
RED: Effective Trajectory Representation Learning with
Comprehensive Information

Silin Zhou
University of Electronic Science and

Technology of China
zhousilinxy@gmail.com

Shuo Shang∗
University of Electronic Science and

Technology of China
jedi.shang@gmail.com

Lisi Chen
University of Electronic Science and

Technology of China
lchen012@e.ntu.edu.sg

Christian S. Jensen
Aalborg University

csj@cs.aau.dk

Panos Kalnis
KAUST

panos.kalnis@kaust.edu.sa

ABSTRACT
Trajectory representation learning (TRL) maps trajectories to vec-
tors that can then be used for various downstream tasks, includ-
ing trajectory similarity computation, trajectory classification, and
travel-time estimation. However, existing TRL methods often pro-
duce vectors that, when used in downstream tasks, yield insuffi-
ciently accurate results. A key reason is that they fail to utilize
the comprehensive information encompassed by trajectories. We
propose a self-supervised TRL framework, called RED, which ef-
fectively exploits multiple types of trajectory information. Overall,
RED adopts the Transformer as the backbone model and masks the
constituting paths in trajectories to train a masked autoencoder
(MAE). In particular, RED considers the moving patterns of trajecto-
ries by employing a Road-aware masking strategy that retains key
paths of trajectories during masking, thereby preserving crucial
information of the trajectories. RED also adopts a spatial-temporal-
user joint Embedding scheme to encode comprehensive information
when preparing the trajectories as model inputs. To conduct train-
ing, RED adopts Dual-objective task learning: the Transformer en-
coder predicts the next segment in a trajectory, and the Transformer
decoder reconstructs the entire trajectory. RED also considers the
spatial-temporal correlations of trajectories by modifying the at-
tention mechanism of the Transformer. We compare RED with 9
state-of-the-art TRL methods for 4 downstream tasks on 3 real-
world datasets, finding that RED can usually improve the accuracy
of the best-performing baseline by over 5%.

PVLDB Reference Format:
Silin Zhou, Shuo Shang, Lisi Chen, Christian S. Jensen, and Panos Kalnis.
RED: Effective Trajectory Representation Learning with Comprehensive
Information. PVLDB, 18(2): 80 - 92, 2024.
doi:10.14778/3705829.3705830

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/slzhou-xy/RED.

∗The corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 2 ISSN 2150-8097.
doi:10.14778/3705829.3705830

1 INTRODUCTION
With the proliferation of GPS-enabled devices (e.g., smartphones,
navigators, and digital watches), large amounts of trajectories are
collected, recording the movements of pedestrians or vehicles.
These trajectories serve as the foundation for many applications
such as traffic prediction [49], urban planning [33], and transporta-
tion optimization [38]. However, as sequences of timestamped lo-
cations, trajectories require specific techniques for management
and analysis. For example, trajectory similarity computation often
relies on dynamic programming [3, 9], resulting in computational
costs that increase quadratically with trajectory length.

Recently, trajectory representation learning (TRL), which maps
each trajectory to a vectors embedding, has attracted attention as a
general preprocessing technique [20, 31, 42, 43]. The advantage is
that the learned vectors can be used directly in many downstream
tasks, including trajectory classification [24], travel time estima-
tion [27], and trajectory similarity computation [51], with standard
vector processing techniques. For instance, trajectory similarity can
be calculated as the distance between the vectors of two trajectories,
with a cost that does not increase with trajectory length.

Early TRL methods [23, 45] usually target a specific task. For
example, Traj2vec [45] uses Recurrent Neural Networks (RNNs) to
map trajectories to vectors and tailors model design for trajectory
clustering. The problem of these methods is that their vectors do
not work well when used in other downstream tasks. Subsequent
TRL methods [10, 13, 41] utilize self-supervised learning (SSL) due
to the strong generalization capabilities of SSL. In particular, SSL
relies on a generic pre-training task to distill data information, e.g.,
by manually masking a portion of the trajectories and learning to
recover the trajectories. For example, Trembr [13] uses RNNs [19]
with an encoder-decoder architecture. The encoder embeds trajecto-
ries into vectors, and the decoder recovers trajectories from vectors.
Recent TRL methods [20, 31, 43] adopt contrastive learning (CL).
CL conducts data augmentations to generate positive and negative
samples for each trajectory, and the model is trained to make posi-
tive trajectory pairs more similar than negative pairs. For instance,
START [20] features several data augmentation techniques, such
as randomly masking segments in the trajectories and trimming
the trajectories to get sub-trajectories. However, data augmenta-
tion techniques may not generalize across datasets because their
performance depends strongly on the dataset under consideration.

A trajectory encompasses multiple kinds of information, includ-
ing road, user, spatial-temporal, travel, and movement, but existing

80

https://doi.org/10.14778/3705829.3705830
https://github.com/slzhou-xy/RED
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3705829.3705830
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Trajectory information utilized by TRL methods.

Model Road User Spatial Temporal Travel Movement

T2vec [23] $ $ $ $ $ $

Traj2vec [45] $ $ $ $ $ "

Trembr [13] " $ $ " $ $

PIM [41] " $ " $ $ $

Toast [10] " $ " $ " "

JCLRNT [31] " $ " $ $ $

START [20] " " " " " $

LightPath [43] " $ $ $ " $

RED (ours) " " " " " "

TRL methods do not utilize them comprehensively, resulting in tra-
jectory representations with reduced accuracy. In particular, road
information, obtained bymapmatching [39], tells the road segments
each trajectory passes and is less noisy than the raw trajectory
points. User information ties each trajectory to a user and encodes
user preference. Spatial information refers to the spatial locations
of the road segments, and a road segment usually has multiple adja-
cent road segments with high transition probabilities [16]. Temporal
information captures the progress over time when moving along
a trajectory and can be used to estimate travel time and analyze
traffic flow [20]. Travel semantics [10] refers to the overall travel
statistics of a trajectory, such as travel time and distance.Movement
semantics [45] refers to the local properties of trajectories, such as
whether congestion is encountered at a location.

Table 1 summarizes how trajectory information is utilized by ex-
isting TRL methods. Road information is ignored by a few methods,
e.g., Traj2vec [45] models trajectories as point sequences with-
out considering the underlying road properties. Spatial informa-
tion is usually considered by using the road network. For example,
Toast [10] and PIM [41] apply the graph neural network to capture
the topology of the road network of a city. Temporal information
is typically used to encode model inputs, e.g., Trembr [13] includes
the timestamp of each road in a trajectory as input to its RNN.
Some methods incorporate the travel semantics into trajectories
to extract global information. For instance, Toast [10], START [20],
and LightPath [43] utilize the learned trajectory representations to
recover raw trajectories. Only a few methods consider the moving
semantics for local information, e.g., Traj2vec and Toast use context
windows to extract short sequences from trajectories. START [20]
is the only existing method that exploits user information.

To go beyond existing studies, we propose RED, a self-supervised
learning method that aims to improve TRL by using more compre-
hensive trajectory information. For overall architecture, RED adopts
Transformer as the backbone model and masks the segments of
path trajectories to train a masked autoencoder. Regarding trajec-
tory information, we first consider and analyze the local driving
pattern of road path trajectories and propose a novel road-aware
masking strategy. In particular, we split a path trajectory into the
key path and the mask path, where the key path contains most of
the semantic information of a trajectory to assist in the final trajec-
tory representation. Then, we design a spatial-temporal-user joint
embedding scheme to fuse spatial, temporal, and user information
of road paths for model inputs. We also co-encode the time and

segment type to capture periodic information of travel. To train RED,
we utilize two training tasks, including next segment prediction
and trajectory reconstruction. Next segment prediction predicts the
next road segment from previous key paths of a trajectory, while
trajectory reconstruction reconstructs the original trajectory us-
ing the learned representations of the key paths and mask paths.
Both tasks exploit the travel information in the trajectory repre-
sentations. Moreover, we also introduce two strategies to improve
trajectory modeling: virtual tokens and a spatial-temporal corre-
lation enhanced attention module. Virtual tokens solve the path
misalignment issues when using the Transformer for trajectories,
and the attentionmodule enhances Transformer attention to extract
the spatial-temporal information of trajectories.

To evaluate RED, we set experiments on 3 real-world datasets
and compare with 9 state-of-the-art TRL methods, includes su-
pervised and self-supervised methods, as well as 7 non-learning
trajectory similarity computation methods. We consider 4 popular
downstream tasks: travel time estimation, trajectory classification,
trajectory similarity computation, and most similar trajectory re-
trieval. The results show that RED outperforms all existing methods
in terms of accuracy across the tasks and datasets. In particular,
compared with the best-performing baseline, the average accuracy
improvement of RED at travel time estimation, trajectory classifica-
tion, and trajectory similarity computation are 7.03%, 12.11%, and
20.02%, respectively. An ablation study suggests that all the types
of trajectory information we utilize contribute to the accuracy of
TRL and that our model designs are effective.

To summarize, we make three main contributions.
• We identify design limitations of existing TRLmethods, including

the use of random masking, insufficient utilization of trajectory
information, and limited supervision signals for model training.

• We propose RED as a more effective self-supervised learning
framework for TRL. RED features a road-aware mask, spatial-
temporal-user embedding, and dual-objective learning to address
the limitations of existing methods.

• We report on an extensive evaluation and comparison of RED
with state-of-the-art TRL methods. The results show that RED
is capable of higher accuracy than the existing methods across
important downstream tasks.

