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ABSTRACT
In this work, we address the critical task of discovering representa-

tive time series in exploratory data mining. We define a representa-

tive time series, referred to as similarity-bounded representative

time series, as one that represents other time series if their similarity

meets a user-defined threshold. Building on this definition, we study

the problem of finding the smallest set of such time series that can

represent a specified proportion of all time series within the dataset.

The representativeness of each similarity-bounded representative

time series is controllable and determined by the specified level of

similarity, and only the minimum number of such representatives

needed to collectively represent the specified proportion of entire

set are identified. Identifying representative time series over large-

scale data in an efficient and effective manner facilitates exploratory

data analysis and summary generation, serving a wide range of data

exploration applications across diverse domains. We first prove the

NP-hardness of this problem and propose a range of approxima-

tion methods with theoretical guarantees, and we refer to them as

non-learning-based methods. While effective, these methods often

excel in either running time or memory efficiency, but not both

concurrently. To overcome these limitations, we further propose

a learning-based method that simultaneously optimizes both time

and memory efficiency. This method leverages novel data prepara-

tion and training strategies, providing adaptability to user-specified

representativeness requirements with low memory usage and com-

putational overhead. We conduct extensive experiments across four

real-world datasets to demonstrate that our learning-based method

is highly competitive with non-learning-based methods in terms

of effectiveness (produces similar number of representative time

series), while achieving significantly higher efficiency (up to 21×
speedups) and lower memory consumption (saving up to 101×
memory space).
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1 INTRODUCTION
In recent years, the widespread use of modern sensors has driven

a substantial increase in time series data across various fields [2,

17, 21, 44]. Time series data, which record variables over time at

regular intervals, are commonly stored in databases for subsequent

analysis [9, 19, 28, 45, 54]. However, the high-dimensional nature

of these data renders their processing highly complex. Large-scale

time series data, in particular, pose difficulties for human analysts

to handle, explore and analyze them effectively. To mitigate these

challenges, it is essential to efficiently identify representative time

series in large-scale data, as this facilitates exploratory data analysis

and summary generation [4, 52, 54, 59], serving a wide range of

data exploration applications across diverse domains.

Despite the importance of this task, there has been limited focus

on the discovery of representative time series, which involves iden-

tifying a small subset of time series that effectively captures the

patterns present in the entire dataset. We define a representative

time series as one that represents other time series if their similarity

meets the user-defined threshold, which we refer to as similarity-
bounded representative time series. Given a set of time series, our

objective is to select the minimum number of such representatives

so that every remaining time series can always be represented by

at least one of the selected representatives, meeting a specified

coverage threshold proportion of all time series in the dataset. This

problem is formulated as similarity-bounded Representative Time

Series Discovery (RTSD). RTSD exhibits two sweet properties: (1)

the representativeness of each similarity-bounded representative

time series is controllable and determined by the user-specified

level of similarity, and (2) only the minimum number of such time

series, which collectively represent the required proportion of en-

tire set, are considered as representatives. Next, we explore the

practical benefits of applying RTSD in real-world applications.

Our work serves as a framework that empowers human-driven

analysis across different domains. In many real-world scenarios,

effective data analysis relies on human interpretation and exper-

tise, which is expensive and cannot always be automated [50]. Our

framework reduces data volume while supporting refinement based

on analysis outcomes, enabling analysts to focus on a more manage-

able subset of data. Through visualization, we also minimize visual

clutter. These align with human cognitive capabilities, allowing for

a more intuitive analysis process [58]. By making data easier to

interpret and analyze, our framework enhances decision-making.

In applications such as industrial monitoring, weather analysis,

medical diagnosis, and seismic monitoring, our work allows analyst

to extract insights without overwhelming them with excessive data.

In what follows, we illustrate how our framework can be applied

to traffic analysis and industrial monitoring.
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Example 1. Given a collection of 20 sensors, each recording traffic
speed as a time series on different roads, an analyst seeks to identify
representative speed profiles for a specific area. The goal is to select a
subset of sensors that represent others with similar speeds and patterns
and ensure full coverage of the road network. Drawing upon domain
knowledge, the analyst specifies a desired similarity threshold that a
representative road should meet to effectively represent others and sets
the coverage threshold to maximum to capture the entire network. To
minimize visual clutter, the analyst aims to find the minimum number
of representatives needed. Figures 1a and 1b illustrate how two repre-
sentative time series (sensors 4 and 13) capture the speed patterns of
other sensors in similar color. The analyst can further explore specific
roads of interest by selecting the sensor for additional information,
such as detailed time series data or connections to nearby roads. To
gain more precise insight into specific traffic patterns, the analyst in-
creases the similarity threshold. This adjustment limits representation
to only time series with higher similarity, reducing the coverage of
each representative and requiring more representatives to collectively
cover the entire set. Figures 1c and 1d show new representative traffic
patterns in red, characterized by low-speed congestion throughout the
day, with other roads (sensors 2, 5, 10, 15, 16, 19) exhibiting similar
pattern.

Example 2. In industrial monitoring, detection of malfunctions
is crucial. Large sensor networks often generate extensive time series
data with high temporal correlation due to redundancy [26]. Our
work effectively manages these massive datasets by capturing a set
of representative time series. This representative set consolidates sim-
ilar time series data, highlights important information and reduces
redundancy. Importantly, we ensure that all time series within the
specified coverage threshold are represented. This prevents missed
signals that could indicate system issues. As industrial environments
emphasize preventive maintenance, our framework allows human
experts with domain knowledge to identify representative patterns
indicative of potential issues and pinpoint specific sensors through
their corresponding representatives. Consequently, analysts can fo-
cus on the most critical insights through this smaller, manageable
representative set, thereby facilitating informed decision-making and
preventing oversights that could lead to potentially catastrophic sys-
tem failures [26]. Furthermore, our framework provides the flexibility
to adjust similarity and coverage thresholds and supports different
similarity measures to tailor analysis to specific needs.

Astute readers may find that studies on time series cluster-

ing [2, 21, 35] and object diversification [14, 48] share some com-

mon ground with our problem. However, extending them to solve

our problem poses difficulties. In clustering, explicitly defining the

relationship between representative and represented time series

remains unclear and is an open problem. If we apply our similarity

threshold to each cluster center, they may fall short in covering

and representing the required proportion of the time series, poten-

tially causing the analyst to overlook critical traffic patterns from

uncovered sensors. On the other hand, object diversification aims

to select diverse objects based on a defined diversity constraint,

e.g., the selected objects have distances greater than a specified

threshold. However, due to this constraint, the number of selected

objects can highly exceed the minimum required to represent the

(a) (b)

(c) (d)

Figure 1: (a) shows sensors on various road segments, each
colored according to their respective traffic patterns (time
series) shown in (b). Representative time series are depicted
in thick, distinct colors, with their corresponding sensors
circled on themap. The remaining time series, represented by
these representatives, are shown in thinner lines of the same
color, corresponding to the uncircled sensors. e.g., Sensor 4
represents other sensors in blue since their traffic patterns
are highly similar. (c) and (d) illustrate the scenario with a
higher similarity threshold.

required set, which may lead to inefficiencies in subsequent anal-

ysis for the analyst. We refer readers to Section 6 for a detailed

comparison between time series clustering, object diversification

and our problem.

We prove that the RTSD problem is NP-hard and its coverage

function is monotone and submodular. This motivates us to develop

a greedy algorithm (Greedy) to approximate the optimal solution

with theoretical guarantees. However, the greedy algorithm relies

on time-intensive computations of similar time series for repre-

sentatives selection, which becomes a bottleneck due to the high

dimensionality of the data. To mitigate this, we introduce an early

termination technique (GreedyET) that prunes time series with low

coverage during selection, which significantly reduces the runtime.

Further optimizing time efficiency, we propose two alternative vari-

ants of the greedy algorithm (PreGreedy and PreGreedyET) that
precompute similar time series, thereby saving substantial computa-

tional time compared to the previous methods. Nevertheless, these

approaches result in a notable increase in memory consumption

due to precomputation. We refer to these four time series selection

methods above as non-learning-based methods, as summarized in

Table 2.

Considering the aforementioned limitations, we propose a novel

self-supervised learning approach (MLGreedyET). It involves: (1)
preparing high-quality data by generating informative features

based on the GreedyET framework, (2) leveraging these features

in a learning model to estimate the representativeness of a time

series, and (3) selecting the representative time series based on the
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Table 1: Frequently used notations.

Notation Description

T a time series database

𝑇 , 𝐸 a univariate time series, a time series embedding

𝑆𝑇 the similar set of𝑇

𝑆𝐼𝑀 the similarity measure

𝜏 , 𝛽 the similarity threshold, the coverage threshold

X a set of representative time series

𝜎 (X) the set of time series covered/represented by X

GreedyET framework. Estimating the representativeness of a time

series not only saves considerable time from computing similar time

series but also eliminates the need for additional memory storage

for precomputing similar time series. This learning-based method

produces effective solutions while striking a balance between time

efficiency and memory cost, as outlined in Table 2.

