
Datamap-Driven Tabular Coreset Selection for Classifier Training
Aviv Hadar

Tel Aviv University

avivhadar@mail.tau.ac.il

Tova Milo

Tel Aviv University

milo@post.tau.ac.il

Kathy Razmadze

Tel Aviv University

kathyr@mail.tau.ac.il

ABSTRACT
In the era of data-driven decision-making, efficient machine learn-

ing model training is crucial. We present a novel algorithm for con-

structing tabular data coresets using datamaps created for Gradient

Boosting Decision Trees models. The resulting coresets, computed

within minutes, consistently outperform other baselines and match

or exceed the performance of models trained on the entire dataset.

Additionally, a training enhancement method leveraging datamap

insights during the inference phase improves performance with

mathematical guarantees, given a defined property holds. An ex-

plainability layer and tools for coreset size optimization further

enhance the efficiency of training tabular machine learning models.

PVLDB Reference Format:
Aviv Hadar, Tova Milo, and Kathy Razmadze. Datamap-Driven Tabular

Coreset Selection for Classifier Training. PVLDB, 18(3): 876 - 888, 2024.

doi:10.14778/3712221.3712249

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/avivhadar33/coretab.

1 INTRODUCTION
In data science, successful model training is essential for decision-

making and predictive analytics. This involves handling extensive

training data and carefully selecting appropriate machine learn-

ing (ML) models while optimizing their configurations. However,

finding the most suitable model and optimal configuration can be

time-consuming due to numerous training iterations. To tackle this

issue, various algorithms have been introduced to generate a con-

densed subset of data, referred as a coreset. Initially developed for

clustering tabular data [26], and found extensive applications in

recent computer vision tasks (e.g., [39]). However, the application

of coresets in the context of tabular data remains relatively limited,

and mainly focused on coresets that are tailored to classical ML

algorithms [31, 38, 51, 54]. Although these works provide guar-

antees for their usage within the designated classic models, they

have limited coverage for the advanced models commonly used in

tabular data domain, such as XGBoost [16] or TabNet [11].

Goal. Focusing on classification models, our goal is to create a

tabular coreset that achieves high performance on advanced ML

models, and could take as an input any type of tabular data (numeric,

categorical, etc.). As opposed to some of the previous work, the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.

doi:10.14778/3712221.3712249

selected coreset is of a size that the user has provided, and the

coreset remains relevant after the addition of new features, which

happen frequently during the feature engineering process.

Intuition Behind Our Solution. Our solution draws inspiration

from decision trees based ML classification algorithms, where the

leaves serve as sets that, once the tree is constructed, contain all

the examples the model was trained on. During inference, these

leaves or the union of leaves (in case of multiple trees) determine

the classification of unseen examples, assigning the same label

to all examples within one leaf. Our algorithm capitalizes on the

observation that leaves containing many examples, all belonging

to the same label, can be viewed as forming equivalence classes.

As a result, the algorithms can effectively classify similar instances

without the need to train on all these examples. Leveraging this

insight, we can select a coreset comprising only a small subset of

these examples while excluding the others. However, identifying

these easy to learn and hard to learn regions is non-trivial due

to potential variations in splits by different decision trees and the

impact of different sampling strategies, leading to diverse leaf nodes

and varying results.

Proposed Solution. Our approach addresses the concern by in-

troducing an algorithm for creating a tabular datamap, originally

designed for the textual domain [48]. The datamap identifies regions

in the data that are easy or hard to learn during model training.

We then develop an algorithm that utilizes the datamap to select a

coreset, encompassing hard-to-learn regions and small represen-

tatives of easy-to-learn ones. To the best of our knowledge, this is

the first application of datamaps for this purpose. This innovative

strategy results in a coreset that competes in terms of performance

with even complex models trained on the entire dataset. Our effi-

cient implementation, CoreTab, constructs coresets within minutes

even for sizable datasets, outperforms competitors in speed and

achieves better quality results, up to a 30% increase in some cases

compared to the best performing baseline. Additionally, we offer

an explainability layer to help users understand the inclusion or

condensation of specific data sections in the coreset.

Example 1.1. Consider our approach applied to the BankLoan
dataset. Here, the goal is to train an ML model for classifying loan

approval (True) or rejection (False) based on various attributes.

Imagine a decision tree leaf containing 10% of the data, where

all examples share the label False. Examining the decision tree

path leading to this leaf reveals conditions 𝑏𝑎𝑛𝑘_𝑐𝑟𝑒𝑑𝑖𝑡 ≤ 200 and

𝐵𝑎𝑛𝑘𝑟𝑢𝑝𝑡𝑐𝑖𝑒𝑠 ≥ 1, defining a specific region within the dataset.

This region is homogeneous, making predictions easy due to a con-

sistent label. Sampling a small subset from this easy-to-learn region

is likely highly representative. Conversely, challenging regions for

the model require more data. Thus, we create a datamap partition-

ing the data space into regions of varying complexity based on

876

https://doi.org/10.14778/3712221.3712249
https://github.com/avivhadar33/coretab
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712249
https://www.acm.org/publications/policies/artifact-review-and-badging-current

label homogeneity and the model’s ease or difficulty in making

predictions within each region.

Training Enhancement. Leveraging the valuable insights encoded
within the generated datamap, we introduce an innovative ap-

proach to enhance the ML model training process. Our aim is to

streamline this intricate and resource-intensive process, particu-

larly beneficial when repeated model training is necessary [27]. We

propose a method that significantly improves the performance of

models trained on the coreset, often matching or surpassing the

performance of models trained on the entire dataset. Moreover, this

method provides insights into the trade-offs in results, supported

by mathematical guarantees (Section 5), contingent upon a defined

property of the data and model. These benefits extend to hyper-

parameter tuning and cross-validation, both requiring numerous

training iterations [57]. To achieve this, we leverage the datamap, a

byproduct of the CoreTab algorithm, during the inference phase of a

model trained on the coreset. As the datamap algorithm exclusively

uses the training set, we achieve a performance boost without data

leakage concerns. Our system also includes an investigation tool

for users to explore coreset size and accuracy trade-offs, facilitating

the selection of the most appropriate coreset size based on desired

quality preservation.

Contributions. This work presents several contributions:

• Introduction of an advanced algorithm tailored for creating a
tabular datamap, a crucial element in our coreset generation

process, specifically designed for Gradient Boosting Decision

Trees (GBDT) models.

• Proposal of a novel algorithm and problem formulation for cre-
ating coresets using a datamap for tabular data, addressing the

challenge of efficient coreset creation. This includes an explain-

ability layer to understand patterns within the coreset compared

to the full dataset.

• Unique approach for training enhancement by leveraging the

datamap during the inference phase of a model trained over the

coreset, supported by theoretical guarantees for model perfor-

mance. It also includes an explainability layer for optimal coreset

size determination.

• Provision of comprehensive experimental results demonstrating

the high performance of CoreTab across variousmodels and datasets,

along with thorough comparisons with various baseline meth-

ods for tabular coreset selection. Additionally, showcasing the

benefits of our approach for training enhancement, revealing sig-

nificantly reduced training times and high model performance.

2 RELATEDWORK
Our work relates to two research areas: (1) data sampling and

summarization, and (2) coreset and instance selection techniques.

In this section, we highlight distinctions from existing methods and

present comparison results in Section 6.

Row Sampling, Data Summariztion and AQP. Row sampling is

widely used in various domains, for expediting query results [9, 12]

and data visualization for reducing data points [42]. Greedy al-

gorithms are applied for query result diversification [36, 53]. In

contrast, our ML model optimization focuses on selecting rows

based on labels and their relevance. In AutoML, [33] uses genetic

algorithms for a compact and representative data subset, emphasiz-

ing general data characteristics. Unlike our label-centric approach,

it aims for versatility (see Table 1 for performance comparison).

Although AQP methods (e.g., BAQ [34], VerdictDB [43]) are de-

signed to approximate aggregate query results in large databases,

they are not well-suited for coreset creation. This is primarily be-

cause they rely on predefined query workloads, which are typically

unavailable in ML training, involve extensive preprocessing, and do

not optimize based on label-specific importance. Other works (e.g.,

[37]), employ various sampling techniques on data batches due to

the large size of the dataset, which resembles sampling strategies

used in smaller datasets common in ML training. Another line of

work uses Generative Adversarial Networks (GANs [23]) to create

small portions of synthetic data that replicate the original dataset,

allowing queries on the smaller subset instead of the entire database.

We adapted a state-of-the-art method from this line of work, VAE

[50], for coreset selection, detailed in Section 6. As shown in Table

1, VAE’s performance was inferior to that of CoreTab, underscoring

the necessity of specialized methods for coreset creation in ML

tasks.

Fundaments of Coresets and Instance Selection. Initially called

Instance Selection [35], these techniques involve selecting, generat-

ing, and transforming instances to enhance data mining algorithms.

Coresets, also known as representative subsets or summarization

methods, efficiently approximate complex datasets while retaining

crucial structural insights. Works like [26] for clustering tabular

data and [21] for statistical mixture models introduced coresets to

reduce data size. Notably, these works primarily focus on unsuper-

vised settings, preserving data characteristics without labels.

Recent Coresets Work. CRAIG [39], a foundational technique for

selecting supervised ML model coresets that closely approximate

the full gradient, was initially introduced for computer vision ap-

plications. Subsequent research has expanded on this foundation,

predominantly targeting computer vision tasks [13, 40, 44]. Al-

though these methods are not directly applicable to tabular data,

we adapted the current state-of-the-art coreset selection method

from computer vision [56] for the tabular domain and compared it

to CoreTab in Section 6. Our results demonstrate that CoreTab outper-

forms this adapted model, highlighting its superior effectiveness

for tabular data.

Recent works for tabular data have focused on coreset selection

for clustering tasks [14, 17, 29, 52]. These clustering-centric ap-

proaches may not capture patterns necessary for classification tasks.

Additionally, methods for tabular classification coresets [31, 38, 51],

primarily tailored to basic ML algorithms, were comprehensively

evaluated in our research, highlighting the superior efficacy of our

coreset generation approach (Section 6).

Previous work on coresets for relational databases [15, 54] has

predominantly employed the gradient change principle. Thismethod

constructs coresets by selecting data points that have the most

significant impact on the gradient during optimization, thereby

preserving the essential characteristics of the original dataset that

are crucial for model training, similar to the CRAIG algorithm

[39]. In contrast, our research focuses on creating subsets using

datamaps derived from Gradient Boosting Decision Tree (GBDT)

models. These datamap-informed coresets are highly versatile and

877

applicable to a wide range of complex ML models, making them

well-suited for various tabular data scenarios (Section 6). We chose

not to include a comparison with the approximation of the CRAIG

algorithm designed for multiple tables, as presented in [54]. The au-

thors of that work have noted that for single table, their algorithm

is still an approximation.

Active Learning Positioning. Active Learning (AL) focuses on

selecting the most informative data points to improve model per-

formance with minimal labeled data. According to a recent sur-

vey [49], AL methods are categorized into Meta Active Learning,

Representation-Based Methods, Information-Based Methods, and

Random Selection. For example, Meta AL, such as [20], uses rein-

forcement learning for streaming data, while Representation-Based

methods leverage data clustering [30] to select representative sam-

ples. Unlike traditional AL, which often does not use labels during

selection, our approach in CoreTab assumes labeled data is available

and optimizes coreset selection according to them. In this paper, we

position CoreTab within the AL space and compare it to state-of-

the-art AL methods [46, 47] from the Information-Based methods,

specifically, Uncertainty Sampling, demonstrating CoreTab’s supe-

rior performance across several datasets.

3 PRELIMINARY
In this section, we establish the groundwork for our upcoming

algorithm, both for tabular coresets and tabular datamaps, and

discuss essential components of Gradient Boosting Decision Tree

(GBDT) algorithms, pivotal to creating datamaps.

Problem Formulation. In line with standard ML conventions,

we consider a dataset 𝐷 with [𝑅1, . . . 𝑅𝑁] rows and [𝐶1, . . .𝐶𝑀]
columns drawn from distribution D. A coreset is a subset of rows

of 𝐷 , projected over all columns [26].

