
Seer: Accelerating Blockchain Transaction Execution by
Fine-Grained Branch Prediction

Shijie Zhang
HUST†

shijiezhang@hust.edu.cn

Ru Cheng
HUST†

ruc@hust.edu.cn

Xinpeng Liu
HUST†

xpliu@hust.edu.cn

Jiang Xiao∗
HUST†

jiangxiao@hust.edu.cn

Hai Jin
HUST†

hjin@hust.edu.cn

Bo Li
HKUST‡

bli@cse.ust.hk

ABSTRACT
Increasingly popular decentralized applications (dApps) with com-
plex application logic incur significant overhead for executing smart
contract transactions, which greatly limits public blockchain perfor-
mance. Pre-executing transactions off the critical path can mitigate
substantial I/O and computation costs during execution. However,
pre-execution does not yield any state transitions, rendering the sys-
tem state inconsistent with actual execution. This inconsistency can
lead to deviations in pre-execution paths when processing smart
contracts with multiple state-related branches, thus diminishing
pre-execution effectiveness. In this paper, we develop Seer, a novel
public blockchain execution engine that incorporates fine-grained
branch prediction to fully exploit pre-execution effectiveness. Seer
predicts state-related branches using a two-level prediction ap-
proach, reducing inconsistent execution paths more efficiently than
executing all possible branches. To enable effective reuse of pre-
execution results, Seer employs checkpoint-based fast-path execu-
tion, enhancing transaction execution for both successful and unsuc-
cessful predictions. Evaluations with realistic blockchain workloads
demonstrate that Seer delivers an average of 27.7× transaction-level
speedup and an overall 20.6× speedup in the execution phase over
vanilla Ethereum, outperforming existing blockchain execution
acceleration solutions.

PVLDB Reference Format:
Shijie Zhang, Ru Cheng, Xinpeng Liu, Jiang Xiao, Hai Jin, and Bo Li. Seer:
Accelerating Blockchain Transaction Execution by Fine-Grained Branch
Prediction. PVLDB, 18(3): 822 - 835, 2024.
doi:10.14778/3712221.3712245

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/CGCL-codes/SeerEVM.

∗Corresponding author.
†National Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, Cluster and Grid Computing Lab, School of
Computer Science and Technology, Huazhong University of Science and Technology,
Wuhan, 430074, China.
‡Department of Computer Science and Engineering, the Hong Kong University of
Science and Technology, Hong Kong SAR.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.
doi:10.14778/3712221.3712245

1 INTRODUCTION
Modern blockchains have evolved from Bitcoin’s [31] focus on peer-
to-peer currency transactions to utilizing smart contracts written
in Turing-complete languages to express more complex applica-
tion logic [7, 40, 51, 52]. This shift has catalyzed innovation in
decentralized applications (dApps), including decentralized finance
(DeFi) [43], non-fungible tokens (NFTs) [42], and decentralized iden-
tity (DID) [29].

Ethereum [44] exemplifies an advanced public blockchain plat-
form supporting a wide range of dApps, with smart contract trans-
actions comprising nearly 70% of its load [32]. Ethereum processes
transactions using the Dissemination-Consensus-Execution (DiCE)
model [8], where transactions are first disseminated through P2P
networks, then added to newly generated blocks via consensus
among nodes (consensus phase), and finally executed by each node
using the Ethereum Virtual Machine (EVM) [44] to achieve a consis-
tent state (execution phase). The next consensus round cannot start
until all state transitions in the current execution phase are com-
pleted. Therefore, the throughput depends heavily on the block gen-
eration interval and the number of transactions processed within
it [32, 49]. Recent EVM-compatible DiCE blockchains try to im-
prove throughput by either increasing on-chain transaction vol-
ume (e.g., larger blocks [4], DAG structures [3, 27, 47, 48], shard-
ing schemes [19, 20, 35, 50]) or shortening block generation inter-
vals [4, 38]. However, increasing transaction volume significantly
raises EVM execution latency, which in turn lengthens block genera-
tion intervals. Consequently, performance remains limited by EVM
execution, especially for smart contracts. Addressing this bottle-
neck would enable higher transaction volumes without prolonging
block generation intervals, improving overall throughput.

Pre-execution is a promising technique to accelerate blockchain
transaction execution [2, 8, 32]. By leveraging the time window dur-
ing the dissemination and consensus phases, nodes can pre-execute
transactions to offload I/O and computation costs from the critical
path and fetch the read-write set to facilitate concurrency control
when enabling concurrent execution. However, when dealing with
smart contract transactions featuring increasingly complex logic,
the effectiveness of pre-execution is not fully realized. This limita-
tion arises from numerous state variable-related branch conditions
within smart contracts. Since pre-execution is based on the state
snapshot committed in the previous block generation interval with-
out any state transitions, the state variable versions fetched during
pre-execution might differ from those during actual execution, lead-
ing to divergent execution paths. For instance, in an auction dApp,

822

https://doi.org/10.14778/3712221.3712245
https://github.com/CGCL-codes/SeerEVM
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712245
https://www.acm.org/publications/policies/artifact-review-and-badging-current

a state variable ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐵𝑖𝑑 tracks the leading bid. At the end of each
bidding round, if ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐵𝑖𝑑 exceeds the reserve price, the auction
is finalized; otherwise, the bidding period is extended, resulting
in different dApp logics to execute. As a result, cached execution
results on pre-execution paths inconsistent with actual execution
are difficult to reuse. Additionally, the read-write set obtained dur-
ing pre-execution may change during actual execution, making it
difficult to accurately detect conflicts in concurrency control.

Recent efforts to optimize blockchain transaction execution per-
formance have overlooked the limitations of pre-execution, par-
ticularly under the multi-branch characteristics of modern smart
contracts. Forerunner [8] and MTPU [32] represent state-of-the-art
pre-execution approaches aimed at enhancing the utility of cached
pre-execution results. Forerunner speculates multiple potential ex-
ecution contexts for each transaction and caches pre-execution
results for all possible paths caused by branches. However, given
the complexity of modern smart contracts, pre-executing all pos-
sible paths and caching their execution results result in excessive
execution and storage costs. Conversely, MTPU pre-executes only
constant operations in contracts, leaving state variable-related op-
erations to be executed on the critical path. Existing concurrency
control schemes [15, 16, 34] typically use pre-computed or stati-
cally analyzed read-write sets for conflict detection. However, these
read-write sets may not align with the actual read-write operations,
leading to false negatives in conflict detection, thereby increasing
the transaction abort rate (as detailed in Section 2.3).

Processing modern smart contract transactions necessitates an
advanced pre-execution technique that can fully harness its po-
tential. In this paper, we propose Seer, a novel execution engine
for EVM-compatible blockchains that enhances the effectiveness
of pre-execution. The core of Seer is to predict branches that lead
to different execution paths, thereby increasing the proportion of
reusable pre-execution results and improving the accuracy of read-
write sets. The initial step involves identifying branch conditions
related to contract state variables. Since the contract source code
is unavailable on-chain, nodes rely on the bytecode stored in the
blockchain state for decompilation analysis. However, decompila-
tion inaccuracies pose a challenge to accurate branch identification.
Seer addresses this issue through a stack tracing-based approach,
which labels all opcodes relevant to state variables occurring in the
native EVM execution stack. When an opcode comparing a state
variable’s value is encountered, the corresponding branch condition
information is stored in a branch table maintained by Seer.

To ensure accurate branch prediction, Seer employs a two-level
branch prediction mechanism during pre-execution. The idea is
to simulate the transaction execution order expected in actual ex-
ecution. Since pre-execution does not modify the system state,
we utilize a multi-version cache to record the write versions of
state variables. When encountering state variable-related branch
conditions, relatively accurate state variable versions can be ac-
quired to determine branch directions. To mitigate the overhead
of caching and fetching multi-version states, we preserve recent
branch direction histories in the branch table. If a branch’s direc-
tion history shows a regular pattern, we can skip branch condition
evaluation and use an optimized perceptron model [22] for light-
weight prediction. For branches with irregular direction histories,
we continue using the multi-version state-based prediction. This

two-level prediction mechanism achieves efficient and accurate
branch prediction.

To maximize the reuse of pre-execution results, Seer creates
a checkpoint snapshot before each state variable-related branch
condition to cache the pre-execution results prior to the condition.
During actual execution, Seer re-evaluates each branch condition
to decide whether to reuse checkpoint snapshots. If the predicted
branch direction is accurate, the cached snapshot can be used for
fast-path execution. In cases where the prediction is inaccurate,
execution can resume from the checkpoint rather than starting over.
Checkpoint snapshots also facilitate efficient pre-execution repair
and re-execution of aborted transactions. Additionally, Seer outputs
relatively accurate read-write sets post-pre-execution, compatible
with existing concurrency control schemes.

We have implemented Seer on top of Geth [14], the official Go
implementation of Ethereum, and compared it with state-of-the-art
blockchain pre-execution [30, 32] and concurrency control [15]
approaches. Evaluations with realistic Ethereum workloads show
that Seer achieves an overall 20.6× speedup in the execution phase
over vanilla Ethereum, surpassing all compared approaches.

The main contributions of our work are summarized as follows.
• We investigate the limitations of transaction pre-execution

and concurrent execution under the multi-branch charac-
teristics of modern smart contracts, and propose Seer, a
novel public blockchain execution engine incorporating
fine-grained branch prediction for effective pre-execution.

• We propose a stack tracing-based branch identification ap-
proach to accurately identify state variable-related branch
conditions and a two-level branch prediction mechanism
to ensure efficient and accurate branch prediction.

• We develop a checkpoint-based fast-path execution mecha-
nism to maximize the utilization of cached pre-execution
results, reducing the overhead of actual execution.

• We implement a prototype of Seer and evaluate it, demon-
strating that it outperforms state-of-the-art approaches in
speedup performance under realistic benchmarks.

2 BACKGROUND AND MOTIVATION
2.1 Blockchain State
In public blockchain systems that support smart contracts, like
Ethereum, the current states of all accounts on the blockchain con-
stitute the world state [25, 28], which is a mapping between account
addresses and account states [44] and stored as key-value pairs in a
Merkle Patricia Trie (MPT) [13]. For the contract account state, in ad-
dition to storing balance and nonce information, it also contains the
contract bytecode hash and the root hash of an MPT that encodes
the contract storage, permanently storing state variables within the
contract. The contract storage allocates a specific slot for each state
variable to store its value, with each slot capable of storing up to a
256-bit variable. When variable sizes are less than 256 bits, storage
compaction occurs, i.e., multiple variables are stored together in
the same slot until the 256-bit storage space is filled [10].