In summary, we make the following technical contributions:

• We formulate and study the similarity-bounded Representative

Time Series Discovery (RTSD) problem, which aims to select

the minimal number of similarity-bounded representative time

series that effectively represent the specified proportion of time

series within a dataset (Section 2).

• We prove that the RTSD problem is NP-hard and its coverage

function is monotone and submodular (Section 2). Therefore,

we propose several variants of the greedy algorithm, including

the initial Greedy, followed by GreedyET to speed up Greedy, as
well as the enhanced faster version PreGreedy and PreGreedyET
to efficiently produce solutions with an approximation ratio

(Section 3).

• To reduce time cost and memory footprints, we further propose

a self-supervised learning approach that incorporates the greedy

algorithm design into both training and testing phases to produce

highly effective solution while ensuring high efficiency and low

memory consumption simultaneously (Section 4).

• We conduct extensive experiments across four real-world datasets

to demonstrate that our learning-based method is highly compet-

itive with non-learning-based methods in terms of effectiveness

(produces similar number of representative time series), while

achieving significantly higher efficiency (up to 21× speedups)

and lower memory consumption (saving up to 101× memory

space). Furthermore, we present a visualization case study that

illustrates the practicality of our method in a real-world scenario

(Section 5).

2 PROBLEM FORMULATION AND HARDNESS
ANALYSIS

In this section, we present the problem formulation and analyze

its hardness and theoretical properties. Frequently used notations

are summarized in Table 1. Our work focuses on univariate time

series [18, 21], which we simply refer to as time series throughout
the paper.

Definition 1 (Time Series). A time series 𝑇 = {𝑝1, 𝑝2, . . . , 𝑝 |𝑇 | }
is a sequence of points, where each point 𝑝𝑖 = (𝑡𝑖 , 𝑣𝑖 ) is associated
with a timestamp 𝑡𝑖 and a value 𝑣𝑖 . |𝑇 | denotes the length of the time
series and each point 𝑝𝑖 is ordered chronologically.

Figure 2: An illustration on the coverage of similar set of two
representative time series (colored in thick red and blue), one
with a larger 𝜏 and the other with a smaller 𝜏 . The thinner col-
ored lines depict the corresponding time series represented
by each representatives, while the gray lines depict the time
series not represented by either of them.

Definition 2 (Similar Set). Given a time series database T of
multiple time series, a similarity measure 𝑆𝐼𝑀 , a similarity threshold
𝜏 ∈ [0, 1] and a time series 𝑇 ∈ T , the similar set 𝑆𝑇 of 𝑇 consists of
all time series in T whose similarity to 𝑇 is at least 𝜏 based on 𝑆𝐼𝑀 ,
i.e., 𝑆𝑇 = {𝑇 ′ |𝑇 ′ ∈ T , 𝑆𝐼𝑀 (𝑇,𝑇 ′) ≥ 𝜏}.

In our work, we select Euclidean distance [22] as our similarity

measure, i.e., 𝑆𝐼𝑀 (𝑇,𝑇 ′) = 1 − 𝐷 (𝑇,𝑇 ′), where 𝐷 ∈ [0, 1] is the
normalized Euclidean distance. The Euclidean distance is a widely

adopted metric in similarity search literature [18, 19, 32, 46, 51]

and it is proven to be an effective measure, particularly for large

collections of time series [12, 53].

Definition 3 (Coverage Function). A coverage function𝜎 (𝑋 ) =
∪𝑇 ∈𝑋𝑆𝑇 is defined as the union of similar sets of a set of time series
𝑋 , where 𝑋 ⊆ T .

Definition 4 (Representative Time Series Discovery (RTSD)).

Given a time series databaseT , a similarity measure 𝑆𝐼𝑀 , a similarity
threshold 𝜏 and a coverage threshold 𝛽 ∈ [0, 1], the objective of the
RTSD problem is to find the smallest set of representative time series
X that covers at least 𝛽 proportion of the entire time series database,
i.e., X∗ = argminX⊆T⋀︁ |𝜎 (X) |≥𝛽 · | T | |X|.

We introduce a coverage threshold 𝛽 into our problem formu-

lation to provide greater flexibility in defining the proportion of

the time series database to be covered. This parameter allows for

the mitigation of outliers depending on the dataset characteristics.

Setting 𝛽 = 1 implies that the selected representative time series

will collectively cover the entire time series database T .
The representativeness of a time series is reflected in the coverage

of its associated similar set. A larger coverage within the similar set

for a given time series allows it to encompass a greater number of

similar time series, thereby enhancing its overall representativeness.

The similarity threshold 𝜏 is the key to controlling the coverage

of the similar set. A lower value of 𝜏 results in a broader coverage.

This, in turn, has an impact on the representativeness, as a lower 𝜏

allows fewer representative time series to effectively capture the

desired coverage of the time series database. Figure 2 illustrates the

impact of 𝜏 on the coverage of the similar set.
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Table 2: Overview of our proposed solutions.

Method Time Complexity Space Complexity

Greedy (Section 3.1) 𝑂 (𝛽 | T |3 ) 𝑂 ( | T | )
GreedyET (Section 3.2) 𝑂 (𝛽 | T |3 ) 𝑂 ( | T | )
PreGreedy (Section 3.3) 𝑂 ( | T |2 + 𝛽 | T |2 ) 𝑂 ( | T |2 )
PreGreedyET (Section 3.3) 𝑂 ( | T |2 + 𝛽 | T |2 ) 𝑂 ( | T |2 )
MLGreedyET (Section 4) 𝑂 (𝛽 | T |2 ) 𝑂 ( | E | + | T | )

In the following, we will prove that RTSD problem is NP-hard

and our coverage function 𝜎 (·) is monotone and submodular.

Theorem 1. The RTSD problem is NP-hard.

Proof. We prove the NP-hardness via a reduction from the

problem of Euclidean m-Center on Points (EmCP) which is known

NP-complete [42].

Definition 5 (Euclidean m-Center on Points). Given positive
integers𝑚 and 𝑟 , and a set of points P on a plane 𝑄 , the objective of
the EmCP problem is to determine if it is possible to select𝑚 points
from P, where𝑚 < |P |, such that each selected point forms the center
of a circle 𝑐 with radius 𝑟 , covering all points in P. Here, cover means
that every point in P must lie within the circle 𝑐 of the𝑚 selected
points.

For the EmCP problem, we aim to determine whether there

exist 𝑚 circles of radius 𝑟 that can cover the set P on the plane

𝑄 . We show that this problem can be cast as a special case of the

RTSD problem, where each time series comprises a single two-

dimensional point, the coverage threshold 𝛽 is set to 1, and the

similarity measure 𝑆𝐼𝑀 is set as the Euclidean distance. Specifically,

for each point 𝑃 in P on the plane 𝑄 , we treat it as a time series 𝑇

with 𝑟 = 1−𝜏 , resulting in 𝑆𝑇 = 𝑐 . This reduction can be executed in

polynomial time. The EmCP problem is equivalent to determining

whether there exists a set of𝑚 time series such that the union of

their similar sets equals T . It is evident that we can find𝑚 circles

to cover all points in P if and only if there exist𝑚 time series such

that the union of their similar sets is T . If a polynomial algorithm

exists to solve the RTSD problem optimally, it can also be used to

solve EmCP optimally. This is only possible if P = NP. Therefore,

the RTSD problem is NP-hard. □

Theorem 2. The function 𝜎 (·) is monotonically non-decreasing.
Formally, for any X1 ⊆ X2, |𝜎 (X1) | ≤ |𝜎 (X2) |.

Proof. Since 𝜎 (X1) = ∪𝑇 ∈X1𝑆𝑇 ⊆ ∪𝑇 ∈X2𝑆𝑇 = 𝜎 (X2), the theo-
rem is deduced. □

Theorem 3. The function 𝜎 (·) is submodular. Formally, for any
X1 ⊆ X2 and𝑇 ∈ T \X2, |𝜎 (X1∪{𝑇 }) | − |𝜎 (X1) | ≥ |𝜎 (X2∪{𝑇 }) | −
|𝜎 (X2) |.

