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ABSTRACT
The introduction of Compute Express Link (CXL) technology marks
a transformative phase for modern database management systems
(DBMSs), offering unprecedented enhancements in memory man-
agement and system performance. By extending the cache-coherent
memory domain to encompass PCIe ports, CXL facilitates a notable
expansion in host memory capacity and boosts the performance
of peripheral components. While a substantial body of research
has explored the benefits of CXL, particularly its capability to aug-
ment memory capacity, the vital role of bandwidth expansion—a
key determinant of database performance—has frequently been
underemphasized. This study shifts focus to the untapped potential
of memory bandwidth expansion offered by CXL technology in a
real-world deployment context. Our evaluation demonstrates that,
rather than relying on conventional tiered memory design, a metic-
ulous interleaving of CXL memory with host memory delivers up
to a 1.61x performance gain for in-memory analytical workloads
compared to a solely host memory platform.

VLDBWorkshop Reference Format:
Wentao Huang, Mo Sha, Mian Lu, Yuqiang Chen, Bingsheng He,
and Kian-Lee Tan. Bandwidth Expansion via CXL: A Pathway to
Accelerating In-Memory Analytical Processing. VLDB 2024 Workshop:
Fifteenth International Workshop on Accelerating Analytics and Data
Management Systems Using Modern Processor and Storage
Architectures(ADMS 2024).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/fukien/type3-pathway.

1 INTRODUCTION
Modern database management systems (DBMS) have been suf-
fering from limited memory capacity in the past decade. As the
DRAM memory scaling ability fails to keep up with the scaling
speed on in-chip processors, workload performance per core is
expected to drop at a factor of 30% biannually [36]. To mitigate the
shortfall of memory resources, DBMSs have resorted to memory
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over-provisioning [48], aiming to satisfy the demands of real-world
applications. This approach, while temporarily effective, escalates
the total cost of ownership (TCO) and gives rise to notorious mem-
ory stranding issues [1, 30] 1.

Compute Express Link (CXL) technology [10, 42] addresses these
challenges by offering a new approach to memory resource manage-
ment. Integrated within the PCIe layer, CXL enhances traditional
DDR memory channels by adding substantial memory resources
and providing cache-coherent memory semantics, which enables
host systems to efficiently perform load/store operations with pe-
ripheral devices. Peripheral devices, such as GPUs, FPGAs, and
smart NICs, can now leverage CXL to coherently share host-level
cache and memory resources. This capability paves the way for
innovative advancements in high-performance DBMS architecture.

The remarkable capabilities of CXL have captured the atten-
tion of both the research and industry sectors, prompting efforts
to leverage this technology for scaling up or out the memory re-
sources in modern DBMSs [2, 28]. Given that CXL memory and
associated pooling resources interface with host systems through
PCIe, they inherently exhibit higher access latencies compared to
host memory 2. Consequently, most current designs regard CXL
memory as a slower tier of memory, focusing on supporting large-
scale in-memory workloads with minimal performance penalties.
Noteworthy implementations, such as DRAM-CXL tiered memory
designs [31] and disaggregated memory pools [30], represent sig-
nificant shifts in this strategic approach and have seen deployment
in cloud centers in recent years.

Despite the opportunities CXL presents for expanding mem-
ory capacity in existing tiered system designs, a significant over-
sight remains: the underexplored potential of bandwidth expansion
through CXL memory. Unlike traditional host memory, commonly
referred to as DRAM 3, which connects to the host processor via
DDR channels, CXL memory interfaces with the host via PCIe
ports, thus potentially increasing the system’s overall aggregated
memory bandwidth [42]. This is particularly relevant as DDR chan-
nels are susceptible to bandwidth interference from concurrent
applications [9, 21, 22, 49, 54], especially under the strain of bursty,
memory-intensive workloads. The supplementary bandwidth from

1Memory stranding describes a scenario in data centers in which the full depletion of
computing resources results in the underutilization of available memory.
2In rack-scale deployments, the utilization of CXL resources may even introduce
additional overhead due to switch transfer cost.
3While other technologies like SRAM or ReRAM can be used for host memory man-
ufacturing, DRAM technology dominates the production of modern host memory
devices.

https://github.com/fukien/type3-pathway
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org


PCIe interfaces can therefore act as an auxiliary resource to sus-
tain system throughput and retain a high application performance
without much bandwidth degradation.

