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ABSTRACT
Compressing data in a columnar layout has large benefits for stor-
age size. Lightweight compression schemes offer quick compression
and allow execution directly on compressed data, while they do
not compress aggressively. Delta encoding is a promising candidate
for integer compression, especially for ID columns, where tradi-
tional lightweight compression achieves only low compression
ratios. In this paper, we show that delta encoding can achieve a 4×
higher compression ratio compared to other lightweight compres-
sion schemes. While delta compression performs similarly to other
schemes in unpredicated scans, it struggles in selective scans, even
with optimizations that allow for worse compression. Therefore,
we implement a new version of frame-of-reference encoding that
combines the strengths of both delta and FOR encoding. This ap-
proach matches the compression ratio of delta encoding, surpasses
delta in all decompression metrics, and is up to 23% faster compared
to the standard compression scheme implementations.
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1 INTRODUCTION
Database systems use compression for data storage to reduce the
size of data that needs to be processed and minimize processing
times. Data movement is already one of the most expensive parts of
data centers [5, 17]. Therefore, many systems, such as BigTable [6],
Oracle [16], or Snowflake [7], employ data compression on the
data stored in a database. Data compression is not only relevant
for storage but also beneficial for in-memory operations, particu-
larly where the memory-bandwidth often limits vectorized table
scans. Thus, main-memory oriented systems like DuckDB [18],
HyPer [11], or Hyrise [9] implement lightweight compression tech-
niques, which allow operations directly on compressed data. This
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Figure 1: Three concepts to compress small range integer
data: Frame-of-reference (FOR) uses one reference point for a
whole DataBlock; FORn uses one reference point per n values;
Delta uses each value as a reference point for the next.

lightweight compression not only saves storage space, but also in-
creases performance, since it reduces memory traffic, and increases
the effective capacity of data that can be kept in-memory.

Currently used techniques for lightweight compression include
bit-packing, frame-of-reference encoding, or dictionary compres-
sion. These techniques work well and strike a balance between
fast decompression speeds and high compression ratios [3]. How-
ever, they can still be suboptimal for certain cases. To cover more
cases, Afroozeh and Boncz [4] proposed an efficient delta compres-
sion technique that can potentially enable run-length encoding of
similar deltas. Delta compression is especially effective for integer
ID columns, where the values span a large range, but are usually
ascending with very similar deltas. This compression technique
stores only the differences between consecutive values, which can
then be compactly bit-packed. However, delta compression lacks
efficient random access properties, which poses difficulties when
integrating it into a database system.

In the following, we first analyze the implementation of columnar
integer compression techniques and how they integrate in our
research database system Umbra [14]. Next, we adapt the FastLanes
delta compression technique, using small baseline strides to support
reasonably efficient random access and query processing. Lastly, we
apply this small-stride adaptation to frame-of-reference encoding,
which then achieves similar compression ratios with a simpler and
faster implementation.

Compression schemes. Umbra organizes tuples in columnar
blocks of 216 tuples. When enough tuples are put into a relation,
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Umbra selects the best compression for this particular block before
encoding the data.

Single compression is used if the integer in a block is the same for
each tuple. For instance, this occurs when an integer represents a
status code where one value predominates.

Increment compression is helpful for IDs, as they usually start at 1
and are then steadily incremented. If this is known, this compression
stores the first ID in the block, and the other values can be retrieved
using their indices.

Truncation and frame-of-reference (FOR) compression make use of
the fact that while SQL integers are typically 4 or 8 bytes, values
within a block might need fewer bits. To avoid complexity, trunca-
tion happens only on the 1, 2, or 4-byte level.

Frame-of-reference (FOR) works by identifying the minimum value
in a block and storing each subsequent value as a positive difference
from this minimum. This method is especially effective for keys
with a narrow range of values, which results in much smaller values
after subtracting the minimum.

Dictionary compression, on the other hand, benefits from data with
many duplicates. This can be the case for integer columns having
only minimal domain sizes, such as status codes, or foreign keys.