Proof. |𝜎 (X1 ∪ {𝑇 }) | − |𝜎 (X1) | = |𝜎 (X1 ∪ {𝑇 }) \ 𝜎 (X1) | ≥
|𝜎 (X2∪{𝑇 }) |−|𝜎 (X2) | = |𝜎 (X2∪{𝑇 })\𝜎 (X2) |. 𝜎 (X1∪{𝑇 })\𝜎 (X1)
denotes the set of elements that are in 𝜎 ({𝑇 }) but are not in the

union ∪𝑇 ∈X1𝑆𝑇 . Clearly, this set is at least at large as the set of

elements that are in 𝜎 ({𝑇 }) but are not in the larger union∪𝑇 ∈X2𝑆𝑇 .
That is, 𝜎 (X1 ∪ {𝑇 }) \ 𝜎 (X1) ⊇ 𝜎 (X2 ∪ {𝑇 }) \ 𝜎 (X2). Therefore,
the theorem is deduced. □

Solution Overview. As we have proven that the Representative

Time Series Discovery problem is NP-hard, obtaining an optimal so-

lution is not feasible. To provide a practical approach for addressing

this challenge, we can attain an efficient approximation of the solu-

tion through the greedy strategy, provided our coverage function

adheres to both monotonicity and submodularity. Thus, we pro-

pose Greedy and GreedyET with early termination technique that

speeds up Greedy. However, they still face serious time efficiency

issues. To mitigate this, we propose the faster version PreGreedy
and PreGreedyET, which notably improve the running time at the

expense of high memory usage. Subsequently, we propose a self-

learning approach that yields similarly effective solutions, while

simultaneously optimizes both time and memory efficiency. We

summarize our methods in Table 2.

3 NON-LEARNING-BASED REPRESENTATIVE
TIME SERIES SELECTION

As we have established that the RTSD problem is NP-hard in Sec-

tion 2, obtaining an optimal solution is not feasible. To the best

of our knowledge, there exist no approaches that simultaneously

address this problem effectively and efficiently. Nonetheless, to pro-

vide a practical approach for addressing the inherent challenges,

we can attain an efficient approximation of the solution through

the greedy strategy, provided that our coverage function adheres

to both monotonicity and submodularity.

3.1 GreedyMethod
The most straightforward method is known as Greedy, with its

pseudocode outlined in Algorithm 1. Greedy operates iteratively,
selecting the time series𝑇 with the maximum marginal coverage. It

covers the most uncovered time series within its associated similar

set 𝑆𝑇 until the number of covered time series reaches the coverage

threshold (lines 3-11). This approach incurs a time cost of𝑂 (𝛽 |T |2)
for finding the representative time series. Next, we prove that the

greedy algorithm for selecting representative time series yields

solution with a 1 + 𝑙𝑛(𝛽 |T |) approximation ratio via the following

lemma.

Lemma 1. For all 𝑐 > 0,
(︂
1 − 1

𝑐

)︂𝑐
≤ 1

𝑒 , where 𝑒 is the base of the
natural logarithm.

Proof. We use the fact that for any 𝑧 ∈ R, 1 + 𝑧 ≤ 𝑒𝑧 . This

follows from the Taylor’s expansion, which expresses 𝑒𝑧 = 1 +
𝑧 + 𝑧2

2!
+ 𝑧3

3!
+ · · · ≥ 1 + 𝑧. If we substitute − 1

𝑐 for 𝑧, we can derive(︂
1 − 1

𝑐

)︂
≤ 𝑒−

1

𝑐 . By raising both sides to the power of 𝑐 , we obtain

the desired result. □

Theorem 4. Let X∗ be the output of the greedy algorithm and let
𝑂𝑃𝑇 be an optimal solution. Then, |X∗ | ≤ |𝑂𝑃𝑇 | · (1 + 𝑙𝑛(𝛽 |T |)).

Proof. Let 𝑔 denotes the size of output of the greedy algorithm

|X∗ | and 𝑐 denotes the size of the optimal solution |𝑂𝑃𝑇 |. We will

first demonstrate that 𝑔 ≤ 𝑐 · 𝑙𝑛(𝑚), where𝑚 = 𝛽 |T |. Let𝑚𝑖 be the

number of time series remaining to be covered after 𝑖 iterations of

the greedy algorithm. Initially, there are𝑚0 =𝑚 time series to be

covered. After 𝑖−1 iterations,𝑚𝑖−1 time series remain to be covered.

We know that there is a cover of size 𝑐 for these time series, which
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Algorithm 1: Greedy
Input :Time series database T , a similarity threshold 𝜏 and a

coverage threshold 𝛽 .

Output :A set of representative time series X.
1 X ← ∅;
2 𝑈 ← T; // store the residual time series
3 while | T \𝑈 | < | T | · 𝛽 do
4 𝑚𝑎𝑥_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 0;

5 foreach𝑇 ∈ T \ X do
6 𝑆𝑇 ← similar set of𝑇 based on 𝜏 ;

7 if |𝑆𝑇 ∩𝑈 | >𝑚𝑎𝑥_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 then
8 𝑚𝑎𝑥_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = |𝑆𝑇 ∩𝑈 |;
9 𝑇 𝑟 = 𝑇 ;

10 X ← X ∪ {𝑇 𝑟 }; // add new representative time series
11 𝑈 ← 𝑈 \ 𝑆𝑇 𝑟 ;

12 return X;

is the optimal cover. Thus, according to the pigeonhole principal,

there exists some set that covers at least
𝑚𝑖−1
𝑐 time series. Since the

greedy algorithm selects the set that covers the maximum number

of remaining time series, it must select a set covering at least this

quantity of time series. The number of time series remaining to be

covered is at most𝑚𝑖 ≤ 𝑚𝑖−1 − 𝑚𝑖−1
𝑐 = 𝑚𝑖−1

(︂
1 − 1

𝑐

)︂
. Therefore,

in each iteration, the number of remaining time series decreases

by a factor of at least (1 − 1

𝑐 ). After repeating this process 𝑖 times,

we obtain𝑚𝑖 ≤ 𝑚0

(︂
1 − 1

𝑐

)︂𝑖
= 𝑚

(︂
1 − 1

𝑐

)︂𝑖
. Given that the greedy

algorithm runs for𝑔 iterations, it is certain that just prior to the final

iteration, there must have been at least one remaining uncovered

element. Hence, we have 1 ≤ 𝑚𝑔 ≤ 𝑚

(︂
1 − 1

𝑐

)︂𝑔
= 𝑚

(︂(︂
1 − 1

𝑐

)︂𝑐 )︂ 𝑔

𝑐
.

By Lemma 1, we have 1 ≤ 𝑚

(︂
1

𝑒

)︂ 𝑔

𝑐
. If we multiply both sides by

𝑒
𝑔

𝑐 and take the natural logarithm, we find that 𝑔 satisfies 𝑒
𝑔

𝑐 ≤ 𝑚,

𝑔
𝑐 ≤ 𝑙𝑛(𝑚), and𝑔 ≤ 𝑐 ·𝑙𝑛(𝑚). To ensure the validity of the inequality
for 𝑚 > 0, we add 1 to 𝑙𝑛(𝑚). Therefore, the solution of greedy

algorithm for selecting representative time series is larger than the

optimum solution by a factor of at most 1 + 𝑙𝑛(𝑚). □

3.2 GreedyETMethod
Greedy offers an acceptable albeit suboptimal solution, accompa-

nied by the drawback of impractical time costs. To address this,

we introduce a considerably more time-efficient method known

as Greedy with Early Termination (GreedyET), with its pseudocode

presented in Algorithm 2. Drawing inspiration from an outbreak

detection technique called CELF [33], GreedyET leverages the sub-

modularity of our objective function to estimate upper bounds of

coverage, facilitating the pruning of time series with low coverage.

This reduces the number of expensive computations for marginal

coverage in each iteration.

Formally, let X𝑖 denotes the set of selected representative time

series after the 𝑖-th iteration, and

𝜎Δ (𝑇 |X𝑖 ) = 𝜎 (X𝑖 ∪ {𝑇 }) − 𝜎 (X𝑖 ) (1)

denote the marginal coverage of 𝑇 w.r.t. X𝑖 . Leveraging the sub-

modularity of our coverage function, 𝜎Δ (𝑇 |X𝑖 ) serves as the upper
bound for any 𝜎Δ (𝑇 |X𝑗 ), s.t. X𝑖 ⊆ X𝑗 . Therefore, GreedyET first

Algorithm 2: GreedyET
Input :Time series database T , a similarity threshold 𝜏 and a

coverage threshold 𝛽 .

