
RankPQO: Learning-to-Rank for Parametric Query Optimization
Songsong Mo

Nanyang Technological University
Singapore

songsong.mo@ntu.edu.sg

Yue Zhao
Nanyang Technological University

Singapore
zhao0342@e.ntu.edu.sg

Zhifeng Bao
RMIT University

Melbourne, Australia
zhifeng.bao@rmit.edu.au

Quanqing Xu
OceanBase, Ant Group

Hangzhou, China
xuquanqing.xqq@oceanbase.com

Chuanhui Yang
OceanBase, Ant Group

Hangzhou, China
rizhao.ych@oceanbase.com

Gao Cong
Nanyang Technological University

Singapore
gaocong@ntu.edu.sg

ABSTRACT
Parametric Query Optimization (PQO) is crucial for efficiently han-
dling parametrized queries (PQ) in many database applications. This
paper addresses two key challenges in existing PQO techniques,
focusing on plan set generation and best plan selection. Regarding
plan set generation, existing methods rely on modifying sub-plan
cardinalities, often resulting in inefficiency and sub-optimal perfor-
mance due to unclear extents of modifications needed. To overcome
this issue, we propose a hybrid plan enumeration algorithm that
adeptly adjusts both cardinality and join order. Regarding best
plan selection, recent methods rely on machine learning models to
choose plans with minimum predicted latency, but they struggle
with accurate predictions when parameter bindings vary. Even mi-
nor variations in parameters can significantly impact cardinality,
affecting plan optimality. To overcome this issue, we propose to
utilize a learning-to-rank model, which uses relative rankings as
a more reliable performance indicator. Our approach, integrated
into PostgreSQL, undergoes extensive experiments on real datasets,
showcasing significant improvements in both efficiency and ac-
curacy, as compared to baselines. Specifically, it accelerates the
PostgreSQL optimizer by up to 2.57× and surpasses the best exist-
ing baseline by up to 1.36×.

PVLDB Reference Format:
Songsong Mo, Yue Zhao, Zhifeng Bao, Quanqing Xu, Chuanhui Yang,
and Gao Cong. RankPQO: Learning-to-Rank for Parametric Query
Optimization. PVLDB, 18(3): 863 - 875, 2024.
doi:10.14778/3712221.3712248
PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/songsong945/RankPQO.

1 INTRODUCTION
Parameterized queries (PQ) are extensively employed in database
applications, where the same SQL statements are executed mul-
tiple times, each with different parameter bindings. A parameter-
ized query uses placeholders for parameters, and the parameter
values are supplied at execution time, enhancing efficiency and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.
doi:10.14778/3712221.3712248

security by reducing the need for repeated compilations and miti-
gating SQL injection attacks. In dealing with complex SQL queries,
a common approach is the Opt-Always strategy. This method in-
volves optimizing each query instance individually, which can lead
to considerable CPU and memory usage. In contrast, many com-
mercial database systems [1, 2, 36] prefer the Opt-Once strategy.
This approach optimizes only the initial query instance and reuses
this plan for subsequent queries, which can result in sub-optimal
performance in later executions. Parametric query optimization
(PQO) [5, 7, 8, 11–13, 16–18, 34] offers a balanced solution. It aims
to significantly reduce optimization overheads compared to the
Opt-Always method while also minimizing the risk of execution
sub-optimality associated with the Opt-Once strategy.

In this work, we focus on the query optimization problem within
the parameterized query setting for select-project-join-aggregate
queries. Adopting a decoupled architecture for candidate plan gen-
eration and best plan prediction [11, 34], the PQO problem contains
two main tasks: identifying a relatively small number of plans to
cache for a parameterized query offline, and efficiently selecting
the best cached plan at runtime to execute an instance of the pa-
rameterized query.

To address these tasks, our approach operates in three steps. First,
we enumerate a large subset (about a few hundred) of potential
plans for a parameterized query. The primary problem here is the
expansive search space, making an exhaustive evaluation of each
potential plan infeasible. Therefore, we aim to efficiently generate
a subset of all possible plans that effectively cover high-quality
(i.e., low-latency) plans. Second, from this large subset, we select
a relatively small number (about a few dozen) of plans to cache.
This step presents two key problems: selecting 𝑘 candidate plans to
cache that maximize coverage of the most optimal plans tailored to
the range of user input parameter vectors (a problem known to be
NP-complete [10]), and evaluating the quality of each plan without
actual execution. Third, at runtime, we select the best cached plan to
execute any instance of the parameterized query. The main problem
here is evaluating the quality of each plan without actual execution,
which is essential for selecting the optimal plan for a parameter
vector input from a user. We summarize these problems into two
primary challenges.

Challenge 1: Efficiently and effectively generating a candidate
plan set, that both explores the expansive search space in the first
step and addresses the 𝑘 candidate plans coverage problem in the
second step. To address Challenge 1, early approaches [12, 34]

863

https://doi.org/10.14778/3712221.3712248
https://github.com/songsong945/RankPQO
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712248
https://www.acm.org/publications/policies/artifact-review-and-badging-current

typically involve invoking traditional query optimizers for different
parameter combinations, followed by heuristic methods to select
the candidate plan set. More recently, Kepler [11] has introduced a
method of varying sub-plan cardinalities to enumerate new plans
for generating candidate plan sets. Indeed, altering parameters
and adjusting sub-plan cardinalities may change cardinalities, as
different parameters also result in different query paths. However,
the challenge is that it is difficult to know how much we need to
modify cardinality so that we can generate a new plan. This makes
the plan generation very inefficient. For instance, in a scenario
where the cardinality of a sub-plan is increased tenfold, PostgreSQL
might still generate the same plan as before. To address this, we
propose a hybrid plan enumeration algorithm that modifies both
the cardinality and the join order. Specifically, we first enumerate
parameters to change the selectivities of tables and select those that
result in distinct query plans, as parameters yielding identical plans
are likely to correspond to similar predicate selectivities. For each
query instance (i.e., the template boundwith each parameter vector),
we then enumerate different join orders at the logical level. Finally,
we specify the join order and invoke the PostgreSQL optimizer to
generate new query plans for this query instance.

Additionally, we improve the quality of the plans generated
(where high quality means low latency) by constructing a join
graph and employing cardinality to aid in the sampling process for
generating join orders. This hybrid approach of modifying both
cardinality and join orders not only speeds up plan generation
but also helps to generate high-quality plans. For selecting a set
of 𝑘 candidate plans to cache, existing solutions [11, 34] typically
employ a greedy approach based on cost or latency. However, these
methods require additional time to gather cost or latency data, as
shown in Table 4. To address this, we employ a learning-to-rank
model to efficiently select a subset of the enumerated plans through
a greedy algorithm.

Challenge 2: Evaluating different plans for various parameters
without actual execution is a non-trivial task, which is critical to the
second problem in the second step and the entire third step in our
solution. To address this challenge, early work [5, 7, 12] focuses on
designing cost functions for estimation. However, these methods
are often constrained by the assumptions of linearity or monotonic-
ity of the cost. With the increasing application of machine learning
(ML) in query cost estimation [21], recent studies [11, 34] have
shifted towards using ML models for this challenge (see Section 3.2
for more details). Nonetheless, existing models take the parameter
vector as the sole input. These approaches assume local continu-
ities, meaning they expect that similar parameters lead to similar
plans. However, as a counter-example demonstrates in [31], even
subtle differences in parameters can significantly affect the latency
of queries for the same plan, indicating local discontinuities. This
suggests that relying solely on parameter similarity may lead to
selecting suboptimal plans. To address the problem of local dis-
continuities, we propose a learning-to-rank model. The rationale
is that while absolute cost prediction is challenging due to local
discontinuities, relative rankings can still offer a reliable indica-
tor of performance. Furthermore, for PQO, neither candidate plan
generation nor best plan prediction requires precise plan cost esti-
mation. Understanding the relative costs of different plans, based

on varying query parameters, is sufficient to identify the optimal
execution plan.

In summary, we make the following contributions:

• Wepropose a novel hybrid candidate plan enumeration algorithm
for PQO. This algorithm outperforms existing solutions in terms
of both the efficiency of plan enumeration and the quality of the
plans generated.

• To our best knowledge, this work is the first of its kind designing a
learning-to-rank model specifically for PQO. Utilizing this model,
we develop novel approaches for candidate plan selection and
optimal plan prediction, addressing twomajor challenges in PQO.

• The extensive experimentation conducted on real-world datasets
attests to the superiority of our approach, RankPQO. Our inte-
grated solution within PostgreSQL not only surpasses the perfor-
mance of PostgreSQL optimizer by up to 2.57× but also outshines
the leading baseline by up to 1.36×.

2 RELATEDWORK
Parametric Query Optimization. PQO has been extensively stud-
ied [5, 7, 8, 11–13, 16–18, 34]. These studies share common objec-
tives: (1) considering a set of alternative plans for a query template
across different ranges of parameter values (i.e., candidate plan
generation) and (2) selecting the most appropriate plan based on
the actual parameter values at runtime(i.e., best plan selection).

For the candidate plan generation task, previous work [13, 16, 18]
has focused on finding an optimal set of plans covering the entire
range of selectivities for parameterized predicates, which is an
NP-hard task [10]. It is demonstrated in [17] that a small set of
plans can be sufficient for achieving near-optimality throughout
the selectivity space. Consequently, most proposals [8, 34] have
focused on identifying a plan set across the selectivity space through
heuristic search, to match the performance of existing optimizers by
using them to generate query plans for parameter sets. For the best
plan selection task, early approaches, such as Ellipse [7], density-
based clustering [5] and SCR [12], are limited by assumptions of
linear or monotonic cost functions, leading to poor performance
for complex SQL queries [29].

