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ABSTRACT

Relational DBMS implementations are expected to adhere to SQL
standards. However, there are currently no tools available that can
automatically verify this conformance. The main reasons are two-
fold. First, the SQL standard specification, documented in natural
language, tends to be ambiguous and is not directly executable.
Second, it is difficult to generate test queries that thoroughly cover
all aspects, e.g., keywords and parameters, defined in the SQL spe-
cification. In this work, we introduce the first method for semantic
conformance testing of RDBMSs. Our contributions are threefold.
Firstly, we formally define the denotational semantics of SQL and
implement them in Prolog, creating an executable reference RDBMS
for differential testing against existing RDBMSs. Secondly, we pro-
pose three coverage criteria based on these formal semantics, along
with a coverage-guided query generation algorithm that effect-
ively generates queries achieving high semantic coverage. Lastly,
we apply our approach to six widely-used and thoroughly tested
RDBMSs, e.g., MySQL, PostgreSQL and OceanBase, uncovering 19
bugs and 13 inconsistencies, all of which are confirmed by RDBMS
developers.
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1 SELECT 3>(-5|-4);

2 −− e x p e c t e d : 1 " , a c t u a l : 0 %

(a) A query triggering bug (ID 39259) in TiDB 6.6.0

1 SELECT ' He l l o ' ||NULL;

2 −− SQL i t e : NULL , P o s t g r e SQL : ' He l l o '

(b) A query causing an inconsistency between SQLite version

3.39.0 and PostgreSQL version 16.2, and the SQL specification

Figure 1: A bug and an inconsistency detected by our method

1 INTRODUCTION

Relational Database Management Systems (RDBMSs) [12, 26,
29, 39, 41] are fundamental infrastructures for a wide range of
application systems, such as web applications and embedded sys-
tems [1, 3, 13, 14]. Structured Query Language (SQL) is the standard
programming language for relational databases, and its specification
is formally documented in ISO/IEC 9075:2016 [15]. As the parser
and executor of SQL queries, a RDBMS should conform to the SQL
specification to ensure correct implementations of the semantics.
As of 2023, there are more than 416 different implementations of
relational databases, yet many of these implementations deviate
from the specification [5, 37, 46]. In practice, large online systems,
such as that of Alibaba, may integrate and adopt different RBDMSs
(sometimes dynamically) for efficiency or comparability reasons,
and such deviations in implementations may result in unexpected
system behaviors. Bugs in RDBMSs, which may potentially lead
to data integrity issues or even security vulnerabilities, are also
reported due to violations of the SQL specifications [40].

As the golden standard for correct SQL behavior, the specific-
ation of SQL should be clearly described, and an RDBMS should
conform to the SQL specification. Inconsistencies between RDBMS
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implementations and the specification can lead to unexpected res-
ults. Figure 1 presents two motivating examples, one bug and one
inconsistency that our approach detected. Figure 1a is a SQL query
that triggers a bug in TiDB version 6.6.01, which occurs when per-
forming a bitwise operation on negative numbers, which are by
default signed numbers. The root cause is that TiDB incorrectly
represents the result of bitwise OR (|) on two signed 64-bit integer
(-5 and -4) as an unsigned 64-bit integer (18446744073709551615).
Regarding this bug, the expected result of -5|-4 is the signed in-
teger -1, the binary representation of which is 64 bits of 1. However,
as TiDB treats the result of bitwise OR as an unsigned integer, it
returns the unsigned 64-bit integer 18446744073709551615, which is
the decimal representation of the binary number of 64 bits 1. There-
fore, 3>(-5|-4) is evaluated to 0 (false) in TiDB. For other RDBMSs
that we have tested, e.g., SQLite and PostgreSQL, the given query
is correctly executed (-5|-4 returns -1 and 3>(-5|-4) returns 1).
The underlying reason for this inconsistency is that the bitwise
operation on signed numbers in the SQL specification is under spe-
cified. Therefore, different RDBMSs have different implementations.
To avoid problems caused by such inconsistencies between RDBMS
implementations, we need a method to systematically identify such
under-specification in SQL semantics.

Figure 1b shows an inconsistency between two RDBMS imple-
mentations, SQLite and PostgreSQL, when dealing with a NULL
value. In SQLite, concatenating any string with NULL returns NULL
by default. In contrast, PostgreSQL treats NULL as an empty string.
Thus, concatenating it with string Hello results in Hello. In the
SQL specification, there in only one sentence describing the bin-
ary concatenation operator (as shown in Figure 1b), and it fails to
clearly specify how to process NULL, which is a specific data type in
SQL representing unknown data. This inconsistency poses substan-
tial challenges for users of database systems. When transitioning
between databases and leveraging features with inconsistent im-
plementations, users may encounter unexpected outcomes.

From the motivational examples, we observe that failing to re-
spect the SQL specification or unclearly documented specifications
can result in bugs or inconsistent implementations across different
RDBMSs, potentially confusing users. Therefore, it is critical to test
the conformance of RDBMS implementations with the SQL specific-
ation. However, existing approaches on testing RDBMSs either use
different RDBMSs as the test oracle [37] or propose metamorphic
relations [22, 31–33]. None of those approaches consider testing the
conformance of RDBMS implementations with SQL specifications.
Consequently, they are only scratching the surface in evaluating
the correctness of RDBMS.

To address the issue of automatic conformance testing between
SQL specifications and RDBMS implementations, two main chal-
lenges arise. Firstly, the SQL specification is written in natural
language, which is not directly executable. Secondly, it is chal-
lenging to generate test queries that comprehensively cover all
aspects defined in the SQL specification, including descriptions of
keywords and parameters. This complexity makes comprehensive
conformance testing a challenging task.

In this work, we propose the first automatic conformance testing
approach for relational DBMSs. To address the first challenge, we

1We have also detected this bug in MariaDB 10.9.4 and MySQL 8.0.29.

develop a formal denotational semantics of SQL and implemented
the formalized semantics in Prolog. This executable SQL semantics
is then used as an oracle to detect inconsistencies between RDBMS
implementations and the SQL specification. To overcome the second
challenge, we propose three coverage criteria based on the defined
semantics, which are then utilized to guide the test query generation
process, ensuring comprehensive coverage of SQL specifications.

To evaluate the effectiveness of our approach, we conducted
experiments on five popular and well-tested RDBMSs, successfully
detecting 19 bugs—18 of which are reported for the first time—and
13 inconsistencies. Further examination revealed that 8 bugs and 2
inconsistencies are due to deviations in RDBMS implementations
from the SQL specification, 11 bugs and 11 inconsistencies are at-
tributed to missing or unclear descriptions in the SQL specification
itself. Additionally, we evaluated the effectiveness of the proposed
coverage criteria. The results indicate that all three coverage cri-
teria contribute to generating more diverse test queries, which in
turn help uncover more bugs and inconsistencies, and combining
all three coverage criteria yields the most effective testing results.

To summarize, we make the following contributions.

• We propose the first method, SemConT, on semantic con-
formance testing of RDBMS implementations with the SQL
specification, for which we formalize the semantics of SQL
and implement the formalized semantics in Prolog, enabling
automatic conformance testing.

• We introduce three coverage criteria based on the formal
semantics, which effectively guide test query generation.

• Weevaluate SemConT on six popular and thoroughly-tested
RDBMSs, and detected 19 bugs, 18 of which are reported
for the first time, and 13 inconsistencies.

• We released our Prolog implementation at https://github.
com/DBMSTesting/sql-prolog-implement to inspire further
research in this area.

2 PRELIMINARY ON PROLOG

Prolog (Programming in logic) [11] is a logical programming lan-
guage based on first-order predicate calculus that focuses on de-
ductive reasoning. A Prolog program consists of three components,
i.e., facts, rules, and queries. Facts and rules describe the axioms of a
given domain, while queries represent propositions to be proven. In
the context of data and relationships, facts and rules define the logic
and relations of a given domain. Computations are then conducted
by applying queries to these facts and rules. Similarly, when facts
and rules are used to capture the laws governing state changes,
queries represent the desired target state.

We use the example in Figure 2 to illustrate the basic components
of Prolog. The code snippet in line 2 is a fact in Prolog, and it
represents a table list containing table t with initialized data. Lines
4-11 show three rules for the SELECT keyword, corresponding to
three types of inputs, i.e., NULL (line 4), constant values (lines 5-8),
and lists of columns (lines 9-11). The column_select functions on
lines 8 and 11 correspond to specific column selection operations.
The first parameter denotes the columns that the user wishes to
select. The second parameter contains table metadata, including the
table name, column names, and the data items in the table. The third
parameter is utilized to store the return values. Lines 13-15 present
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1 Facts:

2 Tables =[[t,[a,b],[1,4],[2,5],[3,8]]]

3 Rules:

4 select_clause ((null),Tb ,[]).

5 select_clause(X,Tb,Z) :-

6 isConstant(X),

7 add_X(X,Tb,T),

8 column_select(X,T,Z).

9 select_clause(X,Tb,Z) :-

10 list(X),

11 column_select(X,Tb,Z).

12 ...

13 from_clause(T,Z) :-

14 list(T),

15 table_select(T,Tables ,Z).

16 ...

17 Queries:

18 from_clause(t,TableList).

19 select_clause(t.b,TableList ,Filtered).

20 −−Re tu rn R e s u l t : F i l t e r e d = [ [ 4 ] , [ 5 ] , [ 8 ] ] .