Output :A set of representative time series X.
1 X ← ∅;
2 𝑈 ← T;
3 𝑃𝑄 ← an empty priority queue that sorts time series by their upper

bound (ub) of marginal coverage in non-increasing order;

4 while | T \𝑈 | < | T | · 𝛽 do
5 if X = ∅ then
6 foreach𝑇 ∈ T do
7 𝑆𝑇 ← similar set of𝑇 based on 𝜏 ;

8 Insert𝑇 into PQ with𝑇 .𝑢𝑏 = |𝑆𝑇 |;
9 𝑇 𝑟 ← 𝑃𝑄.pop( ) ;

10 else
11 𝑚𝑎𝑥_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 0;

12 while |𝑃𝑄 | > 0 do
13 𝑇 ← 𝑃𝑄.pop( ) ;
14 𝑆𝑇 ← similar set of𝑇 based on 𝜏 ;

15 𝑇 .𝑢𝑏 = |𝑆𝑇 ∩𝑈 |;
16 if 𝑇 .𝑢𝑏 >𝑚𝑎𝑥_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 then
17 𝑚𝑎𝑥_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑇 .𝑢𝑏;

18 𝑇 𝑟 = 𝑇 ;

19 if |𝑃𝑄 | > 0 and𝑚𝑎𝑥_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ≥ 𝑃𝑄 [0] .𝑢𝑏 then
20 break;

21 Update 𝑃𝑄 with visited𝑇 excluding𝑇 𝑟
;

22 X ← X ∪ {𝑇 𝑟 };
23 𝑈 ← 𝑈 \ 𝑆𝑇 𝑟 ;

24 return X;

computes 𝜎Δ (𝑇 |∅) for each time series 𝑇 ⊆ T and selects X1 (lines
5-9). Then, 𝜎Δ (𝑇 |∅) can be used as the upper bound of 𝜎Δ (𝑇 |X𝑖 ) in
the next iteration. For each iteration j where 2 ≤ 𝑗 ≤ 𝑘 , GreedyET
processes each time series 𝑇 ⊆ T \ X𝑗−1 in a non-increasing or-

der of their upper bounds of 𝜎Δ (𝑇 |X𝑗 ) and computes 𝜎Δ (𝑇 |X𝑗−1)
(lines 12-15). Instead of processing all time series, GreedyET triggers
an early termination when the maximum upper bound of unpro-

cessed time series is smaller than the maximum 𝜎Δ (𝑇 |X𝑗−1) of
processed ones (lines 19-20). Subsequently, GreedyET updates the
upper bound of each unprocessed time series𝑇 as 𝜎Δ (𝑇 |X𝑗−1) (line
21) and proceeds to the next iteration. While GreedyET does not

improve the worst-case time complexity of Greedy, it is empirically

much more efficient than Greedy. Moreover, it maintains the same

theoretical guarantee as Greedy.

3.3 PreGreedy and PreGreedyETMethods
For any given similarity threshold 𝜏 , both Greedy and GreedyET
require computing similar sets to calculate the marginal coverage

of time series. However, this computation typically dominates run-

ning time and becomes a bottleneck for the Greedy and GreedyET
selection processes. This limitation motivates us to further acceler-

ate the computation time by precomputing the similar sets for each

time series, thereby avoiding repeated computations in each greedy

iteration and significantly reducing overall running time. Instead of

computing the similar sets on-the-fly during the selection process

(as in Greedy and GreedyET), we precompute them before the se-

lection process (as in PreGreedy and PreGreedyET). This involves
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constructing a lookup table to store similar set 𝑆𝑇 for each time

series 𝑇 prior to selection (before line 3 of Algorithm 1 and line 4

of Algorithm 2). This table enables direct use of similar sets during

the greedy selection process without the need to compute them

on-the-fly (line 6 of Algorithm 1 and lines 7 and 14 of Algorithm 2).

3.4 Complexity Analysis
Time Complexity. Computing similar set for a single time se-

ries on-the-fly requires 𝑂 ( |T |) time, so the total worst-case time

complexity for both Greedy and GreedyET is 𝑂 (𝛽 |T |3). On the

other hand, constructing a lookup table for 𝑆𝑇 for each 𝑇 requires

𝑂 ( |T |2) time. Hence, the total worst-case time complexity for both

PreGreedy and PreGreedyET is 𝑂 ( |T |2 + 𝛽 |T |2).

Space Complexity. Computing similar sets on-the-fly in each

greedy iteration requires 𝑂 ( |T |) space, which is the worst-case

space complexity for both Greedy and GreedyET. On the other hand,
constructing a lookup table for 𝑆𝑇 for each𝑇 requires𝑂 ( |T |2) space,
which is the total worst-case space complexity for both PreGreedy
and PreGreedyET.

4 LEARNING-BASED REPRESENTATIVE TIME
SERIES SELECTION

Limitations of Non-learning based Methods.While our non-

learning-based methods leverage the monotonicity and submod-

ularity of our objective function to produce solutions with an ap-

proximation ratio, the challenge lies in the computation of marginal

coverage of time series. The memory-intensive process of precom-

puting similar sets and the time-consuming nature of computing

similar sets on-the-fly pose limitations on the scalability for all

variants of Greedy selection methods. The primary bottleneck is

the computation of similar sets, which is essential for computing

the exact marginal coverage of time series. Adding to the challenge,

specifying a new similarity threshold 𝜏 requires to recompute of

similar sets. Currently, there is a lack of an approach that is effective,

efficient and scalable simultaneously.

Given the aforementioned limitations, we develop a novel time

and memory efficient approach that accurately predicts the exact

marginal coverage of time series for representative time series selec-

tion. Specifically, we propose a self-supervised learning approach

known as MLGreedyET. MLGreedyET aims tomaintain high accuracy

in estimating the exact marginal coverage while accommodating

any specified similarity threshold 𝜏 without requiring expensive

computation of similar sets. By incorporating greedy algorithm

design into both the training and selection phases, MLGreedyET is
able to offer an effective solution that simultaneously addresses

memory and time issues.

At a high level, MLGreedyET involves three primary processes.

Firstly, it prepares high-quality data by generating informative fea-

tures based on the GreedyET framework. Next, the self-supervised

learning model leverages these informative features and learns a

function to estimate the marginal coverage 𝜎Δ̂ (𝑇 |X𝑖 ), which ap-

proximates the exact marginal coverage 𝜎Δ (𝑇 |X𝑖 ) as described in

Equation 1. Finally, it searches and selects the representative time

series based on the GreedyET framework. Unlike all variants of the

Greedy selection method, it utilizes the model-estimated marginal

coverage rather than the exact marginal coverage to select the rep-

resentative time series, hence addressing the limitations previously

outlined. In the subsequent sections, we will delve into each of

these processes, starting by describing how the learning function
facilitates representative time series selection (Section 4.1), followed

by the training workflow (Section 4.2) and the model architecture
(Section 4.3). Then, we will conduct a time and space complexity
analysis (Section 4.4).

4.1 MLGreedyETMethod
In MLGreedyET, we introduce a learning function 𝑓 . The objective

of 𝑓 is to predict the value 𝜎Δ̂ (𝑇𝑖 |X𝑖−1) as an approximation of the

exact marginal coverage 𝜎Δ (𝑇𝑐
𝑖
|X𝑖−1). Using 𝑓 , MLGreedyET solves

the RTSD problem using the GreedyET framework in Section 3.2.

The representative time series selection process of MLGreedyET is
similar to that of GreedyET. The only difference is that MLGreedyET
employs 𝑓 to predict 𝜎Δ̂ (𝑇𝑐

𝑖
|X𝑖−1) rather than computing the costly

exact marginal coverage 𝜎Δ (𝑇𝑐
𝑖
|X𝑖−1) for each candidate time se-

ries 𝑇𝑐
𝑖
in each iteration 𝑖 in GreedyET. In Algorithm 2, we replace

the exact marginal coverage computations |𝑆𝑇 | and |𝑆𝑇 ∩ 𝑈 | in
lines 11 and 18 with 𝑓 . We explain how to derive the input features

for 𝑓 in Section 4.2.2. By replacing the time-consuming exact mar-

ginal coverage computation used in Greedy and GreedyET, and by

avoiding the memory-intensive precomputation of similar sets in

PreGreedy and PreGreedyET, our learning function 𝑓 effectively

addresses the bottleneck in computing the exact marginal coverage.

Furthermore, 𝑓 can predict 𝜎Δ̂ (𝑇𝑐
𝑖
|X𝑖−1) for any given 𝜏 without

the need for retraining, thus saving time and memory. Next, we

will describe the training workflow and model architecture for 𝑓 .

4.2 Training Workflow
To train a model capable of accurately estimating the marginal cov-

erage of time series, it is essential to generate high-quality training

samples containing useful and informative features.

4.2.1 Embedding Generation. Due to the large dimensionality of

raw time series data, it is crucial to condense the data into a more

manageable form to alleviate computational overhead. To achieve

this, we must extract only necessary features and latent information

from the high-dimensional raw time series, resulting in reduced-

dimensional embeddings conducive to model training. Among nu-

merous time series representation learning methods that have been

proposed [32, 36, 51], we utilize SEAnet [51] to generate embed-

dings of dimension 16, following their default settings, for our

raw input time series data. This choice is motivated by the fact

that embeddings generated by SEAnet are optimized for similarity

search and have been shown to better preserve original pairwise

similarities in the lower-dimensional embedded space. This advan-

tage translates to more accurate approximate similarity searches

and aids our model in learning the similarities between time series

within their embeddings.