Analysis of schemes. The implemented compression schemes
are already quite versatile. We evaluate them on the TPC-H and JOB
datasets to analyze their effectiveness. One compression scheme
not currently employed is delta encoding, which stores only the
differences between consecutive values. These deltas are typically
smaller than the original values and can benefit from byte trunca-
tion. We identified columns in both datasets that would benefit from
delta encoding. We compared the effectiveness of the compression
across 7 integer columns using the current compression strategies,
delta compression, and compression using the xz command line
utility as a baseline. The upper bound and reference value is storing
the values uncompressed. As shown in Table 1, delta compression
sometimes achieves compression where columns would otherwise
remain uncompressed or could be truncated to 1 byte instead of 2
bytes. For example, in both the order and lineitem relations, the
orderkey column is sorted in ascending order with gaps between
values. Therefore, the range of the values in a 216 block is larger
than that of a 2-byte integer, meaning Umbra stores these columns
uncompressed. Since the delta between values never exceeds 127,
the column can be compressed into 1-byte value deltas. In contrast,
in the case of the keys in the name and keyword tables, the values
are distributed more randomly, which can be seen in the low xz
compression ratios. Nevertheless, there is still a connection between
an index of a value and its position in the column, though, as the
values tend to increase. This allows for effective 2-byte truncation
of deltas between values.

Delta Compression. Incorporating delta compression into the
database system could reduce memory consumption by up to 73%
for the analyzed ID columns. Since delta encoding stores the delta
to the last preceding value, this generally results in smaller deltas
compared to FOR encoding. Delta compression has the advantage of
being able to compress integers over a large range if the differences
between those values stay small. This is something that can happen

Table 1: Compression ratios of uncompressed data compared
to data compressed with and without delta compression and
the xz utility for different columns of the JOB and TPC-H
datasets.

max size no delta delta xz

TP
C-
H o_orderkey 6 MB 1.00 3.70 14.3

l_orderkey 24 MB 1.61 3.70 25.0
ps_partkey 3.2 MB 2.00 3.70 50.0

JO
B

cast_info id 145 MB 2.00 2.08 14.3
movie_info id 59 MB 2.33 2.63 14.3
name id 17 MB 1.0 1.85 2.44
keyword id 0.55 MB 1.02 1.92 2.27

in datasets that are initially incremental IDs, but these can get
disrupted when entries are deleted or moved around.

Challenges. Delta encoding introduces dependencies between
values, complicating parallelization and the evaluation of predicates
on compressed data. These challenges make delta encoding more
complex than the currently employed schemes.

In this work, we implement delta compression into the Umbra
database system [14]. Our scheme compresses 4- or 8-byte integer
columns into 1- or 2-byte delta-encoded columns. First, we provide
an overview of compression in contemporary database systems
in Section 2. Then, we introduce our implementation and layout
for delta compression in Section 3, including the use of SIMD for
decompression. We adapt similar techniques for FOR encoding
in Section 4. Lastly, we evaluate our approaches in Section 5.

2 RELATEDWORK
Most database systems incorporate some form of compression.
Oracle Database and SAP HANA primarily utilize dictionary en-
coding [2, 16]. While SAP HANA includes stronger compression
schemes, it does not implement delta encoding. Vectorwise im-
plements dictionary, frame-of-reference, and delta encoding for
columnar compression [19]. The delta compression uses arbitrary
bit widths; all decompression is only done on a whole block of com-
pressed data. The widely used columnar storage format Parquet
also combines delta encoding with frame-of-reference encoding to
ensure positive deltas [1]. BTRBLOCKS employs blockwise columnar
compression on any type of data, combining various compression
schemes iteratively on potentially already compressed data [10].
Decompression uses SIMD to speed up the execution. Unlike our
approach, which always selects the optimal compression methods,
BTRBLOCKS relies on heuristics and data sampling and does not
include delta encoding in its compression schemes.

In their paper on the FastLanes compression layout, the authors
propose SIMD approaches for several compression schemes, in-
cluding delta encoding [4]. This method leverages compiler auto-
vectorization, packing delta values into bits, whereas we use simpler
byte-packing. However, this approach is not integrated into any
database system, meaning predicate evaluation and random access
on the data are not addressed. Additionally, the order of values is
not preserved during decompression, which could lead to issues in
practical systems.
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Umbra currently utilizes several lightweight compression schemes
on its Data Blocks [11]. These Data Blocks are compressed using the
optimal scheme and include a header containing the minimum and
maximum values of the column. This metadata allows the database
engine to skip entire blocks when executing SARG-able predicates.
Scans on compressed data are vectorized and then fed into the
JIT-compiled query pipeline. However, delta encoding has not been
implemented.