Figure 2: An example of implementing the semantics of SQL

keywords SELECT and FROM using Prolog

(1)⟨𝑞𝑢𝑒𝑟𝑦𝑒𝑥𝑝 ⟩ ::= {⟨𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩ | ⟨𝑠𝑒𝑙𝑒𝑐𝑡 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩
⟨𝑓 𝑟𝑜𝑚 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩[⟨𝑤ℎ𝑒𝑟𝑒 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩][⟨𝑔𝑟𝑜𝑢𝑝 𝑏𝑦 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩]
[⟨ℎ𝑎𝑣𝑖𝑛𝑔 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩]}[⟨𝑜𝑟𝑑𝑒𝑟 𝑏𝑦 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩]

(2)⟨𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩ ::= ⟨𝑞𝑢𝑒𝑟𝑦𝑒𝑥𝑝 ⟩⟨𝑐𝑜𝑝 ⟩⟨𝑞𝑢𝑒𝑟𝑦𝑒𝑥𝑝 ⟩
(3)⟨𝑐𝑜𝑝 ⟩ ::= UNION [ALL] |EXCEPT [ALL] |INTERSECT[ALL]
(4)⟨𝑓 𝑟𝑜𝑚 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩ ::= FROM⟨𝑡𝑟𝑒 𝑓 ⟩[, ⟨𝑡𝑟𝑒 𝑓 ⟩...]
(5)⟨𝑡𝑟𝑒 𝑓 ⟩ ::= ⟨𝑡𝑛𝑎𝑚𝑒 ⟩ | ⟨ 𝑗𝑜𝑖𝑛𝑒𝑑 𝑡𝑎𝑏𝑙𝑒 ⟩
(6)⟨ 𝑗𝑜𝑖𝑛𝑒𝑑 𝑡𝑎𝑏𝑙𝑒 ⟩ ::= ⟨𝑐𝑟𝑜𝑠𝑠 𝑗𝑜𝑖𝑛⟩ | ⟨𝑞𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑 𝑗𝑜𝑖𝑛⟩

| ⟨𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑗𝑜𝑖𝑛⟩
(7)⟨𝑐𝑟𝑜𝑠𝑠 𝑗𝑜𝑖𝑛⟩ ::= ⟨𝑡𝑛𝑎𝑚𝑒 ⟩CROSS JOIN⟨𝑡𝑛𝑎𝑚𝑒 ⟩
(8)⟨𝑞𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑 𝑗𝑜𝑖𝑛⟩ ::= ⟨𝑡𝑛𝑎𝑚𝑒 ⟩[INNER |LEFT |RIGHT |FULL]

JOIN⟨𝑡𝑛𝑎𝑚𝑒 ⟩⟨𝑜𝑛 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩
(9)⟨𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑗𝑜𝑖𝑛⟩ ::= ⟨𝑡𝑛𝑎𝑚𝑒 ⟩NATURAL JOIN ⟨𝑡𝑛𝑎𝑚𝑒 ⟩
(10)⟨𝑜𝑛 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩ ::= ON ⟨𝑏𝑣𝑒𝑥𝑝 ⟩
(11)⟨𝑤ℎ𝑒𝑟𝑒 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩ ::= WHERE⟨𝑏𝑣𝑒𝑥𝑝 ⟩
(12)⟨𝑠𝑒𝑙𝑒𝑐𝑡 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩ ::= SELECT ⟨𝑠𝑜𝑝 ⟩ | ⟨𝑎𝑓 ⟩ ⟨𝑠𝑙𝑖𝑠𝑡 ⟩
(13)⟨𝑠𝑙𝑖𝑠𝑡 ⟩ ::= ∗| ⟨𝑐𝑛𝑎𝑚𝑒 ⟩ [, ⟨𝑐𝑛𝑎𝑚𝑒 ⟩...]
(14)⟨𝑠𝑜𝑝 ⟩ ::= DISTINCT |ALL
(15)⟨𝑎𝑓 ⟩ ::= MAX |MIN |SUM |COUNT |AVG
(16)⟨𝑔𝑟𝑜𝑢𝑝 𝑏𝑦 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩ ::= GROUP BY ⟨𝑐𝑛𝑎𝑚𝑒 ⟩
(17)⟨ℎ𝑎𝑣𝑖𝑛𝑔 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩ ::= HAVING⟨𝑏𝑣𝑒𝑥𝑝 ⟩
(18)⟨𝑜𝑟𝑑𝑒𝑟 𝑏𝑦 𝑐𝑙𝑎𝑢𝑠𝑒 ⟩ ::= ORDER BY⟨𝑐𝑛𝑎𝑚𝑒 ⟩
(19)⟨𝑏𝑣𝑒𝑥𝑝 ⟩ ::= ⟨𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛⟩ | ⟨𝑖𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛⟩

| ⟨𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛⟩ | ⟨𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛⟩
⟨𝑖𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛⟩ | ⟨𝑒𝑥𝑖𝑠𝑡𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛⟩ | ⟨𝑛𝑢𝑙𝑙
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛⟩ | ⟨𝑣𝑒𝑥𝑝 ⟩ | 𝑡𝑟𝑢𝑒 | 𝑓 𝑎𝑙𝑠𝑒 | 𝑛𝑢𝑙𝑙

(20)⟨𝑡𝑛𝑎𝑚𝑒 ⟩ ::= 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟
(21)⟨𝑐𝑛𝑎𝑚𝑒 ⟩ ::= 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟

Figure 3: SQL syntax

a rule for the FROM keyword, where the first parameter T represents
the name of the target table, and the second parameter signifies the
output produced by the FROM clause. This rule specifically addresses
the case of a single table input. It returns the required table (line
15) based on the information provided in the facts. Lines 17-18
contain Prolog queries, which corresponds to the SQL query SELECT
t.b FROM t. The from_clause rule (lines 13-15) is first triggered
to return table t and then the select_clause rule (lines 9-11) is
activated to return the required column t.b. In Prolog, the answers
to a query can be automatically computed based on rules and facts

Table 1: Symbol notations

Symbol Description

T A table instance
𝛼 A data record in a tableˆ︁𝛼 Bags of data records
𝛽 An attribute in a tableˆ︁𝛽 Bags of attributes
Θ An expression

T.𝛽𝑖 The i𝑡ℎ attribute in T

T.𝛽 All attributes in T
𝜋𝛽 (T) Data projection on attribute 𝛽
𝜎Θ(T) Data selection on expression Θ
𝜉𝛼 (T) The multiplicity of data record 𝛼 in table T
𝜉𝛽 (T) The multiplicity of attribute 𝛽 in table T

[𝑎, ..., 𝑎]𝑛 A list of element a with length n
⊲⊳ Data join operation
× Cartesian product operation

through a unification algorithm. As a result, the values in column
b are returned and stored in the list Filtered (line 20).

We implement the semantics using Prolog for two main reasons.
First, Prolog, like SQL, is a declarative language, which contrasts
with imperative languages such as C typically used in RDBMS im-
plementations. This distinction reduces the likelihood of replicating
common errors found in traditional RDBMSs. Second, Prolog is in-
tuitive and straightforward to implement, offering built-in support
for operations like list manipulation and querying, which align
well with the structure of tables and queries in SQL. For these reas-
ons, Prolog is commonly used in existing research to formalize the
semantics of various domains [19, 35].

3 FORMAL SEMANTICS OF SQL

Figure 3 presents the SQL syntax supported by our system. We
implement all keywords and features related to the Data Query
Language (DQL), including lexical elements, scalar expressions,
query expressions and predicates, as defined in Part 2 of the SQL
specification (ISO/IEC 9075-2:2016) [15]. Due to space constraints,
we provide only a subset of the syntax and corresponding semantics
for key SQL keywords here, while the complete syntax and semantic
definitions are available in our full report [23].

We manually analyze the semantics of keywords in the SQL
specification and defined the denotational semantics for 138 SQL
keywords in the SQL specification. Although non-trivial manual
effort is required to define the semantics, this is a one-off effort. Fur-
thermore, since the semantics of SQL is mostly stable, the defined
semantics can be easily maintained as well. We adopt the bag se-
mantics of SQL according to the SQL specification, allowing duplic-
ate elements in the result set. We also support the null semantic,
which is considered as a special unkown value in SQL.

3.1 Basic symbol definition

Table 1 lists the basic symbols used for semantic definitions in this
work. T, 𝛼 , and 𝛽 are used to represent a table, a data record in the
table, and an attribute of a table, respectively. ˆ︁𝛼 and ˆ︁𝛽 represent
bags of data and bags of attribute, respectively. Θ represents expres-
sions, including logical expressions, numeric expressions, constant
values and function operations. The operations of data projection,
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Keyword operation(C : {𝐿,𝑂𝑃 } ↦→ 𝑇 )

Join operation

1. C[[{[𝑇1,𝑇2], 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑗𝑜𝑖𝑛}]] ≜ {𝛼1 ◦ 𝛼2 |𝛼1 ∈ 𝑇1, 𝛼2 ∈ 𝑇2, 𝛽𝐼 = 𝑗𝑜𝑖𝑛𝐶(𝑇1 .𝛽,𝑇2 .𝛽 }) 𝛼1 ◦ 𝛼2 ≜

{︄
𝛼1 ⊲⊳ 𝛼2; (𝛽𝐼 ̸= ∅) ∧ (𝜋

𝛽𝐼
({𝛼1 }) = 𝜋

𝛽𝐼
({𝛼2 }))

𝑠𝑘𝑖𝑝 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2. C[[{[𝑇1,𝑇2], 𝑙𝑒 𝑓 𝑡 𝑗𝑜𝑖𝑛}]] ≜ {𝛼1 • 𝛼2 |𝛼1 ∈ 𝑇1, 𝛼2 ∈ 𝑇2, 𝛽𝐼 = 𝑇1 .𝛽 ∩𝑇2 .𝛽 }

𝛼1 • 𝛼2 ≜

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛼1 ⊲⊳ 𝛼2; (𝛽𝐼 ̸= ∅) ∧ (𝜋

𝛽𝐼
({𝛼1 }) = 𝜋

𝛽𝐼
({𝛼2 }))

𝛼1 ⊲⊳ [𝑛𝑢𝑙𝑙, ..., 𝑛𝑢𝑙𝑙]|{𝛼2}.𝛽 |−|𝛽𝐼 |
; (𝛽𝐼 ̸= ∅) ∧ (𝜋

𝛽𝐼
({𝛼1 }) ̸= 𝜋

𝛽𝐼
({𝛼2 }))

𝑠𝑘𝑖𝑝 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3. C[[{[𝑇1,𝑇2], 𝑟𝑖𝑔ℎ𝑡 𝑗𝑜𝑖𝑛}]] ≜ {𝛼1 • 𝛼2 |𝛼1 ∈ 𝑇1, 𝛼2 ∈ 𝑇2, 𝛽𝐼 = 𝑇1 .𝛽 ∩𝑇2 .𝛽 }