4.2.2 Feature extraction. We present six input features of our data

that will be fed into our model:

(1) Aggregated embeddings of the last selected representative time

series 𝐴𝐺𝐺 (𝐸𝑀𝐵(X𝑖−1)) ∈ R16
.
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(2) Aggregated embeddings of the last residual time series

𝐴𝐺𝐺 (𝐸𝑀𝐵(X𝐸𝑐
𝑖

𝑖−1)) ∈ R
16
.

(3) Embedding of the current candidate time series 𝐸𝑐
𝑖
∈ R16

.

(4) Count of last selected representative time series |X𝑖−1 |.

(5) Count of last residual time series |X𝐸𝑐
𝑖

𝑖−1 |.
(6) Similarity threshold 𝜏 ∈ [0, 1].

Here, 𝑖 denotes the current iteration,𝐴𝐺𝐺 denotes the aggregate

function and 𝐸𝑀𝐵 denotes the embedding. The last residual time

series refer to the unselected time series, excluding the current

candidate time series, i.e., X𝐸𝑐
𝑖

𝑖−1 = T \ (X𝑖−1 ∪ {𝐸
𝑐
𝑖
}). The candidate

time series 𝑇𝑐
𝑖
∈ T \ X𝑖−1 is the time series for which we predict

its exact marginal coverage 𝜎Δ (𝑇𝑐
𝑖
|X𝑖−1), with its corresponding

embedding denoted as 𝐸𝑐
𝑖
. We normalize the similarity threshold 𝜏

to ensure it remains within a consistent and reasonable range of 0

and 1 by dividing it by the maximum pairwise similarity among T .

Rationale behind the choice of features extracted. The value of

exact marginal coverage 𝜎Δ (𝑇𝑐
𝑖
|X𝑖−1) for 𝑇𝑐

𝑖
varies depending on

X𝑖−1 and 𝜏 . Therefore, it is crucial to include the aggregated em-

beddings of X𝑖−1, the embedding of 𝑇𝑐
𝑖
and the 𝜏 as input features

of the training sample. Additionally, we incorporate the aggregated

embeddings of X𝐸𝑐
𝑖

𝑖−1 to enable the model to capture the overall in-

formation of the remaining time series in T . We also include the

counts of X𝑖−1 and X
𝐸𝑐
𝑖

𝑖−1 to provide the model with information

regarding their sizes, complementing their aggregated embeddings.

Finally, these six input features are concatenated to form an input

vector 𝑍 (X𝑖−1,𝑇 𝑐
𝑖
,𝜏 ) ∈ R51

, which is then scaled for training. The

target label for training is the exact marginal coverage 𝜎Δ (𝑇𝑐
𝑖
|X𝑖−1)

of the candidate time series 𝑇𝑐
𝑖
.

Aggregate function. Due to the varying sizes of selected represen-
tative time series and residual time series, aggregating them into

a fixed-size vector is essential for our model to process them as

inputs. For the choice of 𝐴𝐺𝐺 , we have considered mean and sum

aggregate function. We opt for the sum aggregate function due to

its greater expressive power [57], which enables it to preserve infor-

mation about collective features across different embeddings. This

method ensures that similar features in the resulting aggregation

remain distinguishable. Mean aggregation tends to incur more infor-

mation loss, particularly when discriminative features exist within

individual embeddings, potentially leading to the cancellation of

contrasting features across different embeddings.

4.2.3 Data generation. Given the vast space of potential training

samples, we exploit the GreedyET framework to reduce the space

to generate high-quality training samples. The data generation

procedure is outlined in Procedure 3. Initially, we execute GreedyET,
where in each iteration 𝑖 , we explore a relatively small pool of 𝑇𝑐

𝑖
with high 𝜎Δ (𝑇𝑐

𝑖
|X𝑖−1). From this pool, we include the 𝑇𝑐

𝑖
with the

highest 𝜎Δ (𝑇𝑐
𝑖
|X𝑖−1) in X⟩ . Concurrently, non-candidate 𝑇𝑖 with

low 𝜎Δ (𝑇𝑖 |X𝑖−1) are pruned through early termination (line 24

of Procedure 3). For each 𝑇𝑐
𝑖
in the 𝑖-th iteration, we extract their

features and concatenate them to create a training sample alongside

their corresponding 𝜎Δ (𝑇𝑐
𝑖
|X𝑖−1) (line 21).

Procedure 3: Data Generation
1 foreach𝑇 ∈ T do
2 Generate embedding 𝐸 for𝑇 ;

3 𝑈 ← T;
4 X ← ∅;
5 𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 ← ∅; // store pairs of features and labels
6 𝑃𝑄 ← an empty priority queue that sorts time series by their upper

bound (ub) of marginal coverage in non-increasing order;

7 while𝑈 ≠ ∅ do
8 if X = ∅ then
9 foreach𝑇 ∈ T do
10 Insert𝑇 into PQ with𝑇 .𝑢𝑏 = |𝑆𝑇 |;
11 𝑇 ← 𝑃𝑄.pop( ) ;
12 Compute (𝑍 (X,𝑇 ,𝜏 ) , 𝜎Δ (𝑇 |X)) and add to𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 ;

13 else
14 𝑚𝑎𝑥_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 0;

15 while |𝑃𝑄 | > 0 do
16 𝑇 ← 𝑃𝑄.pop( ) ;
17 𝑇 .𝑢𝑏 = |𝑆𝑇 ∩𝑈 |;
18 if 𝑇 .𝑢𝑏 >𝑚𝑎𝑥_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 then
19 𝑚𝑎𝑥_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑇 .𝑢𝑏;

20 𝑇 𝑟 = 𝑇 ;

21 Compute (𝑍 (X,𝑇 ,𝜏 ) , 𝜎Δ (𝑇 |X)) and add to𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 ;

22 𝜏 ′ ← increase or decrease 𝜏 ;

23 Compute (𝑍 (X,𝑇 ,𝜏 ′ ) , 𝜎Δ (𝑇 |X)) and add to𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 ;

24 if |𝑃𝑄 | > 0 and𝑚𝑎𝑥_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ≥ 𝑃𝑄 [0] .𝑢𝑏 then
25 Sample some remaining candidates𝑇 ′ using

K-means++;

26 Compute (𝑍 (X,𝑇 ′,𝜏 ) , 𝜎Δ (𝑇 ′ |X)) and add to

𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 ;

27 Compute (𝑍 (X,𝑇 ′,𝜏 ′ ) , 𝜎Δ (𝑇 ′ |X)) add add to

𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 ;

28 break;

29 Update 𝑃𝑄 with visited𝑇 excluding𝑇 𝑟
;

30 X ← X ∪ {𝑇 𝑟 };
31 𝑈 ← 𝑈 \ 𝑆𝑇 𝑟 ;

32 return𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 ;

Enhanced data quality. To ensure a balanced distribution of the

target label, it is necessary to include training samples with low

exact marginal coverage. Since the pruned𝑇𝑖 with low 𝜎Δ (𝑇𝑖 |X𝑖−1)
typically constitute a significant portion, effective sampling of a

portion of them as training samples is essential. Drawing inspira-

tion from K-means clustering [37, 41], we employ the advanced

clustering initialization strategy, K-means++ [6] to sample a small

portion of pruned 𝑇𝑖 , along with their corresponding 𝜎Δ (𝑇𝑖 |X𝑖−1)
to form the additional training samples (lines 25-26 of Procedure 3).

K-means++ operates by sampling 𝑇𝑖 such that each new sample

is chosen with a probability proportional to its squared similarity

from the closest existing sampled 𝑇𝑖 . This method ensures that

the sampled 𝑇𝑖 are evenly distributed in terms of their similarities,

thereby contributing to a more balanced distribution of training

data and enhancing the generalization of the model. In addition

to this strategy, for each training sample generated, we augment

them by slightly adjusting the feature 𝜏 to a neighboring value

within an appropriate range of ±0.1, while keeping the remaining

features fixed (lines 22-23 and 27). This augmentation introduces
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Procedure 4:Model Training

1 while not converged do
2 Shuffle𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 ;

3 foreach 𝑏𝑎𝑡𝑐ℎ ∈ 𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 do
4 𝑙𝑜𝑠𝑠 ← 0;

5 foreach (𝑍 (X𝑖−1,𝑇𝑖 ,𝜏 ) , 𝜎Δ (𝑇𝑖 |X𝑖−1 ) ) ∈ 𝑏𝑎𝑡𝑐ℎ do
6 𝜎Δ̂ (𝑇𝑖 |X𝑖−1 ) ← 𝑓 (𝑍 (X𝑖−1,𝑇𝑖 ,𝜏 ) ) ;
7 𝑙𝑜𝑠𝑠 ← 𝑙𝑜𝑠𝑠 + |𝜎Δ (𝑇𝑖 |X𝑖−1 ) − 𝜎Δ̂ (𝑇𝑖 |X𝑖−1 ) |;
8 Minimize

𝑙𝑜𝑠𝑠
|𝑏𝑎𝑡𝑐ℎ | ;

more variety into the training data, providing the model with con-

trasting samples to better understand the effects of 𝜏 and improve

its generalization capabilities.