Recently, end-to-end learned solutions [11, 34] have been pro-
posed for parametric query optimization, by utilizing traditional al-
gorithms for generating candidate plans andMachine Learning(ML)-
based models for selecting the best plan. For candidate plan gen-
eration, query-log-driven methods [34] are limited by the built-in
optimizer, while heuristic approaches like Kepler [11] improve di-
versity via cardinality adjustments but face efficiency challenges.
To enhance this, we propose a hybrid method that modifies both
cardinality and join orders for more effective plan enumeration.
Please refer to the Challenge 1 part of Section 1 for more details.

For the best plan selection task, existing methods [11, 34] typi-
cally approach this as a classification or regression problem, using
the parameter vector as the sole input, which assumes that similar
parameters yield similar plans. However, minor parameter varia-
tions can cause significant cardinality changes and need different
plans. To address this, we propose a learning-to-rank-based method
in Section 3.2 for best plan selection.
ML for Query Optimization. The topic of applying machine
learning to query optimization has received a lot of interest [21],

864

including techniques for cardinality estimation [15, 20, 33], end-to-
end query optimizer [24, 26, 35, 37, 41], etc. The most relevant to
our work is end-to-end query optimizers. Neo [26] and Balsa [35]
employ cost estimation models for model-based query plan gener-
ation. In contrast, Bao [24], HybridQO [37], and Lero [41] utilize
traditional optimizers for generating query plan candidates, sup-
plemented by cost estimation models for plan selection.

Our work differs by focusing on parametric query optimization,
aiming at caching good plans for a query template and selecting
the optimal plan for specific query parameters during execution.
These models are designed to estimate the execution time of a
specific query plan. In contrast, our requirement is to predict the
execution time of a plan for various user input parameter vectors.
Taking Lero as an example, it enumerates a plan set for a specific
query and uses one ranking model to compare any two plans within
this set to select the best plan. Our challenge, however, involves
generating a much larger plan set for a template, selecting a subset
of plans to cache, and then selecting a plan based on different user-
provided parameter vectors at query time. Consequently, a model
that can predict which plan has the minimum cost for varying
parameter vectors is necessary, making these existing models for
query optimization inapplicable to our problem. Please refer to
Section 4.1 for more details.
Learning-to-rank Paradigm. RankPQO adopts a learning-to-rank
paradigm [23], a method widely used for tasks such as document
retrieval [19] and query optimization in Lero [41]. The existing
learn-to-rank techniques can be categorized into pointwise [40],
pairwise [19], and listwise [14] approaches. Notably, our work is
the first that applies the learning-to-rank paradigm to the problem
of parametric query optimization, and is based on the pairwise
approach, which focuses on comparing item pairs to determine
which is better.

3 OVERVIEW
We present the problem definition (Section 3.1), discuss the limi-
tation of existing work (Section 3.2), and give an overview of our
approach (Section 3.3).

3.1 Problem Definition
Following previous studies [11, 34], our focus lies on parameter-
ized queries. Let 𝑄 denote a parametric query (a.k.a. query tem-
plate) with 𝑑 parameterized predicates. Correspondingly, a query
instance 𝑞 denotes a query template 𝑄 bound to the parameter
vector 𝑉 = [𝑣1, ...𝑣𝑑]. Let 𝑝 represent a query plan for 𝑄 . More-
over, the actual execution time when employing 𝑝 to execute 𝑞
is represented as 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑝, 𝑞). In the following, we define two
sub-problems (candidate plan generation and best plan selection)
of Parametric Query Optimization (PQO).

Definition 3.1 (Candidate PlanGeneration Problem). Given awork-
load 𝑊 = {𝑞1, 𝑞2, . . . , 𝑞𝑛} for template 𝑄 with parameter vec-
tors 𝑉𝑠 = {𝑉1,𝑉2, . . . ,𝑉𝑛}, our goal is to select a 𝑘-size subset
𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑘 } from all the possible plans of 𝑄 to cache, such
that the overall latency of all query instances, G(𝑊, 𝑃), is mini-
mized:

G(𝑊, 𝑃) =
𝑛∑︁
𝑖=1

𝑘
min
𝑗=1

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑝𝑖 , 𝑞 𝑗) . (1)

Definition 3.2 (Best Plan Selection Problem). Given a 𝑘-size cached
plan set 𝑃 , for a query instance 𝑞, we aim to find the optimal plan
from 𝑃 , which can minimize the query latency. This can be formally
expressed as:

𝑝𝑖 = arg min
𝑝 𝑗 ∈𝑃

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑝 𝑗 , 𝑞). (2)

3.2 Motivation of Our Approach
We proceed to briefly describe query-log-driven solutions [34] (Log-
PQO) and Kepler [11] for PQO and discuss the limitations of these
methods. Both methodologies adopt a pipeline of candidate plan
generation followed by best plan prediction.

In addressing Challenge 1, the objective of candidate plan gen-
eration is to identify a plan set for caching for a query template.
The query-log-driven solution aims to match the performance of
the built-in optimizer by selecting plans with minimal cost, which
are generated by the built-in optimizer. However, this approach is
inherently capped by the performance of the built-in optimizer and
cannot yield plans that are superior to it (Limitation 1, L1). Addi-
tionally, Kepler heuristically enumerates query plans by changing
cardinality. This technique encounters two primary issues: Firstly,
plan generation lacks efficiency as there is no clear indication of
the extent of cardinality modification required to derive a new plan
(Limitation 2, L2). Secondly, in an effort to generate new plans, cardi-
nalities might be altered to the extent that they significantly deviate
from their true values, resulting in the creation of low-quality (i.e.,
high-latency) plans (Limitation 3, L3).

To overcome Limitation L1, we employ a novel plan generation
method. Specifically, we enhance efficiency by directly generating
new query plans through specified join orders for addressing L2.
Additionally, we improve the quality of the plans generated by
constructing a join graph and employing cardinality to aid in the
sampling process for generating join orders for addressing L3. As
to be shown in Table 7 of experiments, both strategies contribute
to the quality of plan generation.

For the best plan prediction, a key challenge (Challenge 2 in Sec-
tion 1) lies in evaluating different plans without actual execution.
Existing methods typically treat this problem as either a classifica-
tion or a regression problem. Specifically, it can be formulated as
a multi-class classification problem [34], where the given 𝑘 plans
correspond to 𝑘 classes. The model is trained to partition the feature
space based on the best plan id labels. Alternatively, it can be mod-
eled as a regression problem [11, 34] to approximate the estimated
cost of the plan for the input features of the query instance. How-
ever, these models [11, 34] only utilize the parameter vector as input,
adhering to the local consistency assumption that in the parameter
space, similar parameter values will yield similar or identical plans
(Limitation 4, L4). Yet, in reality, minor differences in parameters
can lead to significant changes of cardinality, subsequently result-
ing in different query plans, as an example demonstrated in [31].
In query-log-driven solutions [34], there have been considerations
to take parameter-related selectivity rates as inputs. However, as
demonstrated in Kepler [11], this strategy performs far worse due
to the poor cardinality estimates. To overcome L4, we propose to
take both query plan and parameter information as input, and em-
ploy learning-to-rank techniques for plan selection. This is because,

865

templates

DBMS

Plan
enumeration

Candidate plan
selection

Best plan selection

Candidate plan generation

Rank model

Model training

Parameters

Query with hints

Query with hints

Query logs

plans

Trai
ning

 dat
a

Deploy m
odel

Deploy m
odel

Tem
plates

Cached plans

② ③

④

①

Figure 1: System architecture

while determining the absolute best plan is challenging due to lo-
cal discontinuities, relative rankings could still provide a reliable
performance indicator.

3.3 System Overview
Figure 1 presents an overview of our system (RankPQO), which
includes four components: plan enumeration, model building, candi-
date plan selection, and best plan selection. Specifically, the process
begins with plan enumeration (1), followed by model training (2),
then candidate plan selection (3), and finally best plan selection (4).
Next, we describe the functionality of each component.
Plan enumeration. For a given template, an ideal solution is to
enumerate all possible plans and then select 𝑘 for caching. However,
enumerating all plans can be very time-consuming due to the vast
search space involved. Therefore, our plan enumeration module
introduces a hybrid enumeration algorithm that generates 𝑛 plans
for the subsequent selection stage. Specifically, we efficiently gen-
erate plans by simultaneously enumerating both cardinalities and
join orders. As to be shown in Table 5, our hybrid enumeration
algorithm allows us to generate a greater number of distinct plans
per minute. This capability increases the diversity of the plans and
provides more comprehensive coverage of the optimal plan set for a
template with various parameter bindings. As illustrated in Figure 6,
our generated plan set achieves the highest speedup ratio when
employing the same method for best plan prediction, evidencing
the quality of plans generated by our method.
Model building. We generate training data using a traditional
query optimizer. More specifically, we sample a subset of query
plans from the enumerated plans and execute them to answer var-
ious query instances derived from a template 𝑄 with different
parameter vectors. We then collect latency data to serve as our
training data. Based on this training data, we construct a pairwise
rank model, PRank. This model takes in two plans (denoted as 𝑝1
and 𝑝2) and one parameter vector 𝑉1 as input. It then predicts the
relative latency of plans for executing the corresponding query in-
stance 𝑞1 derived from 𝑄 and 𝑉1. Specifically, if 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑝1,𝑉1) <
𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑝2,𝑉1), the rank model outputs 0; otherwise, it outputs 1.
Candidate plan selection. Using the rank model, we are able to
predict the relative latencies for all plans across all query instances
in𝑊 . With these relative latencies as a basis, and given a budget of
𝑘 , we devise a greedy-based algorithm for candidate plan selection.
This algorithm outputs a set 𝑃 of 𝑘 plans. The goal is to minimize
G(𝑊, 𝑃), which represents the overall latency of all query instances,
by selecting the most efficient plans from 𝑃 for execution.
Best plan selection. Upon deploying the rank model and caching
the 𝑘 cached plans for each template, we introduce a best plan pre-
diction algorithm for real-time execution. Specifically, whenever a
user submits a query instance, our algorithm utilizes the rank model

Plan 1

Parameter
Vector

Plan Embedding

Parameter Embedding
Com

parison Layer

Feature Encoding

Plan Encoding

Parameter EncodingPlan 2

PEnc1

PaEnc

PEnc2

PEmb1

PaEmb

PEmb2 (0, 1)

Figure 2: Rank model architecture

M
er
ge
 Jo
in

Seq Scan
A.a<?

