
SDEcho: Efficient Explanation of Aggregated Sequence Difference
Fei Ye

Fudan University
21110240013@m.fudan.edu.cn

Zikang Liu
Fudan University

18301020004@fudan.edu.cn

Xi Zhang
Fudan University

xizhang21@m.fudan.edu.cn

Yinan Jing∗
Fudan University

jingyn@fudan.edu.cn

Zhenying He∗
Fudan University

zhenying@fudan.edu.cn

Yuxin Che
Fudan University

yxche23@m.fudan.edu.cn

Haoran Xiong
Fudan University

hrxiong20@fudan.edu.cn

Kai Zhang
Fudan University

zhangk@fudan.edu.cn

X. Sean Wang∗
Fudan University

xywangCS@fudan.edu.cn

ABSTRACT

Understanding the reasons behind differences between aggregated
sequences derived from SQL queries is crucial for data scientists.
However, existing methods often suffer from being labor-intensive,
lacking scalability, providing only approximate solutions, and inad-
equately supporting sequence difference explanations. In response,
we introduce SDEcho, a novel framework designed to automate the
explanation searching for sequence differences in high-dimensional
and high-volume datasets. SDEcho utilizes advanced pruning tech-
niques, considering pattern, order, and dimension perspectives, as
well as their interactions, to prune the entire explanation space
while maintaining explanations accurate and concise. This hybrid
pruning approach significantly accelerates the explanation search-
ing process, making SDEcho a valuable tool for data analysis tasks.
Extensive experiments on synthetic and real-world datasets, along
with a case study, demonstrate that SDEcho outperforms existing
methods in terms of both effectiveness and efficiency.

PVLDB Reference Format:

Fei Ye, Zikang Liu, Xi Zhang, Yinan Jing, Zhenying He, Yuxin Che, Haoran
Xiong, Kai Zhang, and X. Sean Wang. SDEcho: Efficient Explanation of
Aggregated Sequence Difference. PVLDB, 18(3): 784 - 797, 2024.
doi:10.14778/3712221.3712242

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/Sherhom/SDEcho.

1 INTRODUCTION

Data scientists often need to run SQL queries with group-by and ag-
gregate functions to obtain aggregated sequences, compare different
aggregated sequences to gain insights, and further their research.
Besides involving simple interactive visualizations, understanding
the reasons behind sequence differences co-occurred in the same
frame, i.e., "why" questions, is gradually gaining more attention
∗Corresponding authors
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.
doi:10.14778/3712221.3712242

in the database community from academia[11, 15, 25, 35, 45] and
industry[3, 4, 6, 7]. Researchers need to manually execute a series
of cumbersome queries involving GROUP BY, UNION, and CUBE
to identify commonalities among data record groups corresponding
to the aggregated sequences with differences.

𝐬𝟐

𝐬𝟏

Figure 1: A visualization of the natality22_MM query results.

Example 1. Research on differences in incidence count across racial
and ethnic groups is very popular[21, 28, 31]. Researcher Oliver seeks
to explore the reasons behind racial disparities in Maternal Morbidity
(MM). He leverages the Natality dataset provided by the CDC[1], a
comprehensive resource covering factors like Hepatitis B (IP_HEPB)
and Gestational Hypertension (RF_GHYPE) across multiple dimen-
sions. One subset is illustrated in Figure 2. Initially, Oliver runs the
following query statements with group-by clauses to analyze the
number of MM cases among different racial groups across various age
groups in 2022:

SELECT MAGER14, count(*) AS MM

FROM natality22_MM

WHERE [condition] GROUP BY MAGER14

As shown in Figure 1(a), he visualizes the query output as two se-
quences (𝑠1 and 𝑠2), ordering the result set from different racial groups

784

https://doi.org/10.14778/3712221.3712242
https://github.com/Sherhom/SDEcho
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712242
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Issue a query: Why do black and white women differ in Maternal Morbidity between the ages of 19 and 49?

Figure 2: A subset of the Natality dataset natality22_MM.

by aligning point-to-point along the “age” dimension. Notably, the
disparity in the number of MM cases betweenWhite and Black women
aged 19-44 caught Oliver’s attention. To investigate sequence differ-
ences, Oliver manually executes SQL queries to examine dimensions
potentially explaining them. As shown in Figure 1(b), he identified
Gestational Hypertension (RF_GHYPE) as similar to the difference to
be explained. Oliver needs to further verify whether RF_GHYPE = ’Y’
contributes to the sequence difference to determine whether it can be
used as an explanation.

To address the above issues, one popular option is the intervention-
based method[25, 42, 45]. It works by re-running queries after re-
moving subsets of the dataset. If the sequence difference is close
to zero after this removal, the removed subset is identified as
an explanation for sequence differences. Following the literature
[11, 15, 18, 45, 53], the explanation in our work is not intended to im-
ply causation. Instead, it identifies the data slices that contribute the
most to the overall differences between the two sequences. It’s im-
portant to emphasize that finding the root cause of "why" questions
is generally only feasible when combining human interpretation
with analytical tools. Among intervention-based methods, there
are two types of explanation settings: fine-grained (a set of tuples)
and coarse-grained (a predicate or a pattern)[35, 39], where the
predicate can provide a comprehensible explanation and identify
common attributes of input tuples that lead to unexpected results.
Implementation of this method can be achieved by extending DBMS
with custom user-defined functions (UDFs) or by utilizing expla-
nation engines[11, 15, 38, 45], which have gained popularity in the
database community in recent years.

Unfortunately, in our scenarios, the aforementioned methods
face the following dilemmas: (1) Human-labored. Although it is
possible to perform intervention-based explanation searching using
the interface languages provided by databases or certain data anal-
ysis tools[6, 7], it is challenging for humans to translate these into
corresponding SQL, DAX[6, 23], etc. Moreover, most explanation
engines are limited to single-dimension or three-dimensional combi-
nations, making enumerating potential combinations cumbersome.
Ordinary analysts need to repeatedly enumerate explanations with
up to three attributes within a restricted search space. Even when
analyzed by domain experts, different experts might take differ-
ent directions. For example, pediatricians explore the explanation
of the sequence differences in Figure 1(a) from the perspective of
congenital anomalies in newborns, and there are as many as 12
attributes related to this field. (2) Poor in scalability. The limita-
tion on the number of dimensions for explanation search is due to
the current coarse-grained explanation engines struggling to cope
with high-dimensional and massive data scenarios, thus making
it difficult to meet users’ needs for explanations during the data

analysis process. (3) Loss by approx. Explanations require pin-
pointing concise and precise tuple sets[11, 41, 53], which means
highlighting the largest sequence difference with the fewest num-
ber of tuples, enabling users to decide on subsequent analysis steps
based on explanations. The impact of a small number of tuples with
numerical anomalies on the results can be significant. Predicates
corresponding to this subset typically involve numerous attributes.
However, a limited explanation search space or approximate solu-
tions may result in overlooking these explanations. Such omissions
due to approximation could potentially mislead data analysts in
their next steps of exploration, thereby increasing their workload.
(4) Sequence diff unsupported. Existing explanation engines fo-
cus on explaining a single aggregate value[27], differences between
two given relations[10, 11, 35, 45], or searching for a single series’
key performance indicators (KPIs)[15], which do not support the se-
quence difference explanation scenario in this work, which involves
accumulating point-by-point differences between sequences.

To avoid the above dilemmas, and as a first approach toward
explaining aggregated sequence differences, we introduce SDEcho,
a framework designed for searching explanations in (i) sequence

difference scenarios. Given a pair of user-specified aggregated
sequence fragments co-occurred in the same frame, SDEcho mea-
sures point-wise differences between sequences and automatically
searches for top-𝑘 explanations online, eliminating the need for
users to explore potential dimension combinations manually. We
describe a novel technique tailored for (ii) high-dimensional,

high-volume data scenarios to optimize the speed of explana-
tion search while ensuring (iii) results accuracy. By projecting
sequence pairs into a vector space, SDEcho leverages the additiv-
ity of projection distances for non-overlapping explanations and
the relationship between explanation measure and sequence dis-
tance to prune the candidate explanation space efficiently. Our
method can support most of the popular aggregation functions.
Through extensive experiments, we demonstrate that SDEcho sig-
nificantly accelerates explanation searching compared to existing
solutions[11, 15, 35]. We also developed a benchmark and intro-
duced an explanation confidence score to compare the quality of
explanations produced by different methods. Finally, for (iv) ease
of use, we have implemented SDEcho’s functionalities as operators
in Postgres. This allows users to achieve the same functionalities as
SDEcho without the need to write lengthy data manipulation state-
ments compared to existing solutions for out-database execution.

In summary, we make the following contributions:

• We formulate the problem of explaining aggregated sequence
differences with point-wise sequence comparison and generate
concise explanations tailored for this scenario.

• We propose SDEcho, an automated explanation search frame-
work that prunes the candidate explanation space at the pattern,
order, and dimension levels. By integrating multiple pruning
methods, we develop a hybrid approach to enhance performance.

• We constructed a benchmark for explaining aggregated sequence
differences and designed an explanation confidence score to eval-
uate the quality of the explanations. Experiments on real-world
workloads and datasets demonstrate that SDEcho significantly
accelerates the explanation search process while maintaining
quality compared to existing methods.

785

2 PROBLEM FORMULATION

We first introduce some fundamental concepts regarding our two-
sequences difference explanation, followed by our explanation mea-
sure to evaluate the explanation quality. Subsequently, we will delve
into our explanation searching optimization problem.

Definition 1 (Aggregated seqence 𝑠). An aggregated se-
quence 𝑠 = 𝑄 (𝑅) is the result set obtained by executing the following
query 𝑄 with group-by:

SELECT F (𝑀), 𝐺 FROM [𝑅] WHERE [con] GROUP BY 𝐺,

where 𝑅 is a relation of the database instance 𝐷 with attributes 𝐴 =

{𝑎1, 𝑎2, ..., 𝑎𝑛}. 𝐴 includes the group-by attribute 𝐺 and the measure
attribute𝑀 . F () is the aggregate function (such as COUNT(), MIN(),
MAX(), or SUM()).

When performing visual analysis, users typically provide an
order to display this set as a sequence. For example, users can
determine the sequence order using an ORDER BY clause or by
specifying their own order. After that, this aggregated result set is
converted into a sequence.

In our work, the aggregated sequences 𝑠1 and 𝑠2 for comparison
are derived from 𝑄1 (𝑅1) and 𝑄2 (𝑅2), respectively. Only 𝐺 and𝑀

must be shared between𝑄1 (𝑅1) and𝑄2 (𝑅2), and the value domains
of𝐺 must be consistent.𝑅1 and𝑅2 can refer to the same fact table, as
shown in Figure 1(a) with the query on the table "natality22_MM."