Definition 3.1 (Tabular Coreset). For a dataset𝐷 with row-indices

𝑅 and column indices𝐶 , a tabular coreset of size 𝑛×𝑚 is denoted as

𝑑 and is defined as 𝐷 [𝑟,𝐶] for any 𝑟 ∈ [𝑅]𝑛 . Here, [𝑅]𝑛 represents

the set of all n-subsets of 𝑅, i.e., [𝑅]𝑛 = {𝑅′ | (𝑅′ ⊆ 𝑅) ∧ (|𝑅′ | = 𝑛)}.

We focus on binary classification ML models with 𝑃 and 𝑁 as

the positive and negative classes, respectively. In a typical scenario,

a data scientist trains an ML model𝑀 using configuration 𝑐𝑜𝑛𝑓 to

predict labels of the dataset 𝐷 , defined in the training as column

𝑦. We denote this model as𝑀 (𝐷,𝑦, 𝑐𝑜𝑛𝑓). Let 𝑅𝑒𝑐 (𝑀 (𝐷,𝑦, 𝑐𝑜𝑛𝑓))
and 𝑃𝑟𝑒𝑐 (𝑀 (𝐷,𝑦, 𝑐𝑜𝑛𝑓)) represent the recall and precision of the

trained model, with 𝐴𝑐𝑐 (𝑀 (𝐷,𝑦, 𝑐𝑜𝑛𝑓)) being the classification

metric to optimize (e.g., recall, precision, F1-score). Next, we intro-

duce two methods for optimizing coreset creation.

Definition 3.2 (Coreset Creation Optimizations). The coreset cre-
ation could be optimized based on the following:

• [Opt_per] Optimization based onmodels performance:Given
Δ𝑅𝑒𝑐𝑎𝑙𝑙 , Δ𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , a thresholds for performance guarantees, de-

rive the minimal size 𝑛 and a coreset 𝑑 of size 𝑛, s.t. 𝑛 << 𝑁 , s.t.

∀𝑀 : 𝑅𝑒𝑐 (𝑀 (𝑑,𝑦, 𝑐𝑜𝑛𝑓)) − Δ𝑅𝑒𝑐𝑎𝑙𝑙 ≥ 𝑅𝑒𝑐 (𝑀 (𝐷,𝑦, 𝑐𝑜𝑛𝑓))
𝑃𝑟𝑒𝑐 (𝑀 (𝑑,𝑦, 𝑐𝑜𝑛𝑓)) − Δ𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ≥ 𝑃𝑟𝑒𝑐 (𝑀 (𝐷,𝑦, 𝑐𝑜𝑛𝑓))

• [Opt_size] Optimization based on coreset size: Given 𝑛, the
coreset’s 𝑑 size, find the coreset 𝑑∗ ∈ [𝑅]𝑛 s.t.

𝐴𝑐𝑐 (𝑀 (𝑑∗, 𝑦, 𝑐𝑜𝑛𝑓)) ≥ 𝐴𝑐𝑐 (𝑀 (𝑑,𝑦, 𝑐𝑜𝑛𝑓)),∀𝑑 ∈ [𝑅]𝑛 .

Goal. The primary objective of our algorithm, 𝐶𝑜𝑟𝑒𝑇𝑎𝑏, consis-

tent with the goals of other coreset algorithms, is to select a tabular

coreset that significantly reduces training computation times for a

given ML model, without sacrificing, and potentially even enhanc-

ing, the model’s original performance. Our algorithm optimizes

the coreset creation process based on the two methods previously

described, allowing for customization according to user preferences.

As demonstrated in our experiments in Section 6, training on the

coreset, as opposed to the entire dataset, leads to substantially faster

training times.

Tabular Datamaps. The Datamap concept, initially introduced

in Natural Language Processing (NLP) [48], provides a distinctive

view of how ML models perceive and adapt to data during training.

It maps and diagnose datasets as they evolve, offering insights into

the impact of different data samples on the learning process. In NLP,

it creates a map with regions, each representing a set of words and

indicating the complexity of learning their representation by the

model. Adapting the Datamap concept to tabular data necessitates

a shift from neural network-centric gradient changes to delineating

regions based on data characteristics (columns values). Unlike NLP

models, tabular data includes labels for each row, crucial for model

construction. The goal is to capture groups perceived as similar

or equivalent by ML models, emphasizing features essential for

accurate label-based segregation. Each row is assigned to a region

based on similarity within crucial features. We denote the number

of examples in a region as its size.

Definition 3.3 (Group Homogeneity). Given a threshold value𝜓 ,

denote 𝑔 a group of tuples each labeled by either 𝑁 or 𝑃 . We define

𝑔𝑛 and 𝑔𝑝 , as the set of tuples with the label 𝑁 and 𝑃 , respectively.

A group is considered homogeneous concerning the label column if

either of the following conditions is met: The proportion of tuples

with label 𝑁 (𝑃) in the group, denoted as
|𝑔𝑛 |
|𝑔 | (

|𝑔𝑝 |
|𝑔 |), is greater than

or equal to𝜓 .

In summary, the devised datamap divides the original dataset into

smaller groups, each characterized by the resemblance of several at-

tributes considered meaningful for distinguishing data points based

on their labels. It is crucial to emphasize that not all regions have

substantial sizes, and not all regions exhibit homogeneity accord-

ing to predefined thresholds. Adapting the terminology from the

original datamap to our case, we refer to regions as easy to learn if

they are both homogeneous and large based on two thresholds (one

for homogeneity and one for size). Conversely, non-homogeneous

groups are labeled as hard-to-learn since the ML model struggles to

segregate the data points within these regions into homogeneous

groups. Lastly, there are other regions, specifically small homoge-

neous ones, designated as ambiguous to the model. This implies

that the model succeeded in separating the data points into homo-

geneous regions within these areas, but the challenge was mitigated

by their small size. The larger the groups, the more closely they

align with the easy-to-learn regions. For brevity, the regions referred
as easy, hard, amb. The subsequent section elucidates the primary

878

reasons why these traits define the level of data complexity for the

model, with further emphasis in Algorithm 1. Formally,

Definition 3.4 (Tabular Datamap). We define a Tabular Datamap

𝑑𝑚with𝑘 non-overlapping regions as𝑑𝑚 = 𝑓1, . . . , 𝑓𝑘 , [𝑟𝑖1 , . . . , 𝑟𝑖 𝑗] ∈
𝑓𝑖 , where 1 ≤ 𝑗 ≤ 𝑁 , and 𝑓𝑖 ∩ 𝑓𝑗 = ∅ for all 𝑖 ≠ 𝑗 ∈ [1, 𝑘]. Each
region 𝑓𝑖 is characterized by a set of rules that define its boundaries.

Each rule consists of an attribute (from the data spaceD) and a valid

value range for that attribute. Formally, 𝑓𝑖 = {(𝑐𝑖1 , 𝑣𝑎𝑙𝑖1
1

, 𝑣𝑎𝑙𝑖1
2

), . . . ,
(𝑐𝑖 𝑗 , 𝑣𝑎𝑙𝑖 𝑗

1

, 𝑣𝑎𝑙𝑖 𝑗
2

)}. Each data entry 𝑟𝑝 ∈ D could be assigned to

exactly one region based on the region’s defined boundaries. This

assignment occurs when the attribute values of the entry satisfy the

rules of the regions. Formally, 𝑟𝑝 ∈ 𝑓𝑗 → 𝑣𝑎𝑙 𝑗𝑏
1

≤ 𝑟𝑝 [𝑐 𝑗𝑏] ≤ 𝑣𝑎𝑙 𝑗𝑏
2

,

∀(𝑐 𝑗𝑏 , 𝑣𝑎𝑙 𝑗𝑏
1

, 𝑣𝑎𝑙 𝑗𝑏
2

) ∈ 𝑓𝑗 . The regions’ types defined using homo-

geneity (defined in Sec. 4), and the size of the region (denoted |𝑓𝑖 |)
with threshold 𝜏 :

𝑒𝑎𝑠𝑦_𝑡𝑜_𝑙𝑒𝑎𝑟𝑛 = { 𝑓𝑖 | (ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠 (𝑓𝑖 ,𝜓) = 𝑇𝑟𝑢𝑒)&(| 𝑓𝑖 | > 𝜏) }
ℎ𝑎𝑟𝑑_𝑡𝑜_𝑙𝑒𝑎𝑟𝑛 = { 𝑓𝑖 | (ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠 (𝑓𝑖 ,𝜓) = 𝐹𝑎𝑙𝑠𝑒) }

𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠_𝑡𝑜_𝑙𝑒𝑎𝑟𝑛 = { 𝑓𝑖 | (ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠 (𝑓𝑖 ,𝜓) = 𝑇𝑟𝑢𝑒)&(| 𝑓𝑖 | ≤ 𝜏) }

Gradient Boosting Decision Trees Utilization. Wenow explain how

Gradient Boosting Decision Tree (GBDT) principles are used to con-

struct tabular datamaps and facilitate coreset selection (as detailed

in Section 4). GBDT is a powerful ensemble learning technique,

first introduced in [22], and has been widely adopted in algorithms

like XGBoost [16]. It iteratively builds a series of decision trees, form-

ing additive regression models by fitting a parameterized function

(the base learner) to minimize "pseudo"-residuals derived from a

specific loss function at each step. By aggregating the predictions

from these trees, the model progressively enhances its predictive

accuracy. While the formal algorithm is omitted here for brevity,

we focus on how GBDT’s initial weak learners (trees generated

in the early phases) are utilized to create datamaps with essential

attributes. By limiting the number of trees, we encourage the for-

mation of distinct groups characterized by properties significant to

at least one weak learner.

Our approach takes advantage of the unique characteristics of

gradient boosting trees. The process begins with a shallow ini-

tial tree, whose predictions guide the construction of subsequent

trees by calculating error gradients. Each tree is divided into leaves,

which represent clusters of data points with similar attributes, often

related to the label columns. These clusters can be thought of as re-

gions, each defined by a set of rules—boundaries set by the decision

tree that created them. Some clusters are completely homogeneous,

where the model makes no errors on these samples, while others

contain multiple labels, posing challenges. In the later stages, non-

homogeneous clusters are refined to reduce error rates. Regions

that remain non-homogeneous are difficult for the algorithm to

learn and are thus included in the coreset.

4 CORESET AND DATAMAP ALGORITHMS
This section explores 𝐶𝑜𝑟𝑒𝑇𝑎𝑏, a system designed for constructing

a coreset from the original data. Here, we focus on coreset creation

based on user-defined size optimization (opt_size), while the sub-

sequent section discusses coreset creation based on performance

optimization (opt_per). We start by elucidating the algorithm (Al-

gorithm 1) responsible for crafting a datamap, a pivotal element

in the coreset selection process. Next, we delve into the algorithm

(Algorithm 2) generating tabular coresets, leveraging the datamap

as a foundational component, focusing on the hard regions.

4.1 Tabular Datamap Creation
We delve into the core stages of tabular datamap generation, fully

detailed in Algorithm 1. This algorithm adopts an Optimizing Based
on Labels approach, giving priority to constructing the datamap

primarily guided by data point labels. In practical scenarios, a weak

learner, typically represented by a decision tree, may fail to accu-

rately classify some data points, resulting in mixed-label leaves that

eventually form the examined regions. To mitigate this, a threshold

is set for the required homogeneity of a region concerning the label,

as formally defined in Section 3. Note that, In Section 3, model𝑀

refers to any machine learning (ML) model that is trained on a

coreset. The purpose of using this model is to evaluate its perfor-

mance on a test set and compare it to the same model trained on the

full dataset. This model is different from the ML model employed

within our Datamap creation algorithm, defined below.

Initialization. The algorithm’s inputs are the Dataset𝐷 , the num-

ber of trees for GBDT algorithm (𝑡𝑛𝑢𝑚), the threshold for the size

of the considered regions (𝜏), and the threshold for homogeneous

regions (𝜓). As explained in Section 6, we have carefully chosen

the default values for those parameters, that work best on a wide

variety of datasets and tasks. However, the user could change them

according to his needs. Then, the GBDT algorithm is run for the

given number of trees, and store the resulted trees in 𝑡𝑟𝑒𝑒𝑠 param-

eter. Another part of the initialization is creation of two sets of

sets. The first, denoted as 𝑑𝑎𝑡𝑎𝑚𝑎𝑝 is initialized as an empty set,

and will eventually contain the datamap of the GBDT algorithm.