Moreover, the limited availability of commercial CXL memory
devices has led most studies to rely on hardware emulation (e.g.,
NUMA emulation [5, 30], and FPGA emulation [28, 48]) or software
simulation (e.g., gem5 [7], Ramulator [25], and DRAMSim2 [37]) for
system design and evaluation, which may not accurately reflect the
performance impacts on a real CXL platform. Given this context,
it becomes imperative to reevaluate existing strategies for CXL
utilization on genuine platforms.

Henceforth, we investigate the benefits of utilizing real CXL
memory, particularly from a bandwidth expansion standpoint. We
concentrate on in-memory DBMS analytical tasks, where perfor-
mance greatly depends on the availability of substantial memory
bandwidth and capacity. We conduct a comprehensive evaluation
using an authentic CXL memory device. Our experimental findings
indicate that, by meticulously configuring DRAM and CXL memory
in an interleaved manner, analytical workloads can achieve perfor-
mance gains comparable to or exceeding those of a pure-DRAM
setup (in our experiments, we observe up to a 1.61x performance
improvement compared to a pure-DRAM platform.). This result
challenges the prevailing assumption that CXL memory serves
solely as a slower tier in heterogeneous memory systems, prompt-
ing a reconsideration of memory resource management in cloud
and data center environments.

2 BACKGROUND
2.1 CXL Memory Technology
Compute Express Link (CXL) represents a groundbreaking cache-
coherent interconnect standard designed to facilitate communica-
tion between host processors, peripheral accelerators, and memory
devices. Since its initial specification release [10], CXL has under-
gone several iterations, resulting in three primary versions: CXL
1.1, CXL 2.0, and CXL 3.0. These iterations introduce progressively
advanced capabilities: CXL 1.1 focuses on memory expansion and
tiering, while CXL 2.0 and CXL 3.0 advance towards memory pool-
ing and disaggregation, with CXL 2.0 facilitating pooling via a
single switch and CXL 3.0 extending this capability across multi-
ple switches. Currently, only CXL 1.1 is commercially available;
therefore, our experimental evaluation primarily focuses on this
version.

The CXL transaction layer is segmented into three protocols:
CXL.io, CXL.cache, and CXL.mem. CXL.io utilizes PCIe to manage
device tasks such as discovery and configuration, in addition to
I/O virtualization and DMA operations. CXL.cache allows CXL-
equipped devices to access the host processor’s memory, facilitating
efficient data sharing and reducing latency. CXL.mem, on the other
hand, empowers the host to directly manage memory on connected
devices through load and store instructions, promoting seamless
data operation in a unified memory ecosystem. Collectively, these
protocols form the bedrock of the CXL architecture, paving the way
for sophisticated memory coherency and connectivity solutions
essential for cutting-edge computing platforms.

CXL technology is also engineered to accommodate three main
device types: Type 1, Type 2, and Type 3. Types 1 and 2 provide
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Figure 1: Schematic representation of a platform incorporat-
ing CXL Type 3 devices.

cache coherent access for peripheral accelerators, while Type 3
is dedicated to memory expansion. Given our focus on memory
expansion, this paper primarily considers Type 3 CXL devices. Fig-
ure 1 illustrates a typical memory expansion setup utilizing Type 3
CXL memory modules. Each module encompasses a CXL controller
that complies with CXL.io and CXL.mem protocols, facilitating
access to a range of memory technologies including DRAM, non-
volatile memory (NVM), and low-power double data rate SDRAM
(LPDDR) [31]. Unlike conventional DRAMmodules that utilize DDR
communication channels, CXL type3 memory, regardless of the
underlying technology, establishes connections to host processors
via PCIe ports, significantly enhancing the bandwidth available to
the system. This integration technology markedly increases both
the memory capacity and overall system bandwidth, granting host
systems the versatility to tailor configurations to meet the varied
demands of diverse applications.