4.3 Model Architecture
Next, our learning function 𝑓 utilizes the features𝑍 (X𝑖−1,𝑇𝑖 ,𝜏 ) to esti-
mate the value of marginal coverage 𝜎Δ̂ (𝑇𝑖 |X𝑖−1). It is implemented

using a fully connected multi-layer neural network optimized with

mini-batch stochastic gradient descent, which has demonstrated

high effectiveness in our experiments. The network consists of five

layers, including the input layer, three hidden layers and the output

layer. Formally, 𝑓 is defined as

𝑓 (𝑍 (X𝑖−1,𝑇𝑖 ,𝜏 ) ) =𝑊4 · ReLU(𝑊3 · ReLU(𝑊2 · ReLU(
𝑊1 · 𝑍 (X𝑖 ,𝑇 ,𝜏 ) + 𝑏1) + 𝑏2) + 𝑏3) + 𝑏4

= 𝜎Δ̂ (𝑇𝑖 |X𝑖−1)
(2)

where ReLU denotes the Rectified Linear Unit activation func-

tion [24, 25],𝑊1 ∈ R51×𝐷1
,𝑊2 ∈ R𝐷1×𝐷2

,𝑊3 ∈ R𝐷2×𝐷3
,𝑊4 ∈

R𝐷3×1
, 𝑏1 ∈ R𝐷1

, 𝑏2 ∈ R𝐷2
, 𝑏3 ∈ R𝐷3

and 𝑏4 ∈ R1
are learnable

parameters. We use mean absolute error as our loss function L.
Given a set 𝑁 of training pairs, where each pair consists of the

ground truth exact marginal coverage 𝜎Δ (𝑇𝑖 |X𝑖−1) and predicted
marginal coverage 𝜎Δ̂ (𝑇𝑖 |X𝑖−1), our goal is to minimize the mean

absolute error across all training pairs, i.e.,

L =

∑︁
(𝜎Δ (𝑇𝑖 |X𝑖−1 ),𝜎Δ̂ (𝑇𝑖 |X𝑖−1 ) | ) ∈𝑁 |𝜎Δ (𝑇𝑖 |X𝑖−1) − 𝜎Δ̂ (𝑇𝑖 |X𝑖−1) |

|𝑁 |
(3)

The training procedure is outlined in Procedure 4.

4.4 Complexity Analysis
Time Complexity. For each candidate time series 𝑇𝑐

𝑖
, predict-

ing the value for marginal coverage 𝜎Δ̂ (𝑇𝑐
𝑖
|X𝑖−1) takes constant

𝑂 ( |𝑍 (X𝑖−1,𝑇 𝑐
𝑖
,𝜏 ) |) time. At the end of each iteration 𝑖 , we compute

the exact marginal coverage 𝜎Δ (𝑇 𝑟
𝑖
|X𝑖−1) of the representative time

series selected𝑇 𝑟
𝑖
to check for termination condition, taking𝑂 ( |T |)

time. Thus, each iteration takes𝑂 ( |𝑍 (X𝑖−1,𝑇 𝑐
𝑖
,𝜏 ) | · |T |+|T |) =𝑂 ( |T |)

time and the total worst-case time complexity for MLGreedyET is
𝑂 (𝛽 |T |2).
Space Complexity. Apart from the model parameters, predict-

ing the value for marginal coverage 𝜎Δ̂ (𝑇𝑐
𝑖
|X𝑖−1) takes constant

𝑂 ( |𝑍 (X𝑖−1,𝑇 𝑐
𝑖
,𝜏 ) |) space. At the end of each iteration 𝑖 , we compute

the exact marginal coverage 𝜎Δ (𝑇 𝑟
𝑖
|X𝑖−1) of the representative

time series selected 𝑇 𝑟
𝑖
to check for termination condition, taking

𝑂 ( |T |) space. Since we generate an embedding 𝐸 ∈ E for each

Table 3: Statistics summary of the datasets (# denotes number
and TS stands for time series).

Dataset # of TS # of sampled TS TS length

ECG [30] 97M 10K 320

Seismic [23] 100M 50K 256

SALD [47] 200M 100K 128

DEEP [49] 1B 150K 96

METR-LA [34] 207 - 288

time series, the total worst-case space complexity for MLGreedyET
is 𝑂 ( |E | + |T |).

5 EXPERIMENT
We conduct extensive ablation experiments to evaluate the per-

formance of our proposed non-learning-based and learning-based

methods (Section 5.2). Our objective is to demonstrate that our

methods can achieve high effectiveness while ensuring outstanding

efficiency, low memory consumption, or a balanced combination

of both. While time series clustering [2, 35] and object diversifica-

tion [14, 48] address different problems, they share commonalities

with our problem. Therefore, we also compare our methods with

theirs to evaluate the performance (Section 5.3). In addition, we

present a visualization case study to illustrate the practicality of

our method in real-world scenarios (Section 5.4).

5.1 Experimental Setup
Datasets. To demonstrate the generality of our solutions, we con-

duct experiments (Section 5.2 and 5.3) on four large-scale real-world

datasets from diverse domains and they are widely used in time

series similarity search [18, 19, 51, 55]: ECG [30] from electrocardio-

graphy, Seismic [23] from seismology, SALD [47] from neuroscience

and DEEP [49] from image processing. Due to the computational

complexity in terms of time and memory for computing similar sets

in the non-learning-based Greedy variants, we uniformly sample

10K, 50K, 100K and 150K time series from these datasets respec-

tively for evaluation purposes. We also conduct a visualization case

study (Section 5.4) on the METR-LA dataset [34], which comprises

traffic speed readings collected from 207 sensors at 5-minute inter-

vals along the highways of Los Angeles County on May 1st, 2012.

The statistics of the datasets are summarized in Table 3.

Methods For Comparison. For our ablation experiments, we

compare the following variants of the Greedy approach with a

random selection method as a baseline. We have excluded Greedy
from this comparison due to its extended runtime, exceeding a day

even on our smallest dataset.

• Random: Randomly selects time series as representatives until

they cover at least 𝛽 proportion of the entire time series database.

• PreGreedy (Section 3.3): Our non-learning based method that

precomputes similar sets and selects representative time series

based on exact marginal coverage using the greedy algorithm.

• PreGreedyET (Section 3.3): Our enhanced version of PreGreedy
featuring the early termination technique.

• GreedyET (Section 3.2): Similar to PreGreedyET, but without
precomputing similar sets.
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(a) ECG (b) Seismic (c) SALD (d) DEEP

Figure 3: Solution size by each method across different simi-
larity thresholds 𝜏 .

(a) ECG (b) Seismic (c) SALD (d) DEEP

Figure 4: Solution size by each method across different cover-
age thresholds 𝛽 .

(a) ECG (b) Seismic (c) SALD (d) DEEP

Figure 5: Trade-off between running time and memory cost
for each method.

• MLGreedyET (Section 4): Our learning-based method that selects

representative time series based on our model’s predicted mar-

ginal coverage using the greedy algorithm with early termina-

tion.

• MLGreedy: Similar to MLGreedyET, but without the early termi-

nation technique.

For comparison with existing works from time series clustering

and diversification, we include the following approaches.

• k-medoids [31]: A clustering algorithm that partitions a set of

time series into 𝑘 clusters by minimizing the sum of dissimilari-

ties between time series and their nearest medoid.

• k-shape [45]: A partitional clustering algorithm with shape-

based distance measure that preserves the shapes of time series.

• DTCR [40]: An unsupervised temporal representation learning

approach optimized for k-means time series clustering.

• MaxMin [16]: A diversification method that selects items by max-

imizing the minimum distance between selected items.

• MaxSum [16]: A diversification method that selects items by max-

imizing the sum of distance between selected items.

• DisC [15]: A diversification algorithm that selects a subset of

diversified items to cover the entire dataset.

Evaluation Metrics. We evaluate the performance of the methods

using the following metrics.

• Solution size is calculated as the percentage of representative

time series selected over the total number of time series. Since

our objective is to minimize the number of representative time

series selected, a smaller size or lower percentage reflects greater

effectiveness, indicating that the data can be represented with

fewer representatives. This is critical for system usage because

it reduces similar data and facilitates analysis by focusing on the

smaller representative set of time series.