2 PROBLEM AND BACKGROUND
2.1 Preliminaries
Definition 1 (GPS Trajectory). A GPS trajectory, denoted as T𝑔𝑝𝑠 ,
is a sequence of points collected at a fixed sampling time interval
rate. Each point in T𝑔𝑝𝑠 takes the form of 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖), where 𝑥𝑖 ,
𝑦𝑖 , and 𝑡𝑖 denote longitude, latitude, and timestamp, respectively.
Definition 2 (Road Network). A road network is modeled as a
directed graph G = (V,A), whereV denotes the road segment set
in the road network, and A ∈ R |V |× |V | is the adjacency matrix
that represents the connectivity between road segments. A[𝑖, 𝑗] =
1 if and only if road segments 𝑣𝑖 and 𝑣 𝑗 are directly connected,
otherwise A[𝑖, 𝑗] = 0. Under this definition, a trajectory can be
extracted as a sequence of road segments that it passes through.
Definition 3 (Path Trajectory). A path trajectory T is a time-
ordered sequence of road segments that is generated from T𝑔𝑝𝑠 by
map matching. That is, T =

⟨︁
𝜏1, 𝜏2, ..., 𝜏 | T |

⟩︁
contains the |T | road

81

Road-aware
Masking StrategyMap Matching

GPS Trajectory

Path Trajectory

Key Path

Mask Path Sp
at

ia
l-t

em
po

ra
l-u

se
r J

oi
nt

 E
m

be
dd

in
g

Mask Path
Embedding

Key Path
Embedding

Path Decoder

Unshuffle

N
ex

t S
eg

m
en

t
Pr

ed
ic

tio
n

Path Encoder

Tr
aj

ec
to

ry
R

ec
on

st
ru

ct
io

n

Path Encoder

Path Trajectory

Travel Time
Estimation

Model Workflow Embedding for Downstream Tasks

Spatial-temporal-user
Joint Embedding

Trajectory
Similarity

Trajectory
Classification

Figure 1: Overall architecture of the RED framework.

segments passed by T𝑔𝑝𝑠 . Each element 𝜏𝑖 = (𝑣𝑖 , 𝑡𝑖) ∈ T models
that the trajectory passes road segment 𝑣𝑖 at timestamp 𝑡𝑖 .

2.2 Problem Statement
Given a set of path trajectoriesD =

{︁
T1,T2, ...,T|D |

}︁
and a road net-

work graph G, we aim to compute a generic vector representation
𝑝𝑖 ∈ R𝑙 for each path trajectory T𝑖 ∈ D, where 𝑙 is the dimension
of the trajectory vector representation. We expect these vectors to
achieve a high accuracy for various downstream tasks:
• Trajectory similarity computation: Given trajectories T𝑎 and

T𝑏 , trajectory similarity computation calculates a score capturing
the similarity between T𝑎 and T𝑏 .

• Most similar trajectory retrieval: Given a query trajectory T𝑎
and a trajectory dataset D, this task finds the trajectory T𝑏 ∈ D
that is the most similar to T𝑎 .

• Trajectory classification: Given a trajectory T𝑎 , this task as-
signs T𝑎 to a category, e.g., a user ID.

• Travel time estimation: Given trajectory T𝑎 without temporal
information, this task predicts the travel time of T𝑎 .

2.3 Background on Machine Learning
Transformer. The Transformer [34] architecture has demonstrated
impressive effectiveness at NLP. It models a token sequence, where
a token is a word identifier, that can be converted into a learn-
able vector. A token does not need to be associated with a word.
Thus, a language model BERT [11] designs a [CLS] token to rep-
resent the summary of a sentence. The Transformer architecture
encompasses multiple stacked blocks, each block contains a multi-
head self-attention and a feed-forward network. Multi-head self-
attention learns the inter-relationships between different elements
in a sequence. A feed-forward network further enhances feature ex-
traction and the model’s expressiveness. Compared to RNN-based
methods [19], the Transformer can accommodate billions of model
parameters by stacking blocks and computes a long token sequence
in parallel, without the need to iterate through time steps.

An input token sequence embedding is given byX ∈ R𝑛×𝑙 , where
𝑛 is the sequence length, and 𝑙 is the dimensionality of vectors. The
vanilla Transformer first adds a position encoding to X and then
transformsX to a querymatrix𝑄 = X𝑊𝑄 ∈ R𝑛×𝑙 , a keymatrix𝐾 =

X𝑊𝐾 ∈ R𝑛×𝑙 , and a value matrix 𝑉 = X𝑊𝑉 ∈ R𝑛×𝑙 ,𝑊𝑄 ∈ R𝑙×𝑙 ,

𝑊𝐾 ∈ R𝑙×𝑙 , and𝑊𝑉 ∈ R𝑙×𝑙 are learnable matrices. Next a self-
attention correlation matrix is given by A =

𝑄𝐾𝑇

√
𝑙

∈ R𝑛×𝑛 , where
𝛼𝑖, 𝑗 ∈ A is the attention score between element-𝑖 and element- 𝑗 of
X. The sequence output is computed as follows:

X′ = softmax(A)𝑉 , (1)

where X′ is the input to the subsequent feed-forward network.
Masked Autoencoder. A masked autoencoder [17] is an encoder-
decodermodel from computer vision (CV) that uses the Transformer.
An image is first divided into small patches, where each patch can
be seen as a word and can be placed in the Transformer for training.
A masked autoencoder randomly masks partial patches and has
its encoder act on visible patches. A lightweight decoder is used
to reconstruct the raw image pixels based on mask tokens and
potential representations from the encoder. This reconstruction
task is an effective and meaningful self-supervised task.

In our study, we view a path trajectory as a sentence, and we view
each segment as a word that is transformed into a token. Our base
model is a masked autoencoder. We use prior trajectory knowledge
to partition mask data, and we introduce comprehensive trajectory
information to improve the accuracy of trajectory representation.

3 METHOD OVERVIEW
The left plot of Figure 1 shows the workflow of RED during training,
which involves three key modules, i.e., road-aware masking, spatial-
temporal-user joint embedding, and dual-objective learning.
Road-aware Masking. As the first step, the map matching algo-
rithm [39] is conducted to transform a GPS trajectory to a path
trajectory. Then, the road-aware masking strategy splits a path
trajectory T into key path set T𝑘 and mask path set T𝑚 , where
T = T𝑘 ∪ T𝑚 , based on the sampling rate and driving pattern of
the trajectory. The key paths in T𝑘 encompass the driving patterns
of the trajectory while the mask paths in T𝑚 are less crucial and
thus are masked for the encoder. In comparison, existing methods
adopt the random masking strategy, which randomly masks the
paths. Trajectory information will be lost if some key paths are
masked. Moreover, random masking also requires extensive tuning
of the mask ratio while our road-aware masking does not.
Joint Embedding. Next, each segment of a trajectory is encoded
as a raw embedding to serve as framework input, which can be

82

Segment ID0
20k
40k
60k
80k

100k
120k

Po
in

t n
um

be
r

(a) Sampling points on segments
Short Segment Long Segment

0.0

0.2

0.4

0.6

0.8

1.0

(b) Short and long segments

Segment count
Sampling point count

Figure 2: Trajectory sample statistics of the Porto dataset.

expressed as X = Emb(T). The spatial-temporal-user joint em-
bedding integrates comprehensive information of the trajectory,
including spatial features from the road network graph, temporal
features from the traffic and travel patterns over time, user features
from user ID, and segment features from the road types.
Dual-objective learning.We train RED with two objectives on to
provide sufficient supervision signals for learning. In particular, the
encoder maps the key paths in T𝑘 to key path embedding ˆ︁X𝑘 =

Encoder(X𝑘). As the key paths capture the crucial driving patterns
of a trajectory, we use the next segment prediction objective L𝑛𝑠𝑝
for the encoder to predict the next key path given the previous key
paths. This resembles next token prediction in NLP. The decoder
takes the path embeddings generated by the encoder, merges the
key paths and mask paths according to their original order in the
trajectory, and reconstructs the trajectory using the embeddings, i.e.,ˆ︁XT = Decoder(Unshuffle(ˆ︁X𝑘 ,X𝑚)). Thus, we use the trajectory
reconstruction objective L𝑡𝑟 to train the decoder. Therefore, the
overall objective function is:

L = 𝜆1L𝑛𝑠𝑝 (ˆ︁X𝑘) + (1 − 𝜆1)L𝑡𝑟 (ˆ︁XT), (2)

where 𝜆1 controls the weight of the loss terms. To tackle sparsity
on trajectories, i.e., GPS points recorded by the device during the
driving process are discontinuous, inconsistent, or missing, we
incorporate comprehensive information, more effective supervision
signals, and a GNN for the road network.

As shown in the right of Figure 1, during inference, we only use
path encoder and feed the embeddings of the complete trajectory
as input to get the trajectory vector for downstream tasks.

4 KEY DESIGNS OF RED
We proceed to detail the key innovations of RED, which includes
the road-aware masking strategy, the spatial-temporal-user joint
embedding, the dual-objective task learning, and the enhanced
trajectory modeling techniques.

4.1 Road-aware Masking Strategy
Mask-based self-supervised learning is popular for TRL, which first
masks some road segments of a path trajectory, and then learns to
reconstruct the masked road segments. However, existing methods
use the random masking strategy, which has two problems. First,
it may discard essential road segments of a trajectory, leading to
some key information loss and inaccurate trajectory representa-
tions. Second, the masking ratio requires extensive tuning, and one

S1S1

S2S2 S3S3
S4S4 S5S5

S6S6

S7S7

Figure 3: Illustration of the road-aware masking.

masking ratio may not suit different trajectories. We introduce a
road-aware masking strategy that avoids the two problems.

To motivate the road-aware masking strategy, we illustrate the
sampling statistics of real-world trajectories in Figure 2. The dataset
is Porto, and the sampling interval is about 15 seconds for consec-
utive points in a trajectory. Since the average length of the road
segments in the road network is about 85 meters, we call road seg-
ments below 85 meters as short segments and the converse long
segments. Figure 2(a) shows that the distribution of the sampling
points over the road segments is highly skewed, i.e., some segments
have many sampling points while some segments have only a few
sampling points. Intuitively, segments with many sampling points
are important because they are passed by many trajectories and
may take an important role in the road network (e.g., connecting
two important areas). Figure 2(b) shows that there are more short
road segments than long road segments in the road network but
more sampling points reside on the long road segments than the
short segments. This suggests that the long segments are more
important than the short segments because the trajectories spend
more time on them. Overall, Figure 2 suggests that the road seg-
ments are different in their importance. Thus, by treating all road
segments equally, random masking may lose important segments
and hinder model training.