2.2 Related Work
A plethora of research efforts have been directed toward harnessing
CXL memory for the design and evaluation of tiered or disaggre-
gated systems across diverse workloads. Pond [30] emerges as the
pioneering system to advocate for the enhancement of CXLmemory
pooling at the rack scale, employing machine learning techniques
to develop an accurate model for hotspot prediction. This model
facilitates memory migration and addresses memory stranding is-
sues within Azure cloud centers. Following this, Meta introduces
TPP [31], a DRAM-CXL tiered memory system design. TPP in-
novates by separating memory allocation from reclamation and
introduces a hot page promotion mechanism to improve in-memory
workload performance. SAP HANA [2, 28] conducted evaluations
on OLAP and OLTP workloads within DRAM-CXL tiered systems
using NUMA or FPGA emulation, concluding that performance
penalties could be minimized by retaining memory regions perti-
nent to query execution within DRAM. Further, Lerner et al. [29]
and Jang et al. [20] conceptualize CXL memory as a disaggregated
memory pool, suggesting strategies to amplify in-memory work-
load performance. Other studies [5, 12–15, 26] have sought to distill
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performance insights for CXL using Optane PMEM [18], primarily
considering CXL memory as a capacity expansion rather than ef-
ficiency enhancement, thereby often overlooking its potential for
bandwidth expansion.

Sun et al. [44] first address the performance gap between real
CXL memory and emulation technology, and find that real CXL
memory can expand overall memory bandwidth for embedding
reduction applications. Although their exploration into embedding
reduction yields crucial insights, it is important to note that such a
workload is considered elementary. Moreover, their examination
omits a crucial comparison with tiered architecture systems, a fun-
damental element in the analysis of modern in-memory analytical
workloads [2, 5, 28, 43, 47]. Recognizing this oversight, our study
seeks to bridge this gap by meticulously evaluating in-memory
OLAP workloads and contrasting the outcomes with those derived
from traditional database systems employing tiered memory mod-
els.

3 EVALUATION
We present our experimental results in this section. As our main
experimental finding advocates a CXL memory adoption of an in-
terleaving manner, we begin by examining the impact on peak
throughput across various memory interleaving ratios. Subsequent
analyses compare the performance across different memory config-
urations, including fundamental memory access patterns such as se-
quential and random access followed by an assessment of selective
access and an evaluation of in-memory radix partitioning. Finally,
we extend our study by conducting an in-memory OLAP experi-
mental analysis using the Star Schema Benchmark [33]. Our results
demonstrate that, in contrast to employing the typical tier-memory
model in conventional DBMS architectures, direct interleaving CXL
memory with host-level DRAM yields significant performance en-
hancements for in-memory analytical workloads.

3.1 Experimental Setup
Our experimental platform is anchored on a dual-socket platform
running Linux kernel version 5.19.17. Each socket hosts a 32-core
Intel Sapphire Rapids CPU, with 64MB last-level cache (LLC) and
1024-entry translation lookaside buffer (TLB). The socket’s capacity
is enhanced by 128GB of DRAM, which is configured through four
32𝐺B DDR5 DIMMs. To facilitate cross-NUMA communication, the
system is equipped with a 96.0 GB/s Ultra Path Interconnect (UPI).
Additionally, each DDR5 DIMM provides a memory bandwidth
of 35.2 GB/s. We employ an initial CXL memory prototype from
Montage [45], which integrates two DDR5 DIMMs as previously
described. This prototype interfaces with the host system through
an 8-lane PCIe Gen5 port, achieving a bandwidth of 31.5GB/s.