• Total coverage is calculated as the percentage of time series cov-

ered by the selected representatives over the total number of

time series. Higher coverage is preferable, as it indicates that a

greater number of time series are represented by the selected

representatives, ensuring fewer time series are overlooked and

left unrepresented.

• Time efficiency is evaluated by measuring the running time of

the method.

• Memory footprint is evaluated by measuring the memory con-

sumption of the method.

Parameter Settings. All models are trained for 300 epochs with

three hidden layer sizes of 128, 64, and 16 respectively, and a batch

size of 256. The training/validation split is 80:20. For testing, we

normalize the similarity threshold 𝜏 ∈ [0, 1] and vary it with values

of {0.6, 0.625, 0.65, 0.675, 0.7} and the coverage threshold 𝛽 with

values of {0.7, 0.75, 0.8, 0.85, 0.9}, where the underlined values are the

default settings. These values span a wide range of representative

time series selected and facilitate a comprehensive evaluation of

the method across different scenarios.

Environment. All experiments are conducted on a Linux server

with Intel Xeon E5 CPUs, 512GB RAM and Tesla P100 PCIe 16GB.

The code, implemented in Python and PyTorch, is available at [1].

5.2 Ablation Experimental Results
Exp 1 - Effectiveness Comparison. Figures 3 and 4 compare the

solution size, i.e., the percentage of representative time series se-

lected over the total number of time series, by each method across

different similarity thresholds 𝜏 and coverage thresholds 𝛽 respec-

tively.We present all non-learning-based Greedy variants in one bar

since they yield the same result. Since our objective is to minimize

the number of representative time series selected, a smaller size or

lower percentage indicates greater effectiveness. The results show

that MLGreedyET not only consistently outperforms the Random
baseline, but also competes effectively with non-learning-based

Greedy variants. Specifically, it achieves a percentage difference as

low as 1% in the number of representatives selected when compared

with the non-learning-based Greedy variants on ECG at 𝜏 = 0.7

and 𝛽 = 0.9. Although MLGreedy achieves similar performance

to MLGreedyET, it lacks the early termination feature. As a result,

it can only process the smallest ECG dataset, while runtimes for

larger datasets exceed a day. This limitation is further reflected in

Exp 2 and 3.

Exp 2 - Time-Memory Trade-off Comparison. Figure 5 shows
the trade-off between running time and memory cost for each

method. Ideally, a method should minimize both factors. Notably,

GreedyET demonstrates remarkably low memory consumption,

while PreGreedy and PreGreedyET excel in terms of running time.

In contrast, MLGreedyET strikes a favorable balance between run-

ning time and memory cost, as shown across Seismic, SALD and
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(a) ECG (b) Seismic (c) SALD (d) DEEP

Figure 6: Running time comparison for each method across
different similarity thresholds 𝜏 .

(a) ECG (b) Seismic (c) SALD (d) DEEP

Figure 7: Running time comparison for each method across
different coverage thresholds 𝛽 .

(a) ECG (b) Seismic (c) SALD (d) DEEP

Figure 8: Memory cost comparison for each method across
different similarity thresholds 𝜏 .

(a) ECG (b) Seismic (c) SALD (d) DEEP

Figure 9: Memory cost comparison for each method across
different coverage thresholds 𝛽 .

DEEP. However, MLGreedyET may not be the best choice for situ-

ations where minimizing either running time or memory cost is

prioritized over balancing both. The memory space required by

MLGreedyET primarily depends on its model parameters, which

remain consistent across datasets. Consequently, for small datasets

such as ECG, the space required by model parameters may be domi-

nant, but the scalability advantage of MLGreedyET becomes evident

with larger datasets.

Exp 3 - Efficiency Comparison. Figures 6 and 7 compare the run-

ning time of each method across different similarity thresholds 𝜏

and coverage thresholds 𝛽 . We observe that: (1) without precomput-

ing similar sets, MLGreedyET shows high efficiency while ensuring

effectiveness, achieving up to 21× speedups over GreedyET when
compared on SALD at 𝜏 = 0.6 and 𝛽 = 0.9. This demonstrates the

advantage of predicting the marginal gain over computing the exact

marginal gain; (2) MLGreedyET is 47× to 67× faster than MLGreedy
on ECG. Additionally, PreGreedyET is 212× to 9196× faster than

PreGreedy in selecting time series, but the total running time of

both methods are limited by the precomputation of similar sets.

This highlights the superiority of the early termination technique

introduced in PreGreedyET, GreedyET and MLGreedyET.

Exp 4 - Memory Cost Comparison. Figures 8 and 9 compare

the memory consumption of each method across different simi-

larity thresholds 𝜏 and coverage thresholds 𝛽 . Based on these two

figures, both PreGreedy and PreGreedyET incur memory costs pri-

marily due to the precomputation of similar sets, which notably

increases as the dataset scale grows. Furthermore, the memory

cost for precomputing similar sets escalates with lower similar-

ity thresholds 𝜏 , as the size of similar sets increases. On the other

hand, MLGreedyET exhibits consistent memory costs across varying

𝜏 values and saves up to 101× memory space when compared to

PreGreedy and PreGreedyET on DEEP at 𝜏 = 0.7 and 𝛽 = 0.85,

demonstrating its high scalability.

5.3 Effectiveness Study on Extensions from
Clustering and Diversification

Comparison with Time Series Clustering. It is important to

note that direct comparison between time series clustering and

our methods may be challenging due to the differing problems and

constraints we address, as detailed in Sections 1 and 6. Despite these

differences, we compare the total coverage of the selected represen-

tative time series and running time between our methods and clus-

tering. Specifically, we compare our method with k-medoids [31],

as it is one of the popular clustering methods and its medoids are

actual time series, which we treat as our representative time se-

ries in this case. We also compare our method with DTCR [40], a

recent representation learning approach optimized for clustering

and k-shape [45], a well-known approach for time series cluster-

ing. DTCR applies k-means clustering to its learned cluster-specific

temporal representations generated by its unsupervised learning

model, while k-shape introduces a shape-based distance measure

with a tailored centroid computation method. These methods are

considered as variants of k-means clustering.

To ensure a fair comparison with our method, we make the

following adjustments. (1) We set the number of clusters 𝑘 equal to

the number of representative time series selected by MLGreedyET,
since the optimal value for 𝑘 is unknown. (2) Unlike k-medoids,
where the cluster centers are actual time series, the centers in DTCR
and k-shape are not actual. To address this, we select the time series

nearest to each cluster center as the representative (for k-shape,
we use its proposed shape-based distance measure). In cases of

empty clusters, we select the next nearest unselected time series as

representative. (3) We determine the coverage of the selected time

series by its similar set rather than its cluster.

We compare the total coverage of representative time series se-

lected with the running time of clusteringmethods and MLGreedyET
and show the results in Figure 10. In our smallest dataset ECG,
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(a) ECG (b) Seismic-1K (c) SALD-1K (d) DEEP-1K

Figure 10: Comparison of total coverage against running time
for different methods with similarity threshold 𝜏 = 0.6 and
coverage threshold 𝛽 = 0.9.

k-medoids, k-shape and DTCR exceeded our time limit (over a day)

due to large dataset size and high value of 𝑘 . Therefore, we uni-

formly downsampled the remaining datasets to 1K time series to

mitigate the extended runtimes of these methods. Based on the

figure, we observe that MLGreedyET (along with all our proposed

methods) guarantees full coverage of at least 𝛽 proportion of the

total number of time series (e.g., at least 90% of time series are

covered if 𝛽 = 0.9) for any similarity thresholds 𝜏 . Additionally, it is

the fastest among all clustering methods (e.g., 7× to 37× faster on

DEEP-1K). In contrast, the representatives selected by the clustering

methods fail to fully cover and represent the required coverage of 𝛽

in each dataset (e.g., k-shape covers only 69.5% of the 90% required

on SALD-1K). Since the cluster centers in k-shape and DTCR are

not actual time series, empty cluster may occur. In such cases, we

select the next nearest unselected time series as representative. This

adjustment likely explains why the coverage results for k-shape
and DTCR tend to be worse than k-medoids, thus making direct

comparisons to our method less reliable.

Comparison with Object Diversification. Similar to clustering,

direct comparison with diversification may pose challenges due to

the inherent differences in the problems and constraints, as outlined

in Sections 1 and 6. However, to evaluate the effectiveness of our

method against diversification, we compare the solution size, i.e.,

the percentage of representative time series selected to fully cover

the required coverage of 𝛽 . Specifically, we choose DisC [15] for

comparison because its problem definition is close to ours, as it

also requires selected items to fully cover the data. We apply DisC
to time series data and treat the diversified items as representa-

tives. We incorporate the key constraint of DisC into our methods,

both non-learning-based Greedy variants (represented by Greedy
as they produce the same result) and the learning-based method

MLGreedyET. This constraint ensures that the similarity between

any pair of representative time series selected is less than the similar-

ity threshold 𝜏 . We refer to the modified methods as Greedy-DisC
and MLGreedyET-DisC respectively. Table 4 shows the solution

size of Greedy and MLGreedyET along with their respective diver-

sification counterparts, Greedy-DisC and MLGreedyET-DisC. The
results indicate that our methods, Greedy and MLGreedyET, have a
lower percentage of representative time series selected compared to

Greedy-DisC and MLGreedyET-DisC. This suggests that our meth-

ods are more effective, as they require fewer representatives to

cover and represent the given data.