The world state transition is triggered by the Ethereum Virtual
Machine (EVM) [44], a quasi-Turing complete machine instance
held by each node. When a transaction invokes a smart contract,
the EVM loads the contract bytecode and divides it into multiple

823

function unwrapWETH9(address recipient,
uint256 amountMinimum) internal {

uint256 value = WETH9.balanceOf(address(this));
if (value < amountMinimum) {

revert InsufficientETH();
}
if (value > 0) {

WETH9.withdraw(value);
recipient.safeTransferETH(value);

}
}

Contract Payment (C1)

function withdraw(uint wad) public {
require(balanceOf[msg.sender] >= wad);
balanceOf[msg.sender] -= wad;
msg.sender.transfer(wad);
Withdrawal(msg.sender, wad);

}

ContractWETH9 (C2)

(a) Source code

		𝐶2. 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑓[𝐶1]

< Min

< wad >= wad

BC1

		𝐶2. 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑓[𝐶1]

> 0<= 0

		𝐶2. 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑓[𝐶1]

>= Min

BC2

BC3

Path 1

Path 4

Path 2

Path 3

(b) Execution paths

Figure 1: An example of a multi-branch smart contract

opcodes and operands that the EVM can interpret for execution.
The EVM uses a stack-based architecture for executing opcodes
and storing operands, during which it can interact with the contract
storage and thememory storing temporary data. Each state variable
is accessed using specific opcodes like SLOAD (read the value from
the contract storage) and SSTORE (write the updated value to the
contract storage). To prevent the abuse of computational resources, a
fee is charged to the caller for each contract execution, denominated
in gas, which depends on the complexity of the contract [12].

2.2 Multi-Branch Smart Contracts
Modern smart contracts often contain numerous branches that cre-
ate various execution paths to accommodate different application
logics. To illustrate the multi-branch characteristics of smart con-
tracts, we examine the widely used Uniswap: Universal Router, one
of the top three most active contracts on the Ethereum platform.
Specifically, we analyze the unwrapETH9 function within the Pay-
ment sub-contract (C1), which aims to swap all of the contract’s
WETH tokens for ETH. As shown in Figure 1(a), this function inter-
nally calls another contractWETH9 (C2) to perform the withdrawal
operation. During the execution of unwrapETH9, there are three
branch conditions (BCs) that determine which branches to execute.
The first two BCs appear within the local function, while the third
one appears in the internally called contract C2. Figure 1(b) depicts
the four possible execution paths (with black lines indicating the
shared paths) resulting from the three BCs. All three BCs evaluate
the balance variable value (i.e., balanceOf(C1)) stored in the C2,
which is used to determine whether the C1 has enough WETH for
the swap. Depending on the variable values, the evaluation results
of these state variable-related BCs (abbreviated as SV-conditions)
may vary, leading to different branches (abbreviated as SV-branches)
and altering the execution paths.

Notably, only SV-conditions can lead to varying execution paths
on SV-branches under different world states. The remaining BCs
are related to constants, e.g., checking transaction input values,
which are independent of the world state. To verify the presence
of SV-conditions in a broader range of contract transactions, we
replayed realistic Ethereum transaction data in 1,000 consecutive
blocks starting from block height 14M, consistent with the data
used in Section 5, to record SV-conditions during replay. As shown
in Table 1, although the proportion of SV-conditions is relatively low

Table 1: Ethereum branch sta-
tistics across 1,000 consecutive
block heights

Block height
offset 200 400 600 800 1000

Ratio of
SV-conditions

12% 11% 12% 11% 15%

of SV-conditions
per TX 4.3 3.8 4.2 4 4.2

Ratio of regular
SV-branches

13% 21% 23% 23% 11%

2K 4K 6K 8K 10K
of TXs

0

10

20

30

P
er

ce
nt

ag
e

(%
) Path changes

Aborted TXs

Figure 2: Percentage of
varying execution paths
and aborted transactions

(ranging from 11% to 15%) across five block height intervals, each
contract transaction still contains an average of 4.1 SV-conditions.
This indicates that executing the same contract transaction under
different world states may yield inconsistent results.

2.3 Challenges of Pre-Execution
Pre-execution schemes in public blockchains typically run in paral-
lel with consensus [8, 32], where nodes pre-execute pending trans-
actions from the network to cache their execution results and read-
write sets. During pre-execution, transactions are executed based on
the same committed world state due to the absence of a determined
execution order, differing from the sequential world state updates in
an agreed-upon order during actual execution. This discrepancy can
cause pre-execution and actual execution to take divergent branches
when processing multi-branch smart contract transactions, leading
to two issues that undermine the effectiveness of pre-execution. We
conducted experiments to quantify these impacts, using the same
dataset mentioned above (Section 2.2). To further simulate the high
consensus throughput of current EVM-compatible blockchains, we
pre-execute transactions with increasingly larger scales.

1) Impact the proportion of reusable pre-execution results.
Continuing with the smart contract shown in Figure 1 as an ex-
ample, suppose the fetched value of balanceOf(C1) is 𝑉1 during
pre-execution, which is less than 𝑎𝑚𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑖𝑚𝑢𝑚, leading to the
execution of path 1. However, the fetched value of balanceOf(C1)
is 𝑉2 during actual execution, triggering the execution of path 4
instead. This renders the pre-executed path unusable for the subse-
quent execution. Figure 2 presents the proportion of transactions
whose execution paths change between pre-execution and actual
execution, which increases as the number of pre-executed trans-
actions rises since more transactions read stale state versions to
determine SV-branch directions during pre-execution.

2) Impact the accuracy of conflict detection in concurrency
control. In addition to execution paths, the read-write sets obtained
during pre-execution may also change, leading to false negatives
and positives in conflict detection. For instance, two transactions
calling the function unwrapETH9 may read the same value of bal-
anceOf(C1) during pre-execution, both taking the path 1 without
generating write sets, thus not conflicting. However, if the value
of balanceOf(C1) changes during concurrent execution, both trans-
actions might follow the path 4, causing a write-write conflict (i.e.,
false negative) and necessitating one transaction’s abortion for se-
rializability. We investigate the abort rate of OCC-DA [15], one of
the state-of-the-art blockchain MVCC schemes, which only aborts
non-serializable transactions caused by false negatives. Figure 2

824

shows that the abort rate grows with the increased number of pre-
executed transactions due to the rise in path changes. Conversely,
the false positive case does not cause transaction aborts yet misiden-
tifies non-conflicting transactions as conflicting, affecting execution
efficiency by enforcing unnecessary serialization.

2.4 Our Approach
The key to resolving the above two issues is to increase the align-
ment between pre-execution paths and actual execution paths. By
leveraging the characteristic that inconsistent execution paths only
occur on SV-branches, we innovatively propose fine-grained branch
prediction, which predicts SV-branches to be executed rather than
executing all possible branches at a high cost. The fundamental
principle is to predict the values of state variables in SV-conditions
to decide which SV-branches to execute.

Accurate identification of all SV-conditions is a prerequisite for
predicting SV-branches. We utilize the native EVM execution stack
to trace relevant opcodes and operands during pre-execution, avoid-
ing reliance on contract source code or decompilation tools. To fetch
accurate values of state variables in SV-conditions, we simulate the
total order of transactions in the upcoming block to guide the
pre-execution order. Moreover, we devise a multi-version cache to
store all updated versions of state variables in SV-conditions during
pre-execution, making them visible to each transaction.

In realistic contract transactions, some SV-branches follow reg-
ular directional patterns over time, as shown in Table 1. Such SV-
branches can be predicted using lightweight learning algorithms
without querying state variable values from themulti-version cache.
We employ and optimize the perceptron model, commonly used in
CPU branch prediction [22], to predict regular SV-branches, miti-
gating the read and write overhead towards the multi-version cache.
By integrating both prediction methods, we design a two-level pre-
diction mechanism that can maximize their combined strengths.

To ensure that accurately predicted SV-branches can be reused,
we establish a checkpoint snapshot of the current execution state
before each SV-condition. If all predicted SV-branches of a transac-
tion are satisfied, the cached pre-execution results in the checkpoint
snapshot can be used to skip the native EVM execution. Further-
more, checkpoint snapshots can also enable transactions with failed
predictions to resume their executions without restarting from
scratch. Additionally, by leveraging read-write sets from accurate
pre-execution paths, our approach can help reduce transaction abort
rates for mainstream blockchain concurrency control schemes.

3 SEER DESIGN
3.1 The Architecture of Seer
Seer is built as a modular execution engine that can be integrated
into the current Ethereum system. Figure 3 depicts the architecture
of Seer, which comprises three major components: the transaction
ordering simulator and the branch predictor for the pre-execution
phase, and the execution scheduler for the actual execution phase.

During the pre-execution phase, the transaction ordering simula-
tor monitors the transaction pool storing network-received trans-
actions to extract those likely to be included in the next block
and simulate their execution order. Then, Seer takes the ordered

TX Ordering
Simulator

Real-time TX
monitoring

Pre-execution
ordering

Pending TX Pool

Branch Predictor

Stack tracing-based
branch Identification

Two-level branch
prediction

Checkpoint
snapshot generation

…B1
…B2
…B3

…TX1
…TX2
…TX3

Branch Table

Pre-execution Table

TX3TX1 TX2
…

Block

Execution
Scheduler

Checkpoint-
based fast-path
execution

Cached snapshots
Read-write sets

Pre-execution phase Execution phase

Multi-version
concurrency

control interfaces

Seer

Block generation
TX3 TX1 TX2 …

Figure 3: Seer architecture

transactions as input and employs the branch predictor for transac-
tion pre-execution. Specifically, it employs the stack tracing-based
approach to identify all SV-conditions and the two-level branch
prediction mechanism to accurately predict branch directions. The
relevant SV-condition information is stored into the branch table,
and the pre-execution result of each transaction is cached into the
pre-execution table. Before branch prediction, the branch predictor
also generates a checkpoint snapshot of execution results prior to
each SV-condition for subsequent fast-path execution.

During the actual execution phase, the execution scheduler takes
transactions from the newly generated block, along with cached
checkpoint snapshots and read-write sets from the pre-execution
table as input, to perform fast-path execution. To enhance the par-
allelism of execution, the execution scheduler also incorporates
interfaces for modern multi-version concurrency control (MVCC)
schemes, ensuring the serializability of concurrent transactions.

3.2 Transaction Ordering Simulation
The order in which transactions are received by nodes through
network dissemination often differs from their actual execution
order. To obtain relatively accurate values of state variables in SV-
branches during pre-execution, it is crucial to first simulate the
actual transaction execution order as closely as possible.