In alignment with prior research [34, 44], our system configu-
ration is optimized for performance analysis by employing sub-
NUMA clustering (SNC) mode. As an SNC node comprises a sin-
gle memory channel with an aforementioned 32GB DDR5 DIMM
situated, the theoretical maximum bandwidth of the host DRAM
in our platform is 35.2GB/s. Since the SNC mode applies to the
whole host system, the NUMA memory node is also configured
as a single DDR5 memory DIMM with a capacity of 32GB (cf. Fig-
ure 2 for a simplified overview of our system architecture and the

32GB DRAM

Remote HostLocal Host

32GB DRAM

DDR5 (35.2 GB/s)DDR5 (35.2 GB/s)

UPI (96.0 GB/s)

64GB DRAM

PCIe 5.0 (8-lane: 31.5 GB/s)

Figure 2: A simplified overview of our host system and the
respective theoretical bandwidth limits of each data path.

DRAM Memory Page CXL Memory Page

Figure 3: Memory Layout Illustration: DRAM-CXL Interleav-
ing at a 3:2 Ratio.

respective theoretical bandwidth limits of individual data path).
We also disable hyper-threading, prefetching, interrupt requests
(IRQ), kernel address space layout randomization (ASLR) as ex-
isting studies[11, 19, 41, 46, 50, 52, 53], and opt for a huge-page
configuration to mitigate the potential for TLB thrashing penalty
[6, 16].

We apply a Linux patch [51] to facilitate a range of memory inter-
leaving ratios, enabling the distribution of memory pages between a
processor-bound memory node and a processor-independent mem-
ory node [27]4. This patch allows for adjusting the page interleaving
ratio from 1 to 100. In our study, an interleaving ratio of 𝑋 : 𝑌 sig-
nifies a sequential memory configuration with 𝑋 consecutive local
host DRAM pages followed by 𝑌 consecutive CXL memory pages,
as depicted in Figure 3 for a 3 : 2 interleaving ratio layout.

Unless specified otherwise, our comparison encompasses four
distinct memory configurations: local host memory access only
(DRAM), remote NUMA memory access only (NUMA), CXL mem-
ory access only (CXL), and aDRAM-CXL interleaved setup (DRAM:CXL).
Through experimentation, we determine that an interleaving ratio
of 3 : 2 consistently delivers optimal performance (Sections 3.2). As
such, the subsequently presented results are compared with this
optimized interleaving ratio. Our codes are publicly available at
https://github.com/fukien/type3-pathway.

3.2 Memory Throughput Across Various
Memory Interleaving Ratios

In order to reveal the potential benefits of bandwidth expansion
from CXL memory, we interleave the local host DRAM with our
genuine CXL type3 memory with various memory interleaving
ratios. We adjust the interleaving ratio progressively from 100 :
0 (pure DRAM) to 0 : 100 (pure CXL), encompassing a total of
13 distinct ratios. To fully uncover the potential throughput gain,
especially for the peak memory throughput, we use all 32 cores of
a single socket to access memory sequentially. The experimental
outcomes are presented in Figure 4.
4As remote NUMA memory is affiliated with CPUs, this interleaving patch cannot be
applied across NUMA sockets.
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Figure 4 illustrates that interleaving DRAM with CXL at any
non-zero ratio indeed delivers a better performance than a sole
DRAM configuration. This is primarily attributed to the additional
bandwidth resource provided by the PCIe interface. We can also ob-
serve that the non-interleaving configuration, i.e., the pure DRAM
memory setting and a sole CXL memory setting deliver a through-
put around 28.5GB/s and 20.1GB/s respectively. Recall that in our
SNC-mode platform, the local DRAM bandwidth is capped at the
theoretical maximum bandwidth of a singlememory channel, which
is 35.2GB/s (cf. Figure 2). A peak memory bandwidth of 28.5GB/s
indicates that the current DDR technology (DDR5 in our platform)
is not able to fully utilize the theoretical DDR channel bandwidth
resource to a satisfactory level. Meanwhile, the CXLmemory device,
though equipped with a 35.2GB/s DDR5 memory and a 31.52GB/s
PCIe Gen5 port, only achieves a peakmemory throughput at around
20.1GB/s (the rightmost bar in Figure 4), which implies that the
underlying CXL controller is the main bottleneck in preventing
CXL memory achieving its maximum practical bandwidth 5.