𝛼1 • 𝛼2 ≜

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛼1 ⊲⊳ 𝛼2; (𝛽𝐼 ̸= ∅) ∧ (𝜋

𝛽𝐼
({𝛼1 }) = 𝜋

𝛽𝐼
({𝛼2 }))

[𝑛𝑢𝑙𝑙, ..., 𝑛𝑢𝑙𝑙]|{𝛼1}.𝛽 |−|𝛽𝐼 |
⊲⊳ 𝛼2; (𝛽𝐼 ̸= ∅) ∧ (𝜋

𝛽𝐼
({𝛼1 }) ̸= 𝜋

𝛽𝐼
({𝛼2 }))

𝑠𝑘𝑖𝑝 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

4. C[[{[𝑇1,𝑇2], 𝑐𝑟𝑜𝑠𝑠 𝑗𝑜𝑖𝑛}]] ≜ {𝛼1 × 𝛼2 |𝛼1 ∈ 𝑇1, 𝛼2 ∈ 𝑇2 } 5. C[[{[𝑇1,𝑇2], 𝑖𝑛𝑛𝑒𝑟 𝑗𝑜𝑖𝑛}]] ≜ C[[{[𝑇1,𝑇2], 𝑐𝑟𝑜𝑠𝑠 𝑗𝑜𝑖𝑛}]]
Collection operation

𝛼𝑢(𝑇1,𝑇2) ≜
{︃
𝛼 ; (𝛼 ∈ 𝑇1) ∨ (𝛼 ∈ 𝑇2)
𝑠𝑘𝑖𝑝 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝛼𝑖(𝑇1,𝑇2)) =
{︃
𝛼 ; (𝛼 ∈ 𝑇1) ∧ (𝛼 ∈ 𝑇2)
𝑠𝑘𝑖𝑝 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝛼𝑒(𝑇1,𝑇2)) =
{︃
𝛼 ; (𝛼 ∈ 𝑇1) ∧ (𝛼 /∈ 𝑇2)
𝑠𝑘𝑖𝑝 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝛼𝑒𝑎(𝑇1,𝑇2) =
{︃
𝛼 ; 𝜉𝛼 (𝑇1) > 𝜉𝛼 (𝑇2)
𝑠𝑘𝑖𝑝 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

6. C[[{[𝑇1,𝑇2], 𝑢𝑛𝑖𝑜𝑛}]] ≜ {𝛼𝑢(𝑇1,𝑇2) |𝜉𝛼𝑢(𝑇1,𝑇2) (𝑇 ) = 1} C[[{[𝑇1,𝑇2], 𝑢𝑛𝑖𝑜𝑛 𝑎𝑙𝑙 }]] ≜ {𝛼𝑢(𝑇1,𝑇2) }
7. C[[{[𝑇1,𝑇2], 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 }]] = {𝛼𝑖(𝑇1,𝑇2) |𝜉𝛼𝑖(𝑇1,𝑇2) (𝑇 ) = 1} C[[{[𝑇1,𝑇2], 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑎𝑙𝑙 }]] = {𝛼𝑖(𝑇1,𝑇2) |𝜉𝛼𝑖(𝑇1,𝑇2) (𝑇 ) =𝑚𝑖𝑛(𝜉𝛼𝑖(𝑇1,𝑇2) (𝑇1), 𝜉𝛼𝑖(𝑇1,𝑇2) (𝑇2))}
8. C[[{[𝑇1,𝑇2], 𝑒𝑥𝑐𝑒𝑝𝑡 }]] = {𝛼𝑒(𝑇1,𝑇2 |𝜉𝛼𝑒(𝑇1,𝑇2

(𝑇 ) = 1} C[[{[𝑇1,𝑇2], 𝑒𝑥𝑐𝑒𝑝𝑡 𝑎𝑙𝑙 }]] = {𝛼𝑒𝑎(𝑇1,𝑇2) |𝜉𝛼𝑒𝑎(𝑇1,𝑇2) (𝑇 ) =𝑚𝑎𝑥 (0, 𝜉𝛼𝑒𝑎(𝑇1,𝑇2) (𝑇1) − 𝜉𝛼𝑒𝑎(𝑇1,𝑇2) (𝑇2))}
Filter operation

9. C[[{[𝑇 ], 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 }]] ≜ {𝛼 |(∀𝛼 ∈ 𝑇, 𝜉𝛼 (𝑇1) = 1) ∧ (∀𝛼 ∈ 𝑇1, 𝛼 ∈ 𝑇 )} 10. C[[{[𝑇 ], 𝑎𝑙𝑙 }]] ≜ 𝑇
Aggregation operation

11. C[[{[𝑇 ], 𝑚𝑎𝑥 }]] ≜ {𝑣 |(𝑣 ∈ 𝜋
𝑇 .𝛽

(𝑇 )) ∧ (∀𝑣1 ∈ 𝜋
𝑇 .𝛽

(𝑇 ), 𝜎(𝑣1>𝑣)(𝜋𝑇 .𝛽
(𝑇 )) = ⊘)}

12. C[[{[𝑇 ], 𝑚𝑖𝑛}]] ≜ {𝑣 |(𝑣 ∈ 𝜋
𝑇 .𝛽

(𝑇 )) ∧ (∀𝑣1 ∈ 𝜋
𝑇 .𝛽

(𝑇 ), 𝜎(𝑣1<𝑣)(𝜋𝑇 .𝛽
(𝑇 )) = ⊘)}

13. C[[{[𝑇 ], 𝑠𝑢𝑚}]] ≜ {𝑣 |𝑣 =
∑︂

𝑣1∈𝜋𝑇 .𝛽
(𝑇 )
𝑣1 } 14. C[[{[𝑇 ], 𝑐𝑜𝑢𝑛𝑡 }]] ≜ {𝑣 |𝑣 =

∑︂
𝛼 ∈𝜋

𝑇 .𝛽
(𝑇 )

(𝜉𝛼 (𝑇 ))}

15. C[[{[𝑇 ], 𝑎𝑣𝑔}]] ≜ {𝑣 |𝑣 =
∑︂

𝑣1∈𝜋𝑇 .𝛽
(𝑇 )
𝑣1/

∑︂
𝛼 ∈𝜋

𝑇 .𝛽
(𝑇 )

(𝜉𝛼 (𝑇 ))}

Keyword operation(H : 𝑆 ↦→ (𝐴,𝑇 ))
Single keyword operation

16. H[[𝑓 𝑟𝑜𝑚⟨𝑡𝑛𝑎𝑚𝑒 ⟩]] ≜ (𝐴,𝐴.⟨𝑡𝑛𝑎𝑚𝑒 ⟩) 17. H[[𝑓 𝑟𝑜𝑚⟨𝑡𝑛𝑎𝑚𝑒1 ⟩, ⟨𝑡𝑛𝑎𝑚𝑒2 ⟩]] ≜ (𝐴, C[[[𝐴.⟨𝑡𝑛𝑎𝑚𝑒1 ⟩, 𝐴.⟨𝑡𝑛𝑎𝑚𝑒2 ⟩], 𝑐𝑟𝑜𝑠𝑠 𝑗𝑜𝑖𝑛 ]])
18. H[[𝑠𝑒𝑙𝑒𝑐𝑡 ∗]] ≜ ({𝑇 }, 𝜋

𝑇 .𝛽
(𝑇 )) 19. H[[𝑠𝑒𝑙𝑒𝑐𝑡 ⟨𝑐𝑛𝑎𝑚𝑒 ⟩ [, ⟨𝑐𝑛𝑎𝑚𝑒 ⟩...]]] ≜ ({𝑇 }, 𝜋⟨𝑐𝑛𝑎𝑚𝑒⟩ [, ⟨𝑐𝑛𝑎𝑚𝑒⟩...](𝑇 ))

20. H[[𝑜𝑛 ⟨𝑏𝑣𝑒𝑥𝑝 ⟩]] ≜ ({𝑇 }, 𝜎B(⟨𝑏𝑣𝑒𝑥𝑝⟩)(𝑇 )) 21. H[[𝑤ℎ𝑒𝑟𝑒 ⟨𝑏𝑣𝑒𝑥𝑝 ⟩]] ≜ ({𝑇 }, 𝜎B(⟨𝑏𝑣𝑒𝑥𝑝⟩)(𝑇 )) 22. H[[ℎ𝑎𝑣𝑖𝑛𝑔 ⟨𝑏𝑣𝑒𝑥𝑝 ⟩]] ≜ ({𝑇 }, 𝜎B(⟨𝑏𝑣𝑒𝑥𝑝⟩)(𝑇 ))
23. H[[𝑔𝑟𝑜𝑢𝑝 𝑏𝑦 ⟨𝑐𝑛𝑎𝑚𝑒 ⟩]] ≜ ({𝑇 }, (ˆ︂𝛼1, ...,ˆ︂𝛼𝑘 ) : ∀ˆ︂𝛼𝑝 ∈ (ˆ︂𝛼1, ...,ˆ︂𝛼𝑘 ), ∀ 𝑣𝑖 𝑗 ∈ 𝜋⟨𝑐𝑛𝑎𝑚𝑒⟩ (ˆ︂𝛼𝑝 ), (𝑣𝑖 𝑗 = 𝑣𝑖1))
24. H[[𝑜𝑟𝑑𝑒𝑟 𝑏𝑦 ⟨𝑐𝑛𝑎𝑚𝑒 ⟩ ]] ≜ ({𝑇 },𝑇1)𝑤ℎ𝑒𝑟𝑒(∀𝛼 ∈ 𝑇1, 𝜉𝛼 (𝑇1) = 𝜉𝛼 (𝑇 )) ∧ (∀𝛼 ∈ 𝑇, 𝜉𝛼 (𝑇 ) = 𝜉𝛼 (𝑇1)) ∧ (∀𝑣𝑖 , 𝑣𝑗 ∈ 𝜎𝑇1 .⟨𝑐𝑛𝑎𝑚𝑒⟩ (𝑇1), 𝑖 < 𝑗 iff 𝑣𝑖 <= 𝑣𝑗 )
25. H[[⟨𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦⟩]] ≜ H[[⟨𝑞𝑢𝑒𝑟𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛⟩]]
Composite keyword operation