Table A

Index Scan
B.b=?

Hash Join
Cond: A.a=B.a

Table B

Ha
sh
 Jo
in

Lo
op
 Jo
in

Se
q
Sc
an

In
de
x S
ca
n

Ag
gr
eg
at
e

Ta
bl
e A

Ta
bl
e B

A.
a

B.
a

= <

0, 1, 0, 0, 0,0, 1, 1, 1, 1, 1, 0][

0, 0, 0, 0, 1,0, 0, 1, 0, 0, 1, 0][

B.
b

0,

1,

Plan Encoding

Parameter 1
Int: 5

Parameter 2
String: hello 0, 0, 0, 0, 1,0, 1,][

EmbeddingOne hot Parameter
Encoding… 0

Figure 3: Feature extraction and encoding
to rank the 𝑘 cached plans. The algorithm then selects and outputs
the optimal plan for executing that particular query instance. The
selected plan is converted into a hint plan, specifying the join order
and operator type through pg_hint_plan [4], which we refer to as
the query with hints.

4 RANK MODEL
As our ranking model PRank is used in both candidate plan gener-
ation and best plan selection, in this section we present the design
of PRank, and the training procedure of PRank.

4.1 Model Design
The architecture of our rank model, PRank, is shown in Figure 2.
Specifically, it includes the feature extraction and encoding layer
(highlighted in grey), the plan embedding layer (highlighted in
green), the parameter embedding layer (highlighted in yellow), and
the comparison layer (highlighted in blue).

In comparison to existing models proposed for PQO [11, 34],
our model diverges in two aspects. Firstly, PRank incorporates
both plans and the parameter vector as inputs. This contrasts with
existing models, which solely rely on the parameter vector or its
corresponding selectivity vector. Secondly, our objective focuses
on predicting the relative latency between plans for a given query
instance. This comparative approach is notably simpler than either
predicting the cost of plans (regression) or identifying which plan
offers the fastest execution time (classification), which is used as ob-
jectives in existing models. These distinguished designs effectively
address Limitation 4. Overall, the learning-to-rank framework we
adopt operates by taking a parameter vector and two plans as in-
puts, and determining which plan has a lower execution latency
for this input parameter vector. This method leverages the relative
performance of plans rather than relying on absolute cost or execu-
tion time predictions. Below, we describe the details of each layer
shown in the figure.
Feature extraction and encoding layer. PRank uses two en-
codings: a plan encoding, which represents the partial execution
plan, and a parameter vector encoding, which encodes information
regarding the parameters.

As illustrated in the upper half of Figure 3, we represent a plan
using a tree structure of vectors. Each sub-plan 𝑝 (represented by
a tree node) features a vector that combines a one-hot encoding
reflecting the last operation 𝑝 , a binary encoding indicating the ta-
bles touched by 𝑝 , and an embedding for the predicates linked with
𝑝 . For operation information, we aggregate them into six types, i.e.,

866

hash join, merge join, loop join, index scan, seq scan, and aggregate.
Each type of operation is encoded as a six-dimensional one-hot
vector. We use one-hot encoding for table information, where each
bit indicates whether the node touches the corresponding table.
Next, we encode each predicate by representing the involved oper-
ators (e.g., <, >, =, BETWEEN, LIKE, etc.) and columns as one-hot
vectors, followed by embedding them into a fixed length using a
fully connected neural network. For nodes with multiple predicates,
we use average pooling to achieve a consistent embedding size.
Notably, for clarity in our visual representations, as seen in Fig-
ure 3, we demonstrate one-hot encoding for both the column and
comparator. Unlike encoding methods found in other learned query
optimizers [24, 41] or in cardinality estimation problem [6, 30], our
vector does not incorporate the estimated cost, estimated cardi-
nality, row width or sampling-based embedding. These factors are
highly correlated with parameters we cannot know in advance due
to user input variability.

As shown in the lower half of Figure 3, for a parameter vector
of dimension𝑚, we exclusively utilize the𝑚 parameter values as
input features. The supported types encompass integer, float, and
string. To encode each type, we employ standard techniques: one-
hot encoding for integers, normalization to the range (0, 1) for floats,
and embeddings for strings.
Plan embedding layer. In the plan embedding layer (PlanEmb)
of PRank, plans are mapped from their original feature space into
a 32-dimensional embedding space. Based on an early experiment
comparing plan representation models (specifically Transformer-
based [27, 39], TCNN-based [24, 25], and TreeLSTM-based [32, 38]
models), when selecting the same features, the performances among
these models are comparable. However, Tree Convolutional Neu-
ral Networks [28] (TCNN) offers higher efficiency. To efficiently
capture the information from the tree-structured plan, we employ
TCNN for this plan embedding. As shown in Figure 4a, the vector-
ized query plan tree passes three layers of tree convolution. After
the final convolution layer, dynamic pooling flattens the tree struc-
ture into a singular vector. Subsequently, a fully connected layer
translates this pooled vector into a 32-dimensional embedding for
the subsequent comparison.
Parameter embedding layer. We employ a lightweight feed-
forward neural network (ParamEmb) for parameter embedding
for efficiency. As shown in Figure 4b, this network ingests the
encoded parameter vector and converts it into a 32-dimensional
embedding.
Comparison layer. For a given user input parameter vector, our
goal is to determine the better plan between each pair of plans.
As shown in Figure 4c, the comparison layer takes the embed-
dings of the parameter vector (PaEmb) and two plans (PEmb1
and PEmb2) as input. It outputs a binary label to indicate the
better plan between the pair. Specifically, we first compute the
distances between the embeddings of the plan and the param-
eter vector: 𝑑1 = ∥PaEmb − PEmb1∥, 𝑑2 = ∥PaEmb − PEmb2∥ .
We then compute the difference of the two distances: 𝑑 = 𝑑1 −
𝑑2 . Finally, we feed 𝑑 into a logistic activation function: 𝜙 (𝑑) =

1
1+exp(−𝑑) to generate the final output of PRank. We can interpret
which plan is preferable for the parameter vector from this output.

Specifically, if PRank(𝑉 , 𝑝1, 𝑝2) < 0.5, it implies 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑝1,𝑉) <
𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑝2,𝑉); otherwise, 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑝1,𝑉) ≥ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑝2,𝑉).

4.2 Model Training
Loss function. To enable our model to accurately predict the su-
perior plan between each pair, we train it using the Binary Cross
Entropy (BCE) loss. The loss function is defined as:

Loss = − 1
𝑚

𝑚∑︁
𝑖=1
[𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)] (3)

where

• 𝑦𝑖 is the ground-truth label indicating the superior plan for the
𝑖-th pair in the training data. A value of 1 implies that 𝑝1 is
superior, while 0 implies that 𝑝2 is superior.

• 𝑦𝑖 is the predicted probability by our model that 𝑝1 is superior
to 𝑝2 for the 𝑖-th pair, computed as 𝑦𝑖 = 1

1+exp(−𝑑) , where 𝑑 is
the difference in distances between the embeddings of the plan
and the parameter vector.

• 𝑚 is the total number of plan pairs in the training data.

Byminimizing this loss, we aim to enhance themodel’s capability
to correctly identify the superior plan for a given parameter vector.
Pairwise training.We train PRank using a pairwise comparison
framework. For each parameter vector 𝑉 and its cached candidate
plans {𝑝1, . . . , 𝑝𝑘 } discussed in Section 5.2, we generate 𝑘 (𝑘 − 1)
training data examples based on the loss function presented in Eq. 3.
Specifically, for every pair (𝑖, 𝑗) where 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛, we create a
data example characterized by the features (𝑉 , 𝑝𝑖 , 𝑝 𝑗). The label is
set to 1 if 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑝𝑖 ,𝑉) ≥ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑝 𝑗 ,𝑉), and 0 otherwise.
Training pipeline. In model training, our initial approach involves
training a separate model for each query template, a strategy we
refer to as RankPQO-NS (No Model Share). As indicated in Table 11
and Table 15, this strategy encounters several issues: susceptibility
to overfitting, high inference time, and the generation of consider-
able model size, approximately 𝑛 MB, where 𝑛 denotes the number
of query templates. To mitigate these issues, we adopt a strategy
where one model is shared across all templates, with each template
having a distinct input layer for parameter embedding. This ap-
proach is imperative because of the distinct parameter vector associ-
ated with each template. The training process of this shared model
involves sequential training with the training data of each template.
We refer to this as a naive shared model strategy. Nevertheless, as
Table 13 illustrates, this method (Steps = 10 in experiments) leads
to overfitting for templates trained later and underfitting for those
trained earlier. To resolve this issue, we introduce a modification
where training data from each template is alternated during the
training of the shared model. We refer to this method as RankPQO-
S (Shared Model with Alternative Training). As demonstrated in
Table 13, RankPQO-S (Steps = 1) achieves the best performance
by balancing the training across different templates, effectively
mitigating the issues of overfitting and underfitting.
Model re-training. Our current implementation is designed with
the assumption that the database setup, the behavior of the opti-
mizer, and the data patterns remain relatively stable. However, in
the event of occasional changes, even if infrequent, we need to up-
date our model accordingly. This involves gathering updated data

867

256 channels 128 channels 64 channels

Pooling Layer

Fully Connected

1 X 64 1 X 32 Tree Convolution

PEnc PEmb

(a) Plan embedding layer

Fully Connected

1 X 64 1 X 32

Fully Connected

Fully Connected

Fully Connected

1 X 128 1 X m

PaEnc PaEmb

(b) Parameter embedding layer

PaEmb

PEmb1

PEmb2

Distance(PEmb1, PaEmb) Com
parator

Distance(PEmb1, PaEmb)

(0, 1)

d1

d2

(c) Comparison layer
Figure 4: Embedding and comparison layers

that reflects the altered database configuration and then prioritizing
the retraining of our model with this new information.