Driven by the observations from Figure 2, our road-aware mask-
ing strategy treats road segments with many sampling points and
long road segments as key paths, which will not be masked. To
avoid parameter tuning, we call a segment hot (resp. long) when its
sampling points (resp. length) are larger than the average over the
road segments. Figure 3 provides a running example of road-aware
masking. The original trajectory is plotted in green color. After
map matching, we obtain 7 road segments, i.e., ⟨𝑠1, 𝑠2, ..., 𝑠7⟩. The
key paths, i.e., (𝑠1, 𝑠4, 𝑠5, 𝑠7), are marked in red, while the mask
paths, i.e., (𝑠2, 𝑠3, 𝑠6) are marked in blue. The key paths either have
many sampling points (e.g., 𝑠1) or a large length (e.g., 𝑠7). 𝑠6 is a
mask path because it has only a few sampling points, while 𝑠2 and
𝑠3 are mask paths because they are generated by map matching and
do not contain real sampling points from the trajectory.

4.2 Spatial-temporal-user Joint Embedding
Path trajectories encompass a wealth of information, including user
ID, road segment, and time information. All of this information is
important when learning a versatile representation for trajectories.
Consequently, we propose a spatial-temporal-user joint embedding
to encode all the information for model input. Formally, given a

83

segment 𝑣𝑖 of a path trajectory, we use Equation 3 for encoding:

x𝑖 = h𝑖 + t𝑖 + u𝑖 , (3)

where h𝑖 , t𝑖 , and u𝑖 denote the spatial, time and user encodings of
segment 𝑣𝑖 , which are described next.
Spatial Encoding h𝑖 . The road segments of a city form a complex
structure, which can be captured by the road network graph G.
We observe that the properties of a segment are affected by itself
and its adjacent segments. Therefore, we apply a graph neural
network (GNN) to learn embeddings for road segments based on the
road network graph G. In particular, GNN computes an embedding
for each node in the graph by aggregating the embeddings of its
neighbors. We choose the Graph Attention Network (GAT) [35],
which adopts an attention mechanism for neighbor aggregation.

We feed multiple attributes of a segment as the initial input fea-
ture of GAT, including the maximum speed limit, average travel
time, segment direction, out-degree, in-degree, segment length, and
segment type. To be specific, for the maximum speed limit, average
travel time, segment direction, and segment length, we apply the
min-max normalization. Regarding segment type, we categorize
each segment into eight classes, i.e., [living street, motorway, pri-
mary, residential, secondary, tertiary, trunk, unclassified], and we
employ one-hot encoding. All these attributes are concatenated
to obtain the input features 𝑓𝑖 for segment 𝑣𝑖 . Formally, given the
initial feature 𝑓𝑖 of segment 𝑣𝑖 and road network graph G, GAT
computes segment embedding as h𝑖 = GAT(𝑓𝑖 ,G). We use a 3-layer
GAT model to consider 3-hop neighbors for each segment.
Time Encoding t𝑖 . We consider two types of time regularities for
trajectories. (i) Trajectory patterns vary considerably at different
times of a day or a week. For instance, many trajectories move
towards office areas on weekday mornings, while evenings usually
observe a surge in trajectories heading back home. (ii) The traffic
patterns of different road segment types differ at the same time. For
example, segments in commercial areas show elevated trajectory
volumes during the daytime, whereas segments in residential areas
observe increased trajectory data during non-work hours.

To account for (i), we introduce a time encoding to capture period-
icity. Inspired by Time2vec [21], given the timestamp 𝑡𝑖 of segment
𝑣𝑖 in a trajectory, we first transform 𝑡𝑖 into a 6-dimension vector
[hour,minute, second, year,month, day], then we learn timestamp 𝑡𝑖
as a vector e𝑡

𝑖
of dimension 𝑙/2 as follows:

e𝑡𝑖 = FC1 (𝑡𝑖) ∥ sin(FC2 (𝑡𝑖)), (4)

where FC1 (·) and FC2 (·) are linear layers to learn time embedding,
and sin(·) function helps capture time periodic behaviors. ∥ is a
concatenate operation for vectors by channel-dimension. To ac-
count for (ii), we design a segment type encoding. In particular, we
employ a learnable type encoding matrix E𝑝 ∈ R |𝑇 |× 𝑙

2 , where each
row corresponds to a segment type in 𝑇 = {living street, motorway,
primary, residential, secondary, tertiary, trunk, unclassified}. Given
the type of a segment 𝑣𝑖 , we look up E𝑝 to obtain its type encoding
e𝑝
𝑖
. Then we concatenate the time encoding e𝑡

𝑖
and segment type

encoding e𝑝
𝑖
, and use a fully connected network to interact two

encodings t𝑖 = 𝐹𝐶 (e𝑡𝑖 ∥ e
𝑝

𝑖
) ∈ R𝑑 .

User Encoding u𝑖 . Different drivers have different travel patterns
in their trajectories. E.g., an office worker may follow the same

route on all weekdays, while taxi drivers try to pick up passengers
in crowded areas every day. By combining spatial information and
temporal information (joint embedding) with trajectory attributes
(dual-objective task learning), the user encoding can capture the
specific behaviors of individual users, including travel time, trajec-
tory length, and high-frequency access areas, which benefits tasks
such as trajectory similarity computation, travel time estimation,
and trajectory classification. To encode user information, we em-
ploy a learnable user encoding matrix E𝑢 ∈ R |𝑈 |×𝑙 , where |𝑈 | is
the number of users, and each row of E𝑢 corresponds to a user.

4.3 Dual-objective Task Learning
Here, we present the two learning objectives of RED.
Path Encoder. The path encoder is designed to capture key in-
formation of a path trajectory and to predict the next segment for
learning local information of the trajectory. Section 4.1 shows that
the key paths of a trajectory carry much more information than the
mask paths, suggesting that a trajectory can be described by the
key paths. Thus, we require the path encoder to learn information
from the key paths. Formally, given the key path set of a trajectory
T𝑘 = ⟨𝑣𝑘1 , 𝑣

𝑘
2 , ..., 𝑣

𝑘
| T𝑘 | ⟩, the corresponding key path embedding

X𝑘 = ⟨x𝑘1 , x
𝑘
2 , ..., x

𝑘
| T𝑘 | ⟩ is first generated by the spatial-temporal-

user joint embedding, then position encoding [34] is added to X𝑘 to
introduce the position information of each segment in the path tra-
jectory. We feed X𝑘 to the Transformer of the encoder and denoteˆ︁X𝑘 = Transformer(X𝑘) as the output.

To extract the prediction for the next segment from encoder
output, we use a fully connected layer Y𝑘 = 𝐹𝐶 (ˆ︁X𝑘), where Y𝑘 ∈
R | T𝑘 |× |V | . Each row of Y𝑘 is the predicted distribution of a key
segment, and each column of Y𝑘 corresponds to one segment (with
|V| being the number of all segments). Then we use cross-entropy
loss to compute errors between the predicted value and the ground-
truth segment ID for the next segment prediction task as follows:

L𝑛𝑠𝑝T𝑘
= − 1

|T𝑘 |

∑︂
𝑣𝑖 ∈T𝑘

log
exp(Y𝑘𝑣𝑖)∑︁

𝑣𝑗 ∈V exp(Y𝑘𝑣𝑗)
, (5)

We average the above loss over the trajectories in a mini-batch to
obtain the final next segment prediction loss L𝑛𝑠𝑝 .

Note that we predict the next key path in the encoder, so we use
causal self-attention here to avoid information leakage.
Path Decoder. The path decoder is designed to restore a raw path
trajectory by decoding the embeddings of its segments generated by
the encoder. However, the path encoder only encodes the key paths
and ignores the mask paths. Although the mask paths carry less in-
formation about the trajectory, they are indispensable when restor-
ing a complete trajectory. Thus, we use another Transformer model
as the decoder to combine the key paths and themask paths.We first
transform all mask path segments to learnable embedding X𝑚 , and
combine X𝑚 with the outputs of the path encoder for the key paths.
Then we conduct an unshuffle operation to restore the mask path
embeddings to their original positions in path trajectory T . This
process can be formulated as XT = Unshuffle(Combine(ˆ︁X𝑘 ,X𝑚)).

The decoder takes XT as input and computes hidden embedding
output as ˆ︁XT = Transformer(XT). To restore the raw information
of trajectory T , we design a trajectory reconstruction task that

84

Time-distance Enhanced Attention

[START] [EXTRACT]

Feed Forward Network

Norm Layer

Next Segment Prediction

Time-distance Enhanced Attention

Feed Forward Network

Norm Layer

Trajectory Reconstruction
Trajectory

Representation

Downstream Tasks

Path Encoder Path Decoder Time-distance Enhanced Attention

Time Interval Distance Interval

[END]

FC FC

FC FC

Softmax

= ⟨ , , . . . , ⟩= ⟨ , , . . . , ⟩

Feed Forward Network

Figure 4: The enhanced Transformer of the encoder and decoder.

aims to reconstruct the whole path trajectory from the decoder
output ˆ︁XT . To achieve this, we first use a fully connected layer
to obtain the predictions YT = 𝐹𝐶 (ˆ︁XT), where YT ∈ R | T |× |V | .
Each row of YT is the predicted distribution of a segment of T ,
and each column of YT corresponds to a segment. Then we use
cross-entropy loss for a complete trajectory T as follows:

L𝑡𝑟T = − 1
|T |

∑︂
𝑣𝑖 ∈T

log
exp(YT

𝑣𝑖
)∑︁

𝑣𝑗 ∈V exp(YT
𝑣𝑗)
, (6)

We also average the above loss over all trajectories in a mini-batch
to obtain the final trajectory reconstruction loss L𝑡𝑟 .

Existing TRLmethods consider limited supervised information in
the training task, e.g., START [20] only reconstructs mask segments
of a path trajectory, and Traj2vec [45] recovers trajectory points.
REDwith dual-objective task explores more supervised information
and thus can improve the accuracy of trajectory representations.