In Ethereum, the execution order of transactions in a block is
primarily influenced by the gas fee 1 that each transaction initiator
offers to pay [44], i.e., prioritizing transactions with higher gas
fees over those with lower fees. Notably, many EVM-compatible
blockchains follow similar transaction ordering rules [4, 27, 38].
Hence, we utilize this ordering rule to guide the pre-execution order
of transactions. Specifically, during block creation, each node uses
a transaction ordering simulator thread to sort transactions in the
transaction pool by their gas fees. Then, based on the block capacity
limit (i.e., gas limit), it sends the transactions likely to be included
in the block to the branch predictor thread for pre-execution. Since
each node makes its own transaction inclusion choice based on its
view of the transaction pool, the transactions pre-executed by each
node will differ, as discussed in Section 3.9.

During pre-execution, the transaction pool will receive some
newly arrived transactions with high gas fees. In native Ethereum
1Ethereum Improvement Proposal (EIP)-1559, proposed in 2019, puts forward a new gas
fee calculation model, where the total gas fee equals the sum of the base fee adjusted
with block space demand and the priority fee paid extra by the transaction initiator.

825

block generation, if the gas fee of a newly arrived transaction meets
the criteria for inclusion in the block, the block generation process
needs to be restarted to prioritize it for inclusion in the current
block. To better simulate the set of transactions and execution order
of the actual generated block, the transaction ordering simulator will
continuously monitor the transaction pool to detect newly arrived
transactions with higher gas fees. If the gas fee of a newly arrived
transaction is higher than that of some included transactions, the
transaction ordering simulator will derive its appropriate position
within the transaction set and inform the branch predictor, so that
this transaction can be pre-executed preferentially.

3.3 Stack Tracing-Based Branch Identification
As the contract source code is not stored on-chain, decompiling the
stored bytecode offers a way to derive useful execution details [5,
24] for identifying SV-conditions, yet it is costly and not entirely
accurate. Instead, the native execution stack can be leveraged to
trace opcodes related to SV-conditions during pre-execution.

During bytecode execution, specific types of branch statements,
such as conditional or loop statements, cannot be directly identified
from the stack. However, a common characteristic of SV-conditions
within these statements is the presence of comparison opcodes
applied to state variables. Our approach centers on labeling state
variables fetched via the SLOAD opcode, which allows us to iden-
tify them when comparison opcodes are encountered. We utilize
a dedicated structure to represent the labels of state variables, en-
suring they remain identifiable even as computations or copy and
move operations occur on the stack. Importantly, our method only
performs essential tracing operations without interrupting stack
execution and is privacy-safe, as stack operands reflect only the
storage addresses and values of variables, not their names [10].

When a branch condition occurs, we can identify whether the
involved elements are labeled to determine if it constitutes an SV-
condition. However, branch identification is a non-trivial task, as
variables in an SV-condition can manifest in three basic forms, as
depicted in Figure 4. Below, we detail how our approach copes with
these basic cases, as well as more complex scenarios.

❶ SV-condition with a 256-bit state variable. The opcodes of
evaluating SV-conditions related to 256-bit state variables exhibit
a fixed pattern on the stack, as shown in Figure 4(a). First, the top
stack element, 0x00, representing the storage slot, is popped for
the SLOAD operation, i.e., retrieving the value of the state variable 𝑎
from the slot 0x00 and pushing 0x14 (20 in decimal) to the stack.
Then, the comparison opcode LT is executed to evaluate if the top
element value is smaller than the second element value. By labeling
the element of 0x14 obtained by SLOAD, we can easily identify the
SV-condition of 𝑎 < 25 during the execution of LT.

❷ SV-condition with a state variable less than 256 bits. Un-
like the first case, the opcodes of evaluating SV-conditions with state
variables less than 256 bits require an additional storage decom-
paction step to derive the value of a specific variable. As presented
in Figure 4(b), SLOAD is performed first to retrieve the compacted
value 0x14 at the slot 0x00. Then, storage decompaction with a se-
ries of fixed opcodes occurs. At the end of storage decompaction, the
value of 𝑎 can be obtained through an AND operation with the mask
code 0xff...f. By labeling the element of 0x14 at the beginning, we

uint256 a = 20;
function Compare() {

…
if (a < 25) {

…
}

}

Contract A

Stack
0x19

0x00

PUSH1

PUSH1

Labeled

Stack
0x19

0x14SLOAD

Stack
0x19

0x14

a < 25
a = 20

LT

(a) SV-condition with a 256-bit state variable

uint128 a = 20;
function Compare() {

…
if (a < 25) {

…
}

}

Contract A

Stack
0x19

0x14SLOAD

Stack
0x19

0x14

a < 25
a = 20

LT

Labeled

Stack
0x19

0x14

Storage decompaction
PUSH1 EXP SWAP1 DIV …

AND
0xffff…ff

(b) SV-condition with a state variable less than 256 bits

uint256 a = 20;
function Compare() {
uint256 b = a + 2;
if (b < 25) {

…
}

}

Contract A

Stack
0x14SLOAD

Stack

0x19

0x16

b < 25
b = 22

LT

Labeled

Stack
0x14

ADD
0x2

a = 20 PUSH1

0x16 DUP

PUSH1

(c) SV-condition with a temporary variable

Figure 4: Stack tracing-based branch identification under
three different cases

can still recognize it as derived from a state variable after storage
decompaction. This allows us to identify the SV-condition of 𝑎 < 25
during the execution of the opcode LT. Besides, we can obtain the
storage offset and bit-length of 𝑎 during storage decompaction.

❸ SV-condition with a temporary variable. For branch con-
ditions involving temporary variables derived from state variables,
such as the temporary variable 𝑏 shown in Figure 4(c), they also
constitute SV-conditions and require identification, as the temporary
variable value depends on the state variable value. We first label
the element 0x14 obtained by SLOAD. When the labeled element
undergoes a series of computations, its value changes while its label
remains, indicating it has evolved from the state variable 𝑎. We also
preserve a trace of all computations (i.e., opcodes and operands)
operated on each labeled element to facilitate correct state transi-
tions in subsequent fast-path execution, as detailed in Section 3.6.
Finally, the element of 𝑏, together with its label, is copied to the top
of the stack for comparison with 0𝑥19, allowing us to identify that
the SV-condition of 𝑏 < 25 is related to 𝑎 through the label.

The three cases outlined above cover basic scenarios for eval-
uating a single state variable within an SV-condition, serving as
the basis for identifying more complex SV-conditions. In complex
SV-conditions containing multiple sub-conditions connected by AND
or OR operations, each sub-condition can be treated as a separate
SV-condition and identified individually. This is feasible because
the evaluation result of each sub-condition will be returned to the
stack, with the entire SV-condition then evaluated through logical
operations on the stack. To store information about each identi-
fied SV-condition for reuse in future pre-execution, Seer maintains
a branch table in memory, using the state variable’s storage in-
formation as the key. A branch ID is used to exclusively identify
SV-conditions under each key. Specifically, if the compared element

826

Version 1

TX1 TX2

Multi-version
cache of state
variable 𝑎

R(𝑎)

if (𝑎 < 25) { … }
else { … }

Path 1
Path 2

Version 2 TX4

W(𝑎)

Branch
prediction

W(𝑎)

Figure 5: Multi-version state-based prediction during the pre-
execution of 𝑇𝑋4

is a constant, the branch ID is derived from the called function sig-
nature and the constant value. If both elements are state variables,
only one variable’s storage information is used as the key to avoid
storage duplication, while the branch ID is computed based on the
function signature and the other variable’s storage slot and offset.

3.4 Two-Level Branch Prediction
Multi-version state-based prediction. The transaction ordering
simulator ensures that transactions can be pre-executed in order
according to the native transaction ordering rule. However, the pre-
execution phase does not actually modify the world state, making
state updates generated by sequential pre-execution invisible. To
address this, we devise a multi-version cache for state variables to
cache their different visible write versions during pre-execution. In
the multi-version cache of a state variable, different write versions
are linked by pointers, enabling flexible deletion and insertion of
write versions. Each write version contains the newly written value
along with the transaction details that perform the write operation.
After the branch identification, nodes can fetch the latest write ver-
sion of the state variable involved in the identified SV-condition for
a relatively accurate evaluation. Since only state variables involved
in SV-conditions are useful for predictions, the multi-version cache
can store only necessary write versions to optimize memory usage.

Figure 5 continues with the example of the branch condition pre-
sented in Figure 4(a). During the pre-execution of 𝑇𝑋4, the branch
predictor first identifies the SV-condition of 𝑎 < 25 and fetches the
latest write version of 𝑎 from itsmulti-version cache, i.e., the Version
2 written by 𝑇𝑋2. The branch predictor then evaluates whether the
latest value of 𝑎 is less than 25 and returns the evaluation result
to the stack. Meanwhile, the evaluation results of all SV-conditions
encountered by each transaction will be stored in an in-memory pre-
execution tablemaintained by Seer, which records the pre-execution
results of transactions for subsequent fast-path execution.
Lightweight pre-execution repair. As mentioned before, the
transaction ordering simulator will occasionally send transactions
with high gas fees and their positions to the branch predictor,
which determines when to pre-execute them based on their posi-
tions. Specifically, if a newly arrived transaction ranks after all pre-
executed ones, it is directly inserted into the queue of transactions
to be pre-executed based on its position. If it ranks before some pre-
executed transactions, it requires immediate pre-execution based
on the state version at its position. Any new state version written by
this transaction can render the state versions read by lower-ranked,
previously pre-executed transactions stale, affecting prediction ac-
curacy. Restarting pre-execution for these transactions from scratch
can enhance prediction accuracy, yet it is costly.