Given two aggregated sequences 𝑠1 and 𝑠2 of length 𝑛, we use the
distance function dist(𝑠1, 𝑠2) to measure how similar two sequences
are. In our work, we focus on the point-wise differences between
two aggregated sequences and apply the Euclidean distance to cap-
ture these differences. Euclidean distance is straightforward and
widely known for its simplicity and intuitive geometric interpre-
tation. It is commonly used[13, 22] in exploratory analysis as it
quickly provides a baseline for measuring point-wise differences,
which aligns well with the goals of SDEcho, helping both technical
and non-technical users interpret sequence differences.

dist (𝑠1, 𝑠2) = |𝑠1 − 𝑠2 | =

⌜⎷
𝑛∑︂
𝑖

(𝑠1 [𝑖] − 𝑠2 [𝑖])2 . (1)

The smaller the distance, the more similar the sequences are.

Example 2. In Figure 1(a), the two aggregated sequences repre-
sent the number of MM cases for black women and white women at
different ages. According to equation (1), the Euclidean distance is
calculated by comparing black women and white women age by age,
which is the difference between the two sequences.

Definition 2 (Explanation 𝑒). Given aggregated sequences 𝑠1
and 𝑠2, the explanation 𝑒 of order 𝛽 for the distance between them is
defined as a conjunction of 𝛽 predicates (a.k.a., a pattern):(︂

𝑎1 = 𝑣1 ∧ 𝑎2 = 𝑣2 ∧ . . . ∧ 𝑎𝛽 = 𝑣𝛽

)︂
,

where 𝑎𝑖 is in the set of explain-by attributes A (A ⊆ 𝐴, 𝛽 ≤ |A|).

It is important to note that A should exclude the measure and
group-by attributes 𝑀 and 𝐺 as specified in the SQL statements,
i.e., A ⊆ 𝐴 −𝐺 −𝑀 . We borrow this definition from prior work
on explanation engines[10, 11, 45]. In our work, it’s worth noting
that explanations 𝑒1 and 𝑒2 being non-overlapping means that their

corresponding data intersections in 𝐷 are empty, i.e., 𝜎𝑒1 (𝐷) ∩
𝜎𝑒2 (𝐷) = ∅ where 𝜎 is the selection operation. Furthermore, to
handle numerical attributes, we adopt the binning method used in
[17, 19] for discretization.

Based on the above definitions, our goal is to identify the expla-
nation that best accounts for the difference between two sequences.
Using counterfactuals, we mask or remove tuples corresponding
to the explanation and measure the resulting sequence distance. A
reduction in distance indicates that the explanation is significant
for explaining the difference between the two sequences.

After providing an explanation, the analyst must examine the
removed tuples to identify the root cause of the sequence difference.
Large tuple sets complicate this process, and removing all tuples,
while maximizing distance change, makes the explanation mean-
ingless. Thus, explanations with fewer tuples should be prioritized
when achieving the same sequence distance reduction. To facilitate
this, we introduce a penalty factor𝜓𝑒 that accounts for tuple count,
encouraging concise explanations.

Definition 3 (Penalty factor 𝜓𝑒). Given an explanation 𝑒 ,
penalty factor𝜓𝑒 is defined as the normalized number of tuples cor-
responding to 𝑒 that need to be removed to explain the difference
between two aggregated sequences 𝑠1 and 𝑠2:

𝜓𝑒 (𝑅1, 𝑅2) =
|𝜎𝑒 (𝑅1) |
|𝑅1 |

+ |𝜎𝑒 (𝑅2) |
|𝑅2 |

+ 1. (2)

Definition 4 (Explanation Measure 𝛾). Given two aggregated
sequences 𝑠1 and 𝑠2, they are obtained by running𝑄1 (𝑅1) and𝑄2 (𝑅2),
respectively. Then, we define the measure 𝛾 of an explanation 𝑒 as

𝛾 (𝑒, 𝑠1, 𝑠2) =
dist

(︁
𝑄¬𝑒1 ,𝑄¬𝑒2

)︁
dist(𝑠1, 𝑠2)

∗𝜓𝑒 (𝑅1, 𝑅2)

=
dist (𝑄1 (𝑅1 − 𝜎𝑒 (𝑅1)) ,𝑄2 (𝑅2 − 𝜎𝑒 (𝑅2))))

dist (𝑄1 (𝑅1) ,𝑄2 (𝑅2))

∗
(︃
1 + |𝜎𝑒 (𝑅1) |

|𝑅1 |
+ |𝜎𝑒 (𝑅2) |
|𝑅2 |

)︃
,

(3)

where dist
(︂
𝑄¬𝑒1 , 𝑄¬𝑒2

)︂
is the distance between the two sequences after

removing tuples corresponding to the explanation 𝑒 , i.e., the effect of
the explanation 𝑒 on 𝑄1 and 𝑄2.

In addition, we use the original distance between 𝑄1 (𝑅1) and
𝑄2 (𝑅2) for normalization to offset the effects of the explanation.
Obviously, the lower the explanation measure of explanation 𝑒 , the
better the explanation.

Based on our explanation measure, our explanations possess
the minimality property[11], providing valuable insights without
overwhelming users with redundant information.

Definition 5 (Top-𝑘 Explanation Problem). Given two aggre-
gated sequences 𝑠1 and 𝑠2, find the top-𝑘 explanations E∗ — from all
possible explanations 𝐸 — that satisfy the following condition:

E∗ = argmin
E⊂𝐸
| E |=𝑘

∑︂
𝑒∈E

𝛾 (𝑒, 𝑠1, 𝑠2). (4)

Since computing the explanation measure 𝛾 by enumerating pos-
sible explanations incurs large computing costs, we seek a solution
to avoid enumerating and computing each one individually.

786

3 SDECHO: EXPLANATION SEARCHING

3.1 A Basic Approach and its Challenge

Wefirst scan the instance𝐷 and enumerate all possible explanations,
i.e., all patterns. For each explanation, we compute its explanation
measure𝛾 using Equation 3. Then, we rank and find the optimal top-
𝑘 explanations E∗ for a minimum explanation measure. Assuming
the average cardinality of each attribute is 𝑐 , and the number of
tuples in the table is 𝑟 , then the complexity of the above solution
is 𝑂

(︂
2 |A | · 𝑐 |A | · 𝑟

)︂
. We can clearly see that generating the top-𝑘

explanation set E∗ is very time-consuming for three reasons. (i)
There are exponentially many, 2 |A | , combinations of attributes. (ii)
For each attribute combination, there are 𝑐 |A | possible explanations,
i.e., patterns. (iii) Calculating the explanation measure for each
explanation requires scanning through the table once. Hence, the
complexity is proportional to the number of tuples 𝑟 , which is𝑂 (𝑟).

To solve this problem, we propose SDEcho, whose architecture
is illustrated in Figure 3. Users can query the database using SQL
and obtain two aggregated sequences, 𝑠1 and 𝑠2, through visual
analytical tools, which serve as inputs to SDEcho for explanation
searching of the differences between the sequences. SDEcho con-
sists of three modules—PatternPrune, OrderPrune, and Dim-
Prune—that perform pruning to accelerate the generation of the
top-𝑘 explanations E∗ based on different aspects of complexities:
the number of patterns, the order of patterns, and the number of
dimensions. Additionally, PatternPrune shares intermediate re-
sults computed from partial data with the other modules, which
enhances the pruning effectiveness of both OrderPrune and Dim-
Prune. The interaction among these three modules forms a Hybrid
Pruning Algorithm (as shown in Algorithm 1).

3.2 Aggregation Function Analysis

We divide the aggregate function into incrementally removable

and independent aggregates based on their properties[11, 55]. An
aggregate is incrementally removable if the updated result, exclud-
ing a subset 𝑠 from inputs 𝑅, can be computed using only 𝑠 . For
example, SUM is incrementally removable as SUM(D-s) = SUM(D) -
SUM(s), with SUM(D) cached. Aggregates like SUM() and COUNT()
and arithmetic expressions based on them are incrementally remov-
able, whereas MIN() and MAX() are independent, meaning input tu-
ples influence the result independently. Next, we first introduce the
optimization of explanation searching for incrementally removable
aggregates, followed by a discussion on independent aggregates.

3.3 PatternPrune: Pattern-level Pruning

Independently calculating the explanation measure for each ex-
planation requires repeated table scans, which is time-consuming.
The intuition behind our pattern-level pruning is that, when con-
sidering only the distance component of our explanation measure,
we can project the Euclidean distance between two sequences in
multi-dimensional space onto one-dimensional space. By utilizing
the additivity of projection distances in one-dimensional space for
non-overlapping explanations, we can avoid the independent com-
putation of the distance measure for each explanation. This allows
us to prune the explanation space based solely on the relation-
ship between the distance component and the explanation measure.

Figure 3: The overall architecture of SDEcho

Therefore, in Section 3.3.1, we first analyze the relationship between
the distance scores corresponding to non-overlapping explanations,
and then in Section 3.3.2, we propose Theorem 1 to perform prun-
ing by leveraging the relationship between the projection distance
and the actual explanation measure.

3.3.1 Bottom-up Computation. As shown in Equation 3, our ex-
planation measure includes a distance score and a penalty factor,
reflecting the explanation’s contribution to sequence differences
and its intrinsic properties. For incrementally removable aggregates,
to reduce computational costs from numerous explanations, we
aim to derive the combined explanation’s distance score directly
from existing ones.

The intuition behind our method is that the Euclidean distance
between sequences under different explanations lacks additivity,
requiring independent computation for each sequence and expla-
nation. However, point-to-point value additivity exists under non-
overlapping explanations. Thus, before calculating the Euclidean
distance, we treat sequences as vectors and analyze additivity in the
context of vector sums. We first define the explanation vector and
use Lemma 1 to prove that explanation vectors of non-overlapping
explanations can be accumulated to obtain the vector of their com-
bined explanation.

Definition 6 (Explanation vector 𝒅𝒆). Given an explanation
𝑒 , the explanation vector 𝒅𝒆 is defined as the distance difference vec-
tor under the explanation 𝑒 of two aggregated sequences, i.e., 𝒅𝒆 =
𝑄1 (𝜎𝑒 (𝑅1)) - 𝑄2 (𝜎𝑒 (𝑅2)).

For example, in Figure 1(b), if the explanation 𝑒 is {RF_GHYPE =
’Y’}, 𝒅𝒆 is derived from the point-to-point differences between the
two sequences under the conditions "MRACE31 = 1 and RF_GHYPE
= ’Y’" and "MRACE31=2 and RF_GHYPE=’Y’". The vector has 13
points, each representing the difference in the number of MM cases
between the two sequences for that specific age group.