4.4 Enhancing Transformer for Trajectory
To use Transformer as the model for the path encoder and decoder,
two issues need to be addressed. First, the next segment prediction
task is different from next token prediction of language in subtle
ways, and directly using Transformer will encounter errors in the
input and output (which we call segment misalignment). Second,
the Transformer relies on the self-attention among the token em-
beddings while trajectories contain spatial-temporal information.
To utilize such spatial-temporal information, we need to integrate
it into Transformer attention. To fix segment misalignment, we
introduce virtual tokens for the encoder. To utilize spatial-temporal
information of trajectories, we design a time-distance enhanced at-
tention to enhance the Transformer for the decoder. Figure 4 gives
an overview of the enhanced path encoder and decoder.

4.4.1 Virtual Token. The next segment prediction task of path en-
coder can encounter segment misalignment. For instance, given
path trajectory ⟨𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5⟩, the key path is ⟨𝑣1, 𝑣3, 𝑣5⟩ and the
mask path is ⟨𝑣2, 𝑣4⟩. To predict the next key segments, the input
of the path encoder is ⟨𝑣1, 𝑣3⟩, and the expected output of the path

encoder is ⟨𝑣3, 𝑣5⟩. Therefore, the last key segment 𝑣5 is not used as
input and the first key segment 𝑣1 is not used as output. When we
combine the output of the encoder with the mask path ⟨𝑣2, 𝑣4⟩, we
will get an incomplete trajectory input ⟨𝑣2, 𝑣3, 𝑣4, 𝑣5⟩ (i.e., missing
𝑣1) for the decoder, which causes incomplete trajectory reconstruc-
tion. To solve these problems, we introduce three virtual tokens,
i.e., a start token, an end token, and an extract token.
Start Token. To complete the first segment in the path encoder
output, we introduce a start token [START] at the initiation of all
trajectories. However, utilizing [START] to predict the first key
segment of a path trajectory cannot consider the topology of the
road network. To address this problem, we add [START] as a virtual
node in the road network graph G. Specifically, the [START] node
is connected to all the nodes of G with edges, and this augmented
graph is also used to generate the spatial encoding.
End Token. The end token [END] serves as the expected output
of the path encoder when taking all key segments of a trajectory
as input to predict the next segment.
Extract Token. To extract the overall information of a trajectory,
we introduce an extract token [EXTRACT] at the end of each tra-
jectory. The encoder output embedding for [EXTRACT] is used as
the trajectory representation.

To illustrate the virtual tokens, we take the same path trajectory
⟨𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5⟩ as an example. Still, the key path is ⟨𝑣1, 𝑣3, 𝑣5⟩ and
the mask path is ⟨𝑣2, 𝑣4⟩. By adding virtual tokens, the input of
the path encoder becomes ⟨[START], 𝑣1, 𝑣3, 𝑣5, [EXTRACT]⟩. The
output of the path encoder is to predict ⟨𝑣1, 𝑣3, 𝑣5, [END]⟩, and the
output of [EXTRACT] is the trajectory representation. Therefore,
the input and output of the path encoder is complete.

4.4.2 Time-distance Enhanced Attention. With spatial-temporal-
user joint embedding, a path trajectory T = ⟨𝜏1, 𝜏2, ..., 𝜏 | T | ⟩ is trans-
formed to embedding X = ⟨x1, x2, ..., x | T | ⟩ ∈ R | T |×𝑙 . Then we
can use the vanilla Transformer to model trajectory representation.
However, directly applying Equation 1 neglects the essential spatial-
temporal information in trajectories. Spatially, a path trajectory
consists of continuous road segments, and each segment is related
most closely to its adjacent segments. Consequently, two segments

85

that are distant in a path trajectory should have small attention
scores, while two segments that are close should have large atten-
tion scores. Temporally, the sampling timestamps of the segments
of a trajectory are consecutive. Two segments with a large sam-
pling time difference should have small attention scores, while the
converse is true for two segments with a small sampling time dif-
ference. To ensure these properties, we introduce the time-distance
enhanced attention to consider the time interval and distance in-
terval between the road segments in a trajectory. In particular,
we construct a time-distance attention matrix A𝑡𝑑 to incorporate
spatial-temporal information to the vanilla Transformer as follows:

X′ = softmax(A + A𝑡𝑑)𝑉 , (7)

where A𝑡𝑑 = (1 − 𝜆2)A𝑡 + 𝜆2A𝑑 . A𝑡 is the time interval correlation,
A𝑑 is the distance interval correlation, and 𝜆2 is a hyper parameter.
Time Interval Correlation. Follow by START [20], consider a
path trajectory T = ⟨𝜏1, 𝜏2, ..., 𝜏 | T | ⟩, where 𝜏𝑖 = (𝑣𝑖 , 𝑡𝑖) denotes the
segment 𝑣𝑖 and timestamp 𝑡𝑖 that the trajectory passes through.
We first construct a time interval matrix 𝑀𝑡 ∈ R | T |× |T | , where
element𝑚𝑡

𝑖, 𝑗
∈ 𝑀𝑡 is the difference |𝑡𝑖 − 𝑡 𝑗 | between the sampling

timestamps of segments 𝑣𝑖 and 𝑣 𝑗 . Then, we introduce a transfor-
mation 𝑓 (𝑚𝑡

𝑖, 𝑗
) = 1

log(𝑒+𝑔𝑡 (𝑚𝑡
𝑖,𝑗
)) to make larger values smaller to

capture correlation based on time interval, where 𝑔𝑡 (𝑚𝑡𝑖, 𝑗) =
𝑚𝑡

𝑖,𝑗

60
maps seconds to minutes to avoid excessive time differences be-
tween the segments. In the path encoder, the inputs are key paths
of a trajectory, so the time interval matrix is a sub-matrix of𝑀𝑡 .

To incorporate the information of𝑀𝑡 into the trajectory repre-
sentation, we use a fully connected layers to transform each element
𝑚𝑡
𝑖, 𝑗

∈ 𝑀𝑡 to a vector in the embedding space as 𝛿𝑡
𝑖, 𝑗

= 𝐹𝐶 (𝑚𝑡
𝑖, 𝑗
),

where the 𝛿𝑡
𝑖, 𝑗

∈ R
𝑙
2 . Consequently, we obtain the time interval

hidden embedding Δ𝑡 ∈ R | T |× |T |× 𝑙
2 for T . Then, we use another

fully connected layer to transform Δ𝑡 to time interval correlation
matrix A𝑡 ∈ R | T |× |T | , where each element 𝛼𝑡

𝑖, 𝑗
∈ A𝑡 is a time

interval correlation value, and 𝛼𝑡
𝑖, 𝑗

= 𝐹𝐶 (𝛿𝑡
𝑖, 𝑗
).

Distance Interval Correlation. Like time interval correlation, we
first construct a travel distance interval matrix𝑀𝑑 ∈ R | T |× |T | for
a path trajectory T . In particular, we use the travel length between
two segments as𝑚𝑑

𝑖,𝑗
∈ 𝑀𝑑 . Then another transformation 𝑓 (𝑚𝑑

𝑖,𝑗
) =

1
log(𝑒+𝑔𝑑 (𝑚𝑑

𝑖,𝑗
)) is used to ensure that two distant segments have

has lower correlation, where 𝑔𝑑 (𝑚𝑑𝑖,𝑗)) =
𝑚𝑑

𝑖,𝑗

1000 transforms distance
from meters to kilometers to avoid excessive values. We also use a
fully connected layer to map the transformed distances to the final
distance interval correlation matrix A𝑑 .

4.5 Discussion
Complexity Analysis. The training time of RED encompasses
three terms: i.e., road-aware masking, graph neural network, and
trajectory encoding. The road-aware masking has time complex-
ity O(|D| · |T |), where |T | is the average trajectory length and
|D| is the cardinality of the trajectory dataset. The GNN training
has complexity O(|V| · 𝑙 + |E| · 𝑙), where 𝑙 is the embedding di-
mensionality, |V| and |E | are the numbers of nodes and edges in
the road network. The complexity of encoding the trajectories is

Table 2: Statistics of the experiment datasets.

Dataset Porto Rome Chengdu

#Users 439 313 13,715
#Path trajectories 859,986 80,203 4,413,602
#Road Segments 10,537 49,230 45,534
Avg. trajectory length 37 56 26

O(|D| · |T𝑘 |2 · 𝑙 · 𝐿𝑒 + |D| · |T |2 · 𝑙 · 𝐿𝑑), where |T𝑘 | in the number
of key segments in trajectory T and |T𝑘 | < |T |, 𝐿𝑒 and 𝐿𝑑 are
the numbers of path encoder and path decoder layers. To conduct
model inference for a trajectory dataset D′, we use the path en-
coder to compute the vector representations. The complexity of
this is O(|D′ | |T |2 · 𝑙 · 𝐿𝑒). The resulting trajectory representations
take O(𝑙 · |D′ |) space. Using the representations, computing the
similarity of two trajectories has time cost O(𝑙). In contrast, tradi-
tional trajectory similarity algorithms (e.g., DTW, EDR) have cost
O(|D| · |T |2) because they use dynamic programming.
Limitations. RED targets trajectories on the road network (i.e., in-
volving map matching and road segments) and needs to be adjusted
for other types of trajectories (e.g., POI trajectories, animal and hu-
man flow trajectories). Moreover, RED focuses on trajectory-based
tasks (e.g., similarity computation and travel time estimation) and
is unsuitable for road network related tasks that do not work at the
trajectory level, e.g., road classification and flow estimation.

5 EXPERIMENTAL EVALUATION
We evaluate and compare RED with the state-of-the-art baselines
on four downstream tasks, trajectory classification, travel time
estimation, trajectory similarity computation, and most similar
trajectory retrieval on three real-world datasets.