In [8], the authors explore a method for compressing integer
columns that uses the first bits of the integer as a base and the
remaining bits as deviations. The bases are stored as a dictionary
without duplicates. This approach is similar to delta encoding, as
it is most effective when neighboring values are similar. However,
it introduces the base bit-width as a new parameter that should
ideally be configured at runtime.

3 DELTA COMPRESSION
In the following section, we will describe the implementation of
delta encoding in our database system Umbra. Compression in Um-
bra works as follows: if the user selects the Blocked Relation during
creation, accumulated data is compressed into Data Blocks once
reaching a threshold of 216 tuples. This compression is chosen based
on the highest compression ratio. The Data Blocks can be serial-
ized to disk, requiring us to determine an appropriate serialization
layout for delta compression.

Our implementation of delta encoding in Umbra supports two
different types of decompression routines:
Range-based: This routine receives a start and end index to decom-
press all tuples within that range.
Match-based: This routine receives a match vector, constructed, for
example, from a predicate evaluation and only decompresses tuples
at the specified indices.

3.1 Data Layout
We need to include additional information in its header to store
delta-encoded data. While theoretically, compressing a block of
integers using delta compression only requires storing the first
value of the delta-compressed column in the block header, this
approach has two significant drawbacks:
No Support for Thread- or Data-Level Parallelization: This method
impedes optimizations that parallelize data decompression. Each
thread would need to start decompression from the beginning of
the block, preventing the use of SIMD (Single Instruction, Multiple
Data) for parallel processing.
Inefficient Point Access: Point access in delta compression can be
highly inefficient, as the entire block must be decompressed even if
only a single specific tuple is needed.

To overcome these problems, the block header stores multiple
values, so-called data points, from the column before the deltas.
The number of values in the header can be configured by varying
the stride size parameter.

By default, the stride size is 1024, meaning the value of every
1024th tuple is stored in front of the compressed data. This stride
size corresponds to the morsel size of a thread in Umbra using the
approach introduced by Leis et al. [12]. In an ideal scenario for a

1 2 3 4 30 32 33 34 35 60 61 62 . . .

Uncompressed Data

Stride Size

1 30 35 . . . 0 1 1 1 26 2 1 1 1 25 1 1 . . .

Header Compressed Data

1 30 35 . . . 1 1 1 2 1 1 25 1 1 . . .

Header Compressed Data

1 1 1 1 30 2 1 1 35 25 1 1 . . .

Compressed Data

Header:

Reload:

Inline:

Figure 2: Different storage layouts for delta compressed data
with data points.

complete scan over the data, each thread would load the next data
point from the header and start decompressing immediately. Stor-
ing the full-width value every 1024 tuples also keeps the memory
overhead very low.

In Figure 2, we present three different layouts to store delta-
compressed data:

Header. For this layout, we store the delta values for all ele-
ments, including those already stored in the header. The advantage
of this approach is that it simplifies the compression and decom-
pression logic. However, it introduces redundancies: the values
stored uncompressed in the header can be retrieved either directly
from the header or by computing them using the delta values.

Reload. This approach is similar to the previous one but omits
the redundant deltas. When accessing a value of an element, we
either load it directly from the header if the element corresponds to
a data point or perform the decompression logic for other elements.

Inline. Instead of storing the values of the data points in a
dedicated header, they are stored inline with the deltas. Due to the
uncompressed non-delta value being a larger data type compared
to the delta values, we need an unaligned load to fetch it.

The latter two approaches require less storage compared to the
first one. When 𝑆 is the integer data type that is used to store
the delta, both approaches save numTuples

strideSize · sizeof(𝑆) bytes. With
our default stride size of 1024 and a block size of 216 tuples, this
results in 64 bytes less per data block. For example, the l_orderkey
column would use 5824 bytes less for scale factor 1.

The downside of these approaches is that they generally do not
support branchless decompression, as some indices in the com-
pressed data need special handling.

In Figure 3, we compare all approaches on the l_orderkey at-
tribute in the lineitem relation of the TPC-H scheme. We observe
a drop in performance for the Inline and Reload approach due
to the extra bookkeeping during decompression. However, this
overhead becomes negligible during a selective scan using a match
vector.
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Figure 3: Throughput for different layout approaches for a
full scan and a 50% selective scan of l_orderkey.