Lemma 1 (Additivity of explanation vectors). If the expla-
nation 𝑒𝑖 and 𝑒 𝑗 are non-overlapping, and 𝜎𝑒0 (𝐷) = 𝜎𝑒𝑖 (𝐷) ∪𝜎𝑒 𝑗 (𝐷),
then the explanation vector 𝒅𝒆0 = 𝒅𝒆𝒊 + 𝒅𝒆𝒋 .

Proof. Given an explanation 𝑒𝑖 , sequences of Query 𝑄1 on
𝜎𝑒𝑖 (𝑅1) and Query𝑄2 on 𝜎𝑒𝑖 (𝑅2) are denoted as vectors 𝒗𝒊1 and 𝒗𝒊2.
Since 𝑒𝑖 and 𝑒 𝑗 are non-overlapping and 𝜎𝑒0 (𝐷) = 𝜎𝑒𝑖 (𝐷) ∪𝜎𝑒 𝑗 (𝐷),
the vector 𝒗01 from executing the aggregate on explanation 𝑒0 in
relation 𝑅1 is the sum of the vectors from executing the aggregates

787

for 𝑒𝑖 and 𝑒 𝑗 in 𝑅1, i.e., 𝒗01 = 𝒗𝒊1 + 𝒗𝒋1, where 𝒗𝒊𝒋 is the vector from
executing the aggregate for 𝑒𝑖 on relation 𝑅 𝑗 . Therefore,

𝒅𝒆0 = 𝒗01 − 𝒗02 = (𝒗𝒊1 + 𝒗𝒋1) − (𝒗𝒊2 + 𝒗𝒋2)
= (𝒗𝒊1 − 𝒗𝒊2) + (𝒗𝒋1 − 𝒗𝒋2) = 𝒅𝒆𝒊 + 𝒅𝒆𝒋 .

(5)

Based on Lemma 1, the explanation vector corresponding to
the 𝑖-order explanations can be obtained by accumulating the ex-
planation vectors of non-overlapping (𝑖 + 1)-order explanations.
For example, in Figure 4(a), the attribute IP_HEPB has two values,
’Y’ and ’N’. The 2-order explanations 𝑒2 and 𝑒3 correspond to pat-
terns {RF_GHYPE = ’Y’ ∧ IP_HEPB=’Y’} and {RF_GHYPE = ’Y’ ∧
IP_HEPB=’N’} respectively. Since 𝑒2 and 𝑒3 are non-overlapping,
the 1-order explanation 𝑒1 ({RF_GHYPE = ’Y’}) corresponds to the
explanation vector 𝒅𝒆1 , which can be obtained by adding 𝒅𝒆2 and
𝒅𝒆3 as shown in Figure 4(b), i.e., 𝒅𝒆1 = 𝒅𝒆2 + 𝒅𝒆3 .

3.3.2 Pruning using Projection Distance. Given an explanation 𝑒 ,
the explanation vector obtained by aggregating the tuples corre-
sponding to 𝑒 is denoted as 𝒅𝒆 , and the vector for the tuples not
corresponding to 𝑒 is 𝒅¬𝒆 . Since the tuples for both vectors do not
overlap and their union covers all tuples in 𝐷 , based on Lemma
1, the relationship is 𝒅 = 𝒅¬𝒆 + 𝒅𝒆 , where 𝒅 represents the total
aggregate vector for 𝐷 , i.e., 𝒅 = 𝑄1 (𝑅1) - 𝑄2 (𝑅2).

Since the norms of explanation vectors under Euclidean distance
satisfy the triangle inequality—i.e., |𝒅𝒆 + 𝒅¬𝒆 | ≤ |𝒅𝒆 | + |𝒅¬𝒆 |—it is
necessary to recalculate the distance score, dist(𝑄

¬𝑒
1 ,𝑄¬𝑒2)

dist(𝑠1,𝑠2) , for each
explanation 𝑒 . This either requires retaining the original vectors,
increasing time and space complexity, or recalculating the distance.
Additionally, since the explanation measure uses the norm of 𝒅¬𝒆 ,
the original vectors must still be kept. To address this, we convert
the Euclidean distance calculation to a projection distance, leverag-
ing additivity—where 𝒅 = 𝒅𝒆 + 𝒅¬𝒆 and the projection of 𝒅𝒆 onto 𝒅
plus the projection of 𝒅¬𝒆 onto 𝒅 equals |𝒅 | = 𝑑

𝑝
𝑒 +𝑑

𝑝
¬𝑒 . By applying

Theorem 1, we can compute the projection distance efficiently and
use it to prune explanations during the search.

Theorem 1. For an explanation 𝑒 , the lower bound of its 𝛾 is
|𝒅 |−𝑑𝑝

𝑒

dist(𝑠1,𝑠2) , where 𝑑
𝑝
𝑒 is the projection distance of 𝒅𝒆 onto 𝒅.

Proof. Given a pair of aggregated sequences, considering the
lower bound of the penalty factor𝜓𝑒 (𝑅1, 𝑅2) is 1, and the distance
dist(𝑠1, 𝑠2) remains constant, we scale the score function as follows:

𝛾 (𝑒, 𝑠1, 𝑠2) =
dist

(︁
𝑄¬𝑒1 ,𝑄¬𝑒2

)︁
dist(𝑠1, 𝑠2)

∗𝜓𝑒 (𝑅1, 𝑅2)

≥
dist(𝑄¬𝑒1 ,𝑄¬𝑒2)
dist(𝑠1, 𝑠2)

=
dist(𝑄1 − 𝑄𝑒

1 ,𝑄2 − 𝑄𝑒
2)

dist(𝑠1, 𝑠2)
.

(6)

Since dist(𝑄¬𝑒1 , 𝑄¬𝑒2) = |𝒅¬𝒆 |, we convert the lower bound into a
vector for calculation:

𝛾 (𝑒, 𝑠1, 𝑠2) ≥
|𝒅¬𝒆 |

dist(𝑠1, 𝑠2)
≥ |𝒅 | − 𝑑𝑝𝑒

dist(𝑠1, 𝑠2)
=

𝑑 − 𝑑𝑝𝑒
dist(𝑠1, 𝑠2)

, (7)

where 𝑑 is the original distance between 𝑠1 and 𝑠2, i.e., 𝑑 =
dist(𝑄1 (𝑅1), 𝑄2 (𝑅2)).

Based on the additivity of projection distance and the lower
bound of explanation measures, our pattern-level pruning strategy

Figure 4: Pattern-level pruning

calculates the projection distance for the highest-order explanations.
Using the cube operation, we then compute projection distances for
all explanations and sort them in descending order. Bymaintaining a
min-heap of size 𝑘 , we store the current top-𝑘 explanation measures
and apply the lower bound (Equation 7) to efficiently prune the
sorted explanations, ultimately obtaining the top-𝑘 explanations.

Example 3. As shown in Figure 4(a), given the explain-by at-
tributes A = {RF_GHYPE, IP_HEPB}, we first calculate the projection
distance for the highest-order explanations (second-order). For exam-
ple, 𝑒2 = {RF_GHYPE = ’Y’ ∧ IP_HEPB = ’Y’ } with 𝑑𝑝𝑒2 = 3.2. Using the
additivity of projection distance, we calculate and sort the projection
distances of all explanations via cube operations. For instance, the
projection distance of 𝑒1 is 𝑑𝑝𝑒1 = 𝑑

𝑝
𝑒2 + 𝑑

𝑝
𝑒3 . Based on the smallest

score in the current min-heap, we calculate the projection distance
threshold as 3.1 using Equation 7. Therefore, only 𝑒1 and 𝑒2 remain,
while explanations like 𝑒3 and 𝑒4 are pruned.

Our projection distance-based pruning has a strong geometric
significance: taking 𝑒3 in Figure 4(b) as an example, the module
of the desired 𝒅¬𝒆3 is related to its projection distance 𝑑𝑝¬𝑒3 , while
the module of the original sequence distance vector 𝒅 remains
constant. Since 𝑑𝑝¬𝑒3 = |𝒅 | − 𝑑𝑝𝑒3 , |𝒅¬𝒆3 | and |𝒅𝒆3 | are negatively
correlated. This means that the larger the projection distance 𝑑𝑝𝑒
of an explanation 𝑒 , the smaller its final distance score may be,
increasing the likelihood of it being among the top-𝑘 explanations,
as shown in Figure 4(c).
Takeaway. Our method leverages the additive property of projec-
tion distances to simplify calculations, achieving fast computation
by scanning the table only once. Additionally, we employ a lower-
bound pruning technique that terminates the traversal early when
the projection distance falls below a specified threshold, thereby
enhancing overall efficiency.

3.4 OrderPrune: Order-level Pruning

As discussed in Section 3.1, the large number of attribute com-
binations is a bottleneck in our pipeline. Order-level pruning is
designed to address this by determining the maximum order within
the top-𝑘 explanations, helping SDEcho avoid computing projec-
tion distances for all explanations starting from the highest-order
ones.

High-level Idea. Our intuition behind Order-level pruning is
that the deletion of a small number of tuples is unlikely to cause

788

significant changes in the sequence difference. Taking COUNT() as
an example, if an explanation 𝑒 only encompasses 3 tuples, i.e.,
|𝜎𝑒 (𝐷) | = 3, the change in the sequence distance affected by this
explanation cannot exceed 3. Obviously, the higher the order of the
explanation, the fewer tuples will meet the explanation predicate.
Excessively high-order explanations can only affect a handful of
tuples and are insufficient to make the distance exceed the threshold
of the top-𝑘 explanations.

Theorem 2. Given an explanation 𝑒𝑖 , the lower bound for the dis-
tance reduction under it is |𝒅 |−∑︁𝑛

𝑖=1 (𝑄1 (|𝜎𝑒𝑖𝑅1 |) [𝑖]+𝑄2 (|𝜎𝑒𝑖𝑅2 |) [𝑖]),
where 𝑛 is the sequence length, |𝜎𝑒𝑖𝑅1 | and |𝜎𝑒𝑖𝑅2 | are the absolute
values of aggregated attributes in 𝜎𝑒𝑖𝑅1 and 𝜎𝑒𝑖𝑅2.