5.1 Experimental Settings
Datasets. We use three real-world datasets: Porto1, Rome2, and
Chengdu3. Key statistics are given in Table 2. We use map data from
OpenStreetMap4. This data includes road IDs, lengths, road types,
speed limits, etc. Trajectory points include latitude, longitude, times-
tamp, user ID, etc., which are sampled on average every 15, 5, and
30 seconds in Porto, Rome, and Chengdu, respectively. We remove
trajectory points that are not within the chosen map boundaries
and that are drifting.We apply the FMM [39] mapmatchingmethod,
which is widely used for road network-based methods [20, 31] and
is efficient and accurate, to obtain path trajectories. We also remove
path trajectories with fewer than 6 segments and set the maximum
path trajectory length to 256. The overall proportion of training,
validation, and testing data for Porto and Chengdu is set to [0.6, 0.2,
0.2], while for Rome, it is set to [0.8, 0.1, 0.1].
Baselines. We compare RED with 9 state-of-the-art TRL methods,
including the four RNN-based methods Traj2vec [45], T2vec [23],
Trembr [13], and PIM [41] and the five Transformer-based meth-
ods Transformer [34], BERT [11], PIM-TF [41], Toast [10], and

1https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
2https://ieee-dataport.org/open-access/crawdad-Rometaxi
3https://www.pkbigdata.com/common/zhzgbCmptDetails.html
4https://www.openstreetmap.org

86

Table 3: Accuracy at travel time estimation. Best-performing existing methods are underlined, and the bottom row reports
RED’s accuracy improvement over the best existing method.

Porto Rome Chengdu
MAE↓ MAPE(%)↓ RMSE↓ MAE↓ MAPE(%)↓ RMSE↓ MAE↓ MAPE(%)↓ RMSE↓

Traj2vec 1.624 20.005 3.137 5.933 45.292 7.188 1.397 16.833 2.114
T2vec 1.608 19.906 3.043 5.873 44.975 7.104 1.400 17.072 2.136
Trembr 1.576 19.391 2.892 5.336 44.220 6.907 1.374 16.635 1.937
PIM 1.684 20.137 3.205 5.992 45.937 7.294 1.622 20.897 2.796
Transformer 1.844 21.325 3.790 6.684 47.131 9.982 1.707 22.458 3.031
BERT 1.707 20.243 3.275 6.114 46.142 7.358 1.453 17.520 2.544
PIM-TF 2.018 22.456 3.898 6.941 48.020 8.313 1.833 23.561 3.163
Toast 1.801 20.952 3.334 6.411 46.864 7.997 1.391 16.984 2.110
START 1.506 18.012 2.799 4.342 43.823 6.282 1.278 15.961 1.889
RED 1.468 16.716 2.651 3.798 41.658 5.358 1.212 15.648 1.720
Improve. 2.52% 7.20% 5.29% 12.53% 4.94% 14.71% 5.16% 1.96% 8.95%

Table 4: Accuracy at trajectory classification. Best-performing existing methods are underlined, and the bottom row reports
RED’s accuracy improvement over the best existing method.

Porto Rome Chengdu
Mi-F1↑ Ma-F1↑ Recall@5↑ Mi-F1↑ Ma-F1↑ Recall@5↑ Accuracy ↑ Precision ↑ F1↑

Traj2vec 0.074 0.052 0.223 0.069 0.047 0.185 0.809 0.817 0.820
T2vec 0.083 0.062 0.238 0.074 0.053 0.190 0.794 0.803 0.814
Trembr 0.087 0.069 0.243 0.081 0.062 0.208 0.811 0.836 0.848
PIM 0.069 0.041 0.207 0.060 0.034 0.174 0.764 0.787 0.791
Transformer 0.043 0.035 0.107 0.041 0.034 0.098 0.767 0.794 0.800
BERT 0.077 0.054 0.229 0.075 0.058 0.177 0.810 0.837 0.852
PIM-TF 0.035 0.028 0.083 0.032 0.026 0.079 0.754 0.762 0.786
Toast 0.075 0.048 0.215 0.070 0.044 0.206 0.824 0.841 0.860
START 0.098 0.076 0.251 0.095 0.079 0.238 0.825 0.849 0.879
RED 0.107 0.085 0.262 0.120 0.106 0.284 0.835 0.865 0.885
Improve. 9.18% 11.84% 4.38% 26.32% 34.18% 19.33% 1.21% 1.88% 0.68%

START [20]. For trajectory similarity tasks, we further introduce
the seven heuristic methods SSPD [4],Hausdorff [1], Fréchet [2],
DTW [3], LCSS [36], ERP [8], and EDR [8].
Implementation.We implement RED using PyTorch 2.0. We use a
machine running Ubuntu 20.04 and with an NVIDIA RTX GeForce
4090 GPU. We set the embedding size 𝑙 to 128 in all methods, the
number of GAT layers to 3, and the number of encoder and decoder
layers to 6. The attention heads are [8, 16, 1] for GAT, and 8 for the
encoder and decoder. The dropout ratio is 0.1. We set 𝜆1 = 0.1 for
the dual-objective tasks, and 𝜆2 = 0.5 for time-distance correlation.
We pre-train RED using the AdamW [30] optimizer. The batch sizes
are 64, 32, and 32, the training epochs are 10, 30, and 5, and the
learning rates are 1e-4 for Porto and Chengdu, 2e-4 for Rome.
Downstream Task Settings. For all downstream tasks, we only
use the encoder of RED and use complete trajectories as input.
For trajectory classification and travel-time estimation, we use
AdamW [30] to fine-tune the encoder. The batch size is 64, the
training epoch is 30, and the learning rate is 1e-4. For trajectory
classification on Porto and Rome, we classify trajectories according
to user IDs and remove the user encoding to avoid information
leakage during fine-tuning. For Chengdu, we classify trajectories
based on whether the vehicle is carrying passengers and keep the
user encoding during fine-tuning. We add an extra linear layer to

get predictions and use cross-entropy as the loss function. For travel
time estimation, we remove all time information, including the time
encoding as well as the time correlation, except for the departure
time, to avoid time information leakage. We also add an extra linear
layer to predict travel time and use mean square error (MSE) as the
loss function. The travel times of all methods are reported in min-
utes. For trajectory similarity computation, we conduct two types
of experiments without fine-tuning, including trajectory similarity
computation and most similar trajectory retrieval, and we use the
inner-product of trajectory vectors as the similarity score.
Performance Metrics. For travel time estimation, we report the
mean absolute error (MAE), mean absolute percentage error (MAPE),
and root mean square error (RMSE). For trajectory multi-classifica-
tion, we report the Micro-F1 (Mi-F1), Macro-F1 (Ma-F1), and Re-
call@5 values. For the trajectory binary-classification, we report the
F1-score, accuracy, and precision. For trajectory similarity tasks, we
use Hit Ratio i.e., the HR@1, HR@5, HR@10 values, for trajectory
similarity computation and the mean rank (MR) for most similar
trajectory retrieval. Ideally, the MR value should be equal to 1.

5.2 Main Results
The main findings for the four downstream tasks are reported at
Table 3 in travel time estimation, Table 4 for trajectory classification,

87

Table 5: Accuracy at trajectory similarity computation. The best-performing baseline is marked with underline, and the bottom
row is our accuracy improvement over the best baseline.

Porto Rome
Hausdorff distance Fréchet distance Hausdorff distance Fréchet distance

HR@1↑ HR@5↑ HR@10↑ HR@1↑ HR@5↑ HR@10↑ HR@1↑ HR@5↑ HR@10↑ HR@1↑ HR@5↑ HR@10↑
Traj2vec 0.103 0.292 0.380 0.110 0.308 0.404 0.092 0.276 0.329 0.101 0.285 0.340
T2vec 0.129 0.330 0.431 0.140 0.352 0.458 0.121 0.304 0.361 0.135 0.307 0.356
Trembr 0.141 0.354 0.462 0.164 0.377 0.476 0.134 0.311 0.379 0.147 0.320 0.384
PIM 0.114 0.302 0.374 0.129 0.321 0.399 0.105 0.279 0.343 0.111 0.286 0.350
Transformer 0.083 0.260 0.351 0.090 0.271 0.372 0.079 0.244 0.302 0.088 0.266 0.321
BERT 0.091 0.277 0.364 0.099 0.290 0.385 0.085 0.261 0.318 0.092 0.273 0.329
PIM-TF 0.073 0.241 0.337 0.075 0.248 0.343 0.064 0.210 0.278 0.072 0.221 0.290
Toast 0.121 0.315 0.408 0.137 0.320 0.417 0.113 0.291 0.357 0.128 0.302 0.366
START 0.172 0.389 0.490 0.185 0.427 0.532 0.162 0.329 0.401 0.179 0.339 0.418
RED 0.239 0.501 0.608 0.246 0.523 0.638 0.190 0.358 0.431 0.205 0.387 0.463

Improve. 38.95% 28.79% 24.08% 32.97% 22.48% 19.92% 17.28% 8.81% 7.48% 14.53% 14.16% 10.77%

Table 6: Accuracy for most similar trajectory retrieval in terms of mean rank (MR↓), where lower values indicate better
performance. The best-performing method is highlighted in bold, and the second-best method is underlined.