5 PROPOSED SOLUTION
Building upon the rank model, PRank, designed for plan ranking,
this section presents the algorithms used for candidate plan gener-
ation and best plan prediction. For candidate plan generation, our
goal is to efficiently produce diverse query plans that ideally cover
the optimal plans, as outlined in Challenge 1. Subsequently, we eval-
uate the performance of these plans to identify the best-performing
one for a query.

To achieve this, we propose a framework that combines plan enu-
meration with plan selection for candidate plan generation. More
specifically, we present a hybrid plan enumeration algorithm to
enumerate multiple distinct plans efficiently by modifying the car-
dinality estimates and the join orders via certain rules (Section 5.1).
Then we introduce how we collect the training data for model train-
ing based on the enumerated plans (Section 5.2). Subsequently, we
devise a model-based candidate plan selection algorithm to select
plans for caching (Section 5.3). Finally, we present the best plan
prediction algorithm that ranks all candidate plans for a query
(Section 5.4).

5.1 Plan Enumeration
Given the vast search space of plans, evaluating each potential plan
becomes impractical. Thus, we turn to generate a sub-set of plans
by manual rules to prune poor plans. Specifically, we introduce
a hybrid plan enumeration algorithm that utilizes manual rules
to enumerate both the cardinality estimates and the join orders,
resulting in the generation of multiple distinct plans.
Cardinality enumeration. Instead of directly modifying the cardi-
nality, as employed in RCE [11], we adopt a strategy of enumerating
parameters for an indirect alteration of the cardinality. RCE first
generates a query plan using PostgreSQL and then enlarges or re-
duces the cardinality of sub-plans. Subsequently, it uses hints to
specify the adjusted cardinalities and invokes PostgreSQL to gener-
ate new plans. In contrast, our approach modifies the parameters of
predicates to influence the cardinality of each table, which in turn
leads to the generation of new plans by PostgreSQL. Our decision
stems from concerns that directly adjusting cardinality for different
plans might lead to significant overestimations or underestimations
of its true value. Furthermore, solely relying on modifying cardinal-
ity to obtain distinct plans is inefficient. This is because the extent
of cardinality change needed to yield a distinct plan is uncertain.
To address this, we devise a strategy for enumerating join orders,
allowing for a more efficient generation of diverse query plans.
Join order enumeration. Unlike the enumeration of cardinalities,
specifying different join orders is inherently more efficient in gen-
erating distinct plans. This is because varying the join order almost
always results in distinct plans, providing a more diversified set of
options for optimization. However, simply setting join orders can
lead to Cartesian joins, resulting in poor plans (long-running plans).

To address this issue, we first construct a join graph based on the
query’s join conditions. Then, by sampling from the join graph, we
can generate join orders that effectively avoid Cartesian joins. Fur-
thermore, building upon our earlier enumeration of cardinalities,
we determine the cardinality for each table. During sampling, we
prioritize joining tables with smaller cardinalities. These combined
strategies effectively alleviate the generation of poor plans.

The details of our hybrid plan enumeration algorithm are pre-
sented in Algorithm 1, and a running example is shown in [31]
due to limited space The core idea of our approach is leveraging
PostgreSQL to generate plans based on specified selectivities and
join orders. Specifically, the first step involves modifying the pa-
rameters of predicates to influence the selectivities of each table.
Then, for each set of parameters that results in distinct plans, we
proceed to enumerate different join orders. This step is based on the
understanding that parameters yielding identical plans are likely
to correspond to similar predicate selectivities.

Initially, the algorithm uniformly samples 𝑘1 parameter vectors
to change the selectivities of each table, indirectly modifying the
cardinality (lines 3-5). For each distinct parameter vector, it gener-
ates plan 𝑝0 by the PostgreSQL optimizer (lines 8-9). Subsequently,
for every distinct plan 𝑝0, the algorithm enumerates 𝑘2 join orders.
For the generation of each join order, the algorithm adopts a proba-
bilistic approach: it initiates by randomly selecting a table (weighed
by its sampling probability) as the starting point of the join list
(lines 26-28). In subsequent iterations, the next table to be joined is
sampled based on probability from neighboring nodes to preclude
Cartesian joins (line 35). In scenarios where neighbors are either
exhausted or already included in the join list, a yet-to-be-included
table is randomly picked based on its sampling probability as the
next join candidate (line 33).

Finally, for each specified join order, the algorithm produces plan
𝑝 by the conventional query optimizer. All distinct plans are added
to the final plan set for output.

5.2 Training Data Collection
After enumerating 𝑘1 parameter vectors𝑉𝑠 and a candidate plan set
𝑃 (where𝑚=|𝑃 |) as outlined in Algorithm 1, we proceed to execute
each plan over 𝑄 bound with each parameter vector, generating a
dataset of execution latencies for model training. This produces a
dataset of execution latencies for model training. Yet, the generation
of these latencies is time-consuming, requiring approximately 48
CPU days to collect the full dataset for each workload.

Taking into account the unique objective of our model, which
focuses on predicting the relative magnitudes of latencies and pri-
marily identifying the top-k good query plans, our model inherently
exhibits heightened robustness and generalization capability, en-
abling it to learn effectively from a limited dataset. To further reduce
data collection time, we implemented three strategies: 1. Random
sampling: We randomly sample parameter vector and plan pairs
from the full dataset. Here, each pair consists of two plans and one
parameter vector. For example, in the JOB dataset, enumerating all

868

Algorithm 1: Hybrid Plan Enumeration(𝑄 , 𝑃𝑖𝑛𝑓 𝑜 , 𝑘1, 𝑘2)
Input:𝑄 : an query template, 𝑃𝑖𝑛𝑓 𝑜 : the information of parameter

vector, 𝑘1: the number of sampled parameter vectors, 𝑘2: the
number of sampled join orders

Output: 𝑃 : a plan set
1 Initialize parameter vectors𝑉𝑠 as ∅;
2 Initialize unseen plans 𝑃 as ∅;
3 while |𝑉𝑠 | < 𝑘1 do
4 𝑉 ← uniformly sampled value for each value in 𝑃𝑖𝑛𝑓 𝑜 ;
5 𝑉𝑠 ← 𝑉𝑠 ∪𝑉 ;

6 Generate join graph𝐺 from𝑄 ;
7 for each𝑉 ∈ 𝑉𝑠 do
8 Query instance 𝑞 ← 𝑄 bind with𝑉 ;
9 𝑝0 ← getOptimizerPlan(𝑞);

10 if 𝑝0 ∉ 𝑃 then
11 𝑃 ← 𝑃 ∪ 𝑝0;
12 Get cardinalities𝐶𝑎𝑟𝑑𝑠 for each table from 𝑝0;
13 𝑂𝑠 ← SampleJoinOrders(𝐺 ,𝐶𝑎𝑟𝑑𝑠 , 𝑘2);
14 for each join order𝑂 ∈ 𝑂𝑠 do
15 𝑝 ← getOptimizerPlan(𝑞,𝑂);
16 𝑃 ← 𝑃 ∪ 𝑝 ;

17 Return 𝑃 ;
18

Function SampleJoinOrders(𝐺 ,𝐶𝑎𝑟𝑑𝑠 , 𝑘2):
19

20 Initialize unseen join orders𝑂𝑠 as ∅;
21 Tables𝑇 ← all nodes of𝐺 ;
22 𝑃𝑟 ← getSelectionProb(𝑇 ,𝐶𝑎𝑟𝑑𝑠);
23 while |𝑂𝑠 | ≤ 𝑘2 do
24 Initialize 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 as ∅;
25 Initialize join order𝑂 as empty list;
26 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 ← getSampleNode(𝑇 \𝑣𝑖𝑠𝑖𝑡𝑒𝑑 , 𝑃𝑟);
27 𝑂 .append(𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒);
28 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 ;
29 while |𝑂 | < |𝑇 | do
30 𝑡 ← 𝑂 .getback();
31 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← getNeighbors(𝑡) \𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ;
32 if 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 is empty then
33 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 ← getSampleNode(𝑇 \𝑣𝑖𝑠𝑖𝑡𝑒𝑑 , 𝑃𝑟);
34 else
35 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 ← getSampleNode(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 , 𝑃𝑟);

36 𝑂 .append(𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒);
37 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 ;

38 𝑂𝑠 ← 𝑂𝑠 ∪𝑂 ;

39 return𝑂𝑠 ;

parameter vectors and plans results in 72,300 training data pairs.
However, we only sample 3,000 pairs to collect latency data for
training. 2. Multi-core parallelization: We leverage multiple CPU
cores to speed up data collection. 3. Timeout mechanism: Since
we are focused on finding the top-k good query plans, we use the
execution time of PostgreSQL’s default plan for a parameter set as
a time threshold 𝑡 . If other plans exceed 3𝑡 , we terminate them and
record the execution time as a large value (10𝑡). For the JOB dataset,

Algorithm 2: Candidate Plan Selection(PRank, 𝑉𝑠 , 𝑃 , 𝑘)
Input:𝑉𝑠 : the parameter vectors, 𝑃 : a plan set
Output: 𝑃 ′: a plan set for caching

1 ParamEmbs← PRank.ParamEmb(𝑉𝑠) ;
2 PlanEmbs← PRank.PlanEmb(𝑃) ;
3 for i, ParamEmb ∈ ParamEmbs do
4 for j, PlanEmb ∈ PlanEmbs do
5 DistanceMatrix[𝑖][𝑗]← ∥PlanEmb − ParamEmb∥

6 Initialize selected plans 𝑃 ′ as ∅;
7 𝑃𝑙𝑎𝑛𝐼𝑑𝑠 ← set(range(len(𝑃)));
8 while |𝑃 ′ | < 𝑘 do
9 for 𝑝 ∈ 𝑃𝑙𝑎𝑛𝐼𝑑𝑠 do
10 Dis[p]← getDistance(𝑃 ′ ∪ 𝑝,Vs, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥) ;
11 𝑝 ← argmin

𝑝∈𝑃𝑙𝑎𝑛𝐼𝑑𝑠
(𝐷𝑖𝑠 [𝑝]) ;

12 𝑃 ′ ← 𝑃 ′ ∪ 𝑝 ;
13 𝑃𝑙𝑎𝑛𝐼𝑑𝑠 ← 𝑃𝑙𝑎𝑛𝐼𝑑𝑠\𝑝 ;
14 Return 𝑃 ′;

approximately 10.8% of the long-running queries are terminated
via this mechanism.