Proof. As discussed in Section 3.3, the explanation vector satis-
fies |𝒅¬𝒆𝒊 | = |𝒅 − 𝒅𝒆𝒊 | ≥ |𝒅 | − |𝒅𝒆𝒊 |, based on Lemma 1, the upper
bound of |𝒅𝒆𝒊 | is:

|𝒅𝒆𝒊 | = |𝒗𝒊1 − 𝒗𝒊2 | ≤ |𝒗𝒊1 | + |𝒗𝒊2 |

=

⌜⎷
𝑛∑︂
𝑖=1

𝑄1 (𝜎𝑒𝑖𝑅1) [𝑖]2 +

⌜⎷
𝑛∑︂
𝑖=1

𝑄2 (𝜎𝑒𝑖𝑅2) [𝑖]2

≤
𝑛∑︂
𝑖=1
|𝑄1 (𝜎𝑒𝑖𝑅1) [𝑖] | +

𝑛∑︂
𝑖=1
|𝑄2 (𝜎𝑒𝑖𝑅2) [𝑖] |

≤
𝑛∑︂
𝑖=1

𝑄1 (|𝜎𝑒𝑖𝑅1 |) [𝑖] +
𝑛∑︂
𝑖=1

𝑄2 (|𝜎𝑒𝑖𝑅2 |) [𝑖] .

(8)

Therefore, the lower bound of |𝒅¬𝒆 | is:
|𝒅¬𝒆𝒊 | ≥ |𝒅 | − |𝒅𝒆𝒊 |

≥ |𝒅 | −
𝑛∑︂
𝑖=1
(𝑄1 (|𝜎𝑒𝑖𝑅1 |) [𝑖] +𝑄2 (|𝜎𝑒𝑖𝑅2 |) [𝑖]) .

(9)

The lower bound decreases as the number of tuples affected
by explanation 𝑒 increases. When the affected tuples are few, the
potential for distance reduction is limited. Therefore, based on
Theorem 1 and Theorem 2, we use the distance reduction of the
current top-𝑘 explanations as a pruning threshold for explanations
of a certain order. If the lower bound of an explanation meets the
threshold, higher-order explanations under this explanation can
be pruned; otherwise, we continue drilling down to higher-order
explanations until the threshold is met.
Practical Consideration. We use the explanation measures of
the top-𝑘 explanations from first-order explanations as the thresh-
old, starting order pruning from the third order, for the following
reasons: (1) According to [11], most practical explanations are es-
sentially third-order, so higher-order explanations can be pruned.
(2) The number of first-order explanations is much smaller than
second- and third-order ones, reducing computational costs. (3)
The initial threshold will be updated as more explanations are com-
puted, so high accuracy is not needed at the start. (4) Dimension
pruning in subsequent steps relies on statistical information from
first-order explanations, as detailed in Section 3.5.

Example 4. As shown in Figure 5(a), the explain-by attribute set
A is {RF_GHYPE, IP_HEPB, RF_PPTERM, Steroids }. Instead of calcu-
lating the explanation distance scores starting from the fourth order,
we first compute the top-𝑘 explanations of all first-order explanations.
According to Theorem 1, we take the maximum score 𝛾 from the top-𝑘

Figure 5: Order-level pruning

explanations as the threshold (threshold = 2.7). Then, based on Theo-
rem 2, we calculate the distance score for all third-order explanations.
For example, when calculating the explanation 𝑒𝑖 = {RF_GHYPE = ’Y’
∧ IP_HEPB = ’N’ ∧ RF_PPTERM = ’N’ }, if |𝑑¬𝑒𝑖 | > 2.5 (less than the
threshold), it cannot be pruned. Therefore, it is necessary to calculate
from the top down to determine whether the fourth-order explanations
based on 𝑒𝑖 , {RF_GHYPE = ’Y’ ∧ IP_HEPB = ’N’ ∧ RF_PPTERM = ’N’ ∧
Steroids = ’Y’} and {RF_GHYPE = ’Y’ ∧ IP_HEPB = ’N’ ∧ RF_PPTERM
= ’N’ ∧ Steroids = ’N’ }, can be pruned.

Takeaway. Combining pattern-level pruning, we implemented an
explanation search method that integrates bottom-up computation
with top-down searching. Order-level pruning uses attribute car-
dinality to determine the maximum order 𝑂 , starting calculations
from the 𝑂-th order bottom-up. For explanations of order higher
than 𝑂 , based on Theorem 2, if their maximum potential impact
on sequence differences exceeds a threshold, we apply top-down
searching approach until it falls below the threshold, ensuring no
top-𝑘 explanations are missed and preserving pruning precision.

3.5 DimPrune: Dimension-level Pruning

As discussed in Section 3.1, a large number of explain-by attributes
|A| slows down explanation searching. In this subsection, we uti-
lize the cardinality of dimensions and functional dependencies to
perform pruning at the dimension granularity.

(1) Leveraging Cardinality.We sort dimensions in ascending
order by cardinality, as explanations with larger cardinalities affect
fewer tuples and may have less impact on distance reduction, per
Theorem 2. To avoid an excessive number of patterns from consid-
ering all dimensions together, we treat high-cardinality dimensions
separately. Instead of pruning all explanations at a certain order
using the lower bound from Theorem 2, we prune all first-order
explanations under a certain explain-by attribute. If all explana-
tions under a dimension meet the criteria, subsequent searches can
disregard that dimension, similar to order-level pruning.

(2) Leveraging Functional Dependencies. Analyzing meta-
data for functional dependencies can effectively prevent explana-
tions from becoming too rich and can be used for dimension prun-
ing. When there are many dimensions, we can follow the approach
described in [11] to prune using functional dependencies. Given
dimensions 𝑎𝑖 and 𝑎 𝑗 , if 𝑎𝑖 functionally determines 𝑎 𝑗 , meaning

789

… ……

… … …

Figure 6: Hybrid pruning

that tuples containing 𝑥 ∈ 𝑎𝑖 also necessarily contain a particular
attribute 𝑦 ∈ 𝑎 𝑗 , this is denoted as 𝑎𝑖 → 𝑎 𝑗 . When 𝑎𝑖 → 𝑎 𝑗 , we can
ignore explanations that include both 𝑎𝑖 and 𝑎 𝑗 . Furthermore, when
𝑎𝑖 → 𝑎 𝑗 and 𝑎 𝑗 → 𝑎𝑖 , there is no need to consider explanations
that include 𝑎𝑖 .

3.6 Putting Things Together: Hybrid Pruning

So far, we have proposed three pruning methods mentioned above,
targeting pattern, order, and dimension pruning respectively. To
further optimize, we adjust the pruning order based on the charac-
teristics of each pruning method to perform hybrid pruning.

As discussed in Section 3.4, dimension-level and order-level prun-
ing use Theorem 2 to compute the lower bound of distance reduc-
tion, denoted as |𝑑¬𝑒 |. Then, using Theorem 1, the threshold com-
puted on a subset of the data is compared with this lower bound to
determine whether pruning can be performed. The smaller the pro-
vided threshold, the more aggressive the pruning. Our high-level
idea is to use Pattern-level pruning on a small set of explanations
to generate a tighter threshold, guiding order-level and dimension-
level pruning for better results. Finally, we consider all explanations
based on the remaining dimensions and unpruned explanations to
return the global top-𝑘 explanations.

Our hybrid pruning process is illustrated in Figure 6, with the
algorithm details provided in Algorithm 1. Due to Theorem 2, which
relates the number of tuples corresponding to an explanation and
|𝑑¬𝑒 |, we first sort and partition the explain-by attributes according
to their cardinality (line 1 to 2). We generate explanations from the
dimension set with smaller cardinalities and perform pattern-level
pruning to return the local top-𝑘 explanations (line 5 to 7). This
process tends to yield greater distance reduction, as discussed in
Section 3.5 regarding cardinality, while also ensuring that the num-
ber of subsets handled by the pattern-level pruning is minimized.
For example, in Figure 6(a), "RF_GHYPE" has a cardinality of 2,
with only "Y" and "N" as values. Thus, the number of explanations
generated by this type of attribute is small, allowing us to quickly
obtain the top-𝑘 explanations using pattern-level pruning.

Next, we use the local top-𝑘 explanations to perform dimension-
level pruning and order-level pruning on the attributes with larger

Algorithm 1: Top-𝑘 Explanation Searching
Input: sequences 𝑠1 and 𝑠2,𝑄 , 𝐸 = [], A
Output: Top-𝑘 explanations E∗

1 sort(A) ; // by Cardinality

2 [A𝑖]← partition(A)
3 𝛾∗ ← 0, 𝐸 ← []
4 for A𝑖 in [A𝑖] do
5 if 𝑖 = 0 then
6 𝐸0 ← FindExplanations(𝛽 = 1, A1)
7 E0 ← PatternPrune(𝐸, 𝛾∗)
8 else

9 A𝑖 ← DimPrune(A𝑖 , 𝛾∗)
10 𝐸𝑖 ← OrderPrune(𝛾∗, FindExplanations(A𝑖))

11 Update(𝛾∗)
12 𝐸.append(𝐸𝑖)

13 E∗ ← PatternPrune(𝐸)
14 return E∗

cardinalities (line 9 to 10). We then combine the unpruned explana-
tions with those generated from the smaller cardinality dimensions
(line 12). Using pattern-level pruning again (line 13), we obtain
the global top-𝑘 explanations. For example, in Figure 6(b), after
dimension and order pruning, only the explanations composed
of "steroids" and "RF_CESARN" remain. We combine this set of
explanations with the explanations from Figure 6(a) to form the
explanation set 𝐸, as shown in Figure 6(c). We then perform pattern-
level pruning on 𝐸 to obtain the final top-𝑘 explanations E∗.

Since unpruned explanations from both high-cardinality and
low-cardinality attributes are combined, SDEcho ensures no po-
tential global top-𝑘 explanations are missed, pruning only those
not included in the final top-𝑘 results. Additionally, because the
threshold is continuously updated, dimension partitioning does not
directly impact pruning effectiveness. This partition-and-merge
approach also facilitates the parallel expansion of SDEcho.
Time Complexity Analysis. Aligning with the notation used in
the analysis of the naive method in Section 3.1, we begin by par-
titioning dimensions based on their cardinalities. For a subset of
𝑎 dimensions (𝑎 < |A|), we calculate the projection distance of
highest-order explanations in 𝑂 (𝑟). Then, using a cube operation,
we compute the projection distances of all explanations with a com-
plexity of 𝑂 (2𝑎 · 𝑐𝑎). Based on Theorem 1, we prune to obtain the
top-𝑘 explanations costing𝑂 (𝑝 · 𝑟), where 𝑝 is the number of expla-
nations requiring the exact explanation measure. Next, within the
remaining |A| − 𝑎 dimensions, we perform dimension pruning at
𝑂 ((|A|−𝑎)𝑟 +(|A|−𝑎)𝑐), reducing the number of dimensions to𝐴′
(𝐴′ < |A| −𝑎). Assuming an estimated order𝑀 , order pruning then
takes𝑂 (𝐴′𝑀 · 𝑐𝐴′). The remaining 𝑁 explanations (𝑁 ≪ 𝐴′𝑀 · 𝑐𝐴′)
are combined with the previously pruned explanations, and the
global top-𝑘 explanations are obtained using the above steps with a
cost of 𝑂 (2𝑎 · 𝑐𝑎 · 𝑁 + 𝑝 · 𝑟). The overall time complexity of hybrid
pruning is𝑂 (2𝑎 ·𝑐𝑎 ·𝑁 +((𝑝+|A|−𝑎)𝑟+(|A|−𝑎)𝑐+𝐴′𝑀 ·𝑐𝐴′)), effec-
tively reducing exponential table scans to polynomial levels. Exper-
iments validate that our pattern pruning using projection distance
is highly effective, requiring only a small number of explanations 𝑝
to be computed with the exact explanation measure. Additionally,

790

columns with higher cardinality 𝑐 are more likely to be pruned in
the dimension pruning step, further reducing 𝐴′. Ideally, according
to practical considerations in [11], under𝑀 = 3, the complexity can
be optimized to𝑂 (2𝑎 ·𝑐𝑎 ·𝑁 +((𝑝+ |A|−𝑎)𝑟 +(|A|−𝑎)𝑐+𝐴′3 ·𝑐𝐴′)).