Version 1

TX1 TX2

Multi-version
cache of state
variable 𝑎

R(𝑎)

if (𝑎 < 25) { … }
else { … }

Path 1
Path 2

Version 2 TX4

W(𝑎)

Branch
re-evaluation

W(𝑎)

TX3

Version 3

W(𝑎) Repair

Newly arrived

Figure 6: Pre-execution repair of 𝑇𝑋4

We devise a lightweight pre-execution repair approach that re-
pairs only inaccurately predicted SV-branches. The branch predictor
will first perform a repair check that verifies whether the previous
branch prediction results of these transactions remain accurate
under the latest state versions. We continue with the previous ex-
ample presented in Figure 5 to illustrate the details of repair. As
depicted in Figure 6, the branch predictor receives a newly arrived
transaction 𝑇𝑋3 with a higher gas fee than the pre-executed trans-
action 𝑇𝑋4 and then pre-executes 𝑇𝑋3 immediately. Since 𝑇𝑋3
writes a new version of 𝑎, the Version 2 read by 𝑇𝑋4 is stale, trig-
gering a repair check of 𝑇𝑋4. During the repair check, the branch
predictor retrieves the branch prediction results of 𝑇𝑋4 from the
pre-execution table and fetches the latest version of 𝑎 from themulti-
version cache, i.e., the Version 3 written by𝑇𝑋3. It then re-evaluates
whether the SV-condition of 𝑎 < 25 is met based on the latest version
of 𝑎. If the evaluation result matches the prediction one, no repair is
needed; otherwise, the pre-execution path needs to be repaired, and
pre-execution should be restarted from the current SV-condition.
Perceptron-based prediction. As shown in Table 1, a proportion
of SV-branches in Ethereum exhibits regular directional patterns.
We can harness a learning algorithm to rapidly capture such regu-
larities without retrieving variable values from the multi-version
cache, mitigating the overhead of the multi-version state-based pre-
diction. Given the limited resources of blockchain nodes, complex
training on them is impractical. Inspired by CPU branch prediction,
we employ the perceptron model [21, 22], a single-layer linear clas-
sifier that makes interpretable predictions based on a weighted sum
of input features. The perceptron model does not require vast com-
putational resources and can be trained on the fly, which is suitable
for blockchain nodes. We thus introduce an optimized perceptron+
model tailored for branch predictions of contract transactions.

In the branch table, we create a perceptron+ instance for each
SV-condition and store the actual branch direction (represented by
the integer, i.e., ‘1’ for taken, ‘−1’ for not taken) after execution.
We set a standard length 𝑛 of branch direction histories that can
be used by each perceptron+ instance. Once the direction history
length of a branch exceeds 𝑛, its oldest direction history will be
deleted. The conventional perceptron takes a vector of direction
histories (ℎ1, ..., ℎ𝑛) as input to compute a dot product with the
corresponding weight vector (𝑤0, ...,𝑤𝑛), where𝑤0 is a bias weight.
However, multiple transactions may evaluate the same SV-condition
during pre-execution, resulting in identical predictions based on the
same input vector, which affects prediction accuracy. To address this,
our perceptron+ model incorporates all predictions (𝑝1, ..., 𝑝𝑚) in
the current round of pre-execution as part of the direction histories
while maintaining the input vector length at 𝑛. This allows the

827

Histories & predictions

Prediction result

Multi-version cache

Yes

No
Input

Output

Fetch the latest
version to evaluate

Perceptron+

Figure 7: The overall process of two-level branch prediction

current prediction to fully utilize the previous prediction results
from the same round. Hence, the prediction output 𝑓 is computed
as 𝑓 = 𝑤0 +

∑𝑛−𝑚
𝑖=1 𝑤𝑖ℎ𝑖+𝑚 +

∑𝑛
𝑗=𝑛−𝑚+1𝑤 𝑗𝑝 𝑗−𝑛+𝑚 . Let 𝛼 denote

the threshold that can determine the confidence level of 𝑓 . The
predicted direction is considered taken if 𝑓 > 𝛼 and not taken
if 𝑓 < −𝛼 . If 𝑓 falls between −𝛼 and 𝛼 , the prediction result is
uncertain. After obtaining the actual branch directions, we conduct
real-time weight updates for each perceptron+ instance.
Two-level prediction process.We aim to coordinate the above
two prediction approaches to ensure accurate and low-overhead
branch prediction. The main design principle is to employ the per-
ceptron+ model for low-overhead prediction of SV-branches with
regular historical directions, while SV-branches with irregular di-
rectional patterns are predicted using the multi-version state-based
approach to ensure prediction accuracy.

When the direction history length is less than 𝑛, the branch
predictor employs the multi-version state-based prediction. Once
the length reaches 𝑛, the two-level branch prediction is activated,
as depicted in Figure 7. The branch predictor first employs the
perceptron+ model to derive the prediction output 𝑓 based on the
direction histories and previous predictions if they exist. If 𝑓 falls
within the confidence interval (𝑓 > 𝛼 or 𝑓 < −𝛼), the prediction
result can be directly used since the SV-branch has regular historical
directions. If 𝑓 does not fall within the confidence interval (−𝛼 ≤
𝑓 ≤ 𝛼), it is necessary to fetch the latest state version from the
multi-version cache and evaluate the SV-condition to obtain the final
prediction result. For some SV-brances whose direction histories
consistently lack regularity, there is no need to continuously employ
the perceptron+ model for regularity checks. We set a check period
and conduct only one regularity check using the perceptron+ model
in each period to further enhance prediction efficiency.

3.5 Checkpoint Snapshot
To maximize pre-execution effectiveness, we also need to cache
pre-execution results at appropriate times so that the pre-execution
results on accurately predicted paths can be reused during actual
execution (i.e., fast-path execution). Even with inaccurate predic-
tions, a proportion of cached results can still be reused, rather than
executing transactions entirely from scratch.

During pre-execution, we generate a checkpoint snapshot at
each SV-condition to cache execution information up to that point
and store it in the pre-execution table. This enables the reuse of
pre-execution results along the path leading up to the SV-condition,
regardless of the branch direction. The structure of a checkpoint
snapshot is shown in Figure 8, consisting of three parts: the read-
write set, the branch information, and the execution state. The

Checkpoint snapshot
Read-write set

Branch information

Read/write
locations

Condition info
Prediction result

Branch ID

Written info
Execution state

Stack

Memory

Call depth

PC

Contract info

Execution state

Stack

Memory

Call depth

PC

Contract info

Execution state

Stack
Memory

Call depth

PC
Contract info

Figure 8: The structure of checkpoint snapshot

read-write set records all accessed storage slots and the written in-
formation prior to the SV-condition. The written information caches
the written values, and if derived from a state variable, retains the
relevant variable details along with the computation trace. The com-
bination of read/write locations in each checkpoint snapshot forms
the transaction’s complete read-write set, used for subsequent con-
currency control. The branch information includes the branch ID,
the SV-condition details, and the prediction result, facilitating re-
evaluation of SV-conditions. The execution state stores a snapshot
of the stack and memory before the SV-condition, along with the
PC value pointing to the next opcode, used to resume execution
from the checkpoint when the predicted direction deviates from the
actual one. For transactions with internal contract calls that trigger
a multi-depth call stack, the execution state prior to the internal call
at each depth should be stored, including the current call depth and
the called contract information, e.g., contract address and consumed
gas. When resuming the execution of transactions with internal
contract calls, execution can start from the cached execution state
at each call depth, further reducing execution overhead.

In addition to enabling fast-path execution, checkpoint snapshots
can also be utilized in any case that requires efficient re-execution
by reusing cached execution results, e.g., pre-execution repair and
re-execution of aborted transactions. In the following subsection,
we take fast-path execution as an example to elaborate on how to
apply checkpoint snapshots for efficient execution.

3.6 Checkpoint-Based Fast-Path Execution
Upon receiving a newly generated block, each node employs an
execution scheduler to concurrently execute transactions within the
block for state transitions. For each transaction, a thread assigned by
the execution scheduler retrieves their cached checkpoint snapshots
from the pre-execution table for fast-path execution.
Fast-path execution. The core of fast-path execution lies in the
thread re-evaluating the SV-condition in each checkpoint snapshot
to verify whether the pre-execution results of a transaction can be
reused, thus avoiding re-execution from scratch. During each round
of re-evaluation, the thread checks if the actual branch direction
matches the predicted one. If it matches, the state transitions gener-
ated on the path from the current SV-branch to the next checkpoint
can be reused to bypass the normal EVM execution and proceed to
re-evaluate the next SV-condition. If it does not match, the thread
uses the cached execution state to resume the normal EVM execu-
tion. Such fast-path execution allows a full bypass of opcode-based
execution in the EVM if all SV-branches are accurately predicted,
while still enabling partial reuse of cached results when predictions
are inaccurate, significantly reducing execution overhead.

828

(C1)
Checkpoint
snapshot 1

(C1)
Checkpoint
snapshot 2

(C1)
Checkpoint
snapshot 3

(C2)
Checkpoint
snapshot 4

Entrance for calling C2

W(𝐶1. 𝑏𝑎𝑙𝑎𝑛𝑐𝑒)

W(𝐶2. 𝑏𝑎𝑙𝑎𝑛𝑐𝑒)

W(𝐶2. 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑓[𝐶1])

W(𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡. 𝑏𝑎𝑙𝑎𝑛𝑐𝑒)

Cached write operations

BC1 BC2 BC3
Satisfy Satisfy Satisfy

Not

EVM execution

Not
Not

Fast path 1
Fast path 2
Fast path 3
Fast path 4

Figure 9: An example of checkpoint-based fast-path execu-
tion

Correct state transitions. Before re-evaluating each SV-condition,
the thread needs to perform all state transitions generated along
the path leading up to the current checkpoint. Specifically, it exe-
cutes the SSTORE opcode to store the cached written values from
the written information into the corresponding slots. However, if
the cached written value is derived from computations involving
state variables rather than constants, it needs to be recomputed
for correct state transitions, as those variables’ values may change
during execution. As mentioned in Section 3.3, we have tracked
all the computations operated on each state variable on the stack.
Rather than performing recomputations on the stack, the thread
first executes the SLOAD opcode to retrieve the current values of
involved state variables, performs a quick recomputation using the
cached computation trace, and stores the updated written value.
Example. We continue with the example of the Payment contract
(C1) presented in Section 2.2 to illustrate the fast-path execution pro-
cess. We cache four checkpoint snapshots for three BCs in the func-
tion of unwrapWETH9, where the checkpoint snapshot 3 provides an
entrance for internally calling C2. Assuming the predicted branch
directions for the three BCs are all taken during pre-execution, the
following four fast paths would occur during actual execution. ❶
Fast path 1: The actual branch directions of the three BCs satisfy
their predictions. The opcode-based execution in the EVM is by-
passed, and the correct state transitions are performed using the
cached four write operations. ❷ Fast path 2: The actual branch
directions of BC1 and BC2 match their predictions, yet BC3’s actual
direction does not. The execution path before BC3 is skipped, and
execution can be resumed using the checkpoint snapshots 3 and 4.
❸ Fast path 3: Only BC1’s actual direction matches the prediction.
Hence, the execution path before BC2 is skipped, and execution
can be resumed by using the checkpoint snapshot 2. ❹ Fast path
4: Although none of the actual directions match predictions, some
constant operations before BC1 are skipped, and execution can be
resumed by using the checkpoint snapshot 1.

3.7 Adaption to MVCC
Concurrency control is essential for effective conflict resolution
during concurrent fast-path execution. Current approaches to ac-
celerate blockchain transaction execution typically adopt MVCC
schemes, which can reduce transaction aborts and ensure serializ-
ability by allowing concurrent transactions to read their dependent
state versions instead of a unified version. To adapt to current
blockchain MVCC schemes, Seer abstracts key functions of MVCC
and provides interfaces for pluggable use.