5.3 Candidate Plan Selection
Algorithm 2 presents the pseudo-code for candidate plan selection.
Initially, we utilize the PRank model to compute the embeddings
for both parameters and plans. Then, we compute their similarity,
denoted as a DistanceMatrix of dimensions |parameters| x |plans|
(lines 1-5). Subsequently, based on the DistanceMatrix, we greedily
select a plan (lines 8-13). Specifically, in each iteration, for each the
candidate plan 𝑝 ∈ 𝑃𝑙𝑎𝑛𝐼𝑑𝑠 , we use the getDistance function to
calculate the sum of the minimum distances from all parameters
to the current selected plan set 𝑃 ′ ∪ 𝑝 . Notably, we use the sum of
these minimum distances as an approximation for G(𝑊, 𝑃). This is
because, for a given set of parameters, the model tends to embed
plans with shorter execution times at closer distances. The plan
with the smallest summed distance is then added to 𝑃 ′. Ultimately,
𝑃 ′ serves as the final result.

5.4 Best Plan Prediction
We proceed to present the best plan prediction algorithm, which
aims to identify the optimal plan from the set of cached plans
for a query with a parameter vector during runtime. Utilizing our
proposed rank model, we embed both the input parameter vector
and the cached plans. The plan with the closest embedding distance
to the input parameter vector is then identified as the optimal plan.
The pseudo-code of this approach is presented in [31] due to limited
space.

6 EXPERIMENTS
We evaluate the performance of RankPQO in comparison to base-
lines regarding execution latency speedups on parameterized query
workloads. Our main findings are summarized as follows:

• An end-to-end implementation of RankPQO on PostgreSQL sig-
nificantly outperforms the built-in optimizer and the state-of-
the-art solutions for PQ. (Section 6.2)

869

• Our candidate plan generation algorithm efficiently and effec-
tively identifies markedly superior plans compared to existing
candidate plan generation baselines. (Section 6.3)

• The Learning to Rank model demonstrates better performance
over regression models for the PQO problem. (Section 6.4)

6.1 Experimental Setup
Datasets. Four datasets are used in our experiments:
• Join Order Benchmark (JOB). This dataset, designed by Leis

et al. [22], comprises 33 parameterized queries using the Internet
Movie Database (IMDB). For parameter value generation, we syn-
thetically generate 200 parameter vectors for each parameterized
query by uniformly sampling rows from the result set of a de-
rived query, which selects column values for each parameterized
predicate.

• TPCH. The TPCH benchmark is designed to test the response
time of database systems to complex queries. It includes eight
tables with the scale factor set to 10 in our experiments and
encompasses 22 parameterized queries. 200 parameter vectors
for each parameterized query are generated following the official
TPCH specification [3].
• Stack [11]. This database consists of real-world StackExchange

data. It includes 42 queries from the original benchmark and 45
manually-written query templates. We source parameter values
from Kepler [11].

• DSB [9]. DSB enhances the TPC-DS benchmark with complex
data distribution and challenging query templates. We choose
15 SPJ queries 1 from the original benchmark. The scale factor
is set to 100, and 5 parameter vectors are generated for each
parameterized query.
For each parameterized query, we randomly choose 80% of the

parameter vectors as the training set and use the rest 20% as the test
set. We use JOB as the default dataset unless specified otherwise.
Baselines. We compare RankPQO against three key baselines:
PostgreSQL, and two state-of-the-art solutions, LogPQO [34] and
Kepler [11]. For our solution, we use RankPQO-S and RankPQO-NS
to represent the shared rank model and non-shared rank model,
respectively. When referring to both variants collectively, we sim-
ply use RankPQO. In some tables, we use -S and -NS to denote
RankPQO-S and RankPQO-NS for short. Additionally, we compare
RankPQO with the learned query optimizer, Lero [41]. Lero is used
in an Opt-Always fashion, i.e., it optimizes every query instance
independently. Since Lero has been demonstrated to surpass other
learned query optimizers [41], we exclude such baselines from
comparison in our experiments.
Metrics and default parameter setting. To evaluate the perfor-
mance of different methods, we employ two key metrics: running
time and speedup ratio. The speedup ratio, or simply speedup, is
calculated as the runtime of the PostgreSQL divided by the runtimes
of compared solutions. Additionally, we evaluate the accuracy of
models, which is defined as the correctness rate of successfully
ranking the pairwise plans for each query. For model training, we
train all the tasks using the Adam optimizer with a learning rate
of 0.001. By default, we have configured our system with the fol-
lowing settings: the number of cached candidate plans is set to 30;
1They include q13, q18, q19, q25, q27, q40, q50, q72, q84, q85, q91, q99, q100, q101, q102.

Table 1: Overall performance on all datasets

JOB Stack TPCH DSB

LogPQO 1.67 1.47 1.11 1.69
Kepler 1.89 2.03 1.18 1.81
Lero 2.01 1.92 1.18 2.04

RankPQO-S 2.52 2.41 1.19 2.3
RankPQO-NS 2.57 2.38 1.18 2.11

True Cardinality 2.12 1.35 1.16 1.26
Fastest Found Plan 3.45 3.11 1.29 2.92

the training epoch count is 10; the pairwise training data size is
fixed at 3000; we use the no time out mechanism with 12 cores for
collecting the training data; for Algorithm 1, we sample 𝑘1=200
parameter vectors and 𝑘2=50 join orders; the embedding dimension
for columns, comparators, and string parameters is set to 32; and
the alternation step for RankPQO-S is set to 1. For the parameters
in baselines, we opted for the default values as specified in their
publications. Each result presented is the median of 5 runs.
Setup. All experiments are conducted on a machine equipped with
an Intel(R) Core(TM) i9-10900X CPU@ 3.70GHz (20 physical cores),
128GB RAM, and an NVIDIA GeForce RTX 3080 GPU with 10GB
of memory. PostgreSQL version is 12.5.

6.2 Overall Performance
We present the evaluation of the overall performance for RankPQO-
S, RankPQO-NS, LogPQO, Kepler, Lero, and PostgreSQL.
Varying dataset. Table 1 depicts the speedup ratios of two vari-
ants of RankPQO compared to PostgreSQL, LogPQO, Kepler, Lero,
True Cardinality, and Fastest Found Plan across various datasets.
True Cardinality refers to PostgreSQL generating a query plan with
true cardinalities, while Fastest Found Plan refers to the fastest
plan generated by Hybrid Plan Enumeration for each query. We
observe the following: (1) Fastest Found Plan performs the best,
which demonstrates that Hybrid Plan Enumeration can identify
good plans. RankPQO does not match the performance of Fastest
Found Plan because we select top-k query plans to serve different
parameter combinations. (2) RankPQO-S and RankPQO-NS consis-
tently deliver improved speedup ratios in comparison to the baseline
methods, except for Fastest Found Plan. Specifically, RankPQO-NS
reduces the plan execution time of PostgreSQL by 61.1% and Kepler
by 26.4% on the JOB dataset. This enhanced performance can be
attributed to two key factors: firstly, our hybrid enumeration algo-
rithm, which generates a larger pool of high-quality plans (Please
refer to Table 4 and Table 6), and secondly, the employment of
a learning-to-rank model that serves as a more reliable indicator
for plan selection (Please refer to Figure 9). (3) The efficacy of
RankPQO is influenced by the unique complexities of each dataset.
Specifically, JOB has a higher average number of joins per query
compared to TPCH, making it more complex and resulting in a
larger optimization space.
Varying the number of cached plans 𝑘 . Figure 5 shows the
variation of performance with the number of cached plans 𝑘 for
RankPQO-S and RankPQO-NS alongside other methods. As 𝑘 in-
creases, the performances for all methods improve, which can be