By analyzing the peak memory throughput across various in-
terleaving ratios, we find that an interleaving ratio of 3 : 2 yields
the highest throughput in both read and write scenarios. This inter-
leaving ratio corresponds to the memory bandwidth ratios between
DRAM and CXL, suggesting that it effectively balances workload
distribution based on the bandwidth capabilities of the different
memory technologies. Consequently, we maintain that interleaving
DRAM and CXL at a ratio optimized for memory bandwidth can
effectively maximize the utilization of system bandwidth resources.

3.3 Sequential Access Evaluation
Sequential access serves as a critical component across numerous
in-memory workloads. Its distinctive access pattern, lacking both
spatial and temporal locality, allows for the direct manifestation of
the available memory bandwidth resources.

In order to measure the throughput of sequential access, we
adjust the thread count and devise a microbenchmark, on which
we issue three memory-semantic operations: load, store, and non-
temporal store (as per "LOAD", "STORE", and "NT-STORE" respec-
tively in Figure 5), sequentially accessing one billion 4-byte records.

Figure 5 presents the outcomes of our experiments, demonstrat-
ing the significant thread scalability in load bandwidth among all
5We have received confirmation from Montage[45] that their current technology is
capable of providing a practical bandwidth limited to 20 − 21 GB/s.

experimenting memory configurations. The "LOAD" throughput
drastically ascends to the peak practical throughput of the respec-
tive memory setting. This indicates that the ‘LOAD’ operation
exhibits strong scalability with respect to the number of threads.
When examining "STORE" and "NT-STORE" operations, it is evi-
dent that "NT-STORE" operation achieves higher performance com-
pared to conventional "STORE" operation. It should be noted that
“NT-STORE” operation bypasses the processor’s coherence cache
domain, whereas “STORE” operation incurs additional overhead
due to state modifications in processor-level cache. As a result, “NT-
STORE” is more likely to achieve peak memory throughput. The
overhead associated with cache coherence maintenance is evident
in the lower performance of "STORE" and "NT-STORE" operations
when accessing NUMA memory compared to CXL memory. Both
memory configurations lie outside the local host processors’ north-
bridge domain, leading to higher cache coherence maintenance
overhead compared to local DRAM. However, CXL memory incurs
lower coherence maintenance overhead due to its lack of processor
affiliation. Memory nodes associated with processors experience ad-
ditional overhead from exchanging or modifying cache coherence
states between the processor-scope cache and the memory-resident
cache coherence directory. This overhead can increase further with
the number of processors. While it is not possible to explicitly mea-
sure this overhead due to Intel’s non-disclosure of technical details,
the cache coherence maintenance overhead has been documented
in numerous related studies [24, 44]. Consequently, the store-related
performance (both cache-temporal and non-cache-temporal) on
conventional processor-attached NUMA nodes is unlikely to match
that of non-processor-affiliated CXL memory nodes.

We can also observe from Figure 5 that memory interleaving
between DRAM and CXL achieves optimal performance and strong
thread scalability. Specifically, the aggregated “LOAD” throughput
around 47.5GB/s, which is 1.61x higher than the local DRAM config-
uration, and significantly surpasses the theoretical bandwidth limit
of a single DDR channel (35.2GB/s) and the limit of our 8-lane PCIe
Gen5 ports (31.52GB/s). Additionally, “STORE” and “NT-STORE”
operations demonstrate robust throughput beyond 6 threads. This
suggests that interleaving effectively amalgamates the available
bandwidth resources of various technologies, raising the practi-
cal bandwidth limit of the host system and benefiting all types of
memory-semantic operations.
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Figure 6: Join performance across various thread number
and memory settings.

3.4 Random Access Evaluation: A Hash Join
Perspective

Random access, alongside sequential access, is a pivotal building
block of modern DBMS applications, particularly in the context
of hash joins. The inherently irregular access pattern of random
access results in frequent cache misses, making it highly susceptible
to the intrinsic latency of the underlying memory technologies and
diminishing its efficiency in fully saturating memory bandwidth.