(1)
H[[𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛1]] ≜ (𝐴,𝑇 ), H[[𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛2]] ≜ ({𝑇 },𝑇 ′)

H[[𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛1]] ⋄ H[[𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛2]] ≜ (𝐴,𝑇 ′)
(2)

H[[𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛]] ≜ (𝐴,𝑇 ), C[[{{𝑇 },𝑂𝑃 }]] ≜ 𝑇 ′

H[[𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛]] ⋄ C[[{{𝑇 },𝑂𝑃 }]] ≜ (𝐴,𝑇 ′)

(3)
C[[{𝐿,𝑂𝑃 }]] ≜ 𝑇, H[[𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛]] ≜ ({𝑇 },𝑇 ′)

C[[{𝐿,𝑂𝑃 }]] ⋄ H[[𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛]] ≜ (𝐿,𝑇 ′)
(4)

H[[𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛1]] ≜ (𝐴,𝑇1), H[[𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛2]] ≜ (𝐴,𝑇2), C[[{{𝑇1,𝑇2 },𝑂𝑃 }]] ≜ 𝑇3
(H[[𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛1]],H[[𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛2]]) ⋄ C[[{{𝑇1,𝑇2 },𝑂𝑃 }]] ≜ (𝐴,𝑇3)

26. H[[⟨𝑞𝑢𝑒𝑟𝑦𝑒𝑥𝑝 ⟩]] =
H[[𝑠𝑒𝑙𝑒𝑐𝑡 [⟨𝑠𝑜𝑝 ⟩ | ⟨𝑎𝑓 ⟩] ⟨𝑐𝑛𝑎𝑚𝑒1 ⟩[, ⟨𝑐𝑛𝑎𝑚𝑒2 ⟩...] 𝑓 𝑟𝑜𝑚⟨𝑡𝑛𝑎𝑚𝑒1 ⟩[, ⟨𝑡𝑛𝑎𝑚𝑒2 ⟩...] | 𝑓 𝑟𝑜𝑚 ⟨𝑡𝑛𝑎𝑚𝑒1 ⟩ 𝑛𝑎𝑡𝑢𝑟𝑎𝑙/𝑐𝑟𝑜𝑠𝑠 𝑗𝑜𝑖𝑛 ⟨𝑡𝑛𝑎𝑚𝑒2 ⟩
| 𝑓 𝑟𝑜𝑚 ⟨𝑡𝑛𝑎𝑚𝑒1 ⟩ 𝑙𝑒 𝑓 𝑡/𝑟𝑖𝑔ℎ𝑡/𝑓 𝑢𝑙𝑙/𝑖𝑛𝑛𝑒𝑟 𝑗𝑜𝑖𝑛 ⟨𝑡𝑛𝑎𝑚𝑒2 ⟩ 𝑜𝑛⟨𝑏𝑣𝑒𝑥𝑝 ⟩ [𝑤ℎ𝑒𝑟𝑒 ⟨𝑏𝑣𝑒𝑥𝑝 ⟩] [𝑔𝑟𝑜𝑢𝑝 𝑏𝑦 ⟨𝑐𝑛𝑎𝑚𝑒 ⟩] [ℎ𝑎𝑣𝑖𝑛𝑔 ⟨𝑏𝑣𝑒𝑥𝑝 ⟩]
[𝑜𝑟𝑑𝑒𝑟 𝑏𝑦 ⟨𝑐𝑛𝑎𝑚𝑒 ⟩]]] ≜
H[[𝑓 𝑟𝑜𝑚⟨𝑡𝑛𝑎𝑚𝑒1 ⟩]] |(H[[𝑓 𝑟𝑜𝑚 ⟨𝑡𝑛𝑎𝑚𝑒1 ⟩]],H[[𝑓 𝑟𝑜𝑚 ⟨𝑡𝑛𝑎𝑚𝑒2 ⟩]]) ⋄ C[[𝐿,𝑛𝑎𝑡𝑢𝑟𝑎𝑙/𝑐𝑟𝑜𝑠𝑠 𝑗𝑜𝑖𝑛 ]] |(H[[𝑓 𝑟𝑜𝑚 ⟨𝑡𝑛𝑎𝑚𝑒1 ⟩]],H[[𝑓 𝑟𝑜𝑚⟨𝑡𝑛𝑎𝑚𝑒2 ⟩]])
⋄C[[𝐿, 𝑙𝑒 𝑓 𝑡/𝑟𝑖𝑔ℎ𝑡/𝑖𝑛𝑛𝑒𝑟/𝑓 𝑢𝑙𝑙 𝑗𝑜𝑖𝑛 ]] ⋄ H[[𝑜𝑛 ⟨𝑏𝑣𝑒𝑥𝑝 ⟩]][ ⋄ H[[𝑤ℎ𝑒𝑟𝑒 ⟨𝑏𝑣𝑒𝑥𝑝 ⟩]]][ ⋄ H[[𝑔𝑟𝑜𝑢𝑝 𝑏𝑦 ⟨𝑐𝑛𝑎𝑚𝑒 ⟩]]][ ⋄ H[[ℎ𝑎𝑣𝑖𝑛𝑔 ⟨𝑏𝑣𝑒𝑥𝑝 ⟩]]]
⋄ H[[𝑠𝑒𝑙𝑒𝑐𝑡 ⟨𝑐𝑛𝑎𝑚𝑒1 ⟩[, ⟨𝑐𝑛𝑎𝑚𝑒2 ⟩...]]][ ⋄ C[[{𝑇1, ⟨𝑠𝑜𝑝/𝑎𝑓 ⟩}]]][ ⋄ H[[𝑜𝑟𝑑𝑒𝑟 𝑏𝑦 ⟨𝑐𝑛𝑎𝑚𝑒 ⟩]]]

27. H[[⟨𝑞𝑢𝑒𝑟𝑦𝑒𝑥𝑝1 ⟩ ⟨𝑐𝑜𝑝 ⟩ ⟨𝑞𝑢𝑒𝑟𝑦𝑒𝑥𝑝2 ⟩]] ≜ (H[[⟨𝑞𝑢𝑒𝑟𝑦𝑒𝑥𝑝1 ⟩]],H[[⟨𝑞𝑢𝑒𝑟𝑦𝑒𝑥𝑝2 ⟩]]) ⋄ C[[{[𝑇1,𝑇2], ⟨𝑐𝑜𝑝 ⟩}]]

Figure 4: The full list of semantic definitions for SQL keywords

data selection, and calculating the multiplicity of data records or
attributes are denoted by 𝜋 , 𝜎 , and 𝜉 , respectively. The operations of
joining two data records and performing the Cartesian product are
represented by ⊲⊳ and ×, respectively. We use [𝑎, ..., 𝑎]𝑛 to denote a
list of n occurrences of 𝑎 (which can be a data record or a constant).

3.2 Semantics of SQL keywords

The semantics of SQL keywords can be classified into two categories.
The first category defines functionalities that directly operate on a
list of tables and return a new table. The second category involves
functionalities that operate on query expressions, and return a tuple
(𝐴, 𝑇 ), where 𝐴 is a set of tables and 𝑇 is the resulting table.
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Algorithm 1: Executing a SQL query
Input : 𝑠𝑞𝑙 : the SQL query to be executed
Output : 𝑟𝑒𝑠𝑢𝑙𝑡 : the execution result of the query

1 𝑎𝑠𝑡 = ParseSQL (𝑠𝑞𝑙 )
2 Function ExecuteQuery(𝑎𝑠𝑡 .𝑟𝑜𝑜𝑡):
3 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝐿𝑖𝑠𝑡 = Sort(𝑎𝑠𝑡 .𝑟𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)
4 foreach 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 in 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝐿𝑖𝑠𝑡 do

5 𝑟𝑒𝑠𝑢𝑙𝑡 = ExecuteKeyword(𝑘𝑒𝑦𝑤𝑜𝑟𝑑, 𝑟𝑒𝑠𝑢𝑙𝑡 )
6 end

7 Function ExecuteKeyword(𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑁𝑜𝑑𝑒, 𝑟𝑒𝑠𝑢𝑙𝑡):
8 foreach 𝑐ℎ𝑖𝑙𝑑 in 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

9 if 𝑐ℎ𝑖𝑙𝑑 is query then

10 𝑟𝑒𝑠𝑢𝑙𝑡 = ExecuteQuery(𝑐ℎ𝑖𝑙𝑑)
11 end

12 if child is leaf then

13 𝑟𝑒𝑠𝑢𝑙𝑡=ExecuteRule(𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑁𝑜𝑑𝑒, 𝑟𝑒𝑠𝑢𝑙𝑡 )
14 return 𝑟𝑒𝑠𝑢𝑙𝑡

15 end

16 𝑟𝑒𝑠𝑢𝑙𝑡 = ExecuteKeyword(𝑐ℎ𝑖𝑙𝑑, 𝑟𝑒𝑠𝑢𝑙𝑡 )
17 end

Definition 1 (Keyword semantics (C : {𝐿,𝑂𝑃} ↦→ 𝑇 )) Function
C, which is a mapping from a list of table instances 𝐿 and an op-
eration type 𝑂𝑃 to a table 𝑇 , defines the denotational semantics
of SQL keywords. Fig 4 shows the semantic definition of four SQL
keywords, i.e., join operations (semantic rules 1-5), set operations
(semantic rules 6-8), filter operations (semantic rules 9-10), and
aggregate operations (semantic rules 11-15).
Definition 2 (Composite semantics (H : 𝑆 ↦→ (𝐴,𝑇 ))) The func-
tionH is a mapping from the domain of SQL statements 𝑆 to the
domain of tuples (𝐴,𝑇 ), where 𝐴 represents the set of tables that
are relevant or affected during the execution process and 𝑇 is the
result table. Fig 4 shows the semantics of the second category of
SQL keywords (semantic rules 16-27), including keywords such as
FROM, WHERE, ON, SELECT, GROUP BY, HAVING, ORDER BY,
and their combinations in SQL statements.

