go back
go back
Volume 16, No. 4
Range Search over Encrypted Multi-Attribute Data
Abstract
This work addresses expressive queries over encrypted data by presenting the first systematic study of multi-attribute range search on a symmetrically encrypted database outsourced to an honest-but-curious server. Prior work includes a thorough analysis of single-attribute range search schemes (e.g. Demertzis et al. 2016) and a proposed high-level approach for multi-attribute schemes (De Capitani di Vimercati et al. 2021). We first introduce a flexible framework for building secure range search schemes over multiple attributes (dimensions) by adapting a broad class of geometric search data structures to operate on encrypted data. Our framework encompasses widely used data structures such as multi-dimensional range trees and quadtrees, and has strong security properties that we formally prove. We then develop six concrete highly parallelizable range search schemes within our framework that offer a sliding scale of efficiency and security tradeoffs to suit the needs of the application. We evaluate our schemes with a formal complexity and security analysis, a prototype implementation, and an experimental evaluation on real-world datasets.
PVLDB is part of the VLDB Endowment Inc.
Privacy Policy