3.7 Optimization for Independent Aggregates

Although independent aggregates lack the "removable" feature of
incrementally removable aggregates and the aggregate result is
determined by only a few tuples, making their complexity much
smaller compared to incrementally removable aggregates, we still
provide a computation strategy for independent aggregates such
as min and max to quickly obtain the top-𝑘 explanations without
repeatedly scanning the table. We first identify all tuples on 𝑅1 and
𝑅2 that take the output value and project these tuples ontoA as the
highest-order explanations. These highest-order explanations can
be used to enumerate all explanation candidates to calculate scores
and output. The magnitude of the highest-order explanations is
relatively low, making the computational complexity acceptable.
Given explanations 𝑒1 and 𝑒2, with 𝜎𝑒1 (𝐷) ⊆ 𝜎𝑒2 (𝐷), thus (𝐷 −
𝜎𝑒1 (𝐷)) = (𝐷 − 𝜎𝑒2 (𝐷) ∪ (𝜎𝑒2 (𝐷) − 𝜎𝑒1 (𝐷))), we can utilize the
following equation for further computational optimization:

F(𝐷 − 𝜎𝑒1 (𝐷)) = F(F(𝐷 − 𝜎𝑒2 (𝐷)), F(𝜎𝑒2 (𝐷) − 𝜎𝑒1 (𝐷))) (10)

By leveraging the inclusion relationships between explanations, we
can utilize the results on known explanations and the differences
between explanations to compute the independent aggregate results
quickly. This approach eliminates the need to traverse the entire
table, significantly reducing computational overhead.

3.8 Discussion

The design of SDEcho aims to provide top-𝑘 explanations of se-
quence differences based on intervention-based methods, allowing
users to delve deeper into the insights provided by its outputs. SDE-
cho can serve as a general component for computing pattern-based
explanations, supporting explanation searches, and potentially ex-
tending to various customizations. For instance, SDEcho can be
extended to support predicates with other operations, such as ">"
or "<," simply by modifying the cube operations within the pattern-
level pruning. Additionally, users can introduce user-specified diver-
sity metrics (e.g., Simpson index and Shannon entropy)[19, 24, 56]
to derive diverse top-𝑘 explanations from the output of 2𝑘 expla-
nations, with minimal time overhead through submodular opti-
mization. Furthermore, users can leverage causal Directed Acyclic
Graphs (DAGs) to incorporate knowledge and conduct rapid expla-
nation searches on dimensions with causal relationships, thereby
making explanations more logical.

4 EXPERIMENTS

We evaluate SDEcho by conducting comprehensive experiments to
answer the following research questions:

• RQ1: Can SDEcho accurately yield explanations for the differ-
ences between aggregated sequences?

• RQ2: How does SDEcho scale with increasing data volume and
dimension compared to existing work?

• RQ3: How can SDEcho facilitate end users in data analysis?

4.1 Datasets

The experiments are conducted on the following three widely used
datasets[11, 45, 50].
TPC-H. We use dbgen and qgen from the TPC-H benchmark to
generate instances and queries at scales {0.001, 0.005, 0.01, 0.05, 0.1}.
This dataset benchmarks decision support systems with complex,
business-oriented queries. For our experiments, we selected group-
by queries and modified the where conditions to generate paired
aggregation sequences, enabling us to evaluate SDEcho’s scalability.
CMS. The Center for Medicare Studies (CMS) dataset[2] contains
1.1 million records (1GB) detailing payments from pharmaceutical
and biotech companies to doctors. We focus on its temporal, finan-
cial, and demographic dimensions to generate paired aggregation
sequences through queries, such as comparing monthly payments
from 2021 and 2022. This helps assess our method’s response speed
under high dimensionality and data volume.
Natality. The 2022 U.S. Natality dataset from the National Center
for Health Statistics (NCHS)[5] contains 3.6 million anonymized en-
tries (4.6GB) with 233 attributes. These cover maternal details (e.g.,
race, smoking, medical conditions), delivery characteristics, and
newborn health. We generated 100 pairs of aggregated sequences
for our experiments, such as comparingMM cases across age ranges
and races, as discussed in Section 1.

4.2 Benchmark

Confidence in explanation. To more fairly evaluate whether our
explanation measure is better suited for aggregated sequence dif-
ference explanation scenarios compared to those used in other
works[11, 15, 45, 53, 55], we conduct a quantitative analysis of the
confidence of the explanations. To our best knowledge, there is no
off-the-shelf benchmark for explaining the aggregated sequence
difference. The lack of a gold standard for explanations poses signif-
icant challenges in this field of research[25]. To address this issue,
we constructed a benchmark tailored to explain scenarios involving
differences in aggregated sequences. In our benchmark, the ground
truth consists of the tuples that cause the sequence differences.
Since this paper focuses on pattern-based explanations, the ground
truth is the pattern and its corresponding tuples.

Our high-level idea involves inserting tuples at the pattern level
into two co-occurring sequences that initially have a distance of
zero within the same frame. If these sequences exhibit a difference
after the insertion, the inserted pattern (i.e., the tuples correspond-
ing to that pattern) serves as the ground truth for explaining the
differences between the two sequences. Considering that differ-
ences in real-world sequences may accumulate from the insertion
of multiple patterns, we assess the contribution of each pattern by
examining the distance between the sequences after each pattern
is inserted independently. We treat the set of inserted patterns and
their respective contributions as the ground truth. We constructed
our benchmark using the TPC-H dataset and utilized the data gen-
eration tool dbgen to generate the tuple sets corresponding to the
inserted patterns. We denote the inserted pattern and its contribu-
tion as 𝑝𝑖 and Δ𝑝𝑖 . Based on the sequence pairs generated through
the above process and their corresponding inserted patterns, we
consider how to compare our top-𝑘 explanations for these two
sequences with the inserted patterns.

791

As most explanation engines[11, 15, 35] focus on top-𝑘 explana-
tions, we draw inspiration from the information retrieval commu-
nity. We refer to a commonly used measure for ranking quality in
information retrieval, discounted cumulative gain (DCG)[29], to
assess the similarity between our top-𝑘 explanations and the cor-
responding tuples set of the ground truth, using 𝑘 as a weighting
factor. Given the inserted patterns 𝑃 (𝑃 = 𝑝1, 𝑝2, ..., 𝑝𝑚) and the
top-𝑘 explanations E∗ generated by the explanation engine, we
employ the Jaccard index J to measure the similarity between the
sets of tuples corresponding to different patterns. Our explanation
confidence (EC) score is as follows:

𝐸𝐶 (𝑃, E∗) =
𝑚∑︂
𝑖=1

𝑘∑︂
𝑗=1

|Δ𝑝𝑖 |J (𝑒 𝑗 , 𝑝𝑖)
log2 (𝑗 + 1)

. (11)

To simplify the experiment, we ignore the interactions among
inserted patterns, counting each independently inserted pattern’s
contribution when the aggregate sequence difference is 0. In this
scenario, the rank 1 explanation measure still shows stronger ex-
planatory ability than other measures. To fairly compare the ex-
planatory abilities of different measures, we replace the Jaccard
index with multiple measures such as Precision and F1-score. We
evaluate the quality of explanations from various engines using
these measures.

4.3 Baselines

We compare SDEcho against two baseline sets: one evaluates expla-
nation confidence using different measures, and the other compares
explanation search efficiency with explanation engines. Addition-
ally, we compare SDEcho with a class of methods that first perform
dimension reduction before explanation searching. We refer to this
class of methods as the two-step method.

Explanation Measures. We organize commonly used explanation
measures from existing work as baselines, including difference
measures for analyzing disparities between two relations such as
Absolute Change[15], Risk Ratio[11], Diagnosis Cost[53], and
Influence[55]. Additionally, we include measures for explaining
aggregate results of a single relation, such as Aggravation[45] and
Intervention[45]. To create a single sequence, we subtract one
aggregated sequence from another and apply these measures with
parameter settings from the original papers.

Explanation Engines. (1) BOE[35] is an explanation engine that
employs Bayesian optimization to search for explanations across
user-defined explanation measures. (2) DIFF[11] is a relational
aggregation operator that introduces logical and physical optimiza-
tions for explanation searches in high-dimensional, high-volume
data. (3) TSE[15] identifies key performance indicators for a sin-
gle aggregated time series. (4) Additionally, we implemented an
equivalent explanation search effect as a baseline using SQL in
Postgres. To ensure a fair comparison, all baselines will use the
same explanation measure as SDEcho.

Two-step methods. Two-step methods first reduce dimensions and
then search for explanations within the resulting dimensions. We
surveyed two dimension reduction techniques: (1) XInsight[38],
a multi-step explanation engine that learns causal graphs from
data with faithfulness violations, using the output from its second
module, Xtranslator, as the basis for explanation searching; and (2)

1 2 3 4 5 6 7 8 9 10
#inserted pattern

0.2

0.4

0.6

0.8

1.0

A
N

EC
 (J

ac
ca

rd
)

1 2 3 4 5 6 7 8 9 10
#inserted pattern

0.2

0.4

0.6

0.8

1.0

A
N

EC
 (P

re
ci

si
on

)

1 2 3 4 5 6 7 8 9 10
#inserted pattern

0.2

0.4

0.6

0.8

1.0

A
N

EC
 (F

1-
sc

or
e)

(a) (b) (c)

Ours(in SDEcho) Risk ratio Diagnosis Influence Aggravation Intervention Absolute-change

Figure 7: Explanation confidence comparison with explanation mea-

sures baselines under different #inserted patterns.