1 closest = r.begin / stride
2 prev = readerHeader[closest]
3 // align to r.begin
4 for (i = closest * stride + 1; i <= r.begin; ++i)
5 prev += reader[i]
6 // start processing the elements of the range
7 *( writer ++) = prev
8 for (i = r.begin + 1; i < r.end; ++i)
9 prev += reader[i]
10 *( writer ++) = prev

Listing 1: Decompression logic of delta-encoded data given
the tuple range r.

The overhead can be avoided by knowing that each thread stays
within certain bounds. Adjusting the stride size accordingly makes
the branch unnecessary since we only need to load one data point at
the beginning of the decompression. In this scenario, all approaches
achieve the same performance.

3.2 Delta Decompression
If the data is accessed in its compressed form, it needs to be decom-
pressed before being passed along the data pipeline [13]. Decom-
pression can be done on a consecutive range of tuples or using a
match vector. This match vector contains the sorted indices of the
tuples accessed in this Data Block. In either case, the decompression
process begins by loading the closest preceding data point in the
header from the index of the first tuple. The decompression loop
then computes the values until reaching the end of the range or the
last match. The implementation for a range can be seen in Listing 1.

Both implementations work branchfree, as any decompressed
value is always written to the output buffer. In the case of a match
vector, the pointer is only advanced if the index matches the current
match, as seen in Listing 2.

3.3 Using SIMD
Database systems, especially those using vectorization, employ
SIMD instructions to boost throughput [15]. We explore whether
SIMD execution of delta decompression could enhance full scans
over data, considering that other compression schemes in Umbra
already utilize SIMD when feasible. With SIMD execution and delta
compression, the problem of dependencies between the compressed
values becomes even more pressing. It is now necessary to break

1 matchIndex = 0
2 closest = m[matchIndex] / stride
3 prev = readerHeader[closest]
4 for (i = closest * stride + 1; i < m.end; ++i)
5 prev += reader[i]
6 *writer = prev
7 writer += i == m[matchIndex]
8 matchIndex += i == m[matchIndex]

Listing 2: Branchfree decompression logic of delta-encoded
data given the match vector m.

1 offsets = {7*stride , 6*stride , 5*stride , 4*stride ,
2 3*stride , 2*stride , stride , 0}
3 for (i = r.begin , j = 0; i < r.end; i+=8, ++j)
4 block = j / stride
5 // store index of first value in register
6 base = (j % stride) + block * 1024
7 if (i % 1024 == 0)
8 start = i / stride
9 reg1 = load(readerDatapoint + start)
10 reg2 = load(reader + iter)
11 reg1 += reg2
12 vindex = set1(base)
13 vindex += offsets
14 scatter(writer , vindex , reg1)

Listing 3: Decompressing delta-encoded values using SIMD.

dependencies not only between threads but also between SIMD
lines. This problem is also discussed in the FastLanes paper [4].

Similar to their approach, we store uncompressed start values
next to each other to load them into one register, ensuring each
lane can independently begin decompression. To do this, we store
these values in the header, just as with the scalar approach, but
require more data points. Here, the data point stride size depends
on a minimum tuple workload that each thread should perform and
the size of the integer type 𝑇 . The minimum workload is set to be
1024 tuples, corresponding to Umbra’s morsel size. The data point
stride 𝑘 is then given by 𝑘 =

1024·sizeof(𝑇 )
sizeof(Register) . We implement SIMD

decompression using AVX512 registers, where sizeof(Register) =
64 bytes. The implementation of the SIMD decompression can be
seen in Listing 3.

To make the decompression more efficient, the deltas are shuf-
fled during compression instead of being stored in their original
sequence. This method follows the approach detailed in the Fast-
Lanes paper [4]. The shuffled layout is illustrated in Figure 4. In
this example, instead of storing the deltas the same as the elements
from which they were extracted, the delta for the tuple at index 128
is stored next to the delta for the tuple at index 0 and so on. The first
SIMD lane decompresses tuples at indices 0-127, the second lane
handles indices 128-255, and so on. This setup allows for a simple
load from the compressed data to start decompression, eliminating
the need to gather start values from multiple locations. It is also im-
portant to note that at the beginning of every 1024 tuples, the first
block of 𝑛

𝑘
deltas are the deltas of values that have to be loaded from

the header in any case and can, therefore, be omitted. In Figure 4,
this would be the first eight values marked blue. Since we want to
preserve the original order of the tuples after decompressing, the
values are scattered into the output buffer.
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0 1 2 . . . 128 . . . 1023

Stride Size

0 128 256 384 512 640 768 896 1 129 . . . 127 255 . . . 1023

SIMD Register Width

Figure 4: Shuffled layout for SIMD decompression of 64-bit
integers. We shuffle every 1024 bytes, with each AVX512
register holding eight 64-bit integers, resulting in a stride of
128 between values in each block.

scalar SIMD SIMD unordered
0

0.5 G

1.0 G

1.5 G

2.0 G

T
h
r
o
u
g
h
p
u
t

T
u
p
le

s/
s

Figure 5: Throughput of a delta-encoded column using scalar
decompression, a SIMD loop that preserves order (using the
scatter instruction), and a SIMD loop that does not (using a
simple store instruction).