In addition to DisC, we also include twowidely used fundamental

models for diversification, MaxMin and MaxSum [16] for compari-

son. MaxMin and MaxSum aim to select a subset of diverse items,

Table 4: Solution size (%) with similarity threshold 𝜏 = 0.6

and coverage threshold 𝛽 = 0.9.

Methods ECG Seismic SALD DEEP

Greedy-DisC 61.11 49.87 17.38 48.91

Greedy 60.40 45.88 13.19 45.00

MLGreedyET-DisC 66.15 52.37 20.32 52.07

MLGreedyET 65.56 48.12 18.26 51.15

such that either the minimum or the sum of pairwise distances

between selected items is maximized. More formally, the objec-

tive functions of MaxMin and MaxSum are defined as 𝑓𝑀𝐼𝑁 (𝑆) =
max𝑆⊆𝑂

|𝑆 |=𝑘
min𝑜𝑖 ,𝑜 𝑗 ∈𝑆

𝑜𝑖≠𝑜 𝑗

(1 − 𝑆𝐼𝑀 (𝑜𝑖 , 𝑜 𝑗 )) and 𝑓𝑆𝑈𝑀 (𝑆) = max𝑆⊆𝑂
|𝑆 |=𝑘∑︁

𝑜𝑖 ,𝑜 𝑗 ∈𝑆
𝑜𝑖≠𝑜 𝑗

(1 − 𝑆𝐼𝑀 (𝑜𝑖 , 𝑜 𝑗 )). Both MaxMin and MaxSum address the

k-Diversity problem [16], which involves selecting a fixed number

𝑘 of diverse items. In our context, we treat each selected item as

a representative time series. Since k-Diversity problem is known

to be NP-hard [20], we use greedy heuristics for their implementa-

tion, which have been shown to produce good solutions [14]. We

then evaluate the total coverage of the representative time series

selected with the running time of both MaxMin and MaxSum. Sim-

ilar to how we handle clustering methods, (1) we set 𝑘 equal to

the number of representative time series selected by MLGreedyET,
and (2) we determine the coverage of a selected time series by its

similar set. The results are reported in Figure 10, where we see

that despite comparable running times with MLGreedyET on the

downsampled datasets, both diversification methods fail to fully

cover the required coverage 𝛽 (e.g., MaxSum covers only 61.1% of the

90% required on SALD-1K), indicating their coverage limitations

compared to MLGreedyET.

5.4 Visualization Case Study
We present a visualization case study employing our MLGreedyET
to select representative time series from METR-LA, as illustrated

in Figure 11. We set the similarity threshold 𝜏 = 0.85 to obtain

a sufficiently small size for clear visualization, and the coverage

threshold 𝛽 = 1 to ensure every sensor is covered by a representa-

tive so that no traffic patterns are overlooked. We observe that the

representative time series selected by MLGreedyET are distinct from
one another and exhibit various interesting patterns across the sen-

sors. The minimum number of representative time series selected

also ensures that the representative traffic patterns stand out and

clearly summarize the given sensors, providing a comprehensive

and distinct overview of the traffic patternswithout redundancy. For

instance, in Figure 11b, the representative time series and its time

series represented indicate consistently fast traffic flow throughout

the day. In contrast, Figures 11c and 11d show heavy traffic during

the morning and evening peaks respectively. Each representative

only represents traffic patterns that meet the similarity threshold,

and they collectively cover and represent different traffic patterns

recorded by each sensor in the region.

6 RELATEDWORK
In this section, we review the literature on time series clustering

and object diversification, which are related to our RTSD prob-

lem. Time series clustering identifies cohesive groups of similar
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(a) (b)

(c) (d)

Figure 11: (a) shows sensors on road segments, each colored
by their representative traffic patterns in (b), (c) and (d). Rep-
resentative time series are shown in thick lines, with corre-
sponding sensors circled on themap. Time series represented
by these representatives are shown in thinner lines of the
same color, corresponding to the uncircled sensors. Remain-
ing time series in gray are those not covered by the represen-
tatives. To reduce visual clutter, only 5 sensors represented
by each representative are shown, e.g., Sensor 𝑏 represents
other sensors in red since their patterns are highly similar.

time series, while object diversification selects diverse objects to

enhance the quality of query results for users. These approaches

differ fundamentally from RTSD problem, which we discuss next.

Time SeriesClustering. Time series clustering is awell-researched

topic with extensive literature in the field [2, 5, 8, 13, 21, 27, 29, 35,

56]. Its objective is to maximize data similarity within clusters while

minimizing it across clusters. This unsupervised technique groups

similar time series into clusters based on certain patterns or fea-

tures. Partitioning clustering divides time series into 𝑘 clusters by

grouping similar time series together. Popular algorithms such as

k-means [41], k-medoids [31], and Fuzzy C-means [7] iteratively

compute centroids and assign time series to their nearest centroid

until termination. k-shape [45] is a well-known time series cluster-

ing method that introduces a shape-based distance measure with

a tailored centroid computation method. DTCR [40] is a recent

representation learning approach that applies k-means clustering

to cluster-specific temporal representations generated by its unsu-

pervised learning model. Additionally, recent studies on time series

clustering tend to focus on specific contexts, such as clustering

multivariate time series data [8] or incomplete time series data [39],

which differ from our problem setting.

While the cluster center may be loosely perceived as a represen-

tative time series, several differences exist compared to our problem.

Our representative time series are similarity-bounded, ensuring

that the similarity between the representative time series and the

time series it represents is at least the user-defined threshold. This

allows users to control the similarity threshold and, hence, the repre-

sentativeness of each representative. Moreover, under this property,

we ensure that every time series is covered and represented by at

least one of the minimum number of representative time series.

This stands in contrast to clustering, as we cannot guarantee that

the similarity between time series and its centroids within a cluster

meets the threshold, and centroids may not fully cover and repre-

sent all time series. In particular, clustering algorithms that require

specifying the number of clusters pose more challenges, as it is

difficult to determine the minimum number of clusters such that

the centroids can fully cover all time series. Additionally, centroids

are typically not actual time series (e.g., the mean of all feature

vectors within a cluster in k-means clustering), which does not

align with our problem.

Object Diversification. Object diversification aims to select a sub-

set of diverse objects to ensure a wide representation of different

aspects within the data [48, 60]. It is a broad topic that covers a wide

range of domains and data types such as search query results [48],

images retrieval [38] and training data for neural machine transla-

tion [43]. However, we found no existing diversification methods

specifically tailored to time series data. Various definitions of di-

versity have been proposed [14], focusing on the content or simi-

larity [60], the novelty [11], and the semantic coverage [3] of the

objects. Diversification based on the content or similarity of the

objects is particularly relevant to our RTSD problem. For instance,

MaxMin [16] and MaxSum [10] select a subset of objects such that

the minimum or the sum of pairwise distances among the selected

objects is maximized. DisC [15] selects a subset of diverse objects

with a dissimilarity constraint to cover the entire result set.

Similar to clustering, if we consider an object as a time series, the

objects selected by algorithms like MaxMin and MaxSum are not

similarity-bounded and, thus the selected objects are not guaranteed

to fully cover the required proportion of the result set. Additionally,

these algorithms require the number of objects to be selected as

input, which poses similar challenges as in clustering. In the case

of DisC, the dissimilarity constraint mandates that the distance

between selected objects must exceed a user-defined distance. This

may result in more objects being selected and does not guarantee

the minimum number of representatives to be selected as defined

in our problem.

7 CONCLUSION AND FUTUREWORK
In this paper, we introduce the problem of finding the smallest set

of representative time series to summarize a dataset. We prove the

problem to be NP-hard and propose several greedy variants to ap-

proximate the optimal solution, but they fail to ensure both time and

memory efficiency. Therefore, we introduce a self-supervised learn-

ing approach integrated with greedy algorithm to yield effective

solutions while ensuring efficiency and low memory consumption.

Extensive experiments on four real-world datasets demonstrate

the effectiveness, efficiency and scalability of our method. We also

present a visualization case study to highlight its practical value.

While our methods show strong performance, future work will

focus on scaling to larger datasets, reducing human interpretation

of the representatives and exploring integration with large lan-

guage models by feeding representatives into prompts to evaluate

its potential for enhancing time series analysis tasks.
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