3.3 Prolog implementation of SQL semantics

We have implemented the formal semantics of SQL defined in Fig-
ure 4 in a tool named SemConT using Prolog. The semantics of
each keyword are implemented as a set of rules, as illustrated in
Figure 2. We then implement the compositional semantics in Al-
gorithm 1, which outlines the process of executing a SQL query in
Prolog. The input to this algorithm is a SQL query, and its output is
the result of executing this SQL query. Algorithm 1 initially parses
the SQL statement into an Abstract Syntax Tree (AST) (line 1). The
ExecuteQuery function then traverses the tree from the root node,
sorting the children of the root node according to the keyword
execution order (line 3). Then the semantic rules of the keywords
are executed in order with the ExecuteKeyword function (lines
4-6). If a subquery is encountered (lines 9-11), the ExecuteQuery
function is recursively called to initiate the sorting procedure. In
other cases, ExecuteKeyword recursively calls itself (line 16) until a
leaf node is reached, invoking the corresponding keyword semantic
rule execution (lines 12-14). The time complexity of Algorithm 1 is
O(n) with n being the number of operators in the given SQL query.

The sorting of keywords solves the critical issue of ensuring the
correct execution order of the semantics for each keyword in the
query. Note that the SQL specification does not explicitly indicate

the execution order of all keywords in a query, yet we can imply the
execution order based on the semantic of each individual keyword.
We also check the implementation of current mainstream databases,
including MySQL, PostgreSQL, TiDB, SQLite and DuckDB, and con-
firm that they enforce the same execution order of SQL keywords,
which is consistent with our understanding of keyword execution
order, i.e., JOIN, FROM, WHERE, GROUP BY, Aggregate functions,
HAVING, SELECT, ORDER BY, based on their semantics.

In the SQL specification, there are a total of 47 keywords whose
semantics are not explicitly described, among which 4 are duplic-
ated, e.g., AND and &&, OR and | |, LCASE and LOWER, UCASE and
UPPER. The remaining 43 keywords include 4 bitwise operators, 23
string functions, and 16 numeric functions. Taking bitwise operators
as an example, the SQL specification (Part 2 Foundation, Language
Opportunities) states: "The SQL standard is missing operators on
binary data types (BINARY, VARBINARY, BLOB) that allow users to
bitwise manipulate values." For these keywords, we referred to the
implementation documentation of mainstream database manage-
ment systems in our Prolog implementations. In cases where there
were inconsistencies among different database implementations,
we chose to adopt that used by the majority of databases.

Take the SQL query SELECT * FROM T WHERE T.a=(SELECT 1
FROM T) as an example. This query contains a subquery SELECT 1
FROM T. Initially, we parse this SQL statement into an AST and sort
the three children nodes of the root node according to the keyword
execution order of FROM, WHERE, SELECT. Taking the FROM keyword
as an example, it has a single child node, which is the table name T.
The rule for FROM that requires a table as input is then triggered for
execution (lines 12-14). This information is subsequently relayed
to the WHERE clause. During the execution of the WHERE clause, we
encounter the subquery SELECT 1 FROM T, where we recursively
call the ExecuteQuery function to process the subquery.
Correctness of SemConT. As mentioned in Section 2, Prolog,
being declarative, is naturally suited to specify denotational se-
mantics we defined. Taking the ‘select’ keyword as an example,
rule 19 of Figure 4 shows the formal semantics of ‘select’ and line
9-11 in Figure 2 shows the corresponding Prolog implementation.
The formal semantics defines the select keyword as a column refer-
ence using the projection operation 𝜋 to select columns from a table
T. This maps directly to the select_clause function in the Prolog
implementation, which checks for column references and extracts
the relevant columns from Table Tb. Prolog’s rule-based structure
ensures a one-to-one correspondence with the formal semantics,
minimizing implementation errors and ensuring adherence to the
SQL specification. Moreover, we have conducted comprehensive
testing (on 6 different RDBMS systems, with 18 millions of test
cases) and code review following the software engineering stand-
ard procedure, covering all the semantic rules we’ve implemented.

4 CONFORMANCE TESTING

4.1 Overview of our approach

Figure 5 illustrates the overview of our conformance testing ap-
proach, which consists of four components. Initially, we define the
formal semantics of SQL, as detailed in Section 3. Next, we imple-
ment the SQL formal semantics in Prolog, which serves as an oracle
for conformance testing. The third component is dedicated to test
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Figure 5: Overview of SemConT

case generation. Here, we enhance the syntax-guided generation
method, SQLancer [38], with coverage-guided test case generation.
This enhancement is based on three coverage criteria, i.e., keyword
coverage, rule coverage, and composite rule coverage, which we
proposed based on the formal semantics we defined. The final com-
ponent is dedicated to query results comparison, wherein the query
results of the tested RDBMS and our Prolog implementation are
compared to identify conformance issues.
Conformance issues in our work refer to bugs or inconsisten-
cies. Both are due to violating the SQL semantics defined in the
SQL specification, or unclear or missing descriptions in the SQL
specification. Bugs are defects that are confirmed by developers.
Inconsistencies refer to inconsistent result produced by the tested
RDBMS and SemConT. Inconsistencies are also confirmed by de-
velopers, yet they perceive them as deliberate design choices rather
than bugs.We report these inconsistencies because various RDBMSs
make differing design decisions, leading to varied query results that
may potentially perplex users. This also underscore the importance
of a comprehensively documented SQL specification.

4.2 Coverage guided test case generation

The state-of-the-art practice in test case generation involves ran-
domly generating SQL queries guided by the syntax of SQL, among
which SQLancer [38] stands out as one of the most effective tools
of this kind. It is tailored to the syntactical structures of various RD-
BMSs. SQLancer considers database objects, such as tables, views,
and indexes, as well as keywords and functionalities within query
statements. Throughout the generation process, SQLancer main-
tains a set of keywords and functionalities, from which it randomly
selects keywords to incorporate into the test cases, subject to syn-
tactic rules of SQL (so that they remain syntactically valid). How-
ever, this generation process is entirely random and does not con-
sider coverage of the SQL semantics. As a result, certain aspects of
the semantics may never be tested.

To address this problem, we propose three coverage criteria, i.e.,
keyword coverage, rule coverage, and composite rule coverage,
based on the formal semantics we defined. Each coverage criterion
defines coverage at a different granularity level. Keyword cover-
age simply assesses whether each individual keyword in the SQL

Algorithm 2: Coverage guided query generation
1 Function SQLGeneration():
2 Initialize 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒=0, 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑆𝑒𝑡
3 Initialize 𝑞𝑢𝑒𝑟𝑦𝑃𝑜𝑜𝑙=GenerateQuery()
4 while TRUE do

5 while 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 does not increase do

6 𝑞𝑢𝑒𝑟𝑦𝐼𝑛𝑖𝑡 = GetQueryFromPool()
7 𝑞𝑢𝑒𝑟𝑦 = MutateQuery()
8 CalculateCoverage(𝑞𝑢𝑒𝑟𝑦)
9 end

10 AddQueryIntoPool(𝑞𝑢𝑒𝑟𝑦)
11 ExecuteQuery(𝑞𝑢𝑒𝑟𝑦)
12 if timeout then

13 break
14 end

15 end

16 Function CalculateCoverage(𝑞𝑢𝑒𝑟𝑦):
17 if 𝑞𝑢𝑒𝑟𝑦.𝑝𝑎𝑡𝑡𝑒𝑟𝑛 not in 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑆𝑒𝑡 then

18 UpdateCoverage(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒)
19 ADD 𝑞𝑢𝑒𝑟𝑦.𝑝𝑎𝑡𝑡𝑒𝑟𝑛 To 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑆𝑒𝑡
20 end

specification is covered. Rule coverage goes a step further by calcu-
lating whether each semantic rule, which accommodates different
inputs for a SQL keyword, is covered. Composite rule coverage
considers combinations of semantic rules that can form a valid SQL
query.
Keyword coverage. Formula (1) presents the formula for calculat-
ing keyword coverage, where 𝑁𝑡𝑘 represents the number of non-
repeated keywords that are covered by the generated test queries
and 𝑁𝐾 the total number of keywords defined in our semantics.

𝐶𝑜𝑣𝑘 =
𝑁𝑡𝑘

𝑁𝐾
(1)

Rule coverage. The semantics of each SQL keyword implemented
in Prolog is often encoded in multiple rules. Formula (2) shows
the formula for measuring the percentage of rules covered by the
generated test queries (𝑁𝑡𝑟 ) in relation to the total number of rules
(𝑁𝑅 ) defined in our semantics. 𝑁𝑡𝑟 is calculated by enumerating
all keywords in the test suite and identifying the distinct semantic
rules that are triggered.

𝐶𝑜𝑣𝑟 =
𝑁𝑡𝑟

𝑁𝑅
(2)

Composite rule coverage. We further introduce a more fine-
grained coverage criterion named composite rule coverage, which
takes into account the combination of semantic rules triggered by
a SQL statement, offering a more comprehensive assessment of the
test coverage for SQL statements. We calculate the composite rule
coverage using Formula (3). The numerator (𝑁𝑡𝑐𝑟 ) represents the
number of composite rules covered by the test queries, while the
denominator (𝑁𝐶𝑅 ) is the total number of all composite rules.