Porto Rome
𝑝 = 0.1 on diverse datasize various 𝑝 on 100k dataset 𝑝 = 0.1 on diverse datasize various 𝑝 on 40k dataset
10k 50k 100k 𝑝 = 0.2 𝑝 = 0.3 𝑝 = 0.4 10k 20k 40k 𝑝 = 0.2 𝑝 = 0.3 𝑝 = 0.4

Hausdorff 35.42 83.12 132.2 237.3 312.0 464.1 50.18 68.19 103.6 236.8 262.4 340.5
Fréchet 45.10 88.95 159.1 210.5 372.1 469.6 187.6 212.6 437.8 55.55 73.62 88.70
DTW 1.752 3.067 3.694 6.298 13.01 30.60 1.985 2.946 4.832 10.33 24.64 59.43
LCSS 92.67 312.8 421.6 965.9 1349 2431 125.1 147.2 350.2 706.7 1143 1645
EDR 146.2 447.2 667.3 1090 1508 2202 176.8 232.1 455.5 852.3 1421 1830
ERP 32.13 89.15 274.1 393.0 424.5 572.6 86.32 107.7 331.1 446.7 444.0 520.8
SSPD 2.034 3.816 4.754 6.855 14.72 32.27 3.122 5.078 8.948 25.33 36.93 102.1
Traj2vec 1.842 2.693 2.911 5.123 10.72 18.36 1.801 2.034 2.739 4.911 8.234 14.34
T2vec 1.740 2.351 2.400 5.940 10.34 17.00 1.661 1.839 2.177 4.267 7.963 15.72
Trembr 1.509 2.010 2.130 4.536 9.681 12.74 1.488 1.721 1.990 3.891 6.706 10.44
PIM 4.331 8.937 10.98 40.66 67.50 161.1 3.912 4.771 8.324 36.42 63.00 92.64
Toast 4.997 9.310 12.43 44.21 84.45 132.6 3.949 4.801 7.330 29.65 48.51 78.50
START 1.232 1.720 1.847 3.251 6.241 8.831 1.114 1.222 1.445 3.524 5.583 7.268

RED 1.420 1.893 1.996 4.158 7.497 10.77 1.096 1.171 1.343 2.955 4.370 7.560

Table 5 for trajectory similarity computation, and Table 6 for most
similar trajectory retrieval. For brevity, we only show results on
two datasets for some experiments.
Performance at Travel Time Estimation. The results for travel
time estimation in Table 3 show that RED achieves the best perfor-
mance on all metrics on three datasets. Among the existingmethods,
Trembr and START perform much better than other methods be-
cause these two methods exploit temporal information. On the
contrary, disregarding temporal information yields inaccurate pre-
dictions, e.g., Toast and PIM. Our model not only utilizes temporal
correlations in trajectories but also includes a pre-trained time em-
bedding, i.e., Time2vec [21], which makes the input of the model
carry more temporal features. In addition, we consider the behav-
iors of the road segment types in different time periods so that the
features of road segments and the time are fully integrated.
Performance at Trajectory Classification. The results for tra-
jectory classification are shown in Table 4. RED performs the best
because of introducing more comprehensive trajectory information,
e.g., spatial information, temporal information, user encoding, and
etc. Moreover, RED’s road-aware masking strategy preserves the

crucial information of trajectories, while its graph neural networks
and use of static attributes of related road segments as input. The
use of comprehensive information can improve the accuracy of
trajectory representation and greatly enhance the performance of
trajectory classification. On the Chengdu dataset, the performance
improvement of RED is small because the binary classification task
is simple, making it difficult for any method to excel.
Performance at Trajectory SimilarityComputation.We choose
two commonly used trajectory similarity heuristics, i.e., Hausdorff
distance and Frèchet distance, to obtain the most similar trajec-
tory ground truths in the test set. The results of Table 5 show that
RED achieves the best performance. RED utilizes comprehensive
information on trajectories to improve the expressive of learned
trajectory representations and thus supports the high accuracy of
trajectory similarity computation.
Performance at Most Similar Trajectory Retrieval. Following
the method [6], we create experimental data including a query set
𝑄 and a database set 𝐷 from datasets. Then we downsample the
points of each trajectory (if the method uses a road network, we
apply detour method [31]), in the query set 𝑄 at ratio 𝑝 to obtain

88

Table 7: Accuracy for trajectory classification on the Geolife dataset.

Method SVM [18] RF [5] TimeLSTM [52] GRU-D [7] STGN [48] STGRU [28] TrajODE [25] Trajformer [24] RED

Accuracy↑ 49.88 56.16 66.68 71.71 75.60 73.15 85.25 85.45 86.89

Table 8: Average time (in μs) to compute the representation for a trajectory.

RNN-based Method Transformer-based Method
Method Traj2vec T2vec Trembr PIM Transformer BERT PIM-TF Toast START RED

Time 302.25 291.90 297.33 346.00 137.80 140.83 151.93 205.92 217.80 213.30
Rank 9 7 8 10 1 2 3 4 6 5

Table 9: Average time (in μs) to compute one trajectory simi-
larity of RED and different heuristic algorithms.

Hausdorff Fréchet DTW LCSS EDR ERP SSPD RED

Porto 58.48 215.55 66.87 70.68 64.62 216.52 60.30 6.14
Rome 229.85 1198.52 367.13 389.87 353.49 1194.93 232.08

a sub-trajectory set 𝑄 ′, and then we add 𝑄 ′ to 𝐷 to obtain the
expanded database set 𝐷′. By construction the trajectories in𝑄 and
the trajectories in 𝑄 ′ have high similarity. For each trajectory in
query set 𝑄 , the task aims to find the corresponding sub-trajectory
in 𝐷′. We set |𝑄 | = 1, 000, and then set |𝐷 | = 100, 000 in Porto and
|𝐷 | = 40, 000 in Rome. Table 6 shows the results.

Varying the database size |𝐷 |. We fix the downsampling rate 𝑝
at 0.1, and vary the database size |𝐷 | from 10,000 to 100,000 in
Porto and from 10,000 to 40,000 in Rome. The results show that
the average performance of the TRL methods is much higher than
that of the heuristic algorithms. Because a sub-trajectory has the
same semantics as the raw trajectory and TRL methods rely on
trajectory semantics, they achieve better performance. Second, the
performance of RED is slightly lower than START on Porto and
slightly higher than that of START on Rome. The average length of
a trajectory in Rome is longer than that of Porto (see Tabel 2), and
through the learning of key paths, our model can capture semantic
information of trajectories well in the case of long trajectories.

Varying downsampling rate 𝑝 . We downsample trajectories in
|𝑄 | by different ratios 𝑝 ∈ [0.2, 0.4], while fixing |𝐷 | at 100,000
for Porto and 40,000 for Rome. The results show that the average
performance of the TRL methods is much higher than that of the
heuristic algorithms. The heuristic algorithms perform very poorly
at the high downsampling rate 𝑝 = 0.4, while the TRL methods
still perform well using their learned semantic information. RED
performs slightly below START on Porto and slightly above START
on Rome. Because START uses trimming data augmentation during
training, it relies on different scales to trim raw trajectories, and
this makes START insensitive to downsampling rates.
Generalization of RED. In addition to the vehicle trajectories,
we also apply RED to human mobility trajectories using the Geo-
life [50] dataset. When performing trajectory classification [24, 25],
Table 7 shows that RED achieves the best accuracy. We further
apply RED to sparse trajectories, i.e., POI trajectories, for next POI

<10 10-20 20-50 50-100 >100
Trajectory length

0

1k

2k

3k

Ti
m

e(
s)

(a) Length effect on Porto

DTW
Hausdorff
EDR
ERP
RED

<10 10-20 20-50 50-100 >100
Trajectory length

0

1k

2k

3k

Ti
m

e(
s)

(b) Length effect on Rome

DTW
Hausdorff
EDR
ERP
RED

10 100 1k 10k
Dataset size

0

10k

20k

30k

40k
Ti

m
e(

s)

(c) Dataset scale effect on Porto

DTW
Hausdorff
EDR
ERP
RED

10 100 1k 10k
Dataset size

0

20k

40k

60k

80k

Ti
m

e(
s)

(d) Dataset scale effect on Rome

DTW
Hausdorff
EDR
ERP
RED

Figure 5: Trajectory similarity computation time (in s) when
varying the trajectory length and dataset size.

recommendation [37, 40] and route recommendation [14, 22]. Here,
RED achieves the second-best or the third-best accuracy.

5.3 Efficiency Study
We study the efficiency on Porto and Rome. In Table 8, we report
the average inference time for a trajectory. The inference time is
crucial for the efficiency of downstream tasks. The results show that
the Transformer-based methods have the shorter inference time
than the RNN-based methods. This is because the self-attention in
the Transformer can be computed in parallel, while RNNs need to
iterate over the paths in a trajectory. The inference time of RED
is comparable to those of the Transformer-based methods, which
usually perform the best in the accuracy experiments. This suggests
that good accuracy comes from tailored model designs instead of
high model complexity.

Computing the similarity between two trajectories is the basic
operation in retrieval and clustering. In Table 9, we report the aver-
age time of a trajectory similarity computation. We do not compare
RED with other TRL methods because they all transform similar-
ity computation into vector computation and thus have identical
computation time when using the same embedding dimensionality.
Instead, we compare with heuristic trajectory similarity measures
such as DTW, LCSS, etc. The results show that RED is much faster

89

Table 10: Accuracy of RED when disabling key designs.

Porto Rome
MAPE↓ HR@10↑ Recall@5↑ MAPE↓ HR@10↑ Recall@5↑
(TTE) (TS) (TC) (TTE) (TS) (TC)

w/o NSP 18.239 0.466 0.259 42.029 0.277 0.260
w/o TE 18.681 0.385 0.252 44.835 0.336 0.274
w/o VT 18.537 0.394 0.257 43.933 0.301 0.264
w/o TD 17.587 0.539 0.261 41.904 0.353 0.279
RED 16.716 0.638 0.262 41.658 0.463 0.284

than the heuristic measures. This is because the vector computa-
tion of RED has linear complexity while the heuristic measures use
dynamic programming, which has quadratic complexity.

In addition, we explore the impact of trajectory length and
dataset size on the efficiency of similarity computation. Figure 5
reports the total time to compute the similarity of trajectory pairs in
two datasets. For the trajectory length experiments, we partition tra-
jectories into five sets based on their lengths: [0∼10, 10∼20, 20∼50,
50∼100, 100∼]. Within each set, we randomly sampled 1,000 trajec-
tories and compute the similarity between each pair. Figures 5(a)
and (b) show that the heuristic algorithms exhibit runtimes that
increase notably with longer trajectories. Conversely, RED employs
parallel computation on vectors, substantially reducing the compu-
tational time. For the dataset size experiments, we vary the dataset
size across [10, 100, 1k, 10k] and compute the similarity of each
trajectory pair. Figures 5(c) and (d) show again that the heuris-
tic algorithms are inefficient. In contrast, parallel computation on
vectors is highly efficient and is insensitive to data size fluctuations.

5.4 Ablation Study and Model Designs
Ablation Study. To gain insight into the contributions of each
sub-module in RED, we conduct ablation study on Porto and Rome.
Table 10 shows the results. We denote travel time estimation as
TTE, trajectory classification as TC, and trajectory similarity as TS.
For brevity, we only report on one metric for each task. In trajectory
similarity, we show the performance using Fréchet distance.
• w/o NSP: We remove the next segment prediction task, and keep

only the trajectory reconstruction task.
• w/o time encoding (TE): We remove the time encoding and

keep only the segment types.
• w/o virtual token (VT): We remove all virtual tokens and the

virtual node, and take the prediction of the last position of the
encoder as trajectory representation.