3 4 5 6 7
k

0.2

0.4

0.6

0.8

1.0

A
N

EC
 (J

ac
ca

rd
)

3 4 5 6 7
k

0.2

0.4

0.6

0.8

1.0

A
N

EC
 (P

re
ci

si
on

)

3 4 5 6 7
k

0.2

0.4

0.6

0.8

1.0

A
N

EC
 (F

1-
sc

or
e)

(a) (b) (c)

Ours(in SDEcho) Risk ratio Diagnosis Influence Aggravation Intervention Absolut-change

Figure 8: Explanation confidence comparison with explanation mea-

sures baselines under different k.

PCA[54], a standard dimension reduction method that transforms
data into a new coordinate system aligned with maximum variance.
We implemented Sparse PCA using scikit-learn[43].

All experiments are conducted on a computer running Ubuntu
18.04 64-bit, with an Intel(R) Xeon(R) E5-2620 v2 @ 2.10 GHz * 24
CPU, 64 GB RAM, and a 2 TB disk.

4.4 Quality of Top-𝑘 Explanations (RQ1)

To evaluate the explanation confidence of SDEcho, we compare our
measure 𝛾 with baseline measures using the benchmark in Section
4.2. We analyze SDEcho’s explanation confidence under varying
#inserted patterns and assess the impact of 𝑘 on the quality of the
top-𝑘 explanation lists produced by nearly all explanation engines.

4.4.1 Explanation Confidence on Varying #inserted Patterns and
𝑘 . For each query pair and its corresponding ground truth, we
compute EC for each measure based on Equation(11), normalizing
the results based on the highest confidence across all measures. The
average normalized explanation confidence (ANEC) under varying
#inserted patterns and 𝑘 is shown in Figure 7 and Figure 8. Our
explanation measure consistently achieves the highest scores across
different pattern similarity measures.

Explanation measures that only consider the impact of patterns
on sequence difference, such as Intervention, Aggravation, and
Absolute change, show a decline in explanation confidence relative
to our explanation measure as #inserted patterns increase. This is
because, as more patterns are inserted, the scenarios more closely
mimic real-world situations that cause sequence differences. These
measures do not account for the number of tuples associated with
each explanation, which can lead to top-𝑘 explanations that are
redundant and contain many tuples, including those related to the
ground truth, thus reducing explanation confidence. Measures like
Risk ratio, Diagnosis-cost, and Influence are designed to explain

792

differences between two relations. To explain sequence differences,
we aim tomaximize the sum of explanationmeasures through point-
by-point comparisons within the sequence pair. Our explanation
measure accounts for both the impact of patterns on sequence
differences and the number of tuples within those patterns. As a
result, it provides concise explanations and demonstrates stable,
robust explanatory power compared to other measures.
Answer to RQ1: SDEcho consistently demonstrates higher ex-
planation confidence than other methods. It maintains superior
performance even as #inserted pattern and 𝑘 vary. This stability
highlights SDEcho’s effectiveness in providing accurate explana-
tions for differences between aggregated sequences.

4.5 Efficiency Evaluation of SDEcho (RQ2)

We evaluate SDEcho’s performance by measuring query workload
times across three datasets and analyzing the effects of the number
of dimensions (#Dim) and explanation size (𝑘) on search time. Ad-
ditionally, we perform ablation studies on SDEcho’s components
and compare it with two-step methods. All experiments are subject
to a three-hour time-out, marked by a dashed line.

4.5.1 End-to-end Time Cost. Since Postgres and TSE perform ex-
act computations under our explanation measure (e.g., Postgres
enumerates all possible explanations and outputs the top-𝑘), while
DIFF and BOE provide approximate solutions (e.g., DIFF finds up to
third-order explanations through hard coding), Postgres and TSE
can require significant time, with some query pairs taking over 3
hours to solve. Therefore, we extract a small-scale query workload
from the three datasets for comparison with Postgres and TSE.
Time Cost on Varying #Dim. As shown in Figure 9(a), 9(b), and
9(c), we collected explanation search times across different datasets
with varying #Dim (the number of explain-by attributes), setting 𝑘
= 5 for all methods. As #Dim increases, search times for all baselines
significantly exceed those of SDEcho. Specifically, at #Dim = 6, our
method offers a 30× and 600× speedup over TSE and Postgres,
respectively. Even against approximate methods, SDEcho achieves
a 10× and 60× speedup over DIFF and BOE, respectively, while
maintaining exact computations at #Dim = 8. Moreover, when #Dim
exceeds 10, most baselines time out, while SDEcho continues to
operate efficiently.
Time Cost on Varying 𝑘 . As shown in Figure 9(e), except for
BOE, the change of 𝑘 does not have a significant impact on the
performance of most methods (including SDEcho). This is because
these methods primarily maintain a min-heap of size 𝑘 , resulting
in minimal overhead as 𝑘 ranges from 1 to 100. In contrast, for
BOE, the sampling convergence time fluctuates with different out-
put explanation sizes. As 𝑘 increases, the Tree-structured Parzen
Estimator (TPE) in BOE requires more samples and iterations to
ensure the accuracy of the top-𝑘 list.

4.5.2 Effectiveness of SDEcho Components. Time Cost on Vary-

ing #Dim. As illustrated in Figure 10(a), we conducted an ablation
study on SDEcho. Pattern-level pruning demonstrates the most sub-
stantial optimization. When #Dim ≤ 10, the explanation search time
with only pattern-level pruning is comparable to that of SDEcho,
underscoring its critical role. When #Dim exceeds 10, dimension-
level pruning can eliminate dimensions with large cardinality, while

order-level pruning removes higher-order explanations with mini-
mal impact on sequence differences, enhancing search efficiency in
high-dimensional data spaces.

4.5.3 Scalability. We generated TPC-H datasets of varying sizes
using dbgen and evaluated the time costs of different explanation en-
gines. As shown in Figure 9(d), SDEcho outperforms other engines,
achieving efficiency improvements of ×23 and ×55 over approxi-
mate methods like DIFF and BOE at scale 0.1, and nearly ×10 over
exact methods like Postgres and TSE. As shown in Figure 10(b),
pattern-level pruning plays the most significant role in pruning.

4.5.4 Comparison with Two-step Methods. To investigate the rela-
tionship between two-step methods and SDEcho, we collected the
time costs for both stages of the two-step methods: the dimension
reduction phase and the explanation searching phase. Subsequently,
we compared the explanation confidence of the top-𝑘 explanations
generated by these methods using our benchmark.

PCA’s principal components are often difficult to interpret due to
non-zero weights across all features. To enhance interpretability, we
used sparse PCA, which retains high variance while ensuring each
component includes only a few significant features. We performed
dimension reduction on 11 dimensions using sparse PCA. Figure
11(a) shows the components extracted by sparse PCA. Although it
is more sparse than PCA components, the explanation composed of
the original dimensions is still difficult to map to the principal com-
ponents. For example, when "components" is set to 3, cmpt_2 and
cmpt_3 are both composed of the dimension set {partkey, shipdate,
commitdate, receiptdate}. Since the original data has changed, the
predicate combination composed of the principal components is
difficult to understand and is not suitable for our explanation task.

As shown in Figure 11(b), we compared the efficiency and ex-
planation confidence of the XInsight-based two-step method and
SDEcho on TPC-H across various scales. With increasing scale,
XInsight’s training time rises significantly, surpassing SDEcho’s
explanation searching time. At scale = 0.05, XInsight times out. In
contrast, SDEcho consistently incurs lower time costs while achiev-
ing higher explanation confidence for top-𝑘 explanations. This is
because the two-step method performs explanation searches within
a limited explanation space after dimension reduction.
Answer to RQ2: Our experiments demonstrate that SDEcho signif-
icantly outperforms existing methods in efficiency and scalability.
It achieves substantial speedups as #Dim increases, maintaining
high efficiency even as data volume scales. Compared to two-step
methods, SDEcho provides accurate and rapid explanations online.
Our ablation studies highlight the importance of pattern-level prun-
ing, especially in high-dimensional contexts, reinforcing SDEcho’s
advantages for large-scale data analysis.

4.6 Empirical Studies (RQ3)

This section presents a user study and case study utilizing the
Natality dataset. We invited external experts to evaluate SDEcho’s
utility and provide a case study demonstrating how SDEcho-derived
answers to "why" questions can relate to actual research outcomes.

4.6.1 Case Study. We used SDEcho to address Oliver’s problem
discussed in Section 1. Figure 12 demonstrates the usage of SDEcho,
showcasing a portion of its outputs. By revealing how SDEcho’s

793

Figure 9: Efficiency comparison with explanation engine baselines across various datasets.

Figure 10: Ablation study of SDEcho.

Figure 11: Comparison with two-step methods. (×: time-out)

output aligns with conclusions from relevant real-world studies,
we illustrate that SDEcho can assist users in conducting sequence
comparison analysis.

As discussed in Section 1, due to the high dimensionality of
the natality22_MM dataset, the user randomly selected several
dimension sets, such as Risk Factors, Infections Present, etc., en-
compassing a total of 18 dimensions like F_PDIAB and RF_GDIAB.
Users only need to use the SDEcho operator in Postgres, specifying
the queries corresponding to the two sequences to be compared
and the explain-by attributes. SDEcho returns the top 10 expla-
nations in just 2.9s. We found that some of SDEcho’s outputs are
similar to research reports on this issue published by institutions
like Yale Medicine[9] and the U.S. Department of Health & Human
Services[8]. SDEcho enables users to perform aggregated sequence
comparison analysis efficiently, requiring no prior knowledge.

4.6.2 User Study. We conducted a user study for the Natality
dataset to investigate (S1) whether SDEcho provides meaningful
explanations and (S2) whether SDEcho reduces the amount of time
a user needs to find explanations.

Query: Why do black and white women differ in Maternal Morbidity
between the ages of 19 and 49?