Writing back. Scattering involves writing each element in a
SIMD vector to its own specific memory address rather than to
consecutive memory addresses. The scatter instruction is quite ex-
pensive, and when looking at the decompression execution time,
most of it is spent in this instruction. As shown in Figure 5, through-
put only improves when writing the data back unordered with a
simple store instead of a scatter instruction. Consequently, delta
decompression does not benefit from using SIMD.

3.4 Predicated Scans
Another reason for accessing tuples is to evaluate predicates on the
data. Umbra allows direct evaluation of predicated scans directly
on compressed data. However, the evaluation approach must be
adjusted based on the compression technique.

For FOR compression, this involves adjusting the predicates
according to the reference value. This is useful if the data does not
need decompression but is just needed to construct a match vector
for other attributes.

Since delta encoding has dependencies between values, the pred-
icates can only be evaluated on the decompressed data. Therefore,
the code is similar to the one used for range/matches decompres-
sion; it only contains one more check to see if the decompressed
value matches the predicate. For this use case, it can also make a dif-
ference whether all deltas during compression were positive since
it allows early returns. This optimization has been implemented as
well.

1 2 3 4 30 32 33 34 35 60 61 62 . . .

Uncompressed Data

Stride Size

1 0 1 2 3 29 30 31 32 33 24 59 60 61 . . .

Header Compressed Data

1 30 35 . . . 0 1 2 3 0 2 3 4 0 25 26 27 . . .

Header Compressed Data

FOR:

FOR64:

Figure 6: Data layout for the serialized standard FOR and
FOR64-encoded data.

4 FOR64
Frame-of-reference (FOR) encoding processes all values in a Data
Block of 216 tuples by determining the minimum value. This mini-
mum value is subtracted from all integers in this column, resulting
in smaller integers that are stored in either 8 or, when necessary,
16 bits. For decompression, the minimum is stored in the header at
the beginning of the Data Block and is added back to all values in a
data block. The layout for this standard FOR approach can be seen
in Figure 6.

4.1 Data Layout
Building on the concept of data points from delta encoding, one
could extend the existing FOR encoding in a similar manner. To
enhance compression, instead of storing a single minimum value
per Data Block, one could store theminimum value for equally-sized
sub-blocks, e.g., 64 tuples. This approach allows for random access
(with an additional computation to retrieve the correct reference
value) and improves compression ratios, similar to delta encoding.
This is because the delta to the minimum per chunk would generally
be smaller than the difference between all values and a single frame
of reference for the entire data block.

We implemented this new compression scheme with the layout
shown in Figure 6. Unlike the visualization, which uses a stride size
of 4 for simplicity, the implementation uses a fixed stride size of 64
tuples.

4.2 Decompression
Decompression of FOR64-encoded data is similar to standard FOR
decompression, where a reference value is added to the stored value
before writing it back. In the case of FOR64, the reference has to be
loaded from the header multiple times during the decompression
of one Data Block. The process also differs depending on whether
decompression is for a range or a match vector.

For a range, the appropriate reference is loaded from the header
and the values are decompressed until the value which belongs to
the next block of 64 tuples. The next tuples are then decompressed in
chunks, first loading the reference value and then doing 64 additions
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1 // Align the first block of 64
2 alignedFrom = min(r.begin + (64 - r.begin % 64), r.end)
3 for (i = m.begin , i != alignedFrom; ++i)
4 *( writer ++) = reader[i] + readerHeader[r.begin / 64]
5 // Decompress full blocks of 64
6 to64 = alignedFrom + (((to - alignedFrom) >> 6) << 6)
7 for (i = alignedFrom; i != to64;)
8 ref = readerHeader[i / 64]
9 for (j = i + 64; i != j; ++i)
10 *( writer ++) = reader[i] + ref
11 // Decompress the last block
12 for (i = to64; i != r.end; ++i)
13 *( writer ++) = reader[i] + readerHeader[to64 / 64]

Listing 4: Decompressing FOR64-encoded data over a range
of tuples.