Hash joins are widely reckoned as a major random access oper-
ation of in-memory DBMSs. We therefore, synthesize a represen-
tative workload as previous hash join studies [3, 4, 6, 8, 16, 17] to
benchmark the DBMS random access performance with different
memory configuration technologies. In particular, we construct a
primary-key-foreign-key join workload featuring uniformly dis-
tributed 8-byte tuples. The build and probe sides of the workload
have cardinalities of 256 million and 1 billion, respectively.

Figure 6 presents the results of the hash join experiment, demon-
strating a consistent performance trend with that observed for se-
quential access (cf. Section 3.3). The DRAM:CXL interleaving config-
uration achieves the highest throughput, with a peak performance
improvement of approximately 1.59x compared to the local DRAM
setting. This suggests that, in addition to the bandwidth-friendly
sequential access pattern, the additional bandwidth provided by
PCIe also improves performance for irregular random access pat-
terns. The performance enhancement continues to increase until

the thread count reaches 16, in contrast to the throughput saturation
point of eight threads observed with other memory configurations.
This finding validates the previous claim that the amalgamation
of bandwidth resources from interleaving DRAM and CXL effec-
tively surpasses the bandwidth limitation of any single memory
technology.

We now shift our focus to comparing NUMA memory and CXL
memory. It is evident that NUMAmemory maintains a marginal but
stable advantage over CXLmemory, regardless of thread count. This
advantage is primarily attributed to the higher practical memory
bandwidth provided by NUMA memory (cf. Figure 5). However, a
detailed breakdown of the runtime for the explicit hash join phases
reveals that the hash join build phase on NUMA memory is 26%
slower than that on CXLmemory. This further substantiates the pre-
vious claim (Section 3.3): CXLmemory, as a non-processor-affiliated
memory node, demonstrates superior memory write performance
compared to conventional processor-affiliated NUMA memory. In
contrast, the hash join probe phase, which primarily involves ran-
dom memory reads, exhibits an opposite performance pattern: the
probe phase on NUMA memory is 24% faster than on CXL memory.
Given that the probe side is 3x larger than the build side (1 billion
probe tuples versus 256 million build tuples), the probing phase
dominates the overall hash join execution cost. As a result, the
overall hash join performance on NUMA memory is slightly better
than that on CXL memory.

3.5 Selective Access Evaluation
We continue our study by evaluating the selective read performance
across different memory configurations. The selective access pat-
tern emulates the access behavior in a DBMS column-style scan,
where one or several selective predicates are applied. In a column-
style DBMS, various tuple attributes are stored in individual mem-
ory arrays. If a tuple fails to meet a predicate based on its leading
attributes, i.e., the first several columns, scanning the subsequent
attributes (columns) of this tuple becomes unnecessary. As a result,
such a tuple can be skipped in the subsequent column scans.

We synthesized a workload consisting of 2 billion 8-byte records
to mimic this scanning pattern. In order to measure the peak perfor-
mance of selective access, we utilized all 32 cores of a single socket
to sequentially access these tuples. A specific number of records
were skipped between every two consecutive record loads. We vary
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Figure 8: Partitioning performance w.r.t. fanout number.

this number from 1 to 512, and present experimental results in
Figure 7.

In Figure 7, we discover that the execution time for all memory
configurations decreases monotonically as the number of skipped
records increases. This is because increasing the number of skipped
records significantly reduces memory-level data movement. Conse-
quently, the overall performance bottleneck shifts from memory-
level operations to processor-level computation. Among all mem-
ory configurations, the DRAM:CXL interleaving configuration once
again achieves the best performance. As indicated in previous sub-
sections, this is primarily attributed to the superior aggregatedmem-
ory bandwidth provided by the combination of local host DRAM
and PCIe-interfaced CXL memory. Meanwhile, NUMA memory
achieves performance comparable to local DRAM, due to their simi-
lar load throughput characteristics as DRAM (cf. Figure 5), allowing
NUMA memory to perform nearly as well as local DRAM. In con-
trast, the CXL memory configuration does not achieve competitive
performance in this experiment, as its maximum load bandwidth is
constrained by the CXL internal controller and is approximately
30% lower than that of DRAM or NUMA memory (cf. Figure 5).