• w/o time-distance (TD): We remove the time-distance correla-
tion in self-attention in the encoder and the decoder.
Table 10 indicates a pronounced impact at HR@10 performance

in trajectory similarity computation. This metric relies on pre-
trained trajectory vectors without fine-tuning, necessitating robust
generalization of representations. Although reductions in MAPE
and Recall@5 performance are also observed, they are compara-
tively less significant than that of HR@10.

Additionally, the time encoding, NSP, and virtual token mech-
anisms play pivotal roles in RED. Time encoding captures crucial
temporal information, notably enhancing trajectory representation.
NSP, tasked with predicting the next segment, is a challenging yet
pivotal component. The virtual token addresses data misalignment

Table 11: Accuracy of RED with tuned random mask ratio
and road-aware masking strategy.

Porto Rome
MAPE↓ HR@10↑ Recall@5↑ MAPE↓ HR@10↑ Recall@5↑
(TTE) (TS) (TC) (TTE) (TS) (TC)

Ratio 0.1 17.260 0.591 0.259 43.307 0.435 0.274
Ratio 0.3 17.258 0.602 0.262 43.107 0.452 0.282
Ratio 0.5 17.267 0.535 0.262 42.331 0.471 0.281
Ratio 0.7 17.290 0.502 0.260 42.972 0.465 0.283
Ratio 0.9 17.310 0.310 0.240 43.752 0.329 0.276
RED 16.716 0.638 0.262 41.658 0.463 0.284

in the encoder, facilitating accurate prediction of the start position,
and thereby preventing incomplete model predictions.

Furthermore, incorporating the time-distance yields notable en-
hancements by injecting spatial-temporal information into atten-
tion computation, increasing the awareness of neighboring paths
within each trajectory path.
Road-aware Masking Strategy. The impact of varying random
masking ratios, as illustrated in Table 11, is profound. A masking
ratio of 0.9 degrades performance severely. Excessive masking im-
pedes RED’s ability to extract information from its input, while
overly sparse masking oversimplifies the task and prevents the
model from learning. The low MAPE variations across different
masks are due to the preservation of critical departure and arrival
times, pivotal for accurate travel time estimation.

In contrast, the road-aware masking strategy consistently yields
superior performance across metrics. By accounting for the driving
patterns in trajectories, this strategy preserves essential road paths
and improves training effectiveness. Adaptively adjusting the mask
ratio based on trajectory properties ensures a diverse range of mask
ratios within the training data. Notably, the automated nature of the
road-aware masking strategy obviates the need for manual mask
ratio adjustments, streamlining model design and testing.
Time-distance Correlation. We perform experiments to explore
the interplay between time and distance. Specifically, we vary the
value of 𝜆2 to evaluate the effect of time and distance on the tra-
jectory representations. The results are displayed in Figure 6. We
show only one metric for each task. Figure 6 shows that the model
performance increases and then decreases with the value of 𝜆2.
Time information produces a higher effect when 𝜆2 = 0.1, while
distance information produces a higher effect when 𝜆2 = 0.9. Both
cases show a significant degradation in model performance, which
implies that relying on time or distance information alone to influ-
ence the attention factor is not effective in learning the local nature
of paths. Overall, performance is best when 𝜆2 is 0.5.
Performance versus Dimensionality. In this experiment, we
vary the dimensionality among 16, 32, 64, 128, and 256, and the re-
maining hyper parameters are kept at default values. For brevity, we
only show the HR@10 values for trajectory similarity computation,
exhibit similar performance trends. The results in Figures 7 (a) and
(b) indicate that the performance of RED increases with the increase
in dimensionality and reaches an optimum when 𝑑 = 128 and then
starts to decrease. This is because when the dimensionality is small,
the representations do not learn enough information, and too large
a representation makes the model learn noisy information.

90

0.1 0.3 0.5 0.7 0.9
(a) MAPE on Porto

16.7

16.9

17.1

0.1 0.3 0.5 0.7 0.9
(b) HR@10 on Porto

0.630

0.635

0.640

0.1 0.3 0.5 0.7 0.9
(c) Recall@5 on Porto

0.260

0.262

0.264

0.1 0.3 0.5 0.7 0.9
(d) MAPE on Rome

41.6

42.2

42.8

0.1 0.3 0.5 0.7 0.9
(e) HR@10 on Rome

0.445

0.455

0.465

0.1 0.3 0.5 0.7 0.9
(f) Recall@5 on Rome

0.265

0.275

0.285

Figure 6: Influence of the time-distance attention ratio (i.e., 𝜆2) on the accuracy of RED.

16 32 64 128 256
(a) Dimension(Porto)

0.0
0.2
0.4
0.6

H
R

@
10

16 32 64 128 256
(b) Dimension(Rome)

0.0
0.2
0.4
0.6

H
R

@
10

1 2 3 4 5 6 7
(c) Layer(Porto)

0.2

0.4

0.6

H
R

@
10

1 2 3 4 5 6 7
(d) Layer(Rome)

0.05

0.25

0.45

H
R

@
10

Figure 7: Effect of embedding dimension and model layers.

Performance versus Layers.We perform layer experiments, vary-
ing the number of layers among [1, 2, 3, 4, 5, 6, 7], keeping the num-
ber of encoder and decoder layers the same and the other hyper
parameters are at their default values. We only show the HR@10
values for trajectory similarity computation and other tasks exhibit
similar trends. The results in Figures 7 (c) and (d) show that the
performance of RED increases with increasing numbers of layer
and reaches an optimum when layer equals 6 for both datasets and
then starts to decrease. When the number of layers is small, the
model does not have the ability to extract enough features from the
data, while a larger number of layers may incur overfitting.

6 RELATEDWORK
Trajectory analysis is fundamental to many spatial-temporal anal-
ysis tasks and is an important aspect of urban data mining and
analytics. Many methods have been proposed to learn embeddings
of trajectories. For example, T2vec [23], Traj2SimVec [46], GTS [16],
TrajGAT [44], and GRLSTM [51] learn trajectory representations
for similarity computation. Traj2vec [45] and E2DTC [12] use the
seq2seq model for trajectory clustering. Further, GM-VSAE [29]
and RL4OASD [47] target anomalous trajectory detection. These
methods learn trajectory representations for specific tasks. In con-
trast, our RED considers generic trajectory representation learning
for diverse downstream tasks. Existing generic TRL methods can
be classified into RNN-based and Transformer-based methods.
RNN-based Methods. Trembr [13] uses an RNN-based encoder-
decoder and uses the timestamp of each road segment to learn tem-
poral information, but it fails to capture periodic behaviors of differ-
ent road types in trajectories. PIM [41] first uses node2vec [15] to
learn road segment embeddings and then conducts self-supervised
RNN-based mutual information maximization to learn trajectory

representation. WSCCL [42] proposes a weakly supervised con-
trastive learningmethodwith curriculum learning using LSTMs [19].
HMTRL+ [26] uses GRU to model the spatial-temporal correlation
of trajectories. These RNN-based methods exhibit long training
times, struggle to handle long trajectories and achieve much lower
accuracy than Transformer-based methods.
Transformer-based Methods. Since trajectories are sequential
structures, that fit very well with the Transformer, transformer-
based methods have become the main focus of the TRL research.
Toast [10] proposes a traffic context aware skip-gram [32] module
and a trajectory-enhanced Transformer module to learn trajectory
representation. JCLRNT [31] offers domain-specific augmentations
for road-road contrast and trajectory-trajectory contrast to incor-
porate valuable inter-relations. START [20] incorporates temporal
regularities and travel semantics into generic TRL by random mask-
ing strategy. START also features data augmentation techniques
involving trajectory trimming, temporal shifting, and contrastive
learning. LightPath [43] uses different mask ratios to augment tra-
jectories and then applies a teacher-student contrastive model to
learn trajectory representations. However, these approaches either
ignore spatial-temporal information (e.g., LightPath, Toast) or rely
heavily on contrastive learning for data augmentation (e.g., JCLRNT,
START, LightPath). In particular, the same data augmentation tech-
nique generally does not work well across different datasets, and
also doubles the training dataset and increases the training time.
In contrast, RED considers the comprehensive information of the
trajectories and does not require data augmentation technologies.

7 CONCLUSION
We propose RED, a framework that utilizes self-supervised learning
for trajectory representation learning. Motivated by the limitations
of existing studies, RED aims to utilize comprehensive information
in trajectory, including road, user, spatial, temporal, travel, and
movement. For such purpose, RED features three key designs: road-
aware masking strategy, spatial-temporal-user joint embedding,
and dual-objective task learning. Experimental results show that
RED consistently outperforms existing methods in terms of accu-
racy across different datasets and downstream tasks, thus advancing
the state-of-the-art in trajectory representation learning.

8 ACKNOWLEDGEMENT
This paper was supported by the National Key R&D Program of
China 2023YFC3305600, 2024YFE0111800, and NSFC U22B2037,
U21B2046, and 62032001.

91

REFERENCES
[1] Helmut Alt. 2009. The Computational Geometry of Comparing Shapes. Efficient

Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday
5760 (2009), 235–248.

[2] Helmut Alt and Michael Godau. 1995. Computing the Fréchet distance between
two polygonal curves. International Journal of Computational Geometry & Appli-
cations 5 (1995), 75–91.

[3] Donald J. Berndt and James Clifford. 1994. Using Dynamic Time Warping to
Find Patterns in Time Series. In AAAI. 359–370.

[4] Philippe C. Besse, Brendan Guillouet, Jean-Michel Loubes, and François Royer.
2015. Review and perspective for distance based trajectory clustering. In arXiv
preprint. http://arxiv.org/pdf/1508.04904.

[5] Leo Breiman. 2001. Random Forests. Machine learning 45, 1 (2001), 5–32.
[6] Yanchuan Chang, Jianzhong Qi, Yuxuan Liang, and Egemen Tanin. 2023. Con-

trastive Trajectory Similarity Learning with Dual-Feature Attention. In ICDE.
2933–2945.