870

10 20 30 40 50
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

ra
tio

LogPQO Kepler RankPQO-S RankPQO-NS

10 20 30 40 50
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

ra
tio

Figure 5: Overall performance by varying 𝑘

attributed to the broader selection of cached plans for enhancing
optimization flexibility. However, the trend also intimates the onset
of diminishing returns when 𝑘 is increased further. This can be
ascribed to two factors: (1) the increased selection complexity that
elevates the time required to choose the optimal plan; (2) the satu-
ration of optimal plans within the cache, meaning that additional
plans contribute marginally to performance improvements. Conse-
quently, we have selected 𝑘 = 30 as the default value for subsequent
experiments, a trade-off between the benefits of caching and the
costs to optimize performance.
Per template performance. To provide additional details, we
record the average execution time for individual query templates
with different parameters in JOB and DSB, which are the smallest
and largest datasets, respectively, among the four datasets used in
our experiments. Due to the limited space, Table 2 shows half of the
query templates in JOB. The results for DSB are provided in [31]
as the performance on DSB is similar to JOB. Several observations
can be made based on these results. First, for queries with short
execution time, PostgreSQL is more efficient due to the overhead
from additional optimizations of other methods. In templates such
as q2, q4, and q16 in JOB, the queries are simple. The optimization
processes, which involve selecting plans from a cache, tend to add
unnecessary overhead for these simple queries. Second, in contrast,
for more expensive queries, RankPQO demonstrates superior per-
formance over all baseline methods, particularly for templates q24
and q30 in JOB. The learning-to-rank mechanism of RankPQO is
able to identify the most efficient execution plans effectively for
these complex queries. On average, RankPQO-S achieves the best re-
sults, demonstrating the learning-to-rank model acting as a reliable
indicator for plan selection.
Comparison with Lero. This experiment is to compare RankPQO
with Lero, a learning-to-rank-based optimizer, over JOB and DSB,
which are the smallest and largest datasets, respectively, among the
four datasets used in our experiments. Table 3 shows the planning
and execution times of PG, Lero, RankPQO-S, and RankPQO-NS.
We have the following two findings: First, PG has the shortest
planning time, while Lero has the longest. This is because, unlike
PG, both Lero and RankPQO spend additional time optimizing
the execution plan. RankPQO has a shorter planning time than
Lero because it uses cached plans instead of enumerating plans
during execution, which reduces the overall planning time. Second,
RankPQO has the shortest execution time. The main advantage over
Lero is that RankPQO can explore a much larger candidate pool,
thereby increasing the probability of finding better query plans.
Specifically, RankPQO first enumerates hundreds of query plans
and then selects dozens to cache as candidates offline. In contrast,
Lero only enumerates a few plans for each query online, which

Table 2: Per template performance over JOB (seconds)

Template PG LogPQO Kelper -S -NS Lero

q2 0.016 0.023 0.073 0.028 0.029 0.066
q4 0.014 0.023 0.4 0.018 0.017 0.36
q6 0.2 0.21 0.13 0.19 0.19 0.12
q8 0.19 0.13 0.16 0.064 0.062 0.14
q10 3.73 2.61 2.28 2.11 2.07 2.07
q12 0.16 0.16 0.098 0.18 0.17 0.88
q14 1 1.02 0.77 1.03 0.31 0.701
q16 0.016 0.023 0.024 0.025 0.028 0.022
q18 0.42 0.41 0.45 0.44 0.54 0.41
q20 3.56 1.82 1.63 0.82 0.51 1.48
q22 0.27 0.27 0.26 0.34 0.3 0.23
q24 1.5 0.74 0.82 0.58 0.58 0.74
q26 0.8 0.48 0.55 0.5 0.5 0.5
q28 0.41 0.21 0.27 0.23 0.22 0.25
q30 4.33 1.54 0.92 0.71 0.77 0.83
q32 0.0093 0.014 0.015 0.013 0.012 0.013

average 1.039 0.605 0.553 0.454 0.394 0.502

Table 3: Comparison with Lero (milliseconds)

Planning Execution Total

JOB

PG 12 745 757
Lero 59 318 377

RankPQO-S 21 291 312
RankPQO-NS 20 285 305

DSB

PG 4.2 601,055 601,059.2
Lero 54 294,705 294,759

RankPQO-S 28 261,268 261,296
RankPQO-NS 30 284,675 284,705

limits the potential for finding the optimal plan. Overall, RankPQO-
S outperforms Lero in terms of total time, with an improvement of
17.3% for JOB and 11.4% for DSB.

6.3 Analyzing candidate plan generation
Efficiency. The efficiency of generating candidate plans is assessed
in three stages: plan enumeration, plan costing, and plan selection.
LogPQO employs PostgreSQL for plan enumeration to generate
plans across different parameter sets for each query template. Specif-
ically, it uses the explain command to generate a query plan for
each set of parameter vectors, followed by a deduplication step
to remove duplicate plans. Cost estimation is achieved through
“what-if" analysis, and plan selection utilizes a greedy algorithm
for caching decisions. Kepler employs the Row Count Evolution
method for plan enumeration and collects plan latency by 20 sam-
pling parameter sets for each query template. Notably, while plan
costing in Kepler is typically an online process, we have adapted it
for offline analysis in this experiment. Plan selection in Kepler is
executed using the plan cover pruning method. RankPQO engages
Algorithm 1 for plan enumeration. The system avoids a distinct
costing phase by integrating the rank model directly into the plan
selection process, which is shown in Algorithm 2.

Table 4 shows the time used for plan enumeration and plan
costing of the three methods. We observe that the time taken for
plan enumeration increases from LogPQO to Kepler and further
to RankPQO. This trend can be attributed to the progressively

871

Table 4: Efficency of plan generation and costing (seconds)

LogPQO Kepler RankPQO

Plan enumeration 87 127 382
Plan costing 3331 7429 NA

Table 5: Efficency of distinct plan generation

LogPQO Kepler RankPQO

Number of distinct plans 367 421 2547
Speed (number/second) 4.22 3.31 6.67

Table 6: Efficency of candidate plan selection (seconds)

k LogPQO Kepler RankPQO-S RankPQO-NS

10 6.36 2.38 149 152
20 19.76 7.41 240 245
30 39.98 14.99 367 362
40 66.29 24.85 527 526
50 97.64 36.61 712 716

expanding enumeration space, resulting in a higher diversity of
plans. Specifically, LogPQO depends solely on the optimizer of Post-
greSQL, Kepler modifies sub-plan cardinalities, and RankPQO ad-
justs both cardinalities and join orders. Although this expansion
leads to increased enumeration time, it also contributes to enhanced
end-to-end performance (as discussed in Section 6.2). As mentioned
earlier, the time for plan costing is collecting the cost or latency for
selecting plans to cache. RankPQO avoids a distinct costing phase
by integrating the rank model directly.

Table 5 provides a comparison of plan generation across three
solutions. It presents the number and speed of distinct plans gener-
ated by different methods. Here, speed means the number of distinct
plans generated per second by each method. The results show that
RankPQO outperforms all baselines in both the total number of
distinct plans generated and the speed of generation, demonstrating
its superior efficiency in generating distinct plans. This result also
corroborates our earlier discussion regarding the inefficiency of
generating distinct plans by merely modifying cardinalities.

Table 6 shows the time for plan selection under different 𝑘 values.
We observe that, during the plan selection phase, RankPQO con-
sumes the most time since it does not need the distinct plan costing
phase. Instead, it invokes the rank model directly during plan se-
lection to serve as the cost indicator. When 𝑘 = 30, the total time
of generating candidate plans for LogPQO, Kelper, RankPQO is
about 3458s, 7571s, and 749s, respectively. Overall, the approach
of RankPQO in generating candidate plans is the most efficient
because it circumvents the time-intensive plan costing phase. Note
that the process of generating candidate plans is done offline.
Effectiveness. To compare the effectiveness of candidate plan gen-
eration between our solutions and the baselines, we incorporate our
learning-to-rank model into the best plan selection components of
Kepler and LogPQO, resulting in the variants Kepler+ and LogPQO+.
Figure 6 depicts the speedup ratio for each method as the number
of candidate plans 𝑘 changes. We observe that both RankPQO-S
and RankPQO-NS consistently surpass the baselines, showing the
effectiveness of our candidate plan generation approach.

10 20 30 40 50
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

ra
tio

LogPQO+ Kepler+ RankPQO-S RankPQO-NS

10 20 30 40 50
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

ra
tio

Figure 6: Effectiveness of candidate plan generation
Table 7: Ablation study of hybrid plan enumeration (seconds)

Template RankPQO-S -C -G

q2 0.028 0.038 0.07
q16 0.025 0.019 0.12
q24 0.58 0.71 0.93
q30 0.71 0.9 1.36

Average 0.312 0.44 0.619

Table 8: Time (hours) of collecting training data with varying
data sizes (All = entire dataset)

Data size 1k 2k 3k 4k 5k All

No time out 7.14 14.56 19.72 24.24 28.31 89.42
Time out 1.66 2.88 3.99 5.07 5.97 22.59

Table 9: Time (hours) of collecting training data with varying
number of processes

Number of processes 6 12 18

Time 7.47 3.99 2.87

Ablation study of hybrid plan enumeration. Our hybrid plan
enumeration method involves enumerating both cardinalities and
join orders to generate query plans. Removing the enumeration of
join orders aligns our method with LogPQO+, and the comparison
results are already in Figure 6. Here, we focus on evaluating two
optimization strategies for enumerating join orders: constructing
a join graph and sampling from this graph based on the cardinal-
ities of each table. Specifically, we denote the method of random
sampling on the join graph without cardinality-based sampling as
Method -C; and the method that eliminates the join graph entirely,
resulting in random sampling across all tables, as Method -G.

Table 7 presents a comparison of execution time for a subset of
queries. Here, RankPQO-S has the best performance, demonstrating
the usefulness of both strategies to the quality of plan generation.
When comparing the two strategies, removing cardinality-based
sampling increases the average execution time by 0.128 seconds
(from 0.312 to 0.44 seconds), and eliminating the join graph alto-
gether increases it by 0.179 seconds (from 0.44 to 0.619 seconds).
This suggests that constructing a join graph plays a more significant
role in enhancing the quality of generated plans.

6.4 Analyzing ML models
Time of collecting training data. Table 8 shows the time re-
quired to collect training data with varying data sizes. Both the
sampling strategy and the timeout mechanism significantly reduce
data collection time, especially when collecting the entire dataset.