3.6 Radix Partitioning Evaluation
Partitioning is another important building block in modern in-
memory DBMSs. The primary partitioning techniques include hash,

range, and radix partitioning [35], with radix partitioning emerg-
ing as a predominant method in analytical processing tasks such
as sorting [38], join [16, 17], and aggregation [32]. Therefore, we
examine the performance of radix partitioning, with particular at-
tention to the impact of underlying memory configurations on its
performance.

Similar to the workload in selective access evaluation, we gen-
erate 1 billion 8-byte records and utilize 32 cores to perform radix
partitioning for peak throughput measurement. Existing studies
have identified that radix partitioning is significantly affected by
TLB thrashing. Thus, we vary the number of partition fanouts from
64 to 16384 in increments of powers of two 6, and measure the
throughput for each configuration.

The results are depicted in Figure 8. We can see that the par-
titioning throughput decreases as the partition fanout increases,
which is consistent with existing studies that indicate a higher
fanout leads to increasesd TLB thrashing penalty [3, 4, 6, 16, 17].
Comparing the performance of different memory configurations,
we observe that the DRAM:CXL interleaving configuration delivers
the highest throughput across all fanout settings. This performance
advantage mainly stems from the sufficient bandwidth resource of
combining local DRAM DDR channels and the PCIe ports. How-
ever, we do not see a significant performance gain, as observed in
sequential or hash join assessments, against the local host DRAM
setting (within 7.5% throughput gain), indicating that TLB thrash-
ing heavily hinders the partitioning from effectively utilizing the
available bandwidth resources. When comparing CXL with NUMA,
we find NUMA memory consistently outperforms CXL memory
across all experimented partitioning fanouts. The reason is that, a
typical radix partitioning process involves two read passes and one
write pass [16, 17, 39], with the write pass being heavily hindered
by TLB thrashing. Henceforth, CXL’s advantage in store operations
does not manifest in radix partitioning, and the overall performance
is more constrained by the maximum load throughput. As a con-
sequence, the NUMA setting continuously outperforms CXL, and
achieves throughput very close to the local DRAM setting due to
their similar load throughput (cf. Figure 5).

3.7 In-Memory Analytical Workload Analaysis
Last but not least, we evaluate variousmemory configurations using
real in-memory analytical workloads of the Star Schema Bench-
mark (SSB) [33]. SSB serves as a benchmark standard for assessing
DBMS performance in data warehousing scenarios, featuring join
operations between a large fact table and several smaller dimension
tables, a setup commonly encountered in OLAP research.

To precisely examine the impact of different memory config-
urations on performance, we execute 13 SSB queries at a scale
factor of 30 using a custom implementation based on query plans
generated by HyPer [23] 7. As per the previous selective perfor-
mance assessment (cf. Section 3.5), we use all socket-level physical
cores, i.e., 32 cores, to maximize the analytical processing through-
put. Our goal is to explore optimal strategies for leveraging CXL
memory to enhance in-memory analytical workloads. To this end,
6We do not study the impact of smaller partitioning fanouts for they are not practically
beneficial.
7Our platform cannot accommodate larger workloads due to the limitations of the
current 32GB local host DRAM.
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Figure 9: Star schema benchmark throughput (normalized against DRAM performance).

we examine the in-memory SSB benchmarking performance of
DRAM, CXL, and the DRAM:CXL interleaving configuration. Ad-
ditionally, we implement a popular conventional DBMS wisdom
model [5, 30, 31, 41, 55] of a tiered-memory architecture (referred
to as “TIER” in Figure 9), where local fast DRAM is used as a work-
ing “buffer”, while the slower CXL memory functions similarly
to a faster “disk”, which requires data movement into the DRAM
“buffer” for analytical query operations. Since different SSB queries
have varying fraction factors 8, the execution times among these 13
queries differ significantly. For the purpose of better presentation,
we use the DRAM execution throughput of each individual query as
the baseline and normalize the query execution throughput of other
memory configurations to this DRAM throughput. The results are
shown in Figure 9.