1 for (i = r.begin , i != r.end; ++i)
2 ref = readerHeader[i / 64]
3 *( writer ++) = ref + reader[i]

Listing 5: Decompressing of FOR64-encoded data given a
match vector.
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Figure 7: Throughput of a full and selective scan on a col-
umn compressed using either the standard FOR or FOR64
implementations.

and write-backs. The last block, which may contain less than 64
tuples, is then handled separately again, as illustrated in Listing 4.

For match vectors, decompression occurs selectively for each
value whose index is in the match vector. Therefore, we load the
data point from the header belonging to the index and add the
stored delta. The exact implementation can be seen in Listing 5.

4.3 Comparison with standard FOR
We evaluated our approach by analyzing the compression factors
and decompression speeds of the ps_partkey column from the
partsupp table. The standard FOR implementation only compresses
to 16-bit integers, whereas FOR64 compresses to 8-bit integers.
As Figure 7 shows, range decompression over the entire column is
23% faster with FOR64 compared to the standard FOR implementa-
tion. Both implementations achieve similar speeds in the case of a
scan with 10% selectivity.

5 EVALUATION
We evaluated our implementations by comparing them to opera-
tions on uncompressed data or on data compressed using different
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Figure 8: Throughput of a full scan over l_orderkey for un-
compressed data and data compressed with various schemes.
For delta encoding, different stride sizes were tested.

schemes. We only look at the decompression speeds, since com-
pression should only happen once or rarely, while decompression
might happen any time analytics are performed on the data. All
benchmarks were performed on an AMD Ryzen 9 7900X 12-Core
Processor and are run single-threaded in our database system Um-
bra. The benchmarks involve performing a sum operation over the
compressed column to ensure the data is decompressed.

The benchmarks were conducted on the same column, which
was compressed using different methods:
Uncompressed: The colum is stored in uncompressed form.
Default: Umbra applies its compression logic to determine a possible
compression scheme, such as FOR and Dictionary encoding.
FOR64: The column is compressed using our new FOR64 approach.
Delta: The column is compressed using delta encoding.

For the delta encoding scheme, we additionally conduct experi-
ments on the effect of different stride sizes.

Full scan performance. We first looked at the performance of
our implementations for a full scan over the column l_orderkey
of the lineitem table. This column is compressed to 1-byte values
using both delta encoding and FOR64 encoding. Without these
additional compression schemes, the standard Umbra compression
uses FOR with a truncation to 2 bytes and, for some Data Blocks,
dictionary encoding.

For the delta encoding, the stride size parameter is crucial. A
stride size that is too small leads to a lower compression ratio,
while a stride size that is too large hinders parallel execution due
to increased workload per thread. Since at a stride size of ≤ 4 the
FOR encoding with 2-byte truncation occupies the same amount of
storage as a 1-byte delta encoding, we began with a stride size of
16 and then increased it by multiples of 4 until reaching the Data
Block size of 216 tuples. The results for a full unselective scan and
the storage sizes can be seen in Figure 8.

For a non-predicated scan, there is no performance difference
between data with a stride size of 1024 or less. This is because the
morsel size is also 1024 tuples, and the scan does not benefit from
intermediate values being stored within a range of a thread. Con-
versely, a stride size larger than 1024 leads to a drop in performance
since multiple threads redundantly decompress their morsels and
the dependencies are not sufficiently broken up.
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Figure 9: Throughput of scans with different selectivities over l_orderkey for uncompressed data and data compressed with
various schemes. For delta encoding, different stride sizes were tested.

Delta and FOR64 encoding achieve the best compression factor,
compressing by approximately a factor 4, which is twice as much
as before. Performance-wise, scans on the FOR and dictionary-
encoded data are as fast as the ones on delta-encoded data. Both
the uncompressed scan and the scan over FOR64-encoded data
achieve higher throughput due to SIMD vectorization. For the un-
compressed column, a vectorized memcpy is used. The main decom-
pression loop for FOR64 is simple enough that the compiler can
generate vectorized code for it. Since the decompression of the
delta-encoded data is more complex, the generated code remains
scalar.

