go back
go back
Volume 18, No. 11
PBench: Workload Synthesizer with Real Statistics for Cloud Analytics Benchmarking
Abstract
Cloud service providers commonly use standard benchmarks like TPC-H and TPC-DS to evaluate and optimize cloud data analytics systems. However, these benchmarks rely on !xed query patterns and fail to capture real execution statistics of production cloud workloads. Although some cloud database vendors have recently released real workload traces, these traces alone do not qualify as benchmarks, as they typically lack essential components (i.e., queries and databases). To overcome this limitation, this paper studies a new problem of workload synthesis with real statistics , which generates synthetic workloads that closely approximate real execution statistics, including key performance metrics and operator distributions. To address this problem, we propose PBench, a novel workload synthesizer that constructs synthetic workloads by (1) selecting and combining workload components from existing benchmarks and (2) augmenting new workload components. This paper studies the key challenges in PBench. First, we address the challenge of balancing performance metrics and operator distributions by introducing a multi-objective optimization-based component selection method. Second, to capture the temporal dynamics of real workloads, we design a timestamp assignment method that progressively re!nes workload timestamps. Third, to handle the disparity between the original workload and the candidate workload, we propose a component augmentation approach that leverages large language models (LLMs) to generate additional workload components while maintaining statistical !delity. Experimental results show that PBench reduces approximation error by up to 6 ³ compared to state-of-the-art methods.
PVLDB is part of the VLDB Endowment Inc.
Privacy Policy