We can observe from Figure 9 that the DRAM:CXL interleav-
ing configuration demonstrates superior throughput, outperform-
ing the local DRAM setup in all 13 SSB queries, with an average
performance increase of approximately 1.19x (denoted as "Mean"
in Figure 9). Although this improvement is noticeable, it is not
highly significant and does not fully match the up to 1.61x perfor-
mance gains observed in sequential and random memory access
(Sections 3.3 and 3.4). This phenomenon is primarily attributed
to the limited size of the dimension tables at a scale factor of 30.
According to the query plans, selection pushdown is applied before
hash table construction, allowing the hash tables at this scale factor
to be almost entirely accommodated within the on-chip cache 9.
Consequently, the majority of SSB query operations hit the cache,
minimizing the performance variance among the different memory
configurations. Interestingly, queries Q1.1, Q1.2, and Q1.3 exhibit
considerable performance enhancements (over 1.4x). This improve-
ment is primarily attributed to their exclusive reliance on selection
operations, without involving join operations, which allows them
to benefit from the strong sequential access throughput of the
DRAM:CXL interleaved setup.

In contrast, the DRAM-CXL tiered configuration yields less com-
petitive results, with average throughput nearly mirroring that of
the pure CXL memory setup. This phenomenon is also caused by
8The fraction factor denotes the proportion of the table that is retrieved for specific
predicate combinations [40].
9Our platform’s single socket has 64MB last-level cache (cf. Section 3.1).

the nearly cache-sized hash table, which significantly reduces the
number of cache misses in subsequent hash probing. The hash prob-
ing performance, therefore, is no longer a primary performance
bottleneck, and the placement of these cache-sized hash tables
would not have much performance difference since they are mostly
buffered in the processor-levle caches. Hence, the performance bot-
tleneck shifts to the loading bandwidth in building or probing the
hash tables. Since both the CXL memory configuration and the
"TIERED" model initially place tables in CXL memory, the CXL
memory "load" throughput dominates the execution phase of SSB
query processing.

In summary, the DRAM:CXL interleaving configuration emerges
as a promising solution for augmenting overall system bandwidth.
In our testbed, a judiciously selected interleaving ratio, particularly
one that aligns with the memory bandwidth ratios, can achieve
performance gains of up to 1.61x compared to local DRAM setups.
This demonstrated advantage encourages further exploration of
CXLmemory platforms and warrants a revisit of the existing design
considerations of tiered-memory DBMS models, particularly in the
context of large-scale heterogeneous memory systems.

4 CONCLUSION
In this paper, we perform a comprehensive experimental evaluation
of in-memory analytical workloads on a genuine CXL memory
platform. Our findings suggest that, beyond the traditional focus on
expanding memory capacity, a CXL type3 memory device can also
enhance the overall bandwidth of computing systems. Through
a series of experimental investigations, we discover that the CXL
type3 memory can deliver up to 1.61x in-memory analytical pro-
cessing performance improvement in our real CXL platform if a
proper interleaving of local host DRAM and CXL memory is con-
figured. This performance benefit motivates us to consider more
flexible utilization of CXL memory and calls for a critical revisit of
the conventional DBMS tiered-memory model within the context
of heterogeneous memory or computing platforms.

In the evolving landscape of hardware technology, CXL stands
at a pivotal early stage. The synergy between CXL technology and
in-memory database processing necessitates an in-depth analysis.
Future advancements should aim to support a broad spectrum of
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database operations, including both analytical queries and transac-
tion processing. These advancements should not only optimize for
large memory capacity, but also reducing the total cost of owner-
ship (TCO). The conclusion of our discourse could serve to explore
this interplay, setting a forward-looking agenda for research and
development in this arena.
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