𝐶𝑜𝑣𝑐𝑟 =
𝑁𝑡𝑐𝑟

𝑁𝐶𝑅
(3)

Coverage-guided query generation. Algorithm 2 describes the
process of query generation guided by coverage. We set the initial
coverage to be 0 and the declare covered set (coveredSet), which
records the covered keywords, rules, or combined rules. We adopt
SQLancer to randomly generate a large number of SQL statements
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Table 2: Mutation Rules, with Colored Deletion and Addition

ID Type Transformation Example Query

01

Keyword-level

Replace operators SELECT * FROM T WHERE T.a AND OR T.b
02 Replace keywords SELECT * FROM T ORDER BY GROUP BY T.a
03 Add operators SELECT * FROM T WHERE (T.a AND T.b) IS NOT TRUE
04 Add keywords SELECT * FROM T WHERE T.a = CAST(T.b as string) ORDER BY T.b ASC
05 Delete operators SELECT * FROM T WHERE T.a AND T.b
06 Delete keywords SELECT * FROM T WHERE EXP(T.a) >= T.b

07

Rule-level

Convert constants to column references SELECT * FROM T WHERE T.a = MOD(1 T.b,1)
08 Convert parameter data types SELECT * FROM T WHERE T.a = POSITION(1 ’a’,1)
09 Add parameters SELECT * FROM T WHERE T.a = MOD(T.b,1) IS NOT TRUE AND ABS(1)
10 Delete parameters SELECT * FROM T WHERE T.a = (T.b > FLOOR(T.c) XOR CEILING(1.5))

11
Subquery-level

Replace subqueries SELECT * FROM T WHERE T.a = 1 AND T.b IS FALSE WHERE EXISTS SELECT T.c WHERE T.b =1
12 Add subqueries SELECT * FROM T WHERE T.a IN (1,2) XOR T.b = exp(3)
13 Delete subqueries SELECT * FROM T WHERE T.a > (T.b IS NOT UNKNOWN) GROUP BY T.a HAVING LN(4)

(line 2), which serves as the seed pool of our query generation
algorithm. The algorithm begins with randomly selecting an SQL
statement from the seed pool (line 6), and mutates the query based
on the mutation rules we proposed. Then we calculate coverage
of the mutated query (line 8). We keep this mutation process (line
5-9) until the mutated query increases the overall coverage. Then
the mutated query is added into the seed pool for future test case
generation. The mutated query is executed to explore potential
inconsistencies (line 11). The process terminates upon timeout.
Function CalculateCoverage calculates the coverage of the given
query. It first checks whether the given query’s signature according
to our definition of coverages (i.e., keyword, rule, or composite rule)
is already recorded in the covered set. If it is not in the covered set, it
indicates that this query increases the coverage. We then update the
coverage (line 18) and add the pattern of this query to the covered
set (line 19). The time complexity of Algorithm 2 is O(nlogn), with
n being the number of all possible rules for a particular coverage
criterion. Our goal is to generate a set of test cases that collectively
cover all semantic rules. The test case generation algorithm operates
by randomly generating a test case and retaining it only if it covers a
previously uncovered rule; otherwise, it is discarded. This process is
analogous to the Coupon Collector’s problem [25], which estimates
the time required to collect n distinct coupons through random
sampling. Similarly, our random generation process achieves full
coverage with high probability at a time complexity of O(nlogn).
In our work, the number n is 138 for keyword coverage, 556 for
semantic rule coverage and 19 million for composite rule coverage.

Table 2 lists the mutation rule examples on SQL statements we
proposed. We categorize the mutation rules into three classes, i.e.,
keyword-level mutation rules, parameter-level mutation rules and
subquery-level mutation rules. These mutation rules effectively en-
hance the keyword coverage, rule coverage, and combination rule
coverage. In particular, keyword-level mutation rules and subquery-
level mutation rules improve keyword coverage, parameter-level
mutation rules improve rule coverage, all three types of mutation
rules used together improve composite rule coverage. To ensure
the validity of the mutated queries, we employ the SQL parser
JSQLParser [20] during the mutation process to verify the syntactic
validity of each mutated statement and discard the ones with syn-
tax errors. Semantic checks, including the table references, column
references, and data types, are performed to ensure that the cor-
rectness of the mutated queries.

4.3 Result comparison

The final part of our method is result comparison, which entails
comparing the query results from the tested RDBMS with those
returned by SemConT. We first compare the number of records in
the query results and identify an inconsistency if the numbers differ.
If the numbers are identical, we proceed to compare the data records
in the results. In particular, we scan both sets of query results and
remove identical data pairs. An inconsistency is reported if either
result set is not empty after removing all matching pairs.

For some of the SQL features, such as arithmetic operators, ag-
gregate functions, and numerical functions, different RDBMSs may
incur different implementation choices on floating point precision,
which could result in false alarms in our result comparison step. To
mitigate those false alarms, we impose restrictions on the return
results of SQL statements that may involve floating-point outcomes
during test case generation, and enforce the execution results to
retain two decimal places. Meanwhile, we impose the same restric-
tions in our implementation of SQL semantics in Prolog to avoid
potential false alarms in result comparison.

To enhance result explainability reported by SemConT, we we
log the inconsistencies and provide the semantic rule we imple-
mented as explanations of the inconsistency. Moreover, for those
under-specified keywords like IN, we providemultiple Prolog imple-
mentations based on popular RDBMSs, e.g., MySQL and PostgreSQL,
allowing users to configure the desired semantics.

4.4 Discussion on Extensibility

In this paper, we define and implement the denotational semantics
concerning the SQL Data Query Language (DQL) commands. The
other types of SQL commands, including DDL, SML, and DCL
can be easily supported by extending our semantics. For the se-
mantics of transactions and concurrency, we formalize single trans-
actions by executing SQL queries sequentially in real-time order.
For concurrent transactions, the semantics should define all valid
schedules. Formally, the semantics of two concurrent transactions
T1 and T2 can be defined as: 𝑇1| |𝑇2 ≜ {𝑄1 | |𝑄2, 𝑄1 ∈ 𝑇1, 𝑄2 ∈
𝑇 2∧𝑅𝑇𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑇 1)∧𝑅𝑇𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑇 2)∧! 𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡}
The symbol | | represents the concurrent execution of two transac-
tions or SQL queries, RTConstraint(T) formalizes the realtime order
constraints of SQL queries in T, and IsolationConstraint formalizes
the schedule constraints associated with a particular isolation level.

856



Since the SQL specification [15] only provide the anomaly phe-
nomena, which can be formalized as specific schedule templates
among transactions, to be avoided in each isolation level, we need
to exclude those invalid schedules in our semantics.

Taking dirty read as an example, any schedule that contains
the sequence of T1.w(x), T2.r(x) should be avoided as T2 has
read an uncommitted write by T1, and this potentially lead to
dirty read if T1 aborts. Then this pattern can be added into the
IsolationConstraint to filter out schedules containing this pattern.
This schedule constraint is associated with all isolation levels as
they all forbid dirty read. We can generate test cases that contain
schedules of the phenomena to be avoided and inspect on the logs
of the tested RDBMSs to check whether their implementations
contain behaviors of those phenomena.

5 EVALUATION

5.1 Experiment setup

We conducted all experiments on a server with two Intel(R) Xeon(R)
Platinum 8260 CPUs at 2.30 GHz and 502 GB of memory, running
Ubuntu 18.04.6 LTS. The SQL formal semantics were implemented
in Prolog, while the SQL query generation program was developed
in Java. We ran the experiments using Java version 11.0.15.1.
Target RDBMSs.We selected six popular andwidely used RDBMSs,
each offering a range of distinct features and application scenarios,
to demonstrate the effectiveness of our approach. MySQL [26] and
PostgreSQL [29] are the two most popular open-source database
management systems. SQLite [39] and DuckDB [12] are both em-
bedded DBMSs, running within the process of other applications.
TiDB [41] and OceanBase [28] are popular distributed RDBMSs. It
is important to note that we used the latest release of each RDBMS,
which has been extensively tested by existing approaches [31, 32].
Compared baselines. We compared SemConT with TLP [32] and
NoREC [31], which are state-of-the-art metamorphic testing meth-
ods for testing RDBMS. NoREC constructs two semantically equi-
valent queries, one triggers the optimization and the other does not,
executes the queries and compare the results. TLP, on the other
hand, partitions the conditional expression of the original query
into three segments, corresponding to the three possible results,
i.e., TRUE, FALSE, and NULL, of the conditional expression. It then
compares the union of the result sets from executing the three quer-
ies with the three segments each, with the result set of the original
statement, expecting them to be identical. Both approaches have
demonstrated effectiveness in RDBMS bug detection. Both NoREC
and TLP are implemented in SQLancer [38] and SQLRight [22].
SQLancer adopts a generative approach for query generation and
SQLRight adopts a mutation-based approach for generating quer-
ies. Therefore, in our experiment, we have four combined settings
(concerning the oracle and query generation method) for the com-
pared baselines, i.e., NoREC (SQLancer), NoREC (SQLRight), TLP
(SQLancer) and TLP (SQLRight).

5.2 Experiment results

5.2.1 Effectiveness of SemConT. We ran SemConT on six RDBMSs
for a period of 3 months and reported the detected issues to the
corresponding developer communities. Table 3 shows the details

Table 3: Bugs and inconsistencies detected by SemConT

SN ID Target Type Reason Status

1 109146 MySQL Bug missing spec duplicate
2 109837 MySQL Bug missing spec comfirmed
3 109842 MySQL Bug missing spec comfirmed
4 109149 MySQL Bug missing spec comfirmed
5 110438 MySQL Bug violate spec comfirmed
6 109147 MySQL Inconsistency missing spec comfirmed
7 109148 MySQL Inconsistency unclear spec comfirmed
8 109836 MySQL Inconsistency missing spec comfirmed
9 109845 MySQL Inconsistency missing spec comfirmed
10 110439 MySQL Inconsistency violate spec comfirmed
11 110346 MySQL Inconsistency violate spec comfirmed
12 109962 MySQL Inconsistency missing spec comfirmed
13 110711 MySQL Inconsistency missing spec comfirmed

14 40996 TiDB Bug missing spec comfirmed
15 40995 TiDB Bug missing spec comfirmed
16 39260 TiDB Bug missing spec comfirmed
17 39259 TiDB Bug missing spec comfirmed
18 39258 TiDB Bug unclear spec comfirmed
19 42375 TiDB Bug violate spec comfirmed
20 42376 TiDB Bug violate spec comfirmed
21 42378 TiDB Bug violate spec comfirmed
22 42379 TiDB Bug violate spec comfirmed
23 42377 TiDB Bug violate spec comfirmed
24 42773 TiDB Inconsistency missing spec comfirmed
25 40995 TiDB Inconsistency missing spec comfirmed

26 7e03a4420a SQLite Bug missing spec comfirmed
27 3f085531bf SQLite Bug missing spec comfirmed
28 6e4d3e389e SQLite Bug violate spec comfirmed
29 411bce39d0 SQLite Inconsistency missing spec comfirmed