Decompression with Match Vectors. We also looked at selec-
tive queries, where the predicate is on a different column than the
delta-encoded column. When executing selective queries that use
match vectors when decompressing, delta decompression performs
worse than all other methods, as shown in Figure 9.

This is due to the dependencies inside the delta-encoded column,
which turn a match vector decompression into a range decompres-
sion. While other schemes allow random access, where only the
necessary indices are accessed, delta compression requires decom-
pressing the entire range from the lowest to the highest index. This
means there is little difference in performance between a scan of
higher or lower selectivity. Since a thread also stays in its 1024 tuple
bound in the case of a match vector, i.e., the first and last index in
the match vector are never more than 1024 tuples apart, there is no
way of circumventing this for stride sizes ≥ 1024.

In contrast, FOR64 encoding does not suffer from this limita-
tion. It performs comparably to working with uncompressed or
FOR/dictionary-encoded data. FOR64 is 12–47% faster than the
uncompressed reference and 3–7% faster than the FOR/dictionary
reference.

Optimizing Match Vector extraction for Delta Compres-
sion. If the stride size is smaller than the morsel size, the match
vector extraction can be optimized by skipping ranges of values
whenever possible instead of decompressing each value sequentially.
Specifically, if the following match vector index is farther away
than the next data point in the header, these values are skipped.
This optimization can improve performance, as shown in Figure 10,
but its benefits are most noticeable with high selectivity and a small
stride size. Even with this optimization, performance remains 2.6
times worse than on a column using the FOR64 encoding.
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Figure 10: Throughput of scans with 10% and 1% selectivity
over l_orderkey for delta and FOR64-encoded data. For delta
encoding, stride sizes ≤ 210 use an optimization to avoid
unnecessary decompression.
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Figure 11: Throughput of TPC-H Q3 and Q9 using different
compression techniques.

Full Query Performance. Lastly we looked at full query per-
formance with TPC-H queries 3 and 9, which both work on the
compressed o_orderkey and l_orderkey columns. We compare
the FOR64 implementationwith the default, focusing solely on these
two differently compressed columns. Additionally, we also com-
pare these results to uncompressed data, where all data involved is
stored uncompressed. These benchmarks were done multithreaded
with 12 threads and the results can be seen in Figure 11.

The results are consistent with previous findings: compression
can enhance throughput, and the new FOR64 implementation per-
forms comparably or even slightly better than the old FOR imple-
mentation or dictionary encoding.

7



6 FUTUREWORK & CONCLUSION
We will now look at some possible improvements to our compres-
sion schemes and summarize our findings.

Runaway values. Both delta and FOR64 encoding enhance the
compression of columns that would otherwise be stored uncom-
pressed or with a worse compression ratio. However, even with
these new compression schemes, some columns, such as in the
JOB dataset, are still stored uncompressed. Often, the majority of
the deltas are very small because the data is almost sorted, but
occasionally, an unsorted value appears or a new range of sorted
values begin. For instance, in the movie_id column in movie_info,
there are 120382 deltas that do not fit in a signed 16-bit integer
and 337194 deltas that would not fit in a signed 8-bit integer, repre-
senting approximately 0.8% or 2.2% of all deltas. To compress these
columns, we could

(1) store outlier values with no connection to those values
around them (i.e., large deltas to their respective proceeding
and succeeding values) separately in larger integer types
and use a bitmap to identify their location, similar to NULL
values.

(2) choose different byte-widths for each 64-tuple chunk in
the FOR64 encoding, so only specific chunks are stored in
4 or 8-byte integers instead of an entire Data Block. This
approach would require an additional runtime lookup to
load the values correctly.

Conclusion. In this work, we implemented two new integer
compression schemes, delta encoding and FOR64 encoding, into
the Umbra database system. Both schemes perform better on cer-
tain integer data types than FOR and dictionary encoding. We can
achieve compression ratios up to 4 when compressing 4-byte un-
compressed data to 1-byte truncated data. While both schemes
offer similar compression ratios, delta compression suffers from
dependencies between values, making random access difficult to
implement efficiently. In contrast, the new FOR64 encoding avoids
this problem, offering slightly better performance than standard
FOR encoding and achieving much better compression. While the
full scan performance is comparable between delta and FOR64 en-
coding, delta encoding is 2.3-4.2× slower in highly selective scans.
Therefore, we recommend using a smarter FOR encoding approach
instead of delta encoding, as it achieves the same compression but
is easier to vectorize and supports random access.
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