid Contraction
	3.3 Decomposition Tree Height Order

	4 Label Construction with GPU
	4.1 Path and Label Types
	4.2 Label Computation Pruning
	4.3 Parallel Label Construction
	4.4 G2H Shortest Distance Query

	5 PERFORMANCE STUDIES
	5.1 Experimental Settings
	5.2 Overall Performance Comparison
	5.3 Contraction Performance
	5.4 Label Construction Performance
	5.5 Query Processing
	5.6 Hardware Influence

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

