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ABSTRACT
Autonomous vessel technologies are tested in the field on smaller
test-bed platforms, often referred to as sea drones, which are widely
used in a variety of applications and conditions. Development of
models with desired capabilities and improved performance char-
acteristics necessitates iterative testing followed by detailed exami-
nation of collected data. The data usually consist of time-stamped
records including vessel positions and associated measurements.
These records form vessel trajectories. Using an example dataset,
we delve into different aspects of autonomous vessel functionality
that developers may wish to analyse. Employing various visual
displays, interaction techniques, and basic computations, we inves-
tigate these aspects to provide insights into system performance.
We conclude by proposing a set of exploratory techniques aimed
at aiding system developers in evaluating the performance of their
devices.

VLDBWorkshop Reference Format:
Natalia Andrienko, Gennady Andrienko, Dimitris Zissis, Alexandros
Troupiotis-Kapeliaris, and Giannis Spiliopoulos. Techniques for interactive
visual examination of autonomous vessel performance. VLDB 2024
Workshop: Big Data Visual Exploration and Analytics (BigVis 2024).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
http://www.geoanalytics.net.

1 INTRODUCTION
In recent years, we see an increasing trend of using remotely oper-
ated, autonomous or semi autonomous vessels, in diverse applica-
tions, ranging from marine research to environmental monitoring
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[9] and maritime logistics [7]. These complex systems are initially
deployed on smaller boats (commonly referred to as sea drones),
used as test-beds for the technology. While industrially produced
sea drones are readily available on the market, specialised devices
are often required for research and educational purposes [4]. De-
signers and developers of such devices need to test them repeatedly
and analyse collected data to see whether the vessel performs as
desired, identify problems, and determine necessary adjustments.
Detailed analysis cannot be done without appropriate visualisation
of test data exposing different facets of drone movement and opera-
tion in spatial and temporal contexts. Often test datasets produced
are huge in volume, produced from several on board sensors, while
the analysis is time critical (e.g. divert away from danger). The
level of autonomy of these drones ranges from remote control to
complete autonomy, requiring only an operators intervention in
emergencies (hand-off-the-sticks). Drones designed for sea navi-
gation have some distinct characteristics to be considered during
analysis of their trajectories. More precisely, mobility data from sur-
face drones refer to two-dimensional movement. These drones are
only limited in their movement from the coastline or the presence of
in-water obstacles, and are not confined from a road-like network.
Moreover, the effect of the weather conditions is of high importance
in maritime operations, especially when compared with in-land
movement. External forces, like waves or currents, can easily manip-
ulate the drones’ movement and result in otherwise unexplainable
behaviour between consecutive messages