Algorithm 1: Concurrent execution using MVCC interfaces
Input: Smart contract transactions𝐶𝑇𝑋𝑠 to be executed, checkpoint

snapshots𝐶𝑆𝑠 , transaction read-write sets 𝑅𝑊𝑆𝑒𝑡𝑠

1 𝐷𝑒𝑝𝑠 ← a mapping structure to store transaction dependencies;
2 𝑉𝑎𝑙𝑇𝑎𝑠𝑘𝑠 ← an empty queue of transactions to be validated;
3 𝐶𝑜𝑚𝑚𝑖𝑡𝐼𝐷 ← 0;
4 𝐺 ← 𝑀𝑉𝐶𝐶.𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (𝑅𝑊𝑆𝑒𝑡𝑠) ;
5 for 𝑐𝑡𝑥 ∈ 𝐶𝑇𝑋𝑠 do
6 𝑑𝑒𝑝𝑚𝑎𝑥 ← −1;
7 for 𝑑𝑒𝑝 ∈ 𝐺.𝑒𝑑𝑔𝑒𝑠 [𝑐𝑡𝑥 .𝑖𝑑] do
8 𝑑𝑒𝑝𝑚𝑎𝑥 ←𝑚𝑎𝑥 (𝑑𝑒𝑝𝑚𝑎𝑥 , 𝑑𝑒𝑝) ;
9 𝐷𝑒𝑝𝑠 [𝑐𝑡𝑥 .𝑖𝑑] ← 𝑑𝑒𝑝𝑚𝑎𝑥 ;

10 while𝐶𝑜𝑚𝑚𝑖𝑡𝐼𝐷 < 𝐶𝑇𝑋𝑠.𝑙𝑒𝑛𝑔𝑡ℎ do
11 𝑐𝑡𝑥𝑛𝑒𝑥𝑡 , 𝑖𝑑𝑙𝑒𝑇𝑖 ← 𝑀𝑉𝐶𝐶.𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 (𝐶𝑇𝑋𝑠, 𝐷𝑒𝑝𝑠,𝐶𝑜𝑚𝑚𝑖𝑡𝐼𝐷) ;
12 𝑖𝑑𝑙𝑒𝑇𝑖 .𝐹𝑎𝑠𝑡𝑃𝑎𝑡ℎ (𝐶𝑆𝑠 [𝑐𝑡𝑥𝑛𝑒𝑥𝑡 .𝑖𝑑]) ; // run in 𝑖𝑑𝑙𝑒𝑇𝑖

13 𝑉𝑎𝑙𝑇𝑎𝑠𝑘𝑠.𝑎𝑑𝑑 (𝑐𝑡𝑥𝑛𝑒𝑥𝑡) ; // run in 𝑖𝑑𝑙𝑒𝑇𝑖

14 while𝑉𝑎𝑙𝑇𝑎𝑠𝑘𝑠.𝑙𝑒𝑛𝑔𝑡ℎ > 0 do
15 𝑐𝑡𝑥𝑣𝑎𝑙 ← 𝑉𝑎𝑙𝑇𝑎𝑠𝑘𝑠.𝑝𝑜𝑙𝑙 () ;
16 if 𝑐𝑡𝑥𝑣𝑎𝑙 .𝑖𝑑 ≠ 𝐶𝑜𝑚𝑚𝑖𝑡𝐼𝐷 then
17 𝑉𝑎𝑙𝑇𝑎𝑠𝑘𝑠.𝑎𝑑𝑑 (𝑐𝑡𝑥𝑣𝑎𝑙) ;
18 break

19 𝑎𝑏𝑜𝑟𝑡 ← 𝑀𝑉𝐶𝐶.𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 (𝑐𝑡𝑥𝑣𝑎𝑙 , 𝐷𝑒𝑝𝑠 [𝑐𝑡𝑥𝑣𝑎𝑙 .𝑖𝑑]) ;
20 if 𝑎𝑏𝑜𝑟𝑡 then
21 𝑀𝑉𝐶𝐶.𝐴𝑏𝑜𝑟𝑡 (𝑐𝑡𝑥𝑣𝑎𝑙) ;
22 else
23 𝑀𝑉𝐶𝐶.𝐶𝑜𝑚𝑚𝑖𝑡 (𝑐𝑡𝑥𝑣𝑎𝑙) ;
24 𝐶𝑜𝑚𝑚𝑖𝑡𝐼𝐷 ← 𝐶𝑜𝑚𝑚𝑖𝑡𝐼𝐷 + 1;

25 return

We select OCC-DA [15] as an example to illustrate the process
of concurrent execution using MVCC interfaces, as presented in Al-
gorithm 1. The execution scheduler first calls the𝑀𝑉𝐶𝐶.𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡

interface to build a dependency graph based on the read-write
sets 𝑅𝑊𝑆𝑒𝑡𝑠 generated by the combined read/write locations from
checkpoint snapshots, and identifies the dependent transaction
with the highest ID of each transaction within the graph (lines 4-9).
Then, the execution scheduler calls the 𝑀𝑉𝐶𝐶.𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 interface
to fetch the idle thread and the next executable transaction 𝑐𝑡𝑥𝑛𝑒𝑥𝑡
whose dependent transactions have been committed to ensure seri-
alizability. The idle thread performs fast-path execution using the
checkpoint snapshots of 𝑐𝑡𝑥𝑛𝑒𝑥𝑡 and adds 𝑐𝑡𝑥𝑛𝑒𝑥𝑡 to the validation
task queue 𝑉𝑎𝑙𝑇𝑎𝑠𝑘𝑠 after fast-path execution (lines 10-13).

During transaction validation, the execution scheduler retrieves
the transaction 𝑐𝑡𝑥𝑣𝑎𝑙 from𝑉𝑎𝑙𝑇𝑎𝑠𝑘𝑠 and calls the𝑀𝑉𝐶𝐶.𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒

interface to verify if its read state versions have been modified by
other concurrent transactions (lines 14-19). If the read versions of
𝑐𝑡𝑥𝑣𝑎𝑙 are stale, the𝑀𝑉𝐶𝐶.𝐴𝑏𝑜𝑟𝑡 interface is called to abort 𝑐𝑡𝑥𝑣𝑎𝑙 ,
i.e., revert its write versions and push it back into the execution
queue to await fast-path re-execution (line 21). If its read versions re-
main unmodified, the𝑀𝑉𝐶𝐶.𝐶𝑜𝑚𝑚𝑖𝑡 interface is called to commit
𝑐𝑡𝑥𝑣𝑎𝑙 and persist its state updates (lines 23-24). Benefiting from our
branch prediction, transaction dependencies are relatively accurate,
reducing the ratio of aborted transactions during validation.

3.8 Optimizations
Identify system state variables without storage. There is a cate-
gory of variables related to the system state that are not stored in the
contract storage, e.g., those indicating the current block height and

829

timestamp introduced by the opcodes of NUMBER and TIMESTAMP.
Although these variables may only exist in a few contracts, not
identifying them would result in their reuse as cached fixed results.
In fast-path execution, if a transaction is located in a different block
than during pre-execution, its cached fixed results may change,
compromising execution correctness. Thus, branch conditions in-
volving such variables should be treated as SV-conditions. As they
do not involve storage compaction, we can identify their relevant
SV-conditions by labeling them using specific opcodes, and track
their related computations, similar to cases ❶ and ❸ in Section 3.3.
Memory management. Since we employ three new in-memory
storage structures on top of the native EVM for pre-execution and
fast-path execution, it is essential tomanage them to avoid imposing
a burden on memory costs. In the branch table, we only retain
frequently used SV-conditions and delete entries of infrequently
used ones. Specifically, we establish a lifecycle for each SV-condition.
After a fixed time interval, we calculate its activity level, i.e., the
access frequency divided by its lifecycle. Based on the activity
levels, we perform a table cleanup. For the multi-version cache, all
inserted write versions in the table will be deleted after each round
of pre-execution. For the pre-execution table, we delete the pre-
execution results of transactions that have been included in a block
and executed afterward. The results of remaining transactions not
yet included in a block will be retained for reuse in subsequent
pre-execution rounds, avoiding the need to restart from scratch.

3.9 Correctness
We next discuss the correctness of Seer mainly in terms of how it
ensures the serializability of execution and the consistency of state
transitions between honest nodes.

Theorem 1. Given a block 𝐵 = {𝑡𝑥1, . . . , 𝑡𝑥𝑛}, the execution of
transactions in 𝐵 using Seer can yield the same state transition 𝜁 as
serial execution, and 𝜁 can be produced on each honest node side.

Proof.We first prove that the fast-path execution result of a trans-
action 𝑡𝑥𝑖 using Seer is identical to its normal execution in the
EVM. For contract transactions, branch prediction accuracy only
impacts their actual execution efficiency without compromising
execution correctness. For accurate predictions, the actual execu-
tion path matches the predicted one. As discussed in Section 3.6,
any discrepancies in cached state transitions on the predicted path
can be corrected by recomputing written values using the latest
variable states. For inaccurate predictions, checkpoint snapshots
allow execution to resume in the EVM. This ensures that any diver-
gent execution results of 𝑡𝑥𝑖 can be corrected by the normal EVM
execution, yielding correct state transitions. For common transfer
transactions, Seer defaults to the native EVM execution.

Due to network latencies, nodes may pre-execute different trans-
actions, resulting in divergent pre-execution results. However, since
these pre-execution results impact only execution efficiency, they
do not compromise consistency among nodes. Moreover, MVCC
guarantees the serializability and consistency of concurrent execu-
tions by deterministically producing identical state transitions for
the same transaction inputs, adhering to a serial execution schedule.
Even with Byzantine adversaries, the native consensus protocol
maintains a consistent blockchain view among honest nodes, and
their independent transaction executions remain unaffected. To

sum up, once an agreed-upon block 𝐵 is proposed, each honest
node can obtain the same transaction input and produce a unified
state transition 𝜁 , equivalent to that of serial execution, through
Seer’s concurrent fast-path execution. □

4 IMPLEMENTATION
We have implemented Seer on top of Geth v1.11.5, primarily in-
troducing a new virtual machine (VM) module that can replace
the native one. To support stack tracing during pre-execution, we
establish a new set of on-stack instructions in the VM module,
named pre-instructions. The label structure captures information
about labeled state variables and maintains a trace of their relevant
computations on the stack. The multi-version cache is implemented
using a double-linked list to efficiently manage write versions. Be-
sides, we maintain a list of read versions to track transactions
accessing the multi-version cache. When a transaction writes a new
version, the cached read versions can help identify lower-ranked
transactions that have missed this version, triggering repair checks
if needed. We implement a perceptron+ model and integrate it into
the pre-instructions for on-stack invocation. Besides, we implement
the branch table and the pre-execution table using mapping storage
structures for efficient retrieval. To support concurrent transaction
execution, we implement a series of MVCC interfaces and opti-
mize the native in-memory state database (i.e., StateDB) to maintain
multiple write versions of each state item.

5 EVALUATION
We evaluate Seer under realistic blockchain workloads, aiming to
answer the following questions: (i) What are the effectiveness and
overhead of Seer’s prediction-based pre-execution? (ii) What is the
overall performance improvement brought by Seer in the execution
phase? (iii) What are the performance gains and resource utilization
resulting from Seer’s core design components?

5.1 Experimental Setup
Testbeds. Our testbed consists of Amazon EC2 c7i.8xlarge in-
stances, each with a 3.2-GHz Intel® Xeon® Platinum 8488C pro-
cessor (32 vCPUs, 64 GB memory), running Ubuntu 22.04 LTS. We
run all experiments on two identical VMs to observe if they output
consistent state updates. Each reported evaluation result averages
five independent runs on the two VMs.
Workloads. We select real transaction data from the Ethereum
network as the workloads to evaluate the performance of Seer in
an actual blockchain environment. The evaluation workloads range
from a block height of 14,000,000 to 14,750,000 (January 2022 to
May 2022), during which the daily transaction activity on Ethereum
is relatively high. We employ two modes to replay Ethereum trans-
actions. The first mode sequentially replays Ethereum blocks with
realistic sizes (realistic-replay), primarily to evaluate branch pre-
diction accuracy and the distribution of speedups across transac-
tions. The second mode replays large Ethereum blocks of varying
sizes (synthetic-replay), primarily simulating large-scale workloads
within each block generation interval to evaluate the performance
of pre-execution and concurrent execution.

To evaluate contract transactions with varying complexity, we
classify them in the evaluation workloads into complex (C-TXs) and

830

Table 2: Average SV-condition count across contract transac-
tions with varying gas usage in the workloads

Gas usage [21K, 60K) [60K, 100K) [100K,∞)

Percentage (%) 46% 17% 37%

of SV-conditions 1.9 3.5 7.1
∗ In Ethereum, the gas consumption for common transfer transactions is fixed at
21,000, while contract transactions typically consume 21,000 gas or more.

normal (N-TXs) categories based on gas usage, as adopted in prior
works [8, 12] to measure the computational cost during contract
execution. Furthermore, we analyze the relationship between gas
usage and the number of SV-conditions, as shown in Table 2. As
expected, higher gas usage corresponds to a higher average number
of SV-conditions. Transactions consuming less than 100,000 gas have
an average number of SV-conditions below the overall average of 4.1
(Table 1), while those consuming 100,000 gas or more far exceed this
average. Thus, we use 100,000 gas as the threshold to distinguish
C-TXs (37% share) from N-TXs (63% share) for later evaluation.
Baselines. We compare Seer against four baseline approaches:
vanilla Ethereum [44], Forerunner [8],MTPU [32], andOCC-DA [15].
Vanilla Ethereum uses the native execution engine to execute each
transaction in a block sequentially. Forerunner and MTPU employ
different pre-execution solutions to accelerate actual execution.
OCC-DA is an enhanced protocol of MVCC using pre-obtained
read-write sets. Regarding baseline implementations, we directly
utilize the official open-source implementations [14, 30] of vanilla
Ethereum and Forerunner. In contrast, MTPU and OCC-DA have
not yet released their implementations as open source. We thus im-
plement the pre-execution scheme ofMTPU and theMVCCprotocol
of OCC-DA based on the descriptions in their respective papers.
Moreover, we implement OCC-DA’s native method of obtaining
read-write sets (a.k.a. R/W), which only fetches read-write sets
during pre-execution without caching any pre-execution results.

5.2 Pre-Execution Effectiveness
In this series of experiments, we investigate the effectiveness and
overhead of Seer’s pre-execution. Each experiment is conducted
under both C-TXs and N-TXs.
Prediction accuracy. We employ realistic-replay to execute trans-
actions in 1,000 consecutive blocks and observe the average branch
prediction accuracy within each 200-block height interval. We use
two metrics to evaluate branch prediction accuracy: the ratio of
transactions with all SV-branches accurately predicted (i.e., perfect
predictions) and the ratio of accurately predicted branches (i.e., hit
ratio). Figure 10 shows the results, where the error bars indicate the
range between maximum and minimum values. The branch predic-
tion accuracy remains stable across different block heights, with
N-TXs performing better than C-TXs. However, even for C-TXs,
approximately 80% achieve perfect predictions, and the hit ratio is
only slightly lower than that of N-TXs. This indicates that a large
proportion of the pre-execution results can be reused.
Transaction-level speedup.Next, we quantify howmuch Seer can
accelerate the execution of each contract transaction over vanilla
Ethereum and compare its performance with MTPU and Forerun-
ner. We use the realistic-replay mode to execute transactions from

200 400 600 800 1000
Block height offset

20
40
60
80

100

R
at

io
 (%

)

Perfect predictions (TXs) Satisfied branches N-TXs C-TXs

Figure 10: Average branch prediction accuracy

[0, 10) [10, 20) [20, 30) [30, 40) [40, 50) [50, ∞)
Speedup interval

0
20
40
60
80

100

TX
 P

er
ce

nt
ag

e
(%

)

MTPU
Forerunner
Seer

N-TXs
C-TXs

Figure 11: Comparison of transaction-level speedup

Table 3: Comparison of the ratio of aborted transactions

of TXs 2K 4K 6K 8K 10K

R/W +

OCC-DA

3.1% (c) 5.6% (c) 5.9% (c) 6.1% (c) 6.4% (c)

1.5% (n) 4.6% (n) 5.2% (n) 5.5% (n) 5.9% (n)

Seer +

OCC-DA

0% (c) 0.05% (c) 0.17% (c) 0.23% (c) 0.22% (c)

0.2% (n) 0.15% (n) 0.33% (n) 0.47% (n) 0.48% (n)
∗‘c’ denotes the ratio of aborted C-TXs, and ‘n’ denotes the ratio of aborted N-TXs.

10,000 blocks for stable results. Figure 11 presents that, for both
MTPU and Forerunner, most transactions achieve a speedup within
10×. MTPU performs slightly better on N-TXs than C-TXs. Forerun-
ner shows the opposite trend but remains limited, with only 1.4%
of C-TXs reaching a speedup of 50× or more. In contrast, Seer sig-
nificantly outperforms on C-TXs, with 40.6% achieving a speedup
of 50× or higher. The average speedup of all C-TXs reaches 50.2×.
Due to the smaller number of SV-conditions in N-TXs, the speedup
effect is somewhat limited, yet the average speedup still reaches
9×, outperforming the two baselines. This speedup improvement is
driven by Seer’s accurate branch prediction and efficient fast-path
execution, demonstrating Seer’s capability in handling increasingly
complex transactions in the future.
Transaction abort rate. In this experiment, we compare the trans-
action abort rates of OCC-DAusing Seer and the native R/Wmethod
to investigate conflict detection accuracy. We employ the synthetic-
replay mode to simulate varying transaction scales. As reported in
Table 3, the abort rate of OCC-DA using R/W is much higher than
that of OCC-DA with Seer and grows as the number of concurrent
transactions increases, with C-TXs being especially prone to aborts.
This is because R/W statically derives read-write sets based on a
single state snapshot, which may result in changes to these sets
during actual execution (Section 2.3). In contrast, Seer, with its
branch prediction functionality, can capture accurate read-write
sets for conflict detection. This greatly reduces abort rates for both
C-TXs and N-TXs, maintaining the overall abort rate below 1%.
Pre-execution latency. Apart from pre-execution benefits, we
compare the pre-execution latency of Seer, MTPU, and Forerunner

831

2K 4K 6K 8K 10K
of TXs

0

2

4

6
La

te
nc

y
(s

) Seer w/o disorder
Seer-40% disorder
Seer-80% disorder
MTPU

Forerunner
N-TXs
C-TXs

Figure 12: Comparison of pre-execution latency

using synthetic-replay under varying transaction scales. To inves-
tigate Seer’s pre-execution repair overhead, we simulate realistic
pre-execution disorder by inserting different proportions of out-of-
order transactions (i.e., disorder ratio) into each node’s transaction
input queue. As shown in Figure 12, MTPU exhibits the lowest
pre-execution latency across all scales. Forerunner, due to its brute-
force approach, incurs significantly higher latency, with C-TXs (37%
share) contributing to almost half of the pre-execution overhead.
In contrast, Seer’s prediction-based pre-execution strikes a balance,
achieving a reduction of up to 5× compared to Forerunner, while
maintaining effectiveness. Besides, as the disorder ratio increases,
more transactions require pre-execution repair. Seer’s lightweight
repair mechanism ensures minimal impact on overall latency.

5.3 Overall Performance
This series of experiments evaluate the overall performance of the
execution phase to explore how much Seer can enhance phase-level
performance compared to the four baselines. We employ synthetic-
replay to conduct experiments under varying transaction scales.
Phase-level speedup. First, we evaluate the phase-level speedup
performance over vanilla Ethereum. We use OCC-DA to enable
concurrent execution for Seer and MTPU, and compare them with
R/W+OCC-DA. Forerunner, however, lacks concurrency control
support and is presented with its native speedup. Figure 13 presents
the comparison results, with the thread count indicated in the suffix
of OCC-DA. The speedup for all approaches declines as transac-
tion scale increases, due to Ethereum’s lower memory cost, which
marginally boosts its throughput with larger scales (Figure 14). De-
spite this, all approaches achieve over 9× speedup by offloading
much of the computation and I/O costs off the execution phase
(Figure 16(c)). Both R/W+OCC-DA and MTPU+OCC-DA achieve
better performance with 8 threads compared to 4, due to greater
execution concurrency. MTPU slightly enhances R/W+OCC-DA’s
performance, with its 8-thread speedup performance comparable
to Forerunner using serial execution. In comparison, the 4-thread
performance of Seer+OCC-DA exceeds its 8-thread counterpart,
as precise conflict detection reduces false negatives, potentially
limiting execution concurrency. Overall, Seer+OCC-DA achieves
the best speedup performance, averaging 20.6× at large scales.
Overall throughput.Next, we evaluate the overall throughput per-
formance during the execution phase. For Seer+OCC-DA, MTPU+
OCC-DA, and R/W+OCC-DA, we showcase their optimal concur-
rent execution performances with varying threads. As shown in Fig-
ure 14, except for vanilla Ethereum, all comparison schemes exhibit
throughput performance with little fluctuation at different transac-
tion scales. Due to the close speedup performance, MTPU+OCC-DA

2K 4K 6K 8K 10K
of TXs

10

15

20

25

30

S
pe

ed
up

 o
ve

r
 v

an
ill

a
E

th
er

eu
m R/W+OCC-DA-4

R/W+OCC-DA-8
Forerunner

Seer+OCC-DA-4
Seer+OCC-DA-8
MTPU+OCC-DA-4
MTPU+OCC-DA-8

Figure 13: Comparison of speedup performance over vanilla
Ethereum during the execution phase

2K 4K 6K 8K 10K
of TXs

0

5

10

15

20

Th
ro

ug
hp

ut
 (K

tp
s) Vanilla Ethereum

R/W+OCC-DA
Forerunner
MTPU+OCC-DA

Seer+OCC-DA

Figure 14: Comparison of throughput performance during
the execution phase

and Forerunner deliver comparable throughput, both slightly out-
performing the native OCC-DA. Similarly, Seer+OCC-DA achieves
the highest throughput among all baselines, averaging 18 Ktps. The
overall throughput improvement of Seer is expected to be even
greater with increasingly complex transactions in the future.

5.4 Factor Analysis
In this series of experiments, we study the impact of each core
design component of Seer on pre-execution effectiveness and re-
source utilization. For pre-execution effectiveness and CPU utiliza-
tion evaluations, we generate four Seer variants. Basic uses only
multi-version state-based prediction. Repair adds the pre-execution
repair feature. Two-level incorporates the perceptron+ model for
two-level branch prediction. The full version, Full, incorporates
checkpoint-based fast-path execution. For memory tests, we com-
pare various memory-saving optimizations: Raw stores all state
variable versions in the multi-version cache, +Partial caches only
those involved in SV-conditions, +Fast caches checkpoint snapshots,
and +Cleanup conducts memory management as detailed in Sec-
tion 3.8. For fairness, the four Seer variants employ +Cleanup for
pre-execution effectiveness and CPU utilization evaluations.
Impact on pre-execution effectiveness. The following experi-
ments investigate the impact of design breakdown with varying
disorder ratios by employing realistic-replay over consecutive 1,000
blocks. First, we compare the branch prediction hit ratios of Seer
variants. As depicted in Figure 15(a), the hit ratio of Basic drops
with the disorder ratio increases. In comparison, Repair uses pre-
execution repair to maintain a stable hit ratio. Two-level performs
similarly to Repair, as both can accurately predict regular branch
directions. Figure 15(b) presents the average pre-execution latency
per block interval for the three Seer variants. Due to extra repair
overhead, Repair exhibits the highest latency, which further in-
creases with a higher disorder ratio. By leveraging the perceptron+
model, Two-level reduces the pre-execution latency by up to 16.8%
compared to Repair, while remaining only slightly higher than Basic.

832

20 40 60 80
Disorder ratio (%)

22242628

Av
er

ag
e

sp
ee

du
p

Basic Repair Two-level Full

20 40 60 80
Disorder ratio (%)

60
70
80
90

100

H
it

ra
tio

 (%
)

(a) Impact on prediction accuracy

20 40 60 80
Disorder ratio (%)

60

80

100

La
te

nc
y

(m
s)

(b) Impact on pre-execution overhead

20 40 60 80
Disorder ratio (%)

22

24

26

28

Av
er

ag
e

sp
ee

du
p

(c) Impact on transaction-level speedup

Figure 15: Pre-execution effectiveness under design breakdown

Ethereum Basic Repair Two-level Full10
20
30
40
50

C
P

U
 u

til
iz

at
io

n
(%

)

Execution phase Pre-execution phase

(a) CPU utilization

Ethereum Raw +Partial +Fast
+Cleanup

1

2

3

M
em

or
y

co
st

 (G
B

)

(b) Memory cost

Ethereum Seer pre.
Seer exec.0

500
1000
1500
2000

IO
P

S

Read Write

(c) I/O overhead

Figure 16: Resource utilization under design breakdown

Note that we exclude the hit ratio and pre-execution latency for
Full since it adopts the same pre-execution method as Two-level.
Figure 15(c) illustrates the average transaction-level speedup for
each Seer variant. Basic shows a decline in speedup performance
as the disorder ratio rises due to its decreasing prediction accu-
racy. With similar prediction accuracy, Repair and Two-level show
comparable speedup performance. In comparison, Full achieves a
notable average speedup of 27.7×, surpassing all other variants.
Impact on resource utilization. The following experiments eval-
uate Seer’s runtime resource utilization over 1,000 blocks using
realistic-replay, averaging results per block generation interval. Fig-
ure 16(a) shows the average peak CPU utilization for Seer variants
and Ethereum. By offloading much computational burden to pre-
execution, Seer significantly reduces CPU usage during execution
compared to Ethereum. Among variants, Full exhibits the high-
est pre-execution CPU utilization but the lowest during execution,
aligning with its speedup results in Figure 15(c). Next, we evaluate
the average memory cost for each memory-saving optimization,
as depicted in Figure 16(b). Compared to Raw, +Partial optimizes
memory usage by caching only the state variable versions relevant
to SV-conditions. +Fast caches checkpoint snapshots, causing only a
slight increase inmemory usage. +Cleanup periodically purges all in-
memory structures, achieving notable memory savings, with mem-
ory cost only 1.22× higher than Ethereum. Figure 16(c) presents the
disk IOPS (I/O operations per second) of Seer and vanilla Ethereum.
As Seer lacks specific disk access optimizations, only one result
among variants is shown. Compared to Ethereum, Seer handles
most I/O reads during pre-execution and incurs slightly lower I/O
read costs due to some inaccurate prediction cases. During actual
execution, Seer’s write operations dominate the disk activity.

6 RELATED WORK
Blockchain pre-execution.The pre-execution technique is widely
adopted by current blockchains. In permissioned blockchains, pre-
execution is performed by a set of trusted nodes before the consen-
sus phase [1, 2, 17, 18, 33]. In public blockchains, transactions can be

speculatively pre-executed in parallel with transaction dissemina-
tion and consensus. Forerunner [8] and MTPU [32] are two state-of-
the-art pre-execution schemes in public blockchains. Forerunner’s
brute-force pre-executing of all possible paths causes inefficien-
cies in handling complex contracts. MTPU restricts pre-execution
to constant parts, leaving state-dependent operations on the criti-
cal path. Both approaches fail to generate precise read-write sets,
hindering accurate conflict detection during concurrent execution.
Blockchain concurrency control. To enable concurrent transac-
tion execution, many works leverage optimistic concurrency control
(OCC) techniques from databases [6, 11, 26, 41]. Early blockchain
OCC research [9, 23, 36, 37, 39, 45, 46] concurrently executes trans-
actions based on the same state version, suffering from signifi-
cant transaction aborts [28, 49]. To mitigate aborts, current re-
search [15, 16, 34, 49] leverages MVCC to allow concurrent trans-
actions to read their dependent state versions, which requires read-
write sets for dependency (i.e., conflict) detection. However, their
reliance on pre-computation or static analysis for obtaining read-
write sets leads to inaccurate dependency detection in dynamic
contract execution environments with numerous SV-branches.

7 CONCLUSIONS
This paper proposes Seer, an advanced transaction execution en-
gine for public blockchains using best-effort pre-execution. Seer
employs two-level branch prediction to improve the accuracy and
reusability of pre-execution results and leverages checkpoint-based
fast-path execution to enable effective reuse of cached results, en-
hancing execution efficiency. Intensive evaluations demonstrate
that Seer outperforms state-of-the-art blockchain pre-execution
and concurrency control schemes in speedup performance.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments.
This work was supported by National Key Research and Devel-
opment Program of China (Grant No. 2021YFB2700700), National
Natural Science Foundation of China (Grant No. 62472185).

833

REFERENCES
[1] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. Par-

blockchain: Leveraging transaction parallelism in permissioned blockchain sys-
tems. In Proceedings of the IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 1337–1347.

[2] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukolić, SharonWeed Cocco, and Jason Yellick. 2018. Hy-
perledger Fabric: A Distributed Operating System for Permissioned Blockchains.
In Proceedings of the 2018 European Conference on Computer Systems (EuroSys).
ACM, 1–15.

[3] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath.
2019. Prism: Deconstructing the Blockchain to Approach Physical Limits. In
Proceedings of the 2019 ACM SIGSACConference on Computer and Communications
Security (CCS). ACM, 585–602.

[4] Binance. 2022. BNB Chain Document. https://docs.bnbchain.org/ [Last accessed
on 2024-12-16].

[5] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher Kruegel, and
Giovanni Vigna. 2022. Sailfish: Vetting smart contract state-inconsistency bugs
in seconds. In Proceedings of the 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 161–178.

[6] Matthew Burke, Florian Suri-Payer, Jeffrey Helt, Lorenzo Alvisi, and Natacha
Crooks. 2023. Morty: Scaling Concurrency Control with Re-Execution. In Pro-
ceedings of the 2023 European Conference on Computer Systems (EuroSys). ACM,
687–702.

[7] Vitalik Buterin. 2014. A next-generation smart contract and decentralized ap-
plication platform. https://ethereum.org/content/whitepaper/whitepaper-
pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf [Last accessed on 2024-12-16].

[8] Yang Chen, Zhongxin Guo, Runhuai Li, Shuo Chen, Lidong Zhou, Yajin Zhou,
and Xian Zhang. 2021. Forerunner: Constraint-based speculative transaction
execution for ethereum. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP). ACM, 570–587.

[9] Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, and Eric Koskinen. 2017.
Adding Concurrency to Smart Contracts. In Proceedings of the 2017 ACM Sympo-
sium on Principles of Distributed Computing (PODC). ACM, 303–312.

[10] Solidity Documentation. 2023. Layout of State Variables in Storage. https:
//docs.soliditylang.org/en/latest/internals/layout_in_storage.html [Last accessed
on 2024-12-16].

[11] Zhiyuan Dong, Zhaoguo Wang, Xiaodong Zhang, Xian Xu, Changgeng Zhao,
Haibo Chen, Aurojit Panda, and Jinyang Li. 2023. Fine-Grained Re-Execution for
Efficient Batched Commit of Distributed Transactions. Proceedings of the VLDB
Endowment 16, 8 (2023), 1930–1943.

[12] Ethereum Foundation. 2024. Gas and Fees. https://ethereum.org/en/developers/
docs/gas/ [Last accessed on 2024-12-16].

[13] Ethereum Foundation. 2024. Merkle Patricia Trie. https://ethereum.org/en/
developers/docs/data-structures-and-encoding/patricia-merkle-trie/ [Last ac-
cessed on 2024-12-16].

[14] Ethereum Foundation. 2024. Official Go implementation of the Ethereum protocol.
https://github.com/ethereum/go-ethereum [Last accessed on 2024-12-16].

[15] Péter Garamvölgyi, Yuxi Liu, Dong Zhou, Fan Long, and Ming Wu. 2022. Uti-
lizing parallelism in smart contracts on decentralized blockchains by taming
application-inherent conflicts. In Proceedings of the IEEE/ACM 44th International
Conference on Software Engineering (ICSE). IEEE/ACM, 2315–2326.

[16] Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun
Li, Dahlia Malkhi, Yu Xia, and Runtian Zhou. 2023. Block-stm: Scaling blockchain
execution by turning ordering curse to a performance blessing. In Proceedings of
the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming (PPoPP). ACM, 232–244.

[17] Christian Gorenflo, Lukasz Golab, and Srinivasan Keshav. 2020. XOX Fabric: A
hybrid approach to blockchain transaction execution. In Proceedings of the 2020
IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE,
1–9.

[18] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. 2019.
FastFabric: Scaling Hyperledger Fabric to 20,000 Transactions per Second. In
Proceedings of the 2019 IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC). IEEE, 455–463.

[19] Zicong Hong, Song Guo, Enyuan Zhou, Wuhui Chen, Huawei Huang, and Albert
Zomaya. 2023. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism. Proceedings of the VLDB Endowment 16, 7 (2023), 1685–
1698.

[20] Huawei Huang, Xiaowen Peng, Jianzhou Zhan, Shenyang Zhang, Yue Lin, Zibin
Zheng, and Song Guo. 2022. BrokerChain: A Cross-Shard Blockchain Protocol for
Account/Balance-based State Sharding. In Proceedings of the 2022 IEEE Conference
on Computer Communications (INFOCOM). IEEE, 1968–1977.

[21] Daniel A. Jiménez. 2003. Fast path-based neural branch prediction. In Proceedings
of the 36th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE/ACM, 243–252.

[22] Daniel A. Jiménez and Calvin Lin. 2001. Dynamic branch prediction with
perceptrons. In Proceedings of the 17th IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 197–206.

[23] Cheqing Jin, Shuaifeng Pang, Xiaodong Qi, Zhao Zhang, and Aoying Zhou. 2021.
A high performance concurrency protocol for smart contracts of permissioned
blockchain. IEEE Transactions on Knowledge and Data Engineering 34, 11 (2021),
5070–5083.

[24] Taeyoung Kim, Yunhee Jang, Chanjong Lee, Hyungjoon Koo, and Hyoungshick
Kim. 2023. Smartmark: Software watermarking scheme for smart contracts. In
Proceedings of the IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE/ACM, 283–294.

[25] Yeonsoo Kim, Seongho Jeong, Kamil Jezek, Bernd Burgstaller, and Bernhard
Scholz. 2021. An off-the-chain execution environment for scalable testing and
profiling of smart contracts. In Proceedings of the 2021 USENIX Annual Technical
Conference (ATC). USENIX Association, 565–579.

[26] Hsiang-Tsung Kung and John T. Robinson. 1981. On optimistic methods for
concurrency control. ACM Transactions on Database Systems 6, 2 (1981), 213–226.

[27] Chenxin Li, Peilun Li, Dong Zhou, Zhe Yang, MingWu, Guang Yang, Wei Xu, Fan
Long, and Andrew Chi-Chih Yao. 2020. A Decentralized Blockchain with High
Throughput and Fast Confirmation. In Proceedings of the 2020 USENIX Annual
Technical Conference (ATC). USENIX Association, 515–528.

[28] Haoran Lin, Yajin Zhou, and Lei Wu. 2022. Operation-level concurrent transac-
tion execution for blockchains. arXiv preprint arXiv:2211.07911 (2022).

[29] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander
Frolov, Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, and Andrew Miller.
2021. Candid: Can-do decentralized identity with legacy compatibility, sybil-
resistance, and accountability. In Proceedings of the 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 1348–1366.

[30] Microsoft. 2021. Official implementation of Forerunner. https://github.com/
microsoft/Forerunner [Last accessed on 2024-12-16].

[31] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf [Last accessed on 2024-12-16].

[32] Rui Pan, Chubo Liu, Guoqing Xiao, Mingxing Duan, Keqin Li, and Kenli Li. 2023.
An Algorithm and Architecture Co-design for Accelerating Smart Contracts
in Blockchain. In Proceedings of the 50th Annual International Symposium on
Computer Architecture (ISCA). ACM, 1–13.

[33] Zeshun Peng, Yanfeng Zhang, Qian Xu, Haixu Liu, Yuxiao Gao, Xiaohua Li, and
Ge Yu. 2022. Neuchain: a fast permissioned blockchain system with deterministic
ordering. Proceedings of the VLDB Endowment 15, 11 (2022), 2585–2598.

[34] Xiaodong Qi, Jiao Jiao, and Yi Li. 2023. Smart contract parallel executionwith fine-
grained state accesses. In Proceedings of the IEEE 43rd International Conference
on Distributed Computing Systems (ICDCS). IEEE, 841–852.

[35] Xiaodong Qi and Yi Li. 2024. LightCross: Sharding with Lightweight Cross-Shard
Execution for Smart Contracts. In Proceedings of the 2024 IEEE Conference on
Computer Communications (INFOCOM). IEEE, 1681–1690.

[36] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,
and Beng Chin Ooi. 2020. A transactional perspective on execute-order-validate
blockchains. In Proceedings of the 2020 International Conference on Management
of Data (SIGMOD). ACM, 543–557.

[37] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
2019. Blurring the lines between blockchains and database systems: the case
of hyperledger fabric. In Proceedings of the 2019 International Conference on
Management of Data (SIGMOD). ACM, 105–122.

[38] Polygon Technology. 2024. POL: One token for all Polygon chains. https:
//polygon.technology/papers/pol-whitepaper [Last accessed on 2024-12-16].

[39] Parth Thakkar and Senthilnathan Natarajan. 2021. Scaling blockchains using
pipelined execution and sparse peers. In Proceedings of the 2021 ACM Symposium
on Cloud Computing (SoCC). ACM, 489–502.

[40] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. 2021. A survey
of smart contract formal specification and verification. ACM Computing Surveys
(CSUR) 54, 7 (2021), 1–38.

[41] Jiachen Wang, Ding Ding, Huan Wang, Conrad Christensen, Zhaoguo Wang,
Haibo Chen, and Jinyang Li. 2021. Polyjuice: High-Performance Transactions
via Learned Concurrency Control. In Proceedings of the 15th USENIX Symposium
on Operating Systems Design and Implementation (OSDI). USENIX Association,
198–216.

[42] Qin Wang, Rujia Li, Qi Wang, and Shiping Chen. 2021. Non-fungible token
(NFT): Overview, evaluation, opportunities and challenges. arXiv preprint
arXiv:2105.07447 (2021).

[43] Sam Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz,
and William Knottenbelt. 2022. Sok: Decentralized finance (defi). In Proceedings
of the 4th ACM Conference on Advances in Financial Technologies (AFT). 30–46.

[44] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. https://ethereum.github.io/yellowpaper/paper.pdf [Last accessed on
2024-12-16].

834

https://docs.bnbchain.org/
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://docs.soliditylang.org/en/latest/internals/layout_in_storage.html
https://docs.soliditylang.org/en/latest/internals/layout_in_storage.html
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://github.com/ethereum/go-ethereum
https://github.com/microsoft/Forerunner
https://github.com/microsoft/Forerunner
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://polygon.technology/papers/pol-whitepaper
https://polygon.technology/papers/pol-whitepaper
https://ethereum.github.io/yellowpaper/paper.pdf

[45] Jiang Xiao, Shijie Zhang, Zhiwei Zhang, Bo Li, Xiaohai Dai, and Hai Jin.
2022. Nezha: Exploiting concurrency for transaction processing in dag-based
blockchains. In Proceedings of the IEEE 42nd International Conference on Dis-
tributed Computing Systems (ICDCS). IEEE, 269–279.

[46] Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. 2021. SlimChain: Scaling
Blockchain Transactions through Off-Chain Storage and Parallel Processing.
Proceedings of the VLDB Endowment 14, 11 (2021), 2314–2326.

[47] Jie Xu, Qingyuan Xie, Sen Peng, Cong Wang, and Xiaohua Jia. 2023. AdaptChain:
Adaptive Scaling Blockchain With Transaction Deduplication. IEEE Transactions
on Parallel and Distributed Systems 34, 6 (2023), 1909–1922.

[48] Haifeng Yu, Ivica Nikolić, Ruomu Hou, and Prateek Saxena. 2020. OHIE:
Blockchain Scaling Made Simple. In Proceedings of the 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 90–105.

[49] Shijie Zhang, Jiang Xiao, Enping Wu, Feng Cheng, Bo Li, Wei Wang, and Hai
Jin. 2024. MorphDAG: A Workload-Aware Elastic DAG-Based Blockchain. IEEE
Transactions on Knowledge and Data Engineering 36, 10 (2024), 5249–5264.

[50] Yuanzhe Zhang, Shirui Pan, and Jiangshan Yu. 2023. TxAllo: Dynamic Transac-
tion Allocation in Sharded Blockchain Systems. In Proceedings of the 39th IEEE
International Conference on Data Engineering (ICDE). 721–733.

[51] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian
Weng, and Muhammad Imran. 2020. An overview on smart contracts: Challenges,
advances and platforms. Future Generation Computer Systems 105 (2020), 475–
491.

[52] Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-Bach Dinh Le, Xin Xia,
Yang Feng, Zhenyu Chen, and Baowen Xu. 2019. Smart contract development:
Challenges and opportunities. IEEE Transactions on Software Engineering 47, 10
(2019), 2084–2106.

835

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Blockchain State
	2.2 Multi-Branch Smart Contracts
	2.3 Challenges of Pre-Execution
	2.4 Our Approach

	3 Seer Design
	3.1 The Architecture of Seer
	3.2 Transaction Ordering Simulation
	3.3 Stack Tracing-Based Branch Identification
	3.4 Two-Level Branch Prediction
	3.5 Checkpoint Snapshot
	3.6 Checkpoint-Based Fast-Path Execution
	3.7 Adaption to MVCC
	3.8 Optimizations
	3.9 Correctness

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Pre-Execution Effectiveness
	5.3 Overall Performance
	5.4 Factor Analysis

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