872

Table 10: Effectiveness for different training data collecting
strategies

LogPQO Kepler -S -NS

No time out + 12 1.67 1.89 2.52 2.57
Time out + 6 1.67 1.91 2.54 2.51
Time out + 12 1.67 1.93 2.53 2.55
Time out + 18 1.67 1.91 2.53 2.53

1 5 10 15 20
Training Epochs

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 T
im

e
(h

)

RankPQO-S
RankPQO-NS

(a) Varying training epochs

1 2 3 4 5
Training Data Size (k)

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 T
im

e
(h

)

RankPQO-S
RankPQO-NS

(b) Varying training data size

Figure 7: Learning efficiency of rank models

The sampling strategy limits the number of parameter vectors and
plan pairs executed, further speeding up the process. Table 9 demon-
strates the impact of using different numbers of processes on data
collection time. We find that increasing the number of processes ef-
fectively reduces the data collection time, though the improvement
diminishes as the number of processes increases. This is because
we assign all queries for a given template and its parameters to the
same process, so the total execution time depends on the slowest
process. Table 10 compares the end-to-end speedup ratio of different
data collection strategies across methods. The sampling strategy,
multi-core parallelization, and timeout mechanism improve data
collection efficiency without affecting the end-to-end performance.
Varying training epochs. As shown in Figure 7a, we vary the
number of training epochs to demonstrate the learning time ef-
ficiency of our models. RankPQO-NS exhibits a higher training
time demand, which is attributed to the necessity of creating and
initializing multiple models. As the number of epochs increases,
the training time for RankPQO-S rises significantly. This is because
RankPQO-S undergoes more frequent switches between training
on different query template data (for further details, please see the
experiment about varying alternation steps).

The effectiveness of our models with varying epochs is shown in
Table 11. At one epoch, RankPQO-NS outperforms RankPQO-S in
accuracy and speedup due to RankPQO-S requiring more training
to generalize across templates. As epochs increase, RankPQO-S im-
proves and stabilizes, while RankPQO-NS shows higher accuracy
but a drop in speedup due to overfitting. This highlights that accu-
racy alone is insufficient as a performance metric and emphasizes
the robustness of RankPQO-S in preventing overfitting through its
shared model strategy. See more details in [31].
Varying training data size. We vary the size of the training data
pairs, where k = 1000, and each pair consists of two plans and
one parameter vector to evaluate the learning data efficiency of
our models. Figure 7b demonstrates how the training time of our
methods changes with varying data sizes. Similar observations as
those made when varying the training epochs can be made here: as

Table 11: Effectiveness for varying training epochs

Training Epochs RankPQO-S RankPQO-NS

Accuracy Speedup Accuracy Speedup

1 0.59 1.21 0.77 1.34
5 0.68 2.36 0.83 2.34
10 0.79 2.52 0.86 2.57
15 0.81 2.42 0.88 2.41
20 0.83 2.59 0.89 2.26

Table 12: Effectiveness for varying training data size

Training Data
Size (k)

RankPQO-S RankPQO-NS

Accuracy Speedup Accuracy Speedup

1 0.79 2.00 0.89 2.22
2 0.78 2.42 0.86 2.44
3 0.79 2.52 0.86 2.57
4 0.78 2.54 0.85 2.48
5 0.77 2.55 0.85 2.47

the training data size increases, the training time for RankPQO-S
rises more sharply. See more details in [31].

Table 12 shows the effectiveness of RankPQO-S and RankPQO-
NS as the size of the training data increases. The consistent accuracy
with varying data sizes indicates that both models have learned the
essential patterns for distinguishing between two plans, and adding
more data does not significantly enhance this capability. See more
details in [31].
Varying alternation steps. Alternation steps refer to the number
of epochs during which RankPQO-S trains on the training data of
the same template before switching to the training data of the next
template. It is intuitive that switching training data incurs addi-
tional overhead time, particularly in terms of reading and writing
data. Thus, as we decrease the number of steps, leading to more
frequent switches, the training time increases. This relationship is
confirmed by the experimental results shown in Figure 8, where a
lower number of steps corresponds to a longer training time.

10 5 2 1
Training Alternative Step

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 T
im

e
(h

)

RankPQO-S

Figure 8: Efficiency for varying
alternation steps

Table 13: Effectiveness for
varying alternation steps

Steps RankPQO-S

Accuracy Speedup

10 0.61 1.00
5 0.69 1.85
2 0.72 2.33
1 0.79 2.52

However, as demonstrated by Table 13, both accuracy and speedup
ratio improve as the number of alternation steps decreases. This
improvement can be attributed to the ability of the model to retain
information from one template to the next more effectively when
the switch occurs more frequently.

Table 14 displays the accuracy for templates at different posi-
tions within the training sequence, offering a detailed view of how
varying the frequency of alternation between templates impacts

873

Table 14: Accuracy of per template

Sequence Template step = 10 step = 5 step = 2 step = 1

1 q31 0.58 0.70 0.72 0.80
10 q6 0.63 0.72 0.77 0.83
20 q20 0.68 0.77 0.76 0.83
30 q16 0.72 0.76 0.73 0.80

Table 15: Efficency of model training and model size

LogPQO Kepler -S -NS

Training time (s) 22.8 484 2431 5164
Model size (MB) 38 6.8 5.9 34

learning. In the first column, where there is no alternation (step
size equal to the total number of epochs), we see a trend: the earlier
a template is in the training sequence, the lower its accuracy tends
to be. This trend supports the hypothesis that the model may “for-
get" previously learned patterns when not revisited frequently, as
the training focuses on subsequent templates. In contrast, the last
column, which represents the highest alternation frequency (step
size of 1, meaning constant alternation), shows higher and more
consistent accuracy across all templates. This consistency suggests
that frequent alternation mitigates the “forgetting" of patterns, en-
abling the model to maintain a more uniform understanding across
the different templates, thereby enhancing overall performance.
Comparison with baselines. Table 15 shows the training time.
RankPQO takes the most time, which can be attributed to two
factors: (1) unlike the baselines that only take parameter vectors
as input, RankPQO takes both parameter vectors and the plan as
input; (2) RankPQO employs a more complex model to encode and
predict relative costs, whereas baselines utilize simpler methods
such as XGBoost or 3-layer feedforward neural networks.

Table 15 shows the model sizes of all solutions. RankPQO-S
achieves the smallest size by using a shared model across all query
templates, minimizing the number of models. In contrast, base-
lines like LogPQO and Kepler train more models or output heads.
The shared model approach in RankPQO-S significantly improves
scalability with more query templates. See more details in [31].

To benchmark the best plan selection capabilities across all meth-
ods, we standardize the candidate plan set outputted by the hybrid
plan enumeration for each method and utilize the best plan se-
lection components from each, denoted as Kepler* and LogPQO*.
Figure 9 illustrates the speedup ratio trends of each method as the
number of candidate plans 𝑘 varies. It clearly shows that RankPQO-
S and RankPQO-NS consistently outperform the enhanced baseline
methods, demonstrating the strength of our approach in select-
ing the most efficient execution plans. Compared to Kepler* and
LogPQO* with Kepler+ and LogPQO+ shown in Figure 6, Kepler*
and LogPQO* outperform them, indicating that the hybrid plan
enumeration significantly contributes to their effectiveness.
Ablation study of rank model. We conduct two ablation studies
to investigate the impact of different components of our rank model,
namely No Rank and Plan Distance. Here, we also standardize the
candidate plan set output by the hybrid plan enumeration. The No
Rank variant removes the relative ranking mechanism, instead of
directly using the plan and parameter embeddings to estimate the

10 20 30 40 50
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

ra
tio

LogPQO* Kepler* RankPQO-S RankPQO-NS

10 20 30 40 50
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

ra
tio

Figure 9: Effectiveness of different models

Table 16: Ablation study of rank model

RankPQO-S No Rank Plan Distance

Speedup ratio 2.52 2.41 2.14

cost without comparing them. The Plan Distance variant concate-
nates the parameter encodings to each node of the plan encodings
and then obtains the plan embedding through the embedding mod-
ule. Finally, it computes the distance between the plan embeddings,
rather than calculating the distance between the parameter and
plan embeddings as in the original model.

As shown in Table 16, RankPQO-S achieves the best speedup ra-
tio, confirming that our rank model is the most effective. However,
the No Rank variant also performs well, surpassing both Kepler and
Kepler* variants, demonstrating that using the plan as an input im-
proves performance. On the other hand, Plan Distance shows more
modest results, performing similarly to Lero, despite using a larger
candidate plan set. This is because Plan Distance concatenates the
parameter encoding to the plan encoding at every node; however,
in reality, the parameter primarily influences the selectivity of the
leaf nodes, and its impact on internal nodes depends on factors
such as the plan structure.

7 CONCLUSION
In this study, we have introduced RankPQO, a novel approach to
Parametric Query Optimization (PQO) that specifically addresses
the inefficiencies in plan set generation and best plan selection for
parametrized queries. The cornerstone of RankPQO is a hybrid plan
enumeration algorithm that adeptly adjusts sub-plan cardinalities
and join orders to navigate the challenges of traditional PQO tech-
niques. Complementing this, we have proposed a learning-to-rank
model to provide a more reliable best plan selection, especially in
scenarios where minor parameter variations can drastically alter
query execution performance. The extensive experimentation con-
ducted on real-world datasets attests to the superiority of RankPQO.
Our integrated solution within PostgreSQL not only surpasses the
performance of PostgreSQL optimizer by up to 2.57× but also out-
shines the leading baseline by up to 1.36×. These results confirm
the practical efficacy of RankPQO and its potential to improve PQO
in database applications significantly.

ACKNOWLEDGMENTS
This research is supported in part by Singapore MOE AcRF Tier-
2 grants MOE-T2EP20221-0015 and MOE-T2EP20223-0004, and a
grant from OceanBase. Zhifeng Bao is supported in part by ARC
DP240101211 and FT240100832.