The second set of sets, denoted as 𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 , contains initially a

set of all the data points in the given dataset and will be used for

storing the intermediate calculated groups to be added later to the

datamap, upon reaching certain criterion.

Algorithm 1: Creation of Datamap

Input :Original Dataset 𝐷 , 𝑡𝑛𝑢𝑚 = 30, 𝜏 = 5,𝜓 = 1

Output :𝑑𝑎𝑡𝑎𝑚𝑎𝑝

1 𝑡𝑟𝑒𝑒𝑠 ← 𝐺𝐵𝐷𝑇 (𝐷, 𝑡𝑛𝑢𝑚) // Train GBDT with 𝑡𝑛𝑢𝑚 trees

2 𝑑𝑎𝑡𝑎𝑚𝑎𝑝 ← ∅ // Initialize empty datamap

3 𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 ← {{𝑟1, . . . , 𝑟𝑁 }} // Initialize with all records

4 for each tree 𝑡 ∈ {𝑡1, 𝑡2, . . . , 𝑡𝑡𝑛𝑢𝑚 } do
5 𝑙𝑒𝑎𝑣𝑒𝑠 ← 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑡) // Extract leaves from current tree

6 𝑛𝑒𝑤_𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 ← ∅ // Initialize new data groups

7 for each 𝑔𝑟𝑜𝑢𝑝 in 𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 do
8 for each 𝑙𝑒𝑎𝑓 in 𝑙𝑒𝑎𝑣𝑒𝑠 do
9 if 𝑙𝑒𝑎𝑓 ∩ 𝑔𝑟𝑜𝑢𝑝 ≠ ∅ then
10 add (𝑙𝑒𝑎𝑓 ∩ 𝑔𝑟𝑜𝑢𝑝) to 𝑛𝑒𝑤_𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 ;

11 𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 ← 𝑛𝑒𝑤_𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 // Update data groups

12 for each 𝑔𝑟𝑜𝑢𝑝 ∈ 𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 do
13 if (|𝑔𝑟𝑜𝑢𝑝 | ≤ 𝜏) or homogeneous(𝑔𝑟𝑜𝑢𝑝,𝜓) then
14 add 𝑔𝑟𝑜𝑢𝑝 to 𝑑𝑎𝑡𝑎𝑚𝑎𝑝 ;

15 remove 𝑔𝑟𝑜𝑢𝑝 from 𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 ;

16 add 𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 to 𝑑𝑎𝑡𝑎𝑚𝑎𝑝 // Add remaining groups to datamap

17 return 𝑑𝑎𝑡𝑎𝑚𝑎𝑝

Leveraging Gradient Boosting Decision Trees. We utilize each tree

generated in the initial phase of the Gradient Boosting Decision

Trees (GBDT) algorithm to refine our data groups. For each tree,

879

Algorithm 2: CoreTab Algorithm - Opt_size

Input :Training Set 𝑆 , coreset size 𝑛, 𝑡𝑛𝑢𝑚 = 30, 𝜏 = 5,𝜓 = 1, 𝑠𝑎𝑚𝑝_𝑟𝑎𝑡𝑖𝑜 = 0.03

Output :𝑑 = [𝑟𝑖
1
, 𝑟𝑖

2
, ..., 𝑟𝑖𝑛] coreset of size 𝑛

1 𝑐𝑜𝑟𝑒𝑠𝑒𝑡 ← ∅ // Initialize empty coreset

2 𝑑𝑎𝑡𝑎𝑚𝑎𝑝 ← datamap_creation(𝑆, 𝑡𝑛𝑢𝑚,𝜏,𝜓) // Generate datamap

3 for each 𝑟𝑒𝑔𝑖𝑜𝑛 in 𝑑𝑎𝑡𝑎𝑚𝑎𝑝 do
4 if (|𝑟𝑒𝑔𝑖𝑜𝑛 | ≤ 𝜏) or (homogeneous(𝑟𝑒𝑔𝑖𝑜𝑛,𝜓) = False) then
5 𝑐𝑜𝑟𝑒𝑠𝑒𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑒𝑔𝑖𝑜𝑛 ∩ 𝑆) ;

6 if size(𝑐𝑜𝑟𝑒𝑠𝑒𝑡) ≥ 𝑛 then
7 return 𝑐𝑜𝑟𝑒𝑠𝑒𝑡

8 𝑒𝑎𝑠𝑦_𝑡𝑜_𝑙𝑒𝑎𝑟𝑛_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← ∅ // Initialize easy-to-learn candidates

9 for each 𝑟𝑒𝑔𝑖𝑜𝑛 in 𝑑𝑎𝑡𝑎𝑚𝑎𝑝 do
10 if homogeneous(𝑟𝑒𝑔𝑖𝑜𝑛,𝜓) = True then
11 𝑒𝑎𝑠𝑦_𝑡𝑜_𝑙𝑒𝑎𝑟𝑛_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑒𝑔𝑖𝑜𝑛 ∩ 𝑆) ;

12 for each 𝑟𝑒𝑔𝑖𝑜𝑛 in sort_by_size_desc(𝑒𝑎𝑠𝑦_𝑡𝑜_𝑙𝑒𝑎𝑟𝑛_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠) do
13 𝑐𝑜𝑟𝑒𝑠𝑒𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (sample(𝑟𝑒𝑔𝑖𝑜𝑛, 𝑠𝑎𝑚𝑝_𝑟𝑎𝑡𝑖𝑜)) ;
14 remove 𝑟𝑒𝑔𝑖𝑜𝑛 from 𝑒𝑎𝑠𝑦_𝑡𝑜_𝑙𝑒𝑎𝑟𝑛_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ;

15 if size(𝑒𝑎𝑠𝑦_𝑡𝑜_𝑙𝑒𝑎𝑟𝑛_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠) + size(𝑐𝑜𝑟𝑒𝑠𝑒𝑡) ≤ 𝑛 then
16 break ;

17 add 𝑒𝑎𝑠𝑦_𝑡𝑜_𝑙𝑒𝑎𝑟𝑛_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 to 𝑐𝑜𝑟𝑒𝑠𝑒𝑡 ;

18 return 𝑐𝑜𝑟𝑒𝑠𝑒𝑡

we store its leaves in the 𝑙𝑒𝑎𝑣𝑒𝑠 parameter, where each leaf rep-

resents a set of attributes (rules) that led to its creation by the

decision tree, along with the data points contained within that

leaf. We also initialize an empty set, 𝑛𝑒𝑤_𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 , for each

tree, which will hold the newly formed groups, as described be-

low. For each existing group in 𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 , we check whether

a leaf in 𝑙𝑒𝑎𝑣𝑒𝑠 contains any of the data points from that group.

If such a leaf is found, we create a new group that includes these

common data points, and we add it to 𝑛𝑒𝑤_𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 . The rules

for this new group are a refinement of the previous rules, merged

with the rules of the corresponding leaf. By iterating through all

groups in relation to the current tree’s leaves, we form a new col-

lection of data groups. These groups vary in their homogeneity

concerning the label, size, and characteristics. This updated collec-

tion becomes the new 𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 . Finally, we review the groups

within 𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 . If a group is either too small (below a defined

threshold) or homogeneous, we add it to the 𝑑𝑎𝑡𝑎𝑚𝑎𝑝 and remove

it from 𝑑𝑎𝑡𝑎_𝑔𝑟𝑜𝑢𝑝𝑠 , ensuring that the 𝑑𝑎𝑡𝑎𝑚𝑎𝑝 is composed of the

most relevant and refined groups.

The GBDT model used within the datamaps creation algorithm

(a critical component of the CoreTab algorithm) is only partially

trained on the full dataset. This partial training, inspired by the

datamap methodology [48], aids in identifying the significance

of each data point in the learning process. However, this step is

not the ultimate objective of CoreTab; rather, it is instrumental in

constructing a datamap that enables the CoreTab algorithm to select

a smaller, representative coreset. The final ML model, whether it

be GBDT or another ML model, is then trained on this coreset.

Single Decision Tree Datamap Creation. To further accelerate our
algorithm, we propose a streamlined approach for datamap creation

using a single decision tree. Instead of iteratively refining groups

formed from the intersection of leaves as additional trees are built,

we train a single decision tree without constrains. The leaves of this

tree are then used to define the regions. Although these regions

are not as refined as those produced by the GBDT algorithm, they

effectively capture areas that are challenging for a single decision

tree to learn, providing a faster datamap generation process. As

demonstrated in Section 6, this method reduces runtime by up to

75%, with only a minor impact on the quality of the coreset.

4.2 Coreset Creation
Following the introduction of the datamap creation algorithm we

present CoreTab (Algorithm 2), the algorithm responsible for se-

lecting a coreset based on the user’s preferred coreset size.

Initialization. The algorithm begins by initializing an empty set

for the coreset entity and executing Algorithm 1, which is the

algorithm for GBDT datamap creation (explained in Section 4.1).

Initially, all hard regions in the 𝑑𝑎𝑡𝑎𝑚𝑎𝑝 are added to the 𝑐𝑜𝑟𝑒𝑠𝑒𝑡 .

These regions are defined as non-homogeneous regions formed in

the datamap. If the required coreset size is reached, the algorithm

stops and outputs the coreset. If the required size is not yet reached,

the algorithm proceeds to add samples from the easy regions, start-

ing with the largest easy regions. The set of candidates for easy
regions is constructed initially by adding all homogeneous regions.

Candidates Consideration. An iterative process is then employed

to determine the final composition of the coreset. The algorithm ex-

amines each region in the easy candidates, starting from the largest.

Each region is then sampled according to the defined sample ra-

tio and added to the coreset, while being removed from the easy
candidates. Taking a sample from a region enables the future ML

model, trained solely on the coreset, to gain insight into this region,

ensuring coverage even if not fully represented. This loop termi-

nates either when the requested coreset size is reached or when

all regions from the easy candidates are sampled. This strategy (ex-

plained in more details in Section 3) is based on the observation that

smaller groups are often harder for the algorithm to distinguish

from examples of the other class, thus providing more valuable

information for the training process.

Performance and Explainability. Section 6 showcases experimen-

tal results demonstrating the effectiveness of coresets generated

by CoreTab. These coresets consistently outperform those created

by other baseline methods across various ML models, achieving

performance levels that closely match models trained on the full

dataset. Additionally, CoreTab provides a valuable explainability fea-

ture by linking the coreset to the datamap, revealing crucial patterns,

including those omitted from the coreset (Section 5.5). This capabil-

ity allows users to assess the coreset’s suitability for their specific

tasks and facilitates additional functionalities such as bias detection.

Furthermore, Section 5 presents an algorithm for coreset creation

that optimizes based on a user-defined quality metric, utilizing an

enhanced training method supported by mathematical guarantees.

5 ENHANCING TRAINING FOR IMPROVED
MODEL PERFORMANCE

Following coreset creation and ML model training, the inference

phase involves predicting labels for unseen data. While our coreset-

trained models achieve performance comparable to models trained

on the full dataset (see Section 6), we propose a novel enhancement

method. This approach extends mathematical guarantees to mul-

tiple models with a specific property, overcoming the traditional

limitation of guarantees to a single model.

880

Training Enhancement. Users often experiment with various

models before identifying themost effective one,making ourmethod

highly relevant for practical applications. To further enhance train-

ing outcomes, we introduce an alternative to conventional inference

by utilizing the datamap. When a new data entry arrives, we check

if it falls within a region of the datamap by evaluating the set of

rules (boundaries) that define each region. For every region in the

datamap, we maintain information about whether it is classified

as easy, hard, or ambiguous to learn, along with the label most

commonly associated with that region. If a new entry falls within

an easy to learn region—characterized by label homogeneity and

not represented in the coreset—we predict the label associated with

that region, thereby augmenting the model’s output. For entries

outside these regions, we adhere to the standard inference approach

based solely on the coreset-trained model. Efficient implementation

is key, especially when managing a large number of groups.
1

In the remaining part of this section, we outline theoretical guar-

antees for our algorithm in the training enhancement context, first

defining two types of errors when an ML model is solely trained on

the coreset during inference.
2
Lastly, we introduce an additional

algorithm to generate a coreset based on user-specified required

performance, indicated by a quality metric. The promising experi-

mental results are in Section 6.