Syphilis = “N” ∧
Hepatitis B = “N”

Pre-pregnancy Diabetes
= “N” ∧ Hypertension
Eclampsia = “N”

Month Prenatal Care
Began Recode = 1

Top Explanations

1

5

8

…These can include viral infections (e.g.,
influenza, viral hepatitis, rubella, human
immunodeficiency virus or HIV) as well as
bacterial infections (e.g., tuberculosis,
listeriosis, urinary tract infections, gonorrhea,
syphilis, …

Search time: 2903.355 ms

“Heart disease and stroke are leading causes
of maternal mortality, …, hypertension, which
affects a growing number of Americans, can
lead to preeclampsia, a condition marked by
high blood pressure proteinuria (protein in the
urine), …

MMRCs identified several factors … provider
(e.g., lack of continuity of care), …

imdb =# SDEcho
imdb =# [
imdb =# SELECT MAGER14, count(*) AS MM FROM natality22_MM
imdb =# WHERE MRACE31=1 and MAGER14 >= 7 and MAGER14 <= 12 GROUP BY
MAGER14 ORDER BY MAGER14,
imdb =# SELECT MAGER14, count(*) AS MM FROM natality22_MM
imdb =# WHERE MRACE31=2 and MAGER14 >= 7 and MAGER14 <= 12 GROUP BY
MAGER14 ORDER BY MAGER14
imdb =#]
imdb =# on [RF_PDIAB, RF_GDIAB, RF_PHYPE, RF_GHYPE … …];

Yale Medicine

HHS

Figure 12: A real-world case of SDEcho

Participants. There were 20 participants1—6 with medical back-
grounds and 14 from non-medical fields. All participants had prior
SQL experience, enabling them to complete the tasks. The six with
medical backgrounds formed the "expert" group, while the remain-
ing 14 were randomly assigned to the "treatment" or "control"
groups, with 7 participants in each.
Tasks.We first introduced all participants to the Natality schema
and explained the meaning of each field. We prepared six pairs of
aggregated sequences derived from SQL, along with corresponding
"why" questions. Participants were shown the visualized results
and raw data, then asked to find and submit the top-5 explanations
for each question within 20 minutes.

Only the "treatment" group received the top-10 shuffled expla-
nations generated by SDEcho beforehand and were informed of
their potential inaccuracy, emphasizing the need for verification
through their own queries.

After completing the tasks, the "expert" group was provided with
the top-5 explanations generated by SDEcho for each question. To

1To address potential ethical concerns, we ensured that all participants were fully
informed about the scope and purpose of the study and obtained their explicit consent
for the use of the collected data in our ongoing research. Additionally, we avoided
using any privacy-sensitive devices, such as cameras, and anonymized all data to
protect participants’ privacy.

794

Table 1: User study results. Note: "Rel." = relevance rating, "Und." =

understandability rating, "Con." = conciseness rating, "Avg." = average

rating, Time (in minutes).

Q1 Q2 Q3 Q4 Q5 Q6

Rel. 4.1±0.6 4.3±0.5 4.1±0.6 3.9±0.5 4.4±0.3 4.2±0.5
SDEcho Und. 3.9±0.4 3.8±0.4 3.9±0.6 3.6±0.5 3.9±0.6 4.1±0.7

Con. 4.3±0.3 4.2±0.4 4.0±0.4 3.9±0.4 4.1±0.3 4.2±0.4
Treatment Avg 3.8±0.6 3.8±0.8 3.4±0.6 3.7±0.5 3.8±0.6 3.9±0.7
Control Avg 3.0±0.5 2.7±0.7 2.0±0.6 1.8±0.8 2.4±0.5 2.7±0.5

Treatment Time 5.1±3.5 7.6±2.1 9.3±2.0 8.9±1.1 6.5±2.6 5.9±2.8
Control Time 17.3±2.716.4±2.517.2±2.717.2±2.818.0±2.016.7±3.1

answer S1, following [34, 37, 38, 42], we asked each participant
in "expert" group to rate SDEcho’s output on three criteria: "rele-
vance", "understandability", and "conciseness" using scale from 1
(strongly disagree) to 5 (strongly agree), along with outputs from
the treatment and control groups. To answer S2, we recorded the
actual submission times for both the treatment and control groups.
Results andAnalysis. All results are shown in Table 1, where each
cell presents the data in the form of (mean ± standard deviation).
Overall, the responses were positive: the expert group’s average
rating across all questions was 4.05±0.47, indicating that the experts
agreed that the explanations provided by SDEcho were helpful
for data analysis and could guide further research. However, we
observed that the "Understandability" rating was slightly lower
compared to the other criteria. This suggests that some explanations
were not intuitively understandable through patterns alone and
seemed counter-intuitive. In future work, we plan to incorporate
causal relationships to better assist users in understanding the
explanations[46, 57].

The treatment group scored significantly higher than the control
group and took less time, indicating that SDEcho’s explanations
helped users without domain expertise in data analysis. In con-
trast, control group members spent more time manually testing
dimension combinations and selecting patterns for validation.
Answer to RQ3: SDEcho generates plausible explanations con-
sistent with expert knowledge and reduces the time users spend
searching for explanations, assisting them in data analysis to ad-
dress the "why" questions of aggregation sequence pairs.

5 RELATEDWORK

SQL Explanation Engine. In recent years, explanation engines
have garnered widespread attention in the data management com-
munity. From the perspective of the objects to be explained, exist-
ing works can be categorized into explanations for one aggregated
value [27, 30], differences between relations[10, 11, 34, 35, 38, 40, 42,
44, 45, 47, 48, 53, 55], and time-series[15, 32, 33, 51]. However, as dis-
cussed earlier, contrast-based explanation engines cannot support
scenarios involving sequence differences. Moreover, explanation en-
gines like [15], which focus on key performance indicators in time-
series models, typically analyze changes between adjacent data
points within a single sequence. This limits their ability to explain
differences between two sequences, even when provided with the
difference sequence. In addition, causal-based explanations[46, 57]
have gained popularity in the data management community due

to their potential to reveal causal relationships and distinguish
between correlations and cause-effect relationships. However, un-
like these causal methods, our data-centric approach can provide
real-time explanations without relying on background knowledge
encoded in a causal DAG. Thus, our work not only supports ex-
planations for sequence differences but also emphasizes accelerat-
ing explanation searches in high-volume, high-dimensional data
sources while ensuring accurate outputs.
Visual Analytics. There has been work on visual analysis where
comparing subsets or groups of tuples to find the relevant ones is
a common theme. Among these, [20, 49, 52] perform subset com-
parisons in the form of middleware, resulting in significant data
movement overhead, which leads to latency and poor scalability.
PowerBI[6] and Tableau[7] support SQL query interfaces, reducing
data transfer, but users currently need to write complex SQL queries
or generate all possible visualizations and manually compare them.
[48], as an in-database execution operator, allows users to customize
distance metrics between trends to compare trends or trend sets.
However, compared to SDEcho, it does not support the explanation
of sequence differences. Additionally, visualization tools such as
DeepEye [36] and Table2Charts [58] focus on discovering relation-
ships between dimensions and selecting appropriate chart types
for visualization, which is orthogonal to our objective of providing
targeted explanations for sequence differences. Unlike these visu-
alization tools, SDEcho employs a deletion-based method, which
does not require assessing the similarity of observed sequences and
patterns from a shape perspective.
Provenance. Relational query provenance[14] identifies the input
that contributes to the query result. For non-aggregate queries[16,
26], why-provenance returns a set of input tuples responsible for a
given output tuple, while how-provenance encodes how a query
combines input tuples to produce an answer. For aggregate queries
[12], symbolic expressions based on semiring extensions are used
to represent how the aggregate result is computed. Unlike the fine-
grained explanation approaches mentioned above, which output a
set of tuples, most existing explanation engines, including our work,
provide pattern-based explanations[18], represented by selection
predicates. These patterns are concise summaries of the correspond-
ing tuples. Unlike data provenance work[42], our explanations are
derived from the tuples in the provenance.

6 CONCLUSION AND FUTUREWORK

This paper presented a novel framework, SDEcho, for explaining
differences in aggregate sequences. SDEcho employs pruning from
pattern, order, and dimension perspectives, offering a hybrid opti-
mization approach that ensures concise and accurate explanations
with theoretical guarantees. Through comprehensive experimental
evaluation, we demonstrated that SDEcho outperforms existing
methods significantly in terms of both effectiveness and efficiency.
Several directions are open for future work, including extending
support for more sequence distance metrics, such as those used for
comparing probability distributions.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Founda-
tion of China (Grants No. 62272106 and No. 62072113).

795

REFERENCES

[1] 2024. CDC. https://www.cdc.gov/nchs Last accessed: 2024-12-16.
[2] 2024. CMS. https://www.cms.gov/priorities/key-initiatives/open-payments/data

Last accessed: 2024-5-1.
[3] 2024. Google Trend. https://trends.google.com/trends/explore?q=%2Fg%2F11j0_

8y5xw,%2Fg%2F11c75ypgws Last accessed: 2024-12-16.
[4] 2024. Imply. https://docs.imply.io/latest/explain/ Last accessed: 2024-12-16.
[5] 2024. Natality Dataset. https://www.cdc.gov/nchs/data_access/VitalStatsOnline.

htm#Births Last accessed: 2024-12-16.
[6] 2024. Power BI. https://learn.microsoft.com/en-us/power-bi/visuals/power-bi-

visualization-influencers?tabs=powerbi-desktop Last accessed: 2024-12-16.
[7] 2024. Tableau. https://help.tableau.com/current/pro/desktop/en-us/explain_

data_basics.htm Last accessed: 2024-12-16.
[8] 2024. U.S. Department of Health & Human Services. https://www.hhs.gov/sites/

default/files/call-to-action-maternal-health.pdf Last accessed: 2024-12-16.
[9] 2024. Yale Medicine. https://www.yalemedicine.org/news/maternal-mortality-

on-the-rise Last accessed: 2024-12-16.
[10] Firas Abuzaid, Peter Bailis, Jialin Ding, Edward Gan, Samuel Madden, Deepak

Narayanan, Kexin Rong, and Sahaana Suri. 2018. Macrobase: Prioritizing atten-
tion in fast data. ACM Transactions on Database Systems (TODS) 43, 4 (2018),
1–45.

[11] Firas Abuzaid, Peter Kraft, Sahaana Suri, Edward Gan, Eric Xu, Atul Shenoy,
Asvin Ananthanarayan, John Sheu, Erik Meijer, Xi Wu, et al. 2018. Diff: a
relational interface for large-scale data explanation. Proceedings of the VLDB
Endowment 12, 4 (2018), 419–432.

[12] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for ag-
gregate queries. In Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. 153–164.

[13] Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern recognition and
machine learning. Springer.

[14] Peter Buneman, Sanjeev Khanna, andWang-Chiew Tan. 2002. On propagation of
deletions and annotations through views. In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 150–158.

[15] Yiru Chen and Silu Huang. 2023. TSExplain: Explaining Aggregated Time Series
by Surfacing Evolving Contributors. In 2023 IEEE 39th International Conference
on Data Engineering (ICDE). 708–720.

[16] James Cheney, Laura Chiticariu, Wang-Chiew Tan, et al. 2009. Provenance in
databases: Why, how, and where. Foundations and Trends® in Databases 1, 4
(2009), 379–474.

[17] Roni Copul, Nave Frost, Tova Milo, and Kathy Razmadze. 2024. TabEE: Tabular
Embeddings Explanations. Proceedings of the ACM on Management of Data 2, 1
(2024), 1–26.