874

REFERENCES
[1] [n.d.]. OceanBase Plan Cache. https://en.oceanbase.com/docs/common-

oceanbase-database-10000000001123504.
[2] [n.d.]. SQL Server Plan Cache Object. https://docs.microsoft.com/en-

us/sql/relational-databases/performance-monitor/sql-server-plan-cache-
object?view=sql-server-ver15.

[3] 2022. TPC-H Benchmark. https://www.tpc.org/tpc_documents_current_
versions/current_specifications5.asp.

[4] 2024. Postgres hint plan. https://github.com/ossc-db/pg_hint_plan.
[5] Günes Aluç, David DeHaan, and Ivan T. Bowman. 2012. Parametric Plan Caching

Using Density-Based Clustering. In IEEE 28th International Conference on Data
Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5 April,
2012. IEEE Computer Society, 402–413.

[6] Mehmet Aytimur, Silvan Reiner, Leonard Wörteler, Theodoros Chondrogiannis,
andMichael Grossniklaus. 2024. LPLM: ANeural LanguageModel for Cardinality
Estimation of LIKE-Queries. Proc. ACM Manag. Data 2, 1 (2024), 54:1–54:25.

[7] Pedro Bizarro, Nicolas Bruno, and David J. DeWitt. 2009. Progressive Parametric
Query Optimization. IEEE Trans. Knowl. Data Eng. 21, 4 (2009), 582–594.

[8] Surajit Chaudhuri, Hongrae Lee, and Vivek R. Narasayya. 2010. Variance aware
optimization of parameterized queries. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana,
USA, June 6-10, 2010. ACM, 531–542.

[9] Bailu Ding, Surajit Chaudhuri, Johannes Gehrke, and Vivek R. Narasayya. 2021.
DSB: A Decision Support Benchmark for Workload-Driven and Traditional
Database Systems. Proc. VLDB Endow. 14, 13 (2021), 3376–3388.

[10] Harish Doraiswamy, Pooja N. Darera, and Jayant R. Haritsa. 2007. On the
Production of Anorexic Plan Diagrams. In Proceedings of the 33rd International
Conference on Very Large Data Bases, University of Vienna, Austria, September
23-27, 2007. ACM, 1081–1092.

[11] Lyric Doshi, Vincent Zhuang, Gaurav Jain, Ryan Marcus, Haoyu Huang, Deniz
Altinbüken, Eugene Brevdo, and Campbell Fraser. 2023. Kepler: Robust Learning
for Parametric Query Optimization. Proc. ACM Manag. Data 1, 1 (2023), 109:1–
109:25.

[12] Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2017. Leveraging
Re-costing for Online Optimization of Parameterized Queries with Guarantees.
In Proceedings of the 2017 ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. ACM, 1539–1554.

[13] Sumit Ganguly. 1998. Design and Analysis of Parametric Query Optimization
Algorithms. In VLDB’98, Proceedings of 24rd International Conference on Very
Large Data Bases, August 24-27, 1998, New York City, New York, USA. Morgan
Kaufmann, 228–238.

[14] Masoud Reyhani Hamedani, Jin-Su Ryu, and Sang-Wook Kim. 2023. GELTOR: A
Graph Embedding Method based on Listwise Learning to Rank. In Proceedings of
the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4
May 2023. ACM, 6–16.

[15] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan,
Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren
Zhou, Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A
Comprehensive Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (2021), 752–
765.

[16] Arvind Hulgeri and S. Sudarshan. 2002. Parametric Query Optimization for
Linear and Piecewise Linear Cost Functions. In Proceedings of 28th International
Conference on Very Large Data Bases, VLDB 2002, Hong Kong, August 20-23, 2002.
Morgan Kaufmann, 167–178.

[17] Arvind Hulgeri and S. Sudarshan. 2003. AniPQO: Almost Non-intrusive Para-
metric Query Optimization for Nonlinear Cost Functions. In Proceedings of 29th
International Conference on Very Large Data Bases, VLDB 2003, Berlin, Germany,
September 9-12, 2003. Morgan Kaufmann, 766–777.

[18] Yannis E. Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos K. Sellis. 1997.
Parametric Query Optimization. VLDB J. 6, 2 (1997), 132–151.

[19] Yiling Jia, Huazheng Wang, Stephen Guo, and Hongning Wang. 2021. PairRank:
Online Pairwise Learning to Rank by Divide-and-Conquer. In WWW ’21: The
Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021. ACM /
IW3C2, 146–157.

[20] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and
Jaehyok Chong. 2022. Learned Cardinality Estimation: An In-depth Study. In
SIGMOD ’22: International Conference on Management of Data, Philadelphia, PA,
USA, June 12 - 17, 2022. ACM, 1214–1227.

[21] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2021. A Survey on Advancing the DBMS
Query Optimizer: Cardinality Estimation, Cost Model, and Plan Enumeration.
Data Sci. Eng. 6, 1 (2021), 86–101.

[22] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215.

[23] Hang Li. 2014. Learning to Rank for Information Retrieval and Natural Language
Processing, Second Edition. Morgan & Claypool Publishers.

[24] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and TimKraska. 2021. Bao:Making LearnedQuery Optimization Practical.
In SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021. ACM, 1275–1288.

[25] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718.

[26] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718.

[27] Songsong Mo, Yile Chen, Hao Wang, Gao Cong, and Zhifeng Bao. 2023. Lemo: A
Cache-Enhanced Learned Optimizer for Concurrent Queries. Proc. ACM Manag.
Data 1, 4 (2023), 247:1–247:26.

[28] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neu-
ral Networks over Tree Structures for Programming Language Processing. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February
12-17, 2016, Phoenix, Arizona, USA. AAAI Press, 1287–1293.

[29] Naveen Reddy and Jayant R. Haritsa. 2005. Analyzing Plan Diagrams of Database
Query Optimizers. In Proceedings of the 31st International Conference on Very
Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005. ACM, 1228–
1240.

[30] Silvan Reiner and Michael Grossniklaus. 2023. Sample-Efficient Cardinality
Estimation Using Geometric Deep Learning. Proc. VLDB Endow. 17, 4 (2023),
740–752.

[31] Mo Songsong, Zhao Yue, Bao Zhifeng, Xu Quanqing, Yang Chuanhui, and Cong
Gao. 2024. RankPQO: Learning-to-Rank for Parametric Query Optimization
[Technical Report]. (2024), 1–15. https://github.com/songsong945/RankPQO/
blob/main/RankPQO_Technical_Report.pdf

[32] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator.
PVLDB 13, 3 (2019), 307–319.

[33] Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. 2021. Learned Car-
dinality Estimation: A Design Space Exploration and A Comparative Evaluation.
Proc. VLDB Endow. 15, 1 (2021), 85–97.

[34] Kapil Vaidya, Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2021.
Leveraging Query Logs and Machine Learning for Parametric Query Optimiza-
tion. Proc. VLDB Endow. 15, 3 (2021), 401–413.

[35] Zongheng Yang,Wei-Lin Chiang, Sifei Luan, GautamMittal, Michael Luo, and Ion
Stoica. 2022. Balsa: Learning a Query Optimizer Without Expert Demonstrations.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2022, Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 931–944.

[36] Zhenkun Yang, Chuanhui Yang, Fusheng Han, Mingqiang Zhuang, Bing Yang,
Zhifeng Yang, Xiaojun Cheng, Yuzhong Zhao,Wenhui Shi, Huafeng Xi, Huang Yu,
Bin Liu, Yi Pan, Boxue Yin, Junquan Chen, and Quanqing Xu. 2022. OceanBase:
A 707 Million tpmC Distributed Relational Database System. Proc. VLDB Endow.
15, 12 (2022), 3385–3397.

[37] Xiang Yu, Chengliang Chai, Guoliang Li, and Jiabin Liu. 2022. Cost-based or
Learning-based? A Hybrid Query Optimizer for Query Plan Selection. Proc.
VLDB Endow. 15, 13 (2022), 3924–3936.

[38] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement
Learning with Tree-LSTM for Join Order Selection. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). 1297–1308.

[39] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A
Tree Transformer Model for Query Plan Representation. Proc. VLDB Endow. 15,
8 (2022), 1658–1670.

[40] Nengjun Zhu, Jian Cao, Xinjiang Lu, and Qi Gu. 2021. Leveraging pointwise
prediction with learning to rank for top-N recommendation. World Wide Web
24, 1 (2021), 375–396.

[41] Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu,
and Jingren Zhou. 2023. Lero: A Learning-to-Rank Query Optimizer. Proc. VLDB
Endow. 16, 6 (2023), 1466–1479.

875

https://en.oceanbase.com/docs/common-oceanbase-database-10000000001123504
https://en.oceanbase.com/docs/common-oceanbase-database-10000000001123504
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-plan-cache-object?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-plan-cache-object?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-plan-cache-object?view=sql-server-ver15
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://github.com/ossc-db/pg_hint_plan
https://github.com/songsong945/RankPQO/blob/main/RankPQO_Technical_Report.pdf
https://github.com/songsong945/RankPQO/blob/main/RankPQO_Technical_Report.pdf

	Abstract
	1 Introduction
	2 Related work
	3 Overview
	3.1 Problem Definition
	3.2 Motivation of Our Approach
	3.3 System Overview

	4 Rank Model
	4.1 Model Design
	4.2 Model Training

	5 Proposed Solution
	5.1 Plan Enumeration
	5.2 Training Data Collection
	5.3 Candidate Plan Selection
	5.4 Best Plan Prediction

	6 Experiments
	6.1 Experimental Setup
	6.2 Overall Performance
	6.3 Analyzing candidate plan generation
	6.4 Analyzing ML models

	7 Conclusion
	Acknowledgments
	References

