Maximal clique enumeration is a fundamental problem in graph theory and has been extensively studied. However, maximal clique enumeration is time-consuming in large graphs and always returns enormous cliques with large overlaps. Motivated by this, in this paper, we study the diversified top-k clique search problem which is to find top-k cliques that can cover most number of nodes in the graph. Diversified top-k clique search can be widely used in a lot of applications including community search, motif discovery, and anomaly detection in large graphs. A naive solution for diversified top-k clique search is to keep all maximal cliques in memory and then find k of them that cover most nodes in the graph by using the approximate greedy max k-cover algorithm. However, such a solution is impractical when the graph is large. In this paper, instead of keeping all maximal cliques in memory, we devise an algorithm to maintain k candidates in the process of maximal clique enumeration. Our algorithm has limited memory footprint and can achieve a guaranteed approximation ratio. We also introduce a novel light-weight