[18] Vargha Dadvar, Lukasz Golab, and Divesh Srivastava. 2022. Exploring Data
Using Patterns: A Survey. Information Systems 108, C (2022), 11.

[19] Daniel Deutch, Amir Gilad, Tova Milo, Amit Mualem, and Amit Somech. 2022.
FEDEX: An Explainability Framework for Data Exploration Steps. Proceedings of
the VLDB Endowment 15, 13 (2022), 3854–3868.

[20] Rui Ding, Shi Han, Yong Xu, Haidong Zhang, and Dongmei Zhang. 2019. Quick-
insights: Quick and automatic discovery of insights from multi-dimensional
data. In Proceedings of the 2019 international conference on management of data.
317–332.

[21] Deepa Dongarwar, Danyal Tahseen, Liye Wang, Muktar H Aliyu, and Hamisu M
Salihu. 2021. Temporal trends in preterm birth phenotypes by plurality: Black–
White disparity over half a century. Journal of Perinatology 41, 2 (2021), 204–211.

[22] Richard O Duda, Peter E Hart, et al. 2006. Pattern classification. John Wiley &
Sons.

[23] Yuankai Fan, Tonghui Ren, Can Huang, Beini Zheng, Yinan Jing, Zhenying
He, Jinbao Li, and Jianxin Li. 2024. A confidence-based knowledge integration
framework for cross-domain table question answering. Knowledge-Based Systems
306 (2024), 112718.

[24] Liqiang Geng and Howard J Hamilton. 2006. Interestingness measures for data
mining: A survey. ACM Computing Surveys (CSUR) 38, 3 (2006), 9–es.

[25] Boris Glavic, Alexandra Meliou, and Sudeepa Roy. 2021. Trends in explanations:
Understanding and debugging data-driven systems. Foundations and Trends® in
Databases 11, 3 (2021).

[26] Melanie Herschel, Ralf Diestelkämper, and Houssem Ben Lahmar. 2017. A survey
on provenance: What for? What form? What from? The VLDB Journal 26, 6
(2017), 881–906.

[27] Zezhou Huang and Eugene Wu. 2022. Reptile: Aggregation-Level Explanations
for Hierarchical Data. In Proceedings of the 2022 International Conference on
Management of Data. 399–413.

[28] John H Huber, Mengmeng Ji, Yi-Hsuan Shih, Mei Wang, Graham Colditz, and
Su-Hsin Chang. 2023. Disentangling age, gender, and racial/ethnic disparities
in multiple myeloma burden: a modeling study. Nature communications 14, 1
(2023), 5768.

[29] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[30] Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran. 2015. Smart
drill-down: A new data exploration operator. In Proceedings of the VLDB Endow-
ment International Conference on Very Large Data Bases, Vol. 8. 1928.

[31] Nicole Blair Johnson, Locola D Hayes, Kathryn Brown, Elizabeth C Hoo, Kath-
leen A Ethier, Centers for Disease Control, Prevention (CDC), et al. 2014. CDC
National Health Report: leading causes of morbidity and mortality and associated
behavioral risk and protective factors–United States, 2005-2013. MMWR suppl
63, 4 (2014), 3–27.

[32] Jokin Labaien, Ekhi Zugasti, and Xabier De Carlos. 2020. Contrastive explanations
for a deep learning model on time-series data. In International Conference on Big
Data Analytics and Knowledge Discovery. 235–244.

[33] Kin Kwan Leung, Clayton Rooke, Jonathan Smith, Saba Zuberi, and Maksims
Volkovs. 2023. Temporal Dependencies in Feature Importance for Time Series
Predictions. arXiv:2107.14317

[34] Chenjie Li, Zhengjie Miao, Qitian Zeng, Boris Glavic, and Sudeepa Roy. 2021.
Putting things into context: Rich explanations for query answers using join
graphs. In Proceedings of the 2021 International Conference on Management of
Data. 1051–1063.

[35] Brandon Lockhart, Jinglin Peng, Weiyuan Wu, Jiannan Wang, and Eugene Wu.
2021. Explaining Inference Queries with Bayesian Optimization. Proceedings of
the VLDB Endowment 14, 11 (2021), 2576–2585.

[36] Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. 2018. DeepEye: Towards
Automatic Data Visualization. In 2018 IEEE 34th International Conference on Data
Engineering (ICDE). 101–112.

[37] Pingchuan Ma, Rui Ding, Shuai Wang, Shi Han, and Dongmei Zhang. 2023. In-
sightPilot: An LLM-empowered automated data exploration system. In Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. 346–352.

[38] Pingchuan Ma, Rui Ding, Shuai Wang, Shi Han, and Dongmei Zhang. 2023.
XInsight: EXplainable Data Analysis Through The Lens of Causality. Proceedings
of the ACM on Management of Data 1, 2 (2023), 27.

[39] Alexandra Meliou, Sudeepa Roy, and Dan Suciu. 2014. Causality and explanations
in databases. Proceedings of the VLDB Endowment 7, 13 (2014), 1715–1716.

[40] Zhengjie Miao, Andrew Lee, and Sudeepa Roy. 2019. LensXPlain: Visualizing
and explaining contributing subsets for aggregate query answers. Proceedings of
the VLDB Endowment 12, 12 (2019), 1898–1901.

[41] Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2019. Explaining wrong queries
using small examples. In Proceedings of the 2019 International Conference on
Management of Data. 503–520.

[42] Zhengjie Miao, Qitian Zeng, Boris Glavic, and Sudeepa Roy. 2019. Going beyond
provenance: Explaining query answers with pattern-based counterbalances. In
Proceedings of the 2019 International Conference on Management of Data. 485–502.

[43] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[44] Sudeepa Roy, Laurel Orr, and Dan Suciu. 2015. Explaining query answers with
explanation-ready databases. Proceedings of the VLDB Endowment 9, 4 (2015),
348–359.

[45] Sudeepa Roy and Dan Suciu. 2014. A formal approach to finding explanations for
database queries. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data. 1579–1590.

[46] Babak Salimi, Johannes Gehrke, and Dan Suciu. 2018. Bias in OLAP queries:
Detection, explanation, and removal. In Proceedings of the 2018 International
Conference on Management of Data. 1021–1035.

[47] Sunita Sarawagi. 2001. idiff: Informative summarization of differences in multidi-
mensional aggregates. Data Mining and Knowledge Discovery 5 (2001), 255–276.

[48] Tarique Siddiqui, Surajit Chaudhuri, and Vivek Narasayya. 2021. COMPARE:
Accelerating Groupwise Comparison in Relational Databases for Data Analytics.
Proceedings of the VLDB Endowment 14, 11 (2021), 2419–2431.

[49] Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya
Parameswaran. 2016. Effortless data exploration with zenvisage: an expres-
sive and interactive visual analytics system. Proceedings of the VLDB Endowment
10, 4 (2016), 457–468.

[50] Yuchao Tao, Xi He, AshwinMachanavajjhala, and Sudeepa Roy. 2020. Computing
local sensitivities of counting queries with joins. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 479–494.

[51] Sana Tonekaboni, Shalmali Joshi, Kieran Campbell, David K Duvenaud, and
Anna Goldenberg. 2020. What went wrong and when? Instance-wise feature
importance for time-series black-box models. Advances in Neural Information
Processing Systems 33 (2020), 799–809.

[52] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and
Neoklis Polyzotis. 2015. SeeDB: efficient data-driven visualization recommen-
dations to support visual analytics. Proceedings of the VLDB Endowment 8, 13
(2015), 2182–2193.

[53] Xiaolan Wang, Xin Luna Dong, and Alexandra Meliou. 2015. Data x-ray: A diag-
nostic tool for data errors. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. 1231–1245.

796

https://www.cdc.gov/nchs
https://www.cms.gov/priorities/key-initiatives/open-payments/data
https://trends.google.com/trends/explore?q=%2Fg%2F11j0_8y5xw,%2Fg%2F11c75ypgws
https://trends.google.com/trends/explore?q=%2Fg%2F11j0_8y5xw,%2Fg%2F11c75ypgws
https://docs.imply.io/latest/explain/
https://www.cdc.gov/nchs/data_access/VitalStatsOnline.htm#Births
https://www.cdc.gov/nchs/data_access/VitalStatsOnline.htm#Births
https://learn.microsoft.com/en-us/power-bi/visuals/power-bi-visualization-influencers?tabs=powerbi-desktop
https://learn.microsoft.com/en-us/power-bi/visuals/power-bi-visualization-influencers?tabs=powerbi-desktop
https://help.tableau.com/current/pro/desktop/en-us/explain_data_basics.htm
https://help.tableau.com/current/pro/desktop/en-us/explain_data_basics.htm
https://www.hhs.gov/sites/default/files/call-to-action-maternal-health.pdf
https://www.hhs.gov/sites/default/files/call-to-action-maternal-health.pdf
https://www.yalemedicine.org/news/maternal-mortality-on-the-rise
https://www.yalemedicine.org/news/maternal-mortality-on-the-rise
https://arxiv.org/abs/2107.14317

[54] SvanteWold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis.
Chemometrics and intelligent laboratory systems 2, 1-3 (1987), 37–52.

[55] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining Away Outliers in
Aggregate Queries. Proceedings of the VLDB Endowment 6, 8 (2013), 553–564.

[56] Brit Youngmann, Sihem Amer-Yahia, and Aurelien Personnaz. 2022. Guided
exploration of data summaries. Proceedings of the VLDB Endowment 15 (2022),
1798–1807.

[57] Brit Youngmann, Michael Cafarella, Amir Gilad, and Sudeepa Roy. 2024. Sum-
marized Causal Explanations For Aggregate Views. Proceedings of the ACM on
Management of Data 2, 1 (2024), 1–27.

[58] Mengyu Zhou, Qingtao Li, Xinyi He, Yuejiang Li, Yibo Liu,Wei Ji, Shi Han, Yining
Chen, Daxin Jiang, and Dongmei Zhang. 2021. Table2Charts: recommending
charts by learning shared table representations. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 2389–2399.

797

	Abstract
	1 Introduction
	2 Problem Formulation
	3 SDEcho: Explanation Searching
	3.1 A Basic Approach and its Challenge
	3.2 Aggregation Function Analysis
	3.3 PatternPrune: Pattern-level Pruning
	3.4 OrderPrune: Order-level Pruning
	3.5 DimPrune: Dimension-level Pruning
	3.6 Putting Things Together: Hybrid Pruning
	3.7 Optimization for Independent Aggregates
	3.8 Discussion

	4 Experiments
	4.1 Datasets
	4.2 Benchmark
	4.3 Baselines
	4.4 Quality of Top-k Explanations (RQ1)
	4.5 Efficiency Evaluation of SDEcho (RQ2)
	4.6 Empirical Studies (RQ3)

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