5.1 Formal Definitions
In our analysis, a dataset 𝐷 is partitioned into two subsets: 𝑃 repre-

senting all the examples from the positive class and 𝑁 representing

all the examples from the negative class, formally, 𝐷 = 𝑃 ∪𝑁 . Next,

let 𝑆, 𝑆 ′ ⊂ 𝐷 , denote the training and validation sets, respectively,

randomly selected from 𝐷 .

The datamap generation process (using Algorithm 1) operates

on 𝑆 , creating regions that are then classified into easy, ambiguous

and hard to learn for the model. Then, Algorithm 2 creates the

coreset, by focusing on the hard to learn regions, and the easy

to learn regions are intentionally omitted or significantly under-

represented by the coreset. This deliberate exclusion serves a dual

purpose: it keeps the coreset small while enabling predictions for

new entries during the inference phase based on the region to

which they would be assigned in the datamap, particularly when

these entries fall within the excluded easy to learn regions. These

homogeneous regions are formally defined as follows:

Let 𝑝1, . . . , 𝑝𝑘𝑝 ⊆ 𝐷 be the easy to learn and ambiguous regions
in datamap that predominantly comprise positive examples and are

positive homogeneous (given𝜓 homogeneity threshold):

∀𝑖, 𝑗 ∈ [1, 𝑘𝑝]
|𝑝𝑖 ∩ 𝑆 ∩ 𝑃 |
|𝑝𝑖 ∩ 𝑆 |

≥ 𝜓, & 𝑖 ≠ 𝑗 =⇒ 𝑝𝑖 ,∩𝑝 𝑗 = ∅,

Similarly, 𝑛1, . . . , 𝑛𝑘𝑛 ⊆ 𝐷 , that primarily contain negative exam-

ples, are defined. The unions of these groups, and the complement

sets are denoted as:

𝑃 ′ =
𝑘𝑝⋃
𝑖=1

𝑝𝑖 , 𝑃
′𝑐 = {𝑥 ∈ 𝐷 ∧ 𝑥 ∉ 𝑃 ′ } , 𝑁 ′ =

𝑘𝑛⋃
𝑖=1

𝑛𝑖 , 𝑁
′𝑐 = {𝑥 ∈ 𝐷 ∧ 𝑥 ∉ 𝑁 ′ }

1
We achieve this efficiency using the Aho-Corasick algorithm [10]. By constructing a

prefix tree from the leaves of these groups, we enable swift and accurate predictions

during the inference phase, even with a substantial number of groups.

2
Note that although these definitions and guarantees are tailored for the binary classi-

fication scenario, a partial extension to multi-class classification is demonstrated in

Section 6.

We now turn our attention to the two types of errors that can

occur when an ML model is trained solely on the coreset, distinct

from the entire dataset. To the best of our knowledge, this work is

the first to provide theoretical guarantees for these types of errors.

Errors on Entries from the Coreset Distribution [𝐶𝑟𝑠𝐸𝑟𝑟]. These
errors occur when the model misclassified an unseen entry taken

from the same distribution as the data points in the coreset. We de-

termine if an entry belongs to the coreset distribution by examining

the datamaps. An entry is considered part of the coreset distribution

if it falls outside the regions in the datamap designated as easy to
learn and thus intentionally excluded or significantly under repre-

sented in the coreset. For simplicity, we assume that the sample

ratio is 0. For this type of error, given that the examples falling

within the easy to learn regions, denoted as 𝑃 ′ and 𝑁 ′, we define
𝑃 ′ ∪ 𝑁 ′ as the union of all those regions. We denote (𝑃 ′ ∪ 𝑁 ′)𝑐
as all the possible regions that do not intersect with (𝑃 ′ ∪ 𝑁 ′).
Consequently, we define the coreset as 𝑑 = (𝑃 ′ ∪ 𝑁 ′)𝑐 ∩ 𝑆 .

Errors on Entries from the Excluded Data Distribution [𝐸𝑥𝑐𝐸𝑟𝑟].
This category of error materializes when the model makes a mis-

classification on an entry similar to the portions of the data that

were deliberately excluded from the coreset. To determine if an

entry is part of this excluded distribution, we rely on the datamaps,

specifically checking whether it falls within the excluded regions.

The model, having been trained on the coreset, has not encountered

these data points during its training phase. Formally, if an entry falls

within a region in 𝑃 ′ (𝑁 ′), the probability that this entry belongs

to the class 𝑁 (𝑃) defines the likelihood of this type of error. Our

inference method would predict that such an entry belongs to the

positive (negative) class. We can formally define these probabilities

as 𝑃𝑟𝑜𝑏 (𝑥 ∈ 𝑃 ′ |𝑥 ∈ 𝑁) and 𝑃𝑟𝑜𝑏 (𝑥 ∈ 𝑁 ′ |𝑥 ∈ 𝑃), and by referring

to 𝑥 as Bernoulli variables, and 𝑆 ′ as a sample of it, we can get an

estimation of this probability:

𝑁𝑝 :=

{
1, if 𝑥 ∈ 𝑃 ′ , given 𝑥 ∈ 𝑁,

0, otherwise, given 𝑥 ∈ 𝑁 .
, 𝑃𝑛 :=

{
1, if 𝑥 ∈ 𝑁 ′ , given 𝑥 ∈ 𝑃,
0, otherwise, given 𝑥 ∈ 𝑃.

We employ the concept of the Confidence Interval for Bernoulli Vari-
ables, specifically utilizing the Wilson method [55]. This method

offers an improvement over the normal approximation interval,

making it suitable for small samples and skewed observations. With

it, we can compute an upper bound for both 𝑁𝑝 and 𝑃𝑛 . In this cal-

culation, we make use of the validation set 𝑆 ′ to estimate these

probabilities and their respective boundaries. The Wilson confi-

dence is used because we have just the validation set 𝑆 ′ for the
evaluation, but we would like to generalize the error for the whole

distribution of the data 𝐷 . Thus, 𝑆 ′ is used to create an upper bound

for 𝑃𝑛 .

Note that confidence interval calculation methods necessitate a

user-defined parameter, denoted as 𝛿 , which signifies the desired

confidence level for the variable to fall within the interval. This

same 𝛿 value is used to establish the precision and recall boundaries.

Importantly, our empirical results consistently show a much higher

success rate than the chosen 𝛿 value. Therefore, when we refer to

"by a probability of at least 𝛿", we are indicating the upper bound

of the probability associated with the 𝐸𝑥𝑐𝐸𝑟𝑟 error. Formally:

𝑃𝑛 =𝑊𝑖𝑙𝑠𝑜𝑛𝐶𝐼𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 (𝑃 ∩ 𝑆′, 𝛿) ≥ 𝑃𝑛 , 𝑃 (𝑥 ∈ 𝑃 ′ |𝑥 ∈ 𝑁) ≤ 𝑁𝑝

𝑁𝑝 =𝑊𝑖𝑙𝑠𝑜𝑛𝐶𝐼𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 (𝑁 ∩ 𝑆′, 𝛿) ≥ 𝑁𝑝 , 𝑃 (𝑥 ∈ 𝑁 ′ |𝑥 ∈ 𝑃) ≤ 𝑃𝑛

881

Precision and Recall. The guaranteed boundaries presented in

this section pertain to the model’s precision and recall. Below is a

brief overview of these crucial metrics including formal definitions.

Precision Defined as the ratio of true positive predictions to the

total number of positive predictions made by the model. formally,

Precision =
True Positives

True Positives + False Positives = 𝑃 (𝑥 ∈ 𝑃 |𝑥 ∈ 𝑃𝑝𝑟𝑒𝑑)

Recall Measures the proportion of actual positive instances that are

correctly identified by the model. formally,

Recall =
True Positives

True Positives + False Negatives = 𝑃 (𝑥 ∈ 𝑃𝑝𝑟𝑒𝑑 |𝑥 ∈ 𝑃)

Where 𝑃𝑝𝑟𝑒𝑑 defined as the group of the model’s positive predic-

tions. These probabilistic definitions aid in subsequent calculations.

5.2 𝐶𝑟𝑠𝐸𝑟𝑟 Errors
Let us delve into the 𝐶𝑟𝑠𝐸𝑟𝑟 errors, which are the errors on en-

tries taken from the coreset distribution. As previously explained,

we define an entry as taken from the coreset distribution when

it does not fall within 𝑃 ′ ∪ 𝑁 ′. If a dataset and ML model hold

the Refined-fit property, we claim that a model trained solely on

the coreset 𝑑 = (𝑃 ′ ∪ 𝑁 ′)𝑐 ∩ 𝑆 will not be worse then a model

trained on the entire set 𝑆 when making predictions on entries

taken from the coreset distribution. Expecting performance stabil-

ity in the targeted regions during training is not only reasonable

but echoes established methodologies, such as [48] emphasis on en-

hancing performance by focusing on challenging to learn examples.

Similarly, [32] follows a comparable strategy by ignoring easily

learnable examples through the GOSS sampling method.

Intuition. During the training of an ML model, the goal is to fit

itself to the given data. As perfect fitting for all training data exam-

ples is often unattainable, a compromise is necessary to minimize

overall loss. Intuitively, a model trained on specific regions, such as

(𝑃 ′ ∩ 𝑁 ′)𝑐 , is expected to outperform a model trained on a larger

and more diverse set, like the entire training set 𝑆 . This is because

the former model can concentrate on fitting to the specific regions

of interest, while the latter must generalize to a broader range of

data. This becomes even more accurate when considering that the

regions excluded from the coreset are presumed to be "easy" for an

ML algorithm to learn. Formally,

Refined-fit Property. A model𝑀 , and a data subset 𝐵, satisfy

the refined fit property if the model trained solely on a set 𝐵 ∩ 𝑆 ,
where 𝐵 ⊆ 𝐷 , will not perform worse, in terms of classification

performance (Precision and Recall), on a test set taken from the

distribution of 𝐵 ∩ 𝑆 ′ than the same model trained on the entire

𝑆 . 𝑃𝑝𝑟𝑒𝑑 is the set of all the examples that the model𝑀 (𝑆, 𝑐𝑜𝑛𝑓 ,𝑦)
classified as class 𝑃 . 𝑃∗

𝑝𝑟𝑒𝑑
is the set of all the examples that the

model 𝑀 (𝑆 ∩ 𝐵, 𝑐𝑜𝑛𝑓 ,𝑦) classified as class 𝑃 . And in equivalent

formal statement:

𝑃𝑟𝑜𝑏 (𝑥 ∈ 𝑃𝑝𝑟𝑒𝑑 ∩ 𝐵 |𝑥 ∈ 𝑃) ≤ 𝑃𝑟𝑜𝑏 (𝑥 ∈ 𝑃∗
𝑝𝑟𝑒𝑑

∩ 𝐵 |𝑥 ∈ 𝑃)

𝑃𝑟𝑜𝑏 (𝑥 ∈ 𝑃𝑝𝑟𝑒𝑑 ∩ 𝐵 |𝑥 ∈ 𝑁) ≥ 𝑃𝑟𝑜𝑏 (𝑥 ∈ 𝑃∗
𝑝𝑟𝑒𝑑

∩ 𝐵 |𝑥 ∈ 𝑁)

Limitation. The justification for relying on this property is twofold:
it is easily verifiable with a given dataset and ML model, and its

validation across 48 use-cases (6 datasets and 8 diverse ML models)

in Section 6 demonstrates its common occurrence, making it prac-

tically applicable for guarantees. While our method shows strong

performance in these scenarios, it has certain limitations, particu-

larly when the refined-fit property is not satisfied. The refined-fit

property can fail when crucial subsets of data, essential for learning,

are removed. For instance, if a significant portion of a minority class

is excluded, the model may struggle to correctly predict this class,

leading to decreased accuracy. Additionally, random sampling can

inadvertently remove data points that are helpful for distinguishing

between classes, thereby reducing the model’s overall effectiveness.

To mitigate these issues, our algorithm carefully selects the regions

to remove by focusing on easy-to-learn areas identified through

datamaps, ensuring that the most informative and challenging data

points are retained for training.

Moving forward, we will furnish guarantees for 𝐸𝑥𝑐𝐸𝑟𝑟 errors,

specifically addressing errors on entries from the excluded data

distribution, provided they adhere to the property.

5.3 𝐸𝑥𝑐𝐸𝑟𝑟 Errors
Relying on our established property, we extend assurances to this

error type, ensuring comprehensive performance guarantees for a

model trained solely on the coreset. Below, we provide theoretical

assurances regarding Recall and Precision, outlining the expected

differences in these metrics between a model trained on the entire

dataset and one trained solely on the coreset.

Recall Guarantees. We define the difference in the recall:

Proposition 5.1. If the Refined-fit property holds, the disparity in
recall between a model trained on the entire dataset (𝑟𝑒𝑐𝑎𝑙𝑙) and the
recall of a model trained on the coreset 𝑑 (𝑟𝑒𝑐𝑎𝑙𝑙∗), with the addition
of datamap utilization during inference, is governed by a probability
denoted as 𝛿 . This difference is bounded by 𝑃𝑛 , which represents the
upper limit on the fraction of the intersection between all the positive
class examples denoted as 𝑃 and the negative easy to learn set 𝑁 ′. In
mathematical terms:

𝑟𝑒𝑐𝑎𝑙𝑙 − 𝑟𝑒𝑐𝑎𝑙𝑙∗ = Δ𝑟𝑒𝑐𝑎𝑙𝑙 ≤ 𝑃𝑟𝑜𝑏 (𝑥 ∈ 𝑁 ′ |𝑥 ∈ 𝑃) = 𝑃𝑛

Proof. Is presented at [25], omitted here due space constraints.

□

Precision Guarantees. We proceed to provide guarantees de-

fine the difference in precision:

Proposition 5.2. If the Refined-fit property holds, the difference in
the precision of a model that was trained on all data and the precision
of the model that was trained on the coreset 𝑑 and using the datamap
in the inference, by probability of 𝛿 , is:

𝑃𝑛𝑃𝑟𝑜𝑏 (𝑥 ∈ 𝑃) +
𝑁𝑝

𝑃𝑟𝑜𝑏 (𝑥 ∈𝑃)
1−𝑃𝑟𝑜𝑏 (𝑥 ∈𝑃) + 𝑁𝑝

This ratio highlights the connection between the percentage of

the positive vs. negative, and 𝑁𝑝 , 𝑃𝑛 which represent errors of type

𝐸𝑥𝑐𝐸𝑟𝑟 that our algorithm will make.

Proof. Is presented at [25], omitted here due space constraints.

□

882

Further Discussion. Note that specific algorithm performance

(precision and recall) are not needed to calculate those boundaries,

they are generic for all algorithms that satisfy the property. Also, it

is crucial to highlight that there are no restrictions on the groups𝑁 ′

and 𝑃 ′, and the mathematical guarantees remain valid regardless of

how they are selected. These guarantees naturally tend to improve

when the groups exhibit higher homogeneity concerning the labels.

Additionally, the coreset construction can be based on a subset of

the features, not necessarily the entire feature set of the labeled data

entries. Importantly, the mathematical guarantees provided above

still hold in these scenarios. This flexibility allows the addition

of features to an existing coreset during the feature engineering

process while maintaining the mathematical guarantees. These

claims have been proven in the experiments shown in Section 6.1.

5.4 opt_per Algorithm
Now, having defined the mathematical guarantees for performance

when the training enhancement approach is used, we present an

algorithm for coreset creation that optimizes the coreset based on

the quality metric provided by users. The algorithm is similar to

Algorithm 2, with modifications for separating the easy regions

into mostly positive or negative homogeneous groups, as explained

in this section. CoreTab -opt_per (formally presented in Algorithm 3,

[25]) is designed to construct a coreset (𝑐𝑜𝑟𝑒𝑠𝑒𝑡) from an original

dataset (𝐷), divided into training and validation sets (𝑆 and 𝑆 ′

respectively), ensuring high-quality performance metrics based

on specified differences in recall and precision from an ML model

trained on the entire data while holding the defined property. The

process starts with the creation of a 𝑑𝑎𝑡𝑎𝑚𝑎𝑝 , dividing the dataset

into regions that capture relevant patterns. The algorithm then

iterates through these regions, evaluating their homogeneity and

ease of learning for positive and negative instances. Homogeneous

regions are added to the coreset, with particular attention given to

those conducive to learning positive and negative instances.

For negative instances, the algorithm selectively adds regions

to the coreset until the desired recall threshold is met or exceeded.

Sampling techniques maintain efficiency, and the selected regions

are then removed from consideration. A similar process is applied

to positive instances, ensuring the coreset achieves the specified

precision threshold. This adaptive approach leverages validation

sets and iterative adjustments to the coreset composition, dynam-

ically accommodating different regions based on their learning

complexities. The resulting coreset is a representative subset that

optimally balances data inclusivity with computational efficiency,

providing a valuable tool for subsequent machine learning tasks.

The algorithm concludes by returning the generated coreset.

5.5 Explainability
This section concludes with an exploration of the explainability

layer, which aids users in navigating the intricate trade-off between

coreset size and recall or precision guarantees. We provide insights

into the datamap that characterizes the selected coreset and intro-

duce a set of investigation tools designed to help users select the

optimal coreset size for their specific needs. These tools also offer

deeper insights into the created coreset, enabling a comprehensive

understanding of the selection process and its impact on model

performance.

Include regions
Default corest

Figure 1: CoreTab Explainabilty Layer

Coreset Explainability. To enhance user comprehension, we have

developed a visualization tool that simplifies the datamap into a

single decision tree, making it more readable. This tool highlights

data patterns represented by regions in the datamap that were

either omitted from the coreset or included in significantly reduced

proportions due to their ease of learning by the algorithm. Figure 1

presents an example of this investigation tool for the LN dataset.

Each leaf in the decision tree corresponds to one or several regions

sharing similar properties, displayed in a compact format. The

number of samples indicates the region size, and red frames mark

regions excluded from the coreset because they are "easy-to-learn."

Trade-off Visualization. Unlike other approaches that rely on

default coreset size percentages or require user input, our method

allows users to explore the impact of various coreset sizes on the

model’s recall and precision, guided by the mathematical guarantees

outlined in Section 5. Additionally, users can investigate the effects

of selecting different proportions of positive and negative examples,

providing flexibility in coreset customization. Our approach also

enables users to assess how including or excluding specific regions

from the coreset impacts model performance. Figure 1(bottom)

illustrates how recall changes when a user-selected region is added

to the coreset, helping users determine the most suitable coreset

size for their task.

6 EXPERIMENTS
Our system underwent thorough evaluation, assessing runtime per-

formance and coreset qualitywith the F1-scoremetric across diverse

models and datasets. We then evaluated the training enhancement

method, including cross-validation testing, hyper-parameter tuning,

and presenting empirical results for theoretical guarantees. Lastly,

ablation studies are discussed.

Experimental Setup. Our system, implemented in Python 3.9

as a local library [24] is compatible with common EDA environ-

ments like Jupyter notebooks. We utilize the XGBoost library [8]

for Gradient Boosting Decision Tree and scikit-learn [7] for the

883

decision tree in the lighter version. The Aho-Corasick algorithm for

inference uses the Python implementation [10]. Experiments ran on

an Intel Xeon CPU server with 24 cores and 1024GB of RAM, using

default parameters of carefully tested, elaborated in this Section.

Datasets To demonstrate the versatility of our system, we used a

variety of datasets with different characteristics, including balanced

and unbalanced classes, varying sizes, and different combinations

of column types (numeric, categorical, textual), all were previously

used for coreset creation:

(1) Credit Cards [3] (CC): 250K rows, 31 columns, 0.17% positive

(𝑃) class.

(2) Loans [6] (LN): 856K rows, 1145 columns, 5.4% 𝑃 class.

(3) Hepmass [5] (HP): 7M rows, 29 columns, 50% 𝑃 class.

(4) Bank Fraud [1] (BF): 1M rows, 59 columns, 1.1% 𝑃 class.

(5) Diabetes [4] (DI): 254K rows, 22 columns, 14% 𝑃 class.

(6) Covertype [2] (CT): 581K rows, 55 columns, 36% 𝑃 class.

For brevity, results are presented for representative datasets in each

experiment, showcasing diversity in class balance, column types,

and size. The full results are available at the technical report [25].

Evaluation also includes a multi-class dataset (CT), utilizing the

one-versus-all training method for the first class (class 1 in the

dataset).

Baselines. In our comparative analysis, we evaluate various base-

line methods for creating data samples or subsets and constructing

tabular coresets tailored for model training. For all baselines, we

imposed a limit on the coreset size of 30,000 examples per class. All

baselines, extensively discussed in Section 2, include:

Naive methods:
(1) RAN (Random Sampling): Randomly selects data tuples for form-

ing a coreset.

Instance selection, Sampling and AQP Methods:
(2) IS-CNN (Instance Selection - Condensed Nearest Neighbors): Core-

set selection for Condensed Nearest Neighbors classification

[35], limited in adjusting coreset sizes.

(3) IS-CLUS (Instance Selection - Cluster Centroids): Coreset selec-
tion using centroids of data clusters generated with a specified

number of clusters [35].

(4) VAE (VAE): An adaptation to a leading work from AQP field

that uses a GAN to create synthetic data similar to the original

distribution [50].

Coresets selection methods:

(5) CR (CRAIG): Optimized for Logistic Regression [39].

(6) SBT (SubStrat): Genetic-based tuples selection for auto-ML

training [33].

(7) TC (Tree Coreset): Coresets for k decision trees [31].

(8) FDMat (FDMat): The Computer Vision’s state-of-the-art coreset

creation method, with tabular adaptation [56].

(9) CoreTab (CoreTab): Our implementation of Algorithm 2, with

CoreTab-GBT using the GBDT datamap for coreset selection

and CoreTab-DT using the datamap for a single Decision Tree.

both with 𝜏 = 5,𝜓 = 1

Active Learning methods:
(10) EPIG (EPIG): Prediction-Oriented Bayesian Active Learning ap-

proach [47].

(11) UCS (Uncertainty Sampling): Adaptation of [46], adding itera-

tively examples with the least amount of confidence using the

xgboost probabilities.

Default (Default) is referred to training the algorithm on the entire

dataset. Although it is expected to outperform models trained on

coresets, it requires significantly more time for training compared

to models trained on a coreset alone.

ML models tested We test the created coreset over the perfor-

mance of different ML models, all those models were used to train

over the coresets that were created for different datasets, and by

different baselines. We tested ML models from different types:

• Tree based: (1) XGBoost [16] (𝑋𝐺𝐵), (2) LightGBM [32] (LGBM),

(3) CATboost [45] (CAT), (4) Random Forest [28] (RF).

• Classic ML: (5) Logistic Regression [19] (LR), (6) Support Vector

Machine (with RBF kernel) [18] (SVM).

• Neural Networks for tabular data: (7) TabNet[11] (TABNET).
• LLMs for tabular data: (8) GPT-4o model

3
[41] was fine-tuned

on our training set (or coreset) using the OpenAI fine-tuning

API. We selected 1,500 examples from each class to create the

tailored model, applying the default hyperparameters provided

by OpenAI. To enhance performance, we fixed 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 30.

Evaluation Metric To assess the performance of classifiers trained

on each coreset and the entire dataset, we use the F1-score for the
positive class, which in unbalanced datasets is the smaller class.

The F1-score is a crucial metric for evaluating classification models,

especially in imbalanced datasets, as it considers both precision

and recall, providing a balanced measure of model performance.

This ensures that the model accurately identifies all classes. The F1-

score is calculated using the harmonic mean of precision and recall,

defined as follows: F1-score = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 , with precision

and recall definitions provided in Section 5.

6.1 CoreTab Evaluation
Next, we compare baseline performance using our quality metrics

and execution time. The results are divided into two sections: base-

lines comparison and usability across different ML models. Since

other baselines only generates coresets of predefined sizes, we in-

cluded only the version of CoreTab-Opt_size in the experiments to

ensure a fair comparison, as this is the standard task.

Baseline Comparison. Table 1 presents the F1 scores for the XG-
Boost model when trained on coresets generated by various base-

lines. For all baselines and datasets we provide the F1 scores of

models trained on the baselines’ coreset and the running times (in

seconds). Across all datasets, CoreTab consistently achieves the high-

est F1 scores (tied with Default that used the entire dataset). These

scores are, on average, up to 10% higher than those of the other base-

lines. CoreTab also exhibits the second-best running times (excluding

RAN), with coreset creation and model training typically completed

in just a few minutes. Only FDMat had a faster runtime than ours;

however, its performance was significantly worse. For example, in

the CT dataset, it produced the poorest F1 score. This demonstrates

the effectiveness of our sampling algorithm in capturing relevant

portions of large datasets with respect to their labels. Note that

the baseline TC was unable to finish coreset creation within the

3
gpt-4o-mini-2024-07-18

884

reasonable time limit of 24 hours. Furthermore, the CRAIG algo-

rithm generates a similarity matrix between all data points during

execution, resulting in a matrix size of 20TB for the LN dataset,

exceeding the available memory, denoted as𝑂𝑂𝑀 (Out of memory).

Further comparisons involving the Logistic Regression model yield

similar results, thus omitted. The active learning baseline (UCS) beat

our algorithm only once (CT dataset), due to the fact that easy to

learn regions were not learned properly, as the under-sampling was

not created optimally. However, when incorporating the TE factor,

CoreTab outperforms the baselines across all datasets, including

the UCS baseline by a large margin (shown in table 5). The poor

performance of the AQP baseline (VAE) on most datasets, suggests

that while the GAN may have been able to generate data broadly

similar to the original, it likely failed to capture the critical nuances

that distinguish positive and negative examples. This highlights a

key limitation of GANs in this context: generating data that is su-

perficially similar to the overall distribution, but missing the subtle,

decision-driving patterns necessary for effective coreset construc-

tion for classification. Note that, CoreTab results are even better

on the unbalanced datasets. This is likely because unbalanced data

tends to have larger homogeneous regions, which can lead to a

greater reduction in sample size in these easy-to-learn regions.

Performance over different ML models. Table 2 presents the per-
formance of various ML models, both classic and complex, when

trained on coresets generated by the two versions of CoreTab. These

results are compared to the performance of the exact models and

configurations trained on the entire dataset, rather than just the

coreset. The effectiveness of CoreTab across different ML models is

attributed to the datamap-guided selection process, which prior-

itizes the retention of diverse and informative data points. This

approach ensures that the coreset captures essential characteristics

of the data that are beneficial for training a wide range of models,

not just decision trees. As a result, CoreTab in both versions either

performs on par with the default training on the full dataset or even

outperforms it across all models and datasets (the full results in

[25]). Moreover, the lightweight version of our algorithm, CoreTabDT,

exhibits nearly the same performance as the full version while

significantly reducing computation time. In some cases, it even out-

performs the full version. Notably, the SVM model did not complete

training within 24 hours on BF and LN , and is thus absent from

Table 2. However, it successfully completed training on the coresets

in less than an hour.

Cross-Validation. While a single run is significantly quicker than

training themodel on the entire dataset for some datasets, for others,

training over the whole dataset takes less time than creating the

coreset and then training the model on it. However, the time saved

using our coresets during cross-validation is noteworthy, as shown

in Figure 3b. For an XGBoost model on the LN dataset, even with a

small number of folds, cross-validation takes nearly half the time

when trained on the coreset. With an increasing number of folds,

the time differences become more pronounced, resulting in only

25% of the runtime for a 10-fold cross-validation.

Relevance of CoreTab to the Feature Addition Scenario. When

working with tabular data, where features are often added incre-

mentally, it’s crucial to understand how well CoreTab performs under

such conditions. To evaluate this, we conducted experiments focus-

ing on feature addition and the robustness of CoreTab in these sce-

narios. In our initial experiment, we randomly excluded 20% − 60%
of the columns from all datasets. This partial dataset was used to

create a coreset and a datamap specific to the subset of features. We

then reintroduced the excluded columns and trained an ML model

using the coreset created from the initial subset. Notably, the added

features significantly enhanced model performance in the default

setting (i.e., training on all available features), suggesting that these

columns provided essential information for the model, rather than

being redundant or correlated with existing features.

As shown in Table 3, our results demonstrate that the coreset

remained relevant, regardless to the newly added features corre-

lation with the original ones. The performance metrics show that

models trained on coresets performed comparably to (CC), or even
better than (BF), those trained on the full dataset. The reasoning

behind this is that once the easy-to-learn regions are identified in

the datamap, adding new features does not impact them. However,

the ambiguous-to-learn and hard-to-learn regions, which are part of

the coreset, can still benefit from the new information.

6.2 Training Enhancement Evaluation
Performance. Table 5 evaluates the effectiveness of the training

enhancement method throughout the training phase of four ad-

vanced algorithms trained on the CoreTab coreset (Section 5). The

performance is comparable to models trained on the entire dataset

(𝐷𝑒𝑓 𝑎𝑢𝑙𝑡) and even improves for most models. Examining a specific

model, like XGBoost, reveals enhanced results with only a marginal

increase in runtime. The coresets in this section are created with

the same size limit mentioned in the experimental setup.

Hyper-Parameters Optimization. Next, we highlight the utility of

training enhancement, extending beyond the fundamental training

of a single algorithm. In Figure 3a, we illustrate the hyperparameter

optimization process for an XGBoost model on the CT dataset. The

optimization is constrained to a 3-hour runtime. It’s important to

note that XGBoost often requires extensive parameter tuning, and

our optimization uses the Optuna algorithm. The F1-score, repre-

senting model performance, is measured on a fixed test set. This

process was repeated and employed 5-fold cross-validation for re-

sult reliability. The results show that the optimization process on

the coreset outperforms the full dataset in terms of efficiency and

time. Importantly, training the model with the optimized coreset

configuration on the entire dataset yields excellent performance

(TE-DT/XGB-All), highlighting the configurations adaptability.

Property Validation. In Section 5, we introduced the mathemat-

ical guarantees of the training enhancement method, relying on

the Refined-fit property of the model and data. This property has

been thoroughly validated across various models and datasets, con-

firming its consistency. Table 5 illustrates the validation of this

property using the CT dataset, in conjunction with XGB and LRmod-

els. Notably, both versions of CoreTab either match or exceed the

performance of the default algorithm trained on the entire dataset.

Theoretical Guarantees Validation. Next we provide empirical

validation of the mathematical guarantees by Figure 4. The pink

shaded region represents the guaranteed bounds for either the

recall or precision results of the model trained on the coreset, for

885

Baselines

CC (12%) LN (8%) CT (11%) DI (22%) BF (7%)
F1-score CCT (s) MTT (s) F1-score CCT (s) MTT (s) F1-score CCT (s) MTT (s) F1-score CCT (s) MTT F1-score CCT (s) MTT

CoreTabDT 0.87±0.02 13.62 ± 1 0.35 ± 0.01 0.985 ± 0.001 92.5 ± 3 6.3 ± 0.3 0.793 ± 0.002 23.9 ± 0.5 0.64 ± 0.02 0.343±0.007 24.5 ± 0.3 0.7 ± 0.3 0.192 ± 0.006 52.3 ± 0.7 1.3 ± 0.4
CoreTabGBT 0.87±0.02 6.8 ± 0.5 0.35 ± 0.01 0.985 ± 0.001 102 ± 1 6.3 ± 0.3 0.849 ± 0.003 85 ± 4 0.64 ± 0.02 0.310 ± 0.003 40 ± 1 0.7 ± 0.3 0.119 ± 0.007 204 ± 7 1.3 ± 0.4
TC 𝑁 /𝐴 > 24ℎ 𝑁 /𝐴 𝑁 /𝐴 > 24ℎ 𝑁 /𝐴 𝑁 /𝐴 > 24ℎ 𝑁 /𝐴 𝑁 /𝐴 > 24ℎ 𝑁 /𝐴 𝑁 /𝐴 > 24ℎ 𝑁 /𝐴
CR 0.75 ± 0.05 10𝐾 ± 100 0.35 ± 0.01 𝑁 /𝐴 OOM 𝑁 /𝐴 0.839 ± 0.002 20𝐾 ± 1.6𝐾 0.64 ± 0.02 0.271 ± 0.004 39𝐾 ± 1 0.7 ± 0.3 𝑁 /𝐴 OOM 𝑁 /𝐴
SBT 0.80 ± 0.03 10.5𝐾 ± 200 0.35 ± 0.01 0.978 ± 0.001 48𝐾 ± 400 6.3 ± 0.3 0.832 ± 0.002 11.4𝐾 ± 300 0.64 ± 0.02 0.258 ± 0.007 10.6𝐾 ± 200 0.7 ± 0.3 0.055 ± 0.008 12𝐾 ± 700 1.3 ± 0.4
RAN 0.79 ± 0.02 0.2 ± 0.01 0.35 ± 0.01 0.978 ± 0.001 0.1 ± 0.001 6.3 ± 0.3 0.835 ± 0.001 0.01 ± 0.02 0.64 ± 0.02 0.241 ± 0.004 0.7 ± 0.3 0.7 ± 0.3 0.054 ± 0.005 1.3 ± 0.4 1.3 ± 0.4
IS-CNN 0.50 ± 0.04 238 ± 10 0.35 ± 0.01 𝑁 /𝐴 > 24ℎ 𝑁 /𝐴 𝑁 /𝐴 > 24ℎ 𝑁 /𝐴 𝑁 /𝐴 > 24ℎ 𝑁 /𝐴 𝑁 /𝐴 > 24ℎ 𝑁 /𝐴
IS-CLUS 0.81 ± 0.01 719 ± 20 0.35 ± 0.01 0.94 ± 0.03 5𝐾 ± 70 6.3 ± 0.3 0.835 ± 0.003 830 ± 20 0.64 ± 0.02 0.334 ± 0.04 279 ± 6 0.7 ± 0.3 0.15 ± 0.06 4𝐾 ± 100 1.3 ± 0.4
FDMat 0.86 ± 0.02 0.70 ± 0.03 0.35 ± 0.01 0.970 ± 0.008 62 ± 3 6.3 ± 0.3 0.68 ± 0.01 2.02 ± 0.04 0.64 ± 0.02 0.265 ± 0.003 0.87 ± 0.01 0.7 ± 0.3 0.064 ± 0.005 4.3 ± 0.05 1.3 ± 0.4
UCS 0.86 ± 0.02 4.5 ± 0.1 0.35 ± 0.01 0.985 ± 0.001 160 ± 3 6.3 ± 0.3 0.872 ± 0.003 8.9 ± 0.2 0.64 ± 0.02 0.265 ± 0.004 3.7 ± 0.1 0.7 ± 0.3 0.063 ± 0.004 17.5 ± 0.4 1.3 ± 0.4
EPIG 0.86 ± 0.02 620 ± 10 0.35 ± 0.01 0.982 ± 0.001 9𝐾 ± 600 6.3 ± 0.3 0.833 ± 0.003 2290 ± 40 0.64 ± 0.02 0.266 ± 0.005 861 ± 4 0.7 ± 0.3 0.066 ± 0.007 2570 ± 20 1.3 ± 0.4
VAE 0.003 ± 0.001 3700 ± 100 0.35 ± 0.01 0.0 ± 0.0 11𝐾 ± 70 6.3 ± 0.3 0.45 ± 0.08 3400 ± 20 0.64 ± 0.02 0.25 ± 0.01 2240 ± 50 0.7 ± 0.3 0.010 ± 0.005 4800 ± 100 1.3 ± 0.4
Default 0.87±0.2 𝑁 /𝐴 7.1 ± 0.3 0.985 ± 0.001 𝑁 /𝐴 165 ± 9 0.849 ± 0.003 𝑁 /𝐴 6.6 ± 0.1 0.26 ± 0.01 𝑁 /𝐴 1.86 ± 0.03 0.077 ± 0.006 𝑁 /𝐴 23.8 ± 0.2

Table 1: Baseline Comparison: CoreTab consistently outperforms all baselines in F1-score across datasets (CC, LN, CT, DI, BF), with faster
coreset creation times (CCT). While a single runmay take longer than training the full dataset, repeated training highlights CoreTab’s efficiency.
Model training time (MTT) remains similar across coresets, except for the Default setting trained on the entire dataset. The percentage near
each dataset indicates the coreset size (full results in [25])

Data Baselines LR SVM XGB LGBM CAT TABNET RF GPT-4

CC (12%)
CoreTabDT 0.74±0.03 0.84 ± 0.02 0.87 ± 0.02 0.84 ± 0.02 0.87 ± 0.01 0.1 ± 0.1 0.86 ± 0.02 0.3 ± 0.2
CoreTabGBT 0.73 ± 0.03 0.84 ± 0.02 0.87 ± 0.02 0.86 ± 0.02 0.87 ± 0.02 0.1 ± 0.1 0.85 ± 0.02 0.12 ± 0.05

Default 0.73 ± 0.04 0.78 ± 0.02 0.87 ± 0.02 0.83 ± 0.02 0.87 ± 0.02 0.2 ± 0.2 0.86±0.02 0.06 ± 0.01

BF (6%)
CoreTabDT 0.12±0.01 0.088 ± 0.002 0.192 ± 0.006 0.103 ± 0.002 0.216 ± 0.008 0.083 ± 0.003 0.14 ± 0.01 0.07 ± 0.01
CoreTabGBT 0.035 ± 0.004 0.104 ± 0.0.002 0.119 ± 0.007 0.124 ± 0.003 0.108 ± 0.005 0.094 ± 0.005 0.018 ± 0.003 0.07 ± 0.01

Default 0.02 ± 0.003 𝑁 /𝐴(24ℎ+) 0.077 ± 0.006 0.096 ± 0.002 0.064 ± 0.005 0.081 ± 0.004 0.003 ± 0.001 0.058 ± 0.003

LN (8%)
CoreTabDT 0.958 ± 0.003 0.70 ± 0.01 0.984± 0.001 0.984 ± 0.001 0.983± 0.001 0.891 ± 0.3 0.951 ± 0.004 0.93 ± 0.05
CoreTabGBT 0.952 ± 0.004 0.82 ± 0.0.01 0.985±0.001 0.985± 0.001 0.983 ±0.001 0.87 ±0.04 0.967 ±0.006 0.971 ±0.007

Default 0.961±0.001 𝑁 /𝐴(24ℎ+) 0.985±0.001 0.980 ±0.001 0.984±0.001 0.85 ±0.11 0.963 ± 0.001 0.967 ± 0.021

CT (11%)
CoreTabDT 0.683±0.003 0.923 ± 0.001 0.793 ± 0.003 0.783 ± 0.003 0.823 ± 0.002 0.745 ± 0.006 0.948 ± 0.001 0.55 ± 0.04
CoreTabGBT 0.675 ± 0.004 0.873 ± 0.002 0.849± 0.003 0.815 ± 0.002 0.876 ±0.002 0.833 ± 0.004 0.937 ± 0.001 0.35 ± 0.25

Default 0.676 ± 0.002 𝑁 /𝐴(24ℎ+) 0.849 ± 0.003 0.801 ± 0.002 0.896 ± 0.001 0.869 ± 0.003 0.952 ± 0.002 0.57 ± 0.04

Table 2: Performance Comparison of Various ML Models: Performance (in terms of F1-score) of various ML models, both classic and
complex, when trained on coresets created by two versions of CoreTab and on the entire dataset (Default). CoreTab in both versions either
performs on par with the default training on the full dataset or even outperforms it across all models and datasets (full results in [25]).

Baselines

CC (12%) BF (6%)

F1-score 20% F1-score 40% F1-score 60% F1-score 20% F1-score 40% F1-score 60%

CoreTabDT 0.87±0.01 0.87±0.01 0.86 ± 0.01 0.187 ± 0.004 0.184 ± 0.004 0.185±0.003
CoreTabGBT 0.87±0.01 0.87±0.01 0.86 ± 0.01 0.127 ± 0.005 0.121 ± 0.007 0.12 ± 0.01
TE-DT 0.87±0.01 0.86 ± 0.02 0.86 ± 0.02 0.121 ± 0.004 0.12 ± 0.01 0.10 ± 0.01
TE-GBT 0.87±0.01 0.87±0.01 0.86 ± 0.01 0.13 ± 0.01 0.124 ± 0.008 0.12 ± 0.01
Default 0.78 ± 0.07 0.82 ± 0.03 0.85 ± 0.02 0.0002 ± 0.0001 0.010 ± 0.005 0.04 ± 0.01
Default All 0.87±0.01 0.87±0.01 0.87±0.01 0.08 ± 0.01 0.08 ± 0.01 0.08 ± 0.01

Table 3: Robustness to Feature Addition: The percentage near the dataset represent the size of the created coreset, and the F1-Score,
indicates the portion of features remained in the training dataset (Including the entire dataset training both with the subset of features and
all the features for the default, default all baselines). Even though CoreTab was trained on only a subset of the features, it selected rows
representative of the entire dataset, resulting in model performance that either matched or exceeded that of the default model trained on
the full dataset. This demonstrates CoreTab’s remarkable robustness to scenarios involving frequent feature addition. Also the difference in
performance between the default and the default all baselines shows that although the added features contain useful information, lacking
them didn’t harm CoreTab performance.

0.05 0.10 0.15
(a) Coreset size [%] (CC)

0.6

0.8

F1
-s

co
re

0.0 0.1 0.2
(b) Sampling ratio (CC)

0.84

0.86

0.88

0.8 0.9 1.0
(c) : Homogeneity (CT)

0.8

0.9

0 50 100
(d) XGB trees num (BF)

0.0

0.5

1.0

Co
re

se
t s

ize
 [%

]

0 50 100
(e) : Group size (BF)

0.0

0.2

0.4

0 20 40
(f) : Group size (BF)

250

500

Ru
nn

in
g

tim
e

[s
ec

]TE-GBT CoretabGBT CoretabDT

Figure 2: Ablation Study of CoreTab Parameters: We varied individual parameters while keeping others at default to assess their effects
on coreset size, model performance, and runtime, providing insights into optimal settings (full results in [25]).

886

0 20 40 60
#Iterations

0.75

0.80

0.85

0.90

0.95
F1

-S
co

re
Default TE-DT TE-DT-All TE-GBT TE-GBT-All

0 50 100 150
Running Time [min]

0.75

0.80

0.85

0.90

0.95

(a) Hyper-Parameters Optimization (𝐶𝑇)

4 5 6 7 8 9 10
Folds Number

0

1000

2000

Ti
m

e
[S

ec
]

Default TE-DT TE-GBT

(b) Cross Validation Running Time (𝐿𝑁)
Figure 3: ReducedRunning Times inMultiple Training:While
CoreTabmay not always be faster than the default setting of training
an ML model on the entire dataset, it demonstrates significant bene-
fits in reducing running times during multiple training scenarios.

Model Baselines Default Recall Coreset Recall Default Precision Coreset Precision

XGB

TE-DT 0.576 ± 0.012 0.69 ± 0.0126 0.653 ± 0.011 0.66 ± 0.008
TE-GBT 0.696 ± 0.005 0.759 ± 0.009 0.669 ± 0.011 0.737 ± 0.012

LR

TE-DT 0.61 ± 0.003 0.645 ± 0.007 0.533 ± 0.009 0.528 ± 0.011
TE-GBT 0.473 ± 0.016 0.48 ± 0.038 0.574 ± 0.013 0.573 ± 0.006

Table 4: Refined-fit property validation (CT)

Data Baselines XGB LGBM CAT TABNET GPT-4

CC (12%)

TE-DT 0.87±0.02 0.86 ± 0.02 0.87 ± 0.01 0.3 ± 0.1 0.3 ± 0.2
TE-GBT 0.87±0.02 0.86 ± 0.02 0.87 ± 0.02 0.3 ± 0.1 0.23 ± 0.06
Default 0.87±0.02 0.83 ± 0.02 0.87 ± 0.02 0.2 ± 0.2 0.06 ± 0.01

BF (6%)

TE-DT 0.127±0.007 0.143 ± 0.005 0.13 ± 0.01 0.13 ± 0.01 0.16 ± 0.07
TE-GBT 0.083 ± 0.004 0.155± 0.004 0.079 ± 0.003 0.141 ± 0.003 0.12 ± 0.07
Default 0.076 ± 0.006 0.096 ± 0.002 0.064 ± 0.005 0.081 ± 0.004 0.058 ± 0.005

CT (11%)

TE-DT 0.934±0.001 0.930 ± 0.001 0.935 ± 0.001 0.926 ± 0.001 0.923 ± 0.007
TE-GBT 0.900 ± 0.004 0.887 ± 0.002 0.908 ± 0.001 0.900 ± 0.001 0.85 ± 0.05
Default 0.849 ± 0.003 0.802 ± 0.001 0.897 ± 0.001 0.869 ± 0.003 0.57 ± 0.04

Table 5: Training Enhancement Performance: ML models
trained on the coresets generated by CoreTab, using the Training
Enhancement (TE) method, achieve F1 scores that match or exceed
those of the default setting where the model is trained on the entire
dataset.

both versions of CoreTab, and for different coreset sizes. As shown,

the performance of CoreTab consistently falls within the guaranteed

bounds for all tested coreset sizes, often outperforming the default

XGBmodel trained on the entire dataset. Note that the mathematical

assurances for TE-GBT for small coreset sizes surpass those of

TE-DT, this is TE-GBT main advantage over TE-DT.

6.3 Parameter Tuning and Ablation Studies
This section briefly introduces the effects of key parameters on

performance, runtime, and coreset size limitations. Full details in

the technical report [25].

CoreTab Algorithm. We evaluated the impact of varying parame-

ters in CoreTab, while keeping others in default values, by measur-

ing the average F1-score. Results (Figure 2 a,b) show that coreset

sizes above 5% of the dataset offer no significant performance gain.

Additionally, sampling from easy-to-learn regions mainly affects

0.0 0.2 0.4
0.8

0.9

Re
ca

ll

Default XGB Guaranties Area TE

0.0 0.2 0.4
0.8

0.9

0.0 0.2 0.4
Corset size (%)

0.8

0.9

Pr
ec

isi
on

TE-DT

0.0 0.2 0.4
Corset size (%)

0.85

0.90

0.95

TE-GBT
Figure 4: Theoretical Guarantees Validation: The pink shaded
area represents the guaranteed bounds for recall or precision results
of models trained on the coreset for both versions of CoreTab. Across
different coreset sizes, CoreTab consistently performs within these
bounds, often surpassing the performance of the default XGB model
trained on the entire dataset (example from CT).

performance when the training enhancement method is not applied,

with minimal benefit beyond 5% inclusion.

Datamap Algorithm. Our ablation study assessed the impact of

different parameters in Datamap algorithm on coreset size, model

performance, and runtime (Figure 2 c-f). The parameter 𝜓 (Defi-

nition 3.3) controls the retention of difficult-to-learn regions. For

imbalanced datasets, 𝜓 becomes irrelevant when set below
𝑁

𝑁+𝑃 ,
as the dataset is treated as a one homogeneous group. high values

of𝜓 (above 99% for TE-GBT and 90% for CoreTabGBT) ensure op-

timal performance. Lower𝜓 can alleviate coreset size limitations

in CoreTabGBT and CoreTabDT. In our experiments, we set𝜓 = 1,

though decreasing it may help when coreset size is restrictive in

balanced datasets. The parameter 𝑡𝑛𝑢𝑚 (number of trees) used dur-

ing CoreTabGBT coreset creation affects the datamap’s ability to

under-sample easy-to-learn regions. As shown in Figure 2 (d), us-

ing around 25 trees avoids coreset size limitations, with consistent

results across datasets. We recommend 𝑡𝑛𝑢𝑚 = 30 for added robust-

ness in various scenarios. The parameter 𝜏 (Definition 3.4) balances

coreset size and computational efficiency. Lower 𝜏 prevents size

limitations, while higher 𝜏 reduces computation time, as shown

in Figures 2 (e, f). 𝜏 has a stronger impact on CoreTabGBT than

CoreTabDT. We used 𝜏 = 5 in our experiments, but recommend a

range of 2 ≤ 𝜏 ≤ 10 for optimal performance.

7 CONCLUSION AND FUTUREWORK
In conclusion, we introduce CoreTab, an innovative algorithm de-

signed for constructing data coresets optimized for training ML

models using datamaps for GBDT models. Our experiments con-

sistently showcase that these coresets, computed within minutes,

surpass competing methods and even models trained on the full

dataset. Moreover, a training enhancement technique leveraging

datamap insights enhances performance with mathematical assur-

ances, provided a defined property holds. Future research directions

may include extending our method to diverse data types including

unstructured data, and adapting to multi-class classification.

ACKNOWLEDGMENTS
The research was supported by ISF - the Israel Science foundation -

grant 2707/22 of the Breakthrough Research Grant (BRG) Program.

887

REFERENCES
[1] [n.d.]. Bank Fraud Dataset. https://www.kaggle.com/datasets/sgpjesus/bank-

account-fraud-dataset-neurips-2022.

[2] [n.d.]. Cover Type Dataset. https://archive.ics.uci.edu/dataset/31/covertype.

[3] [n.d.]. Credit Card Dataset. https://www.kaggle.com/datasets/mlg-ulb/

creditcardfraud.

[4] [n.d.]. Diabetes Dataset. https://archive.ics.uci.edu/dataset/34/diabetes.

[5] [n.d.]. Hepmass Dataset. https://archive.ics.uci.edu/dataset/347/hepmass.

[6] [n.d.]. Loan Dataset. https://www.kaggle.com/deepanshu08/prediction-of-

lendingclub-loan-defaulters.

[7] [n.d.]. Scikit-Learn Decision Tree Classifier. https://scikit-learn.org/stable/

modules/generated/sklearn.tree.DecisionTreeClassifier.html.

[8] [n.d.]. Xgboost Library. https://xgboost.readthedocs.io/en/stable/.

[9] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,

and Ion Stoica. 2013. BlinkDB: queries with bounded errors and bounded response

times on very large data. In Proceedings of the 8th ACM European Conference on
Computer Systems.

[10] Alfred V. Aho and Margaret J. Corasick. 1975. Efficient String Matching: An

Aid to Bibliographic Search. Commun. ACM 18, 6 (June 1975), 333–340. https:

//doi.org/10.1145/360825.360855

[11] Sercan Ö Arik and Tomas Pfister. 2021. Tabnet: Attentive interpretable tabular

learning. In Proceedings of the AAAI conference on artificial intelligence, Vol. 35.
6679–6687.

[12] Brian Babcock, Surajit Chaudhuri, and Gautam Das. 2003. Dynamic sample

selection for approximate query processing. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of data.

[13] Zalán Borsos, Mojmir Mutny, and Andreas Krause. 2020. Coresets via bilevel op-

timization for continual learning and streaming. Advances in neural information
processing systems 33 (2020), 14879–14890.

[14] Vladimir Braverman, Vincent Cohen-Addad, H-C Shaofeng Jiang, Robert

Krauthgamer, Chris Schwiegelshohn, Mads Bech Toftrup, and Xuan Wu. 2022.

The power of uniform sampling for coresets. In 2022 IEEE 63rd Annual Symposium
on Foundations of Computer Science (FOCS). IEEE, 462–473.

[15] Jiaxiang Chen, Qingyuan Yang, Ruomin Huang, and Hu Ding. 2022. Coresets for

Relational Data and The Applications. Advances in Neural Information Processing
Systems 35 (2022), 434–448.

[16] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu

Cho, Kailong Chen, Rory Mitchell, Ignacio Cano, Tianyi Zhou, et al. 2015. Xg-

boost: extreme gradient boosting. R package version 0.4-2 1, 4 (2015), 1–4.
[17] Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris

Schwiegelshohn, and Omar Ali Sheikh-Omar. 2022. Improved Coresets

for Euclidean k-Means. Advances in Neural Information Processing Systems 35
(2022), 2679–2694.

[18] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20 (1995), 273–297.

[19] David R Cox. 1958. The regression analysis of binary sequences. Journal of the
Royal Statistical Society: Series B (Methodological) 20, 2 (1958), 215–232.

[20] Meng Fang, Yuan Li, and Trevor Cohn. 2017. Learning how to active learn: A

deep reinforcement learning approach. arXiv preprint arXiv:1708.02383 (2017).
[21] Dan Feldman, Matthew Faulkner, and Andreas Krause. 2011. Scalable training of

mixture models via coresets. Advances in neural information processing systems
24 (2011).

[22] Jerome H Friedman. 2002. Stochastic gradient boosting. Computational statistics
& data analysis 38, 4 (2002), 367–378.

[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial

networks. Commun. ACM 63, 11 (2020), 139–144.

[24] Aviv Hadar, Tova Milo, and Kathy Razmadze. 2024. CoreTab git repository.

https://github.com/avivhadar33/coretab/.

[25] Aviv Hadar, Tova Milo, and Kathy Razmadze. 2024. CoreTab Technical Re-

port. https://github.com/avivhadar33/coretab/blob/main/CoreTab_technical_

report.pdf.

[26] Sariel Har-Peled and Soham Mazumdar. 2004. On Coresets for K-Means and k-

Median Clustering. In Proceedings of the Thirty-Sixth Annual ACM Symposium on
Theory of Computing (Chicago, IL, USA) (STOC ’04). Association for Computing

Machinery, New York, NY, USA, 291–300.

[27] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the

state-of-the-art. Knowledge-Based Systems 212 (2021), 106622.
[28] Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd international

conference on document analysis and recognition, Vol. 1. IEEE, 278–282.
[29] Lingxiao Huang, Shaofeng H-C Jiang, Jianing Lou, and Xuan Wu. 2022. Near-

optimal coresets for robust clustering. arXiv preprint arXiv:2210.10394 (2022).
[30] Dino Ienco, Albert Bifet, Indrė Žliobaitė, and Bernhard Pfahringer. 2013. Cluster-

ing based active learning for evolving data streams. In International Conference
on Discovery Science. Springer, 79–93.

[31] Ibrahim Jubran, Ernesto Evgeniy Sanches Shayda, Ilan I Newman, and Dan

Feldman. 2021. Coresets for decision trees of signals. Advances in Neural

Information Processing Systems 34 (2021), 30352–30364.
[32] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting

decision tree. Advances in neural information processing systems 30 (2017).
[33] Teddy Lazebnik, Amit Somech, and Abraham Itzhak Weinberg. 2022. SubStrat: A

Subset-Based Optimization Strategy for Faster AutoML. Proceedings of the VLDB
Endowment 16, 4 (2022), 772–780.

[34] Kaiyu Li, Yong Zhang, Guoliang Li, Wenbo Tao, and Ying Yan. 2019. Bounded

Approximate Query Processing. IEEE Transactions on Knowledge and Data
Engineering 31, 12 (2019), 2262–2276. https://doi.org/10.1109/TKDE.2018.2877362

[35] Huan Liu and Hiroshi Motoda. 2013. Instance selection and construction for data
mining. Vol. 608. Springer Science & Business Media.

[36] Ziyang Liu, Peng Sun, and Yi Chen. 2009. Structured search result differentiation.

PVLDB 2, 1 (2009).

[37] Qingzhi Ma and Peter Triantafillou. 2019. Dbest: Revisiting approximate query

processing engines with machine learning models. In Proceedings of the 2019
International Conference on Management of Data. 1553–1570.

[38] Tung Mai, Cameron Musco, and Anup Rao. 2021. Coresets for classification–

simplified and strengthened. Advances in Neural Information Processing Systems
34 (2021), 11643–11654.

[39] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. 2020. Coresets for data-

efficient training of machine learning models. In International Conference on
Machine Learning. PMLR, 6950–6960.

[40] Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec. 2020. Coresets for robust

training of deep neural networks against noisy labels. Advances in Neural
Information Processing Systems 33 (2020), 11465–11477.

[41] OpenAI. 2023. GPT-4 Technical Report. OpenAI (2023). https://openai.com/

research/gpt-4

[42] Y. Park, M. Cafarella, and B. Mozafari. 2016. Visualization-aware sampling for

very large databases. In ICDE.
[43] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. 2018. Ver-

dictdb: Universalizing approximate query processing. In Proceedings of the 2018
International Conference on Management of Data. 1461–1476.

[44] Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. 2022. Adap-

tive second order coresets for data-efficient machine learning. In International
Conference on Machine Learning. PMLR, 17848–17869.

[45] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Doro-

gush, and Andrey Gulin. 2018. CatBoost: unbiased boosting with categorical

features. Advances in neural information processing systems 31 (2018).
[46] Manali Sharma and Mustafa Bilgic. 2017. Evidence-based uncertainty sampling

for active learning. Data Mining and Knowledge Discovery 31 (2017), 164–202.

[47] Freddie Bickford Smith, Andreas Kirsch, Sebastian Farquhar, Yarin Gal, Adam

Foster, and Tom Rainforth. 2023. Prediction-oriented bayesian active learning. In

International Conference on Artificial Intelligence and Statistics. PMLR, 7331–7348.

[48] Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, YizhongWang, Hannaneh

Hajishirzi, Noah A Smith, and Yejin Choi. 2020. Dataset Cartography: Mapping

and Diagnosing Datasets with Training Dynamics. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP). 9275–
9293.

[49] Alaa Tharwat and Wolfram Schenck. 2023. A survey on active learning: State-of-

the-art, practical challenges and research directions. Mathematics 11, 4 (2023),
820.

[50] Saravanan Thirumuruganathan, Shohedul Hasan, Nick Koudas, and Gautam Das.

2020. Approximate query processing for data exploration using deep generative

models. In 2020 IEEE 36th international conference on data engineering (ICDE).
IEEE, 1309–1320.

[51] Murad Tukan, Cenk Baykal, Dan Feldman, and Daniela Rus. 2021. On coresets

for support vector machines. Theoretical Computer Science 890 (2021), 171–191.
[52] Murad Tukan, Xuan Wu, Samson Zhou, Vladimir Braverman, and Dan Feldman.

2022. New coresets for projective clustering and applications. In International
Conference on Artificial Intelligence and Statistics. PMLR, 5391–5415.

[53] Marcos RVieira, Humberto L Razente, Maria CNBarioni, Marios Hadjieleftheriou,

Divesh Srivastava, Caetano Traina, and Vassilis J Tsotras. 2011. On query result

diversification. In ICDE.
[54] Jiayi Wang, Chengliang Chai, Nan Tang, Jiabin Liu, and Guoliang Li. 2022. Core-

sets over multiple tables for feature-rich and data-efficient machine learning.

Proceedings of the VLDB Endowment 16, 1 (2022), 64–76.
[55] Edwin B Wilson. 1927. Probable inference, the law of succession, and statistical

inference. J. Amer. Statist. Assoc. 22, 158 (1927), 209–212.
[56] Weiwei Xiao, Yongyong Chen, Qiben Shan, Yaowei Wang, and Jingyong Su. 2024.

Feature Distribution Matching by Optimal Transport for Effective and Robust

Coreset Selection. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 38. 9196–9204.

[57] Tong Yu and Hong Zhu. 2020. Hyper-parameter optimization: A review of

algorithms and applications. arXiv preprint arXiv:2003.05689 (2020).

888

https://www.kaggle.com/datasets/sgpjesus/bank-account-fraud-dataset-neurips-2022
https://www.kaggle.com/datasets/sgpjesus/bank-account-fraud-dataset-neurips-2022
https://archive.ics.uci.edu/dataset/31/covertype
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://archive.ics.uci.edu/dataset/34/diabetes
https://archive.ics.uci.edu/dataset/347/hepmass
https://www.kaggle.com/deepanshu08/prediction-of-lendingclub-loan-defaulters
https://www.kaggle.com/deepanshu08/prediction-of-lendingclub-loan-defaulters
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://xgboost.readthedocs.io/en/stable/
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://github.com/avivhadar33/coretab/
https://github.com/avivhadar33/coretab/blob/main/CoreTab_technical_report.pdf
https://github.com/avivhadar33/coretab/blob/main/CoreTab_technical_report.pdf
https://doi.org/10.1109/TKDE.2018.2877362
https://openai.com/research/gpt-4
https://openai.com/research/gpt-4

	Abstract
	1 Introduction
	2 Related work
	3 Preliminary
	4 Coreset and Datamap Algorithms
	4.1 Tabular Datamap Creation
	4.2 Coreset Creation

	5 Enhancing Training for Improved Model Performance
	5.1 Formal Definitions
	5.2 CrsErr Errors
	5.3 ExcErr Errors
	5.4 opt_per Algorithm
	5.5 Explainability

	6 Experiments
	6.1 CoreTab Evaluation
	6.2 Training Enhancement Evaluation
	6.3 Parameter Tuning and Ablation Studies

	7 Conclusion and Future Work
	Acknowledgments
	References