30 6804 DuckDB Bug violate spec fixed

31 2104 OceanBase Inconsistency missing spec confirmed
32 2105 OceanBase Inconsistency missing spec confirmed

of the confirmed bugs and inconsistencies in six RDBMSs detec-
ted by SemConT. It detects 19 bugs (18 newly reported) and 13
inconsistencies, which are all confirmed by developers, in six ex-
tensively tested RDBMSs. All detected bugs and inconsistencies are
either due to RDBMS violating the SQL specification, or missing
or unclear SQL specification. Out of the issues identified, 23 are
related to scalar expressions and 9 to other keywords, including
joins and various relational operators. Our primary objective is to
detect inconsistencies between RDBMS implementations and the
SQL specification by generating test cases that achieve high cover-
age across different SQL keywords. Our implementation focuses
on scalar expressions, query expressions, and predicates. Among
these, scalar expressions are the most complex, as they often in-
volve combinations of multiple keywords and subqueries. They are
also under-specified in the SQL standard and insufficiently tested
by existing approaches [22, 31–33]. In contrast, query expressions
and predicates are clearly defined in the SQL specification, leading
to fewer ambiguities across RDBMSs. Moreover, they have been
extensively tested by prior research [22, 31–33], making it more
challenging to uncover new inconsistencies. Among the confirmed
bugs, 1 has been reported previously and 1 has been fixed. The
remaining 13 issues are confirmed as inconsistencies, and the de-
velopers claim that they were their design choices. Among the 13
inconsistencies, 2 of them are due to violation of the SQL specific-
ation and 11 of them are due to unclear descriptions in the SQL
specification. Developers of different RDBMSs could have different
interpretations on the SQL specification, and thus design and im-
plement their RDBMS differently. Among the nine inconsistencies
arising from unclear standard descriptions, eight inconsistencies
were detected in both MySQL (109147, 109148, 109836, 109845,
109962, 110711) and TiDB (42773, 40995). The queries triggering the
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(a) MySQL (b) TiDB

(c) SQLite (d) DuckDB

(e) OceanBase (f) PostgreSQL

Figure 6: The keyword coverage increment (y-axis) with the

number of queries (x-axis)

inconsistencies have the same results when executed in MySQL,
TiDB, and MariaDB databases, and are different from that of Post-
greSQL. It is noteworthy that all six databases have been extensively

tested by existing methods [31–33], yet SemConT is still able to detect

bugs that were not detected by those approaches.

By a careful inspection on the detected bugs, we find that most
of them indeed violate the SQL specification. One of the most rep-
resentative bugs is related to the mishandling of NULL operands
in keyword operations. According to the SQL specification, “If
the value of one or more, <string value expression>s, <datetime

value expression>s, <interval value expression>s, and <collection

value expression>s that are simply contained in a <numeric value

function> is the NULL value, then the result of the <numeric value

function> is the NULL value" [15]. However, MySQL violates the spe-
cification by returning non-NULL results when operating on NULL
values. One bug in MySQL (110438), three bugs in TiDB (42375,
42377, 42378) and one bug in DuckDB (6804) belong to this category.
Another representative bug is due to incorrect implicit type con-
version on string. When a string is converted to a signed integer
type, it is mistakenly converted to a float type. There is no specific
description in SQL specification on such cases. We will provide
detailed analysis in the case study of section 5.2.4 of this type of

(a) MySQL (b) TiDB

(c) SQLite (d) DuckDB

(e) OceanBase (f) PostgreSQL

Figure 7: The rule coverage increment (y-axis) with the num-

ber of queries (x-axis)

bugs. Three bugs in MySQL (109149, 109837, 109842) and three bugs
in TiDB (39260, 40995, 40996) belong to this category.

We also identified two bug in TiDB (39258, 39259) which erro-
neously handles bitwise operations on negative numbers and in
operations on string, one bug in MySQL (109146) which is related
to improper handling of newline characters by bitwise operators,
and three bugs in SQLite (7e03a4420a, 3f085531bf, 6e4d3e389e) con-
cerning the handling of data anomalies. These bugs are specifically
related to the improper handling of large numbers or numbers
expressed in scientific notations. The SQL specification does not
provide detailed description on those particular cases. The remain-
ing two bugs are about column references on TiDB (42376, 42379).
When RIGHT JOIN is used together with the FIELD or CONCAT_WS
keywords, if the parameters of the function contain references to a
certain column, the result set will miss some data records.

The inconsistencies we identified can be categorized into two
types: (1) inconsistencies violating the SQL specification, and (2)
inconsistencies arise from different RDBMSs implementations due
to missing or unclear descriptions in the SQL specification. One
inconsistency in MySQL (109962), one in TiDB (42773) and one
in OceanBase(2105) are due to the representation of integer 0 in
certain numerical functions, where the result of the integer 0 is
represented as -0 because of incorrect implicit type conversion.
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(a) mysql (b) TiDB

(c) SQLite (d) DuckDB

(e) OceanBase (f) PostgreSQL

Figure 8: The composite rule coverage increment (y-axis)

with the number of queries (in million).

Two inconsistencies in MySQL (110439, 110711) involve anomalies
in the results returned by string functions when handling NULL

parameters. This inconsistency aligns with some previously iden-
tified bugs and contradicts the semantic descriptions of NULL in
the SQL specification [15]. We detected three inconsistencies in
MySQL (109836, 109845) and TiDB (40995), where the precision
retained in floating-point results do not align with the specification.
Among them, MySQL (109845) and TiDB (40995) do not obey the
floating point precision specified by the parameter when using the
round function to process integers. In MySQL (109836), performing
arithmetic operations on string-type and numeric-type constants
with the same numerical value does not yield consistent floating-
point precision. Additionally, bitwise operators in both databases
do not consistently return signed integer types when performing
operations on negative numbers in MySQL (109147) and OceanBase
(2104). The remaining inconsistencies relate to handling specific
data types in MySQL (109148, 110346) or large numbers in SQLite
(411bce39d0). The SQL specification misses descriptions on those
operations, resulting in the inconsistencies.

5.2.2 Effectiveness of the coverage criteria. We measure the ef-
fectiveness of the proposed coverage criteria in two aspects, i.e.,
whether they are effective in guiding generating test cases that

achieve higher coverage, and whether they are effective in guiding
generating test cases that uncover unknown bugs or inconsisten-
cies. The experiment results on keyword coverage, rule coverage
and composite rule coverage improvement are shown in Figure 6,
Figure 7 and Figure 8, respectively. The three coverage criteria all
improve the query generating process, triggering more bugs and
inconsistencies with faster speed. Composite rule coverage achieves
the most significant improvement.

In Figure 6, SQLancer+keyword syntax represents the setting of
adding keywords and the corresponding generation rules which
were not supported by SQLancer. SQLancer+keyword syntax greatly
improved the keyword coverage for all six databases. Notably,
within the first 1500 SQL statements, over 80% of the keywords
were covered on all six databases, with SQLite achieving an im-
pressive keyword coverage of 99%. Keyword coverage guided query
generation (SQLancer+keyword coverage) further improves the
keyword coverage, and achieved 100% keyword coverage within
the first 200 generate queries for all databases, demonstrating the
effectiveness of our keyword-guided query generation method.

Figure 7 shows the results on rule coverage, which show similar
trend with that on keyword coverage. Due to the limited support
of SQL features, e.g., data types, by SQLancer, especially for DBMS
such as DuckDB and TiDB, relying only on SQLancer achieves low
rule coverage, as shown in Figure 7. Therefore, we add thosemissing
features in SQLancer for the corresponding DBMS query generation
and refer this as SQLancer + rule syntax. We can observe that
adding thosemissing features improves the rule coverage, especially
for DuckDB and TiDB. Rule coverage-guided query generation
(SQLancer+rule coverage) achieves the highest rule coverage with
the fewest number of queries. The results indicate the effectiveness
of our rule coverage-guided query generation algorithm.

Figure 8 depicts the improvements in composite rule coverage by
the generated queries for the five databases. With SQLancer, which
conducts random query generation, we observed that the increase
in composite rule coverage tends to plateau after generating 60
million data points. At this stage, MySQL, SQLite, DuckDB and
OceanBase each achieved a composite rule coverage of around 70%
and TiDB 50%. With the introduction of composite rule coverage
guidance, all four databases were able to reach 100% composite
rule coverage after generating 20 million queries (our Prolog im-
plementation has a total of 19 million composite rules). The results
indicate the effectiveness of our composite rule coverage-guided
query generation algorithm.

To verify the effectiveness of the coverage-guided query gen-
eration algorithm in assisting detecting bugs and inconsistencies
in relational DBMS, we conducted an ablation study of SemConT
with and without coverage guidance. Table 4 presents the experi-
mental results obtained from testing six databases over a period of
6 hours. We record the number of bugs and inconsistencies detec-
ted on the four settings, i.e., SemConT without coverage guidance,
and SemConT with three coverage guidance. We also report the
time taken to discover the first bug or inconsistency. Note that to
conduct fair comparisons, we improved SQLancer by incorporating
all keywords supported by our semantics and related generation
rules in SemConT. The experimental results indicate that within
a 6-hour timeframe, all three coverage metrics successfully assist
detecting more bugs and inconsistencies compared with random
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Table 4: The bug and inconsistency numbers detected by SemConT with no coverage guided and coverage guided in 6h

DBMS SemConT SemConT+keyword coverage SemConT+rule coverage SemConT+composite rule coverage

Bugs Inconsistencies Time Bugs Inconsistencies Time Bugs Inconsistencies Time Bugs Inconsistencies Time

MySQL 3 3 12.42 4 5 11.25 5 6 5.75 5 6 6.23
TiDB 3 1 13.33 6 2 12.17 5 2 7.46 7 2 8.62
SQLite 1 1 20.50 2 1 17.83 3 1 14.33 3 1 13.05
DuckDB 1 0 29.37 1 0 27.32 1 0 31.68 1 0 26.29
OceanBase 0 2 13.25 0 2 13.37 0 2 7.92 0 2 9.13

Table 5: The bugs and inconsistencies detected by SQLancer, SQLRight and SemConT in 6h

DBMS TLP (SQLancer) NoREC (SQLancer) TLP (SQLRight) NoREC (SQLRight) SemConT

Bugs Inconsistencies Bugs Inconsistencies Bugs Inconsistencies Bugs Inconsistencies Bugs Inconsistencies

MySQL 1 0 - - 1 0 0 0 5 6
TiDB 2 0 - - - - - - 7 2
SQLite 0 1 0 0 0 0 0 0 3 1
DuckDB 1 0 0 0 - - - - 1 0
OceanBase 0 1 0 0 - - - - 0 2

generation. Composite rule coverage is the most effective among
all three coverage metrics. In terms of the time taken to detect the
first bug or inconsistency, all three coverage guidance algorithm are
faster than SemConT with random query generation. In particular,
keyword coverage, rule coverage and composite rule coverage are
5.22%, 24.19% and 21.41% faster than random query generation.