[7] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan
Liu. 2018. Recurrent neural networks for multivariate time series with missing
values. Scientific reports 8, 1 (2018), 6085.

[8] Lei Chen and Raymond T. Ng. 2004. On The Marriage of Lp-norms and Edit
Distance. In VLDB. 792–803.

[9] Lei Chen, M. Tamer Özsu, and Vincent Oria. 2005. Robust and Fast Similarity
Search for Moving Object Trajectories. In SIGMOD. 491–502.

[10] Yile Chen, Xiucheng Li, Gao Cong, Zhifeng Bao, Cheng Long, Yiding Liu,
Arun Kumar Chandran, and Richard Ellison. 2021. Robust Road Network Repre-
sentation Learning: When Traffic Patterns Meet Traveling Semantics. In CIKM.
211–220.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In NAACL. 4171–4186.

[12] Ziquan Fang, Yuntao Du, Lu Chen, Yujia Hu, Yunjun Gao, and Gang Chen. 2021.
E2DTC: An End to End Deep Trajectory Clustering Framework via Self-Training.
In ICDE. 696–707.

[13] Tao-Yang Fu and Wang-Chien Lee. 2020. Trembr: Exploring road networks for
trajectory representation learning. ACM Transactions on Intelligent Systems and
Technology 11, 1 (2020), 1–25.

[14] Qiang Gao, Wei Wang, Kunpeng Zhang, Xin Yang, Congcong Miao, and Tian-
rui Li. 2022. Self-supervised representation learning for trip recommendation.
Knowledge-Based Systems 247 (2022), 108791.

[15] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In KDD. 855–864.

[16] Peng Han, Jin Wang, Di Yao, Shuo Shang, and Xiangliang Zhang. 2021. A Graph-
based Approach for Trajectory Similarity Computation in Spatial Networks. In
KDD. 556–564.

[17] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B.
Girshick. 2022. Masked Autoencoders Are Scalable Vision Learners. In CVPR.
15979–15988.

[18] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. 1998. Support
vector machines. IEEE Intelligent Systems and their Applications 13, 4 (1998),
18–28.

[19] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780.

[20] Jiawei Jiang, Dayan Pan, Houxing Ren, Xiaohan Jiang, Chao Li, and Jingyuan
Wang. 2023. Self-supervised Trajectory Representation Learning with Temporal
Regularities and Travel Semantics. In ICDE. 843–855.

[21] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet
Sahota, Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus A.
Brubaker. 2019. Time2vec: Learning a vector representation of time. In arXiv
preprint. https://arxiv.org/pdf/1907.05321.

[22] Ai-Te Kuo, Haiquan Chen, and Wei-Shinn Ku. 2023. BERT-Trip: Effective and
Scalable Trip Representation using Attentive Contrast Learning. In ICDE. 612–
623.

[23] Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S. Jensen, and Wei Wei. 2018.
Deep Representation Learning for Trajectory Similarity Computation. In ICDE.
617–628.

[24] Yuxuan Liang, Kun Ouyang, Yiwei Wang, Xu Liu, Hongyang Chen, Junbo Zhang,
Yu Zheng, and Roger Zimmermann. 2022. TrajFormer: Efficient Trajectory
Classification with Transformers. In CIKM. 1229–1237.

[25] Yuxuan Liang, Kun Ouyang, Hanshu Yan, Yiwei Wang, Zekun Tong, and Roger
Zimmermann. 2021. Modeling Trajectories with Neural Ordinary Differential
Equations. In IJCAI. 1498–1504.

[26] Hao Liu, Jindong Han, Yanjie Fu, Yanyan Li, Kai Chen, and Hui Xiong. 2023.
Unified route representation learning for multi-modal transportation recom-
mendation with spatiotemporal pre-training. The VLDB Journal 32, 2 (2023),

325–342.
[27] Hao Liu, Wenzhao Jiang, Shui Liu, and Xi Chen. 2023. Uncertainty-Aware

Probabilistic Travel Time Prediction for On-Demand Ride-Hailing at DiDi. In
KDD. 4516–4526.

[28] Hongbin Liu, Hao Wu, Weiwei Sun, and Ickjai Lee. 2019. Spatio-Temporal GRU
for Trajectory Classification. In ICDM. 1228–1233.

[29] Yiding Liu, Kaiqi Zhao, Gao Cong, and Zhifeng Bao. 2020. Online anomalous
trajectory detection with deep generative sequence modeling. In ICDE. 949–960.

[30] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In ICLR. https://arxiv.org/pdf/1711.05101.

[31] ZhenyuMao, Ziyue Li, Dedong Li, Lei Bai, and Rui Zhao. 2022. Jointly contrastive
representation learning on road network and trajectory. In CIKM. 1501–1510.

[32] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Ef-
ficient Estimation of Word Representations in Vector Space. In ICLR.
https://arxiv.org/pdf/1301.3781.

[33] Simon Aagaard Pedersen, Bin Yang, and Christian S. Jensen. 2020. Fast stochastic
routing under time-varying uncertainty. The VLDB Journal 29, 4 (2020), 819–839.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS. 5998–6008.

[35] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
https://arxiv.org/pdf/1710.10903.

[36] Michail Vlachos, Dimitrios Gunopulos, and George Kollios. 2002. Discovering
Similar Multidimensional Trajectories. In ICDE. 673–684.

[37] Xiaodong Yan, Tengwei Song, Yifeng Jiao, Jianshan He, Jiaotuan Wang, Ruopeng
Li, and Wei Chu. 2023. Spatio-Temporal Hypergraph Learning for Next POI
Recommendation. In SIGIR. 403–412.

[38] Chengcheng Yang, Lisi Chen, HaoWang, and Shuo Shang. 2021. Towards Efficient
Selection of Activity Trajectories based on Diversity and Coverage. In AAAI.
689–696.

[39] Can Yang and Gyözö Gidófalvi. 2018. Fast map matching, an algorithm inte-
grating hidden Markov model with precomputation. International Journal of
Geographical Information Science 32, 3 (2018), 547–570.

[40] Song Yang, Jiamou Liu, and Kaiqi Zhao. 2022. GETNext: Trajectory Flow Map
Enhanced Transformer for Next POI Recommendation. In SIGIR. 1144–1153.

[41] Sean Bin Yang, Chenjuan Guo, Jilin Hu, Jian Tang, and Bin Yang. 2021. Unsu-
pervised Path Representation Learning with Curriculum Negative Sampling. In
IJCAI. 3286–3292.

[42] Sean Bin Yang, Chenjuan Guo, Jilin Hu, Bin Yang, Jian Tang, and Christian S.
Jensen. 2022. Weakly-supervised Temporal Path Representation Learning with
Contrastive Curriculum Learning. In ICDE. 2873–2885.

[43] Sean Bin Yang, Jilin Hu, Chenjuan Guo, Bin Yang, and Christian S. Jensen. 2023.
LightPath: Lightweight and Scalable Path Representation Learning. In KDD.
2999–3010.

[44] Di Yao, Haonan Hu, Lun Du, Gao Cong, Shi Han, and Jingping Bi. 2022. Traj-
GAT: A Graph-based Long-term Dependency Modeling Approach for Trajectory
Similarity Computation. In KDD. 2275–2285.

[45] Di Yao, Chao Zhang, Zhihua Zhu, Jian-Hui Huang, and Jingping Bi. 2017. Tra-
jectory clustering via deep representation learning. In IJCNN. 3880–3887.

[46] Hanyuan Zhang, Xinyu Zhang, Qize Jiang, Baihua Zheng, Zhenbang Sun,Weiwei
Sun, and Changhu Wang. 2020. Trajectory Similarity Learning with Auxiliary
Supervision and Optimal Matching. In IJCAI. 3209–3215.

[47] Qianru Zhang, ZhengWang, Cheng Long, Chao Huang, Siu-Ming Yiu, Yiding Liu,
Gao Cong, and Jieming Shi. 2023. Online Anomalous Subtrajectory Detection
on Road Networks with Deep Reinforcement Learning. In ICDE. 246–258.

[48] Pengpeng Zhao, Anjing Luo, Yanchi Liu, Jiajie Xu, Zhixu Li, Fuzhen Zhuang,
Victor S. Sheng, and Xiaofang Zhou. 2022. Where to Go Next: A Spatio-Temporal
Gated Network for Next POI Recommendation. IEEE Transactions on Knowledge
and Data Engineering 34, 5 (2022), 2512–2524.

[49] Yusheng Zhao, Xiao Luo, Wei Ju, Chong Chen, Xian-Sheng Hua, and Ming Zhang.
2023. Dynamic Hypergraph Structure Learning for Traffic Flow Forecasting. In
ICDE. 2303–2316.

[50] Yu Zheng, Xing Xie, and Wei-Ying Ma. 2010. GeoLife: A Collaborative Social
Networking Service among User, Location and Trajectory. IEEE Data Engineering
Bulletin 33, 2 (2010), 32–39.

[51] Silin Zhou, Jing Li, Hao Wang, Shuo Shang, and Peng Han. 2023. GRLSTM:
Trajectory Similarity Computation with Graph-Based Residual LSTM. In AAAI.
4972–4980.

[52] Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng
Cai. 2017. What to Do Next: Modeling User Behaviors by Time-LSTM. In IJCAI.
3602–3608.

92

	Abstract
	1 Introduction
	2 Problem and Background
	2.1 Preliminaries
	2.2 Problem Statement
	2.3 Background on Machine Learning

	3 Method Overview
	4 Key Designs of RED
	4.1 Road-aware Masking Strategy
	4.2 Spatial-temporal-user Joint Embedding
	4.3 Dual-objective Task Learning
	4.4 Enhancing Transformer for Trajectory
	4.5 Discussion

	5 Experimental Evaluation
	5.1 Experimental Settings
	5.2 Main Results
	5.3 Efficiency Study
	5.4 Ablation Study and Model Designs

	6 Related Work
	7 Conclusion
	8 Acknowledgement
	References