5.2.3 Comparison with baselines. We compare SemConT with
two state-of-the-art approaches TLP [31] and NoREC [32], which
are metamorphic testing approaches for relational DBMS. For both
approaches, we adopt SQLancer [38] and SQLRight [22] for query
generation. Notably, SQLancer does not support the NoREC oracle
for MySQL and TiDB, while SQLRight does not support TiDB,
DuckDB and OceanBase. Therefore, we excluded these specific
scenarios from our experiments. We ran the compared tools for a
period of 6 hours and report the results in Table 5.

The experimental results show that both SQLancer and SQLRight
using the NoREC as the oracle were unable to detect new bugs or
inconsistencies. The TLP oracle with SQLancer for query gener-
ation detected 4 bugs in three databases, and with SQLRight for
query generation detectd 1 bug in MySQL. SemConT outperformed
the compared approaches and detected 16 bugs and 11 inconsisten-
cies in the five databases. The reason is that existing approaches
do not consider the SQL specification and thus fail to find bugs
that violated the SQL specification. For instance, One bug (109842)
we detected in MySQL is related to the MOD function. When ap-
plied to negative numbers, MySQL incorrectly represents the result
as -0. Both TLP and NoREC failed to detect this bug, even after
successfully generated the bug triggering query.

On average, our tool finds a bug in 67 minutes using 19,381
test cases, compared to 300 minutes and 1.3 million test cases for
SQLancer, and 30 hours and 8.4 million test cases for SQLRight. Our
approach finds more bugs/inconsistencies with fewer test cases,
demonstrating its effectiveness and efficiency in detecting bugs and
inconsistencies that violating SQL specifications. We also compared
the memory usage of SemConT and SQLancer during a 6-hour test
on six databases. Results indicate that SemConT’s memory usage
is comparable to the baseline.

1 SELECT MOD( ' −12 ' ,-4);

2 −− e x p e c t e d : 0 " , a c t u a l : −0 %

Figure 9: A bug in MySQL 8.0.29

5.2.4 Case study of bugs and inconsistencies. SemConT has identi-
fied 19 bugs and 13 inconsistencies, which arise from two reasons,
i.e., (1) DBMS implementations are not consistent with SQL specific-
ation and (2) unclear or missing description in the SQL specification.
These problems have resulted in variations in the specific imple-
mentations across different RDBMSs, consequently affecting the
user experience.
Abug due tomissing specifications. Figure 9 is a bugwe detected
in MySQL 8.0.29. The query conducts MOD function with the string
type as the first parameter. The expected result of the query is 0,
yet MySQL returned -0. MySQL developers confirmed this bug
and explained the reason is that when the first parameter of MOD
is a string type, an implicit type conversion should be triggered
to convert the string type ’-12’ to a signed integer -12. However,
MySQL mistakenly converted ’-12’ to a float type -12.0, causing
this bug. SQL specification does not specify how to convert a string
type to a numeric type, and thus different RDBMSs may make on
their own implementation choices.
An inconsistency violating the SQL specification. Figure 10
shows the queries that cause an inconsistency in MySQL 8.0.29 that
violates the SQL specification. The first three SQL queries create
three tables t0, t1 and t2. Then t0 and t1 are inserted values NULL
and string ‘hhhh’ (lines 4, 5), respectively. Line 6 replaces the value
in t2 with value 960364164. The query in line 7 returns an empty
list in MySQL 8.0.29, which violates the SQL specification [15].

The select query in line 7 involves a right outer join between
t2 and t0 on condition 0, meaning false in this context, and thus
no matching columns are returned from the two tables. Therefore,
the resulting table will retain all the data from the right table (t0)
and replace all data from the left table (t2) with NULL for the RIGHT
OUTER JOIN operation, and a table with one data record [NULL,
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1 CREATE TABLE IF NOT EXISTS t0(c0 LONGTEXT STORAGE DISK COMMENT

' a s d f ' COLUMN_FORMAT FIXED) ;

2 CREATE TABLE IF NOT EXISTS t1 LIKE t0;

3 CREATE TABLE IF NOT EXISTS t2(c0 DECIMAL ZEROFILL COMMENT ' a s d f '

COLUMN_FORMAT FIXED PRIMARY KEY UNIQUE STORAGE DISK);

4 INSERT INTO t0(c0) VALUES(NULL);

5 INSERT INTO t1(c0) VALUES( ' hhhh ' );

6 REPLACE INTO t2(c0) VALUES (960364164);

7 SELECT t1.c0, t2.c0 FROM t1, t2 RIGHT OUTER JOIN t0 ON 0 WHERE

(NOT ((t2.c0 IS FALSE)!= ((t1.c0))));

8 −− e x p e c t e d : [ [ ` hhhh ' , NULL , NULL ] ] , a c t u a l : [ ]

Figure 10: The queries triggering an inconsistency in MySQL

8.0.29 with the SQL specification

NULL] (on columns t0.c0 and t2.c0) is returned. Then natural join
of table t1 with that result table is performed, resulting a table
with one record [’hhhh’, NULL, NULL]. The WHERE condition
is the tricky part which causes the inconsistency. Since t2.c0 is
NULL (after the right outer join), the result of (t2.c0 IS FALSE)
should be FALSE. According to the SQL specification [15] (the truth
table for IS BOOLEAN operator in Part 2 Foundation, boolean value

expression), the truth value for NULL IS FALSE and NULL IS TRUE
should both be false. On the left of the comparison operator != is
a boolean type and on the right a string type. Therefore, MySQL
will convert the boolean type false to a numeric number 0 and
try to convert the string type to an integer type by default. In
this case, the first character of the string ’hhhh’ is a non-numeric
character, it is converted to integer 0. Therefore, (t2.c0 is FALSE)
!= (t1.c0) is evaluated to false and thus the WHERE condition is
evaluated to true. The returned result should be [’hhhh’, NULL,
NULL] according to SQL specification. Yet MySQL 8.0.29 returned an
empty list. We reported this inconsistency to the MySQL developers
and they confirmed the reason for this inconsistency is violation
of SQL specification on the truth value of the IS FALSE operator.
Four inconsistencies that we detected are due to the same reason.

6 RELATEDWORK

Testing Relational DBMS RAGS [37] and Apollo [21] are not-
able early methods that implement differential testing to identify
logical errors in DBMS. SQLSmith [36] employs a technique of
continuously generating random SQL queries for database testing.
Ratel [44] significantly improves the robustness of SQL generation
for database testing by merging SQL dictionaries with grammar-
basedmutations. SparkFuzz [17] introduces a fuzzing-basedmethod
that utilizes the query results from a reference database as test or-
acles. The effectiveness of these methods is limited by the shared
functionalities and syntax supported across the databases under
test. Moreover, they may yield false positives due to the varied
implementation choices of RDBMSs. Metamorphic testing is an-
other mainstream approaches for RDBMS testing [6, 17, 31–33].
MUTASQL [6] and Eqsql [4] construct test cases by defining muta-
tion rules, which are used to generate or synthesize SQL queries that
are functionally equivalent to the original ones. Recently, SQLan-
cer [38] has emerged as the most effective black-box fuzzing tool,
distinguished by its adoption of three complementary oracles [31–
33]. SQLRight [22] focuses on enhancing the semantic correctness
of generated SQL queries. GRIFFIN [16] executes mutation testing

within the grammatical boundaries of SQL language. While meta-
morphic testing approaches address syntax differences arising from
various database implementations, they cannot detect bugs caused
by violations of SQL specifications.
Formal semantics for SQL. There have been approaches [5, 9, 10,
24, 27, 42, 43] that formalize the semantics of SQL. Chinaei [8] was
the first to propose a bag-based SQL operational semantics. More
recent works [2, 18, 30] considered NULL values when defining SQL
formal semantics. Guagliardo and Libkin [18] defined the formal
semantics of SQL, considering not only the syntax of basic SQL
query statements but also data structures such as subqueries, sets,
and bags. SQLcoq [2] delves into grouping and aggregate functions,
proving the equivalence between its proposed formal semantics
and relational algebra. Additionally, Zhou et al. [45] introduces
an algorithm for proving query equivalence under bag semantics.
These methods [2, 7, 18, 45] have significantly enhanced the formal
definition of SQL by comprehensively considering both bag and
NULL semantics. However, these methods support only a subset
of the functionalities defined in the SQL specification. Moreover,
these work did not apply semantics for database conformance test-
ing, since these semantics are primarily developed for correctness
verification rather than efficient automatic testing.
Semantics based testing. Efforts have also been made to util-
ize executable semantics as test oracles [34, 35]. Various popular
programming languages, developed using the K framework [34],
offer executable semantics that can be effectively used as testing
oracles. ExAIS [35] formalizes executable semantics for artificial
intelligence libraries and implements them using the Prolog lan-
guage. Our work presents the initiative work to use semantics for
testing in the domain of database management systems. The se-
mantics are not only employed as testing oracles but also play a
pivotal role in guiding test case generation, detecting 19 bugs and 13
inconsistencies, which cannot be detected by existing approaches.

7 CONCLUSION

We propose the first automatic conformance testing approach, Sem-
ConT, for RDBMSs with the SQL specification.We define the formal
semantics of SQL and implement them in Prolog, which then act as
the oracle for the conformance testing. Moreover, we define three
coverage criteria based on the formal semantics to guide test query
generation. The evaluation with six well known and extensively
tested RDBMSs show that, SemConT detects 19 bugs (18 of which
are reported for the first time) and 13 inconsistencies, which are
either due to violating SQL specification, or missing or unclear SQL
specification. A comparison with state-of-the-art RDBMS testing
approaches shows that SemConT detects more bugs and inconsist-
encies than baselines during the same time period, and most of the
bugs and inconsistencies cannot be detected by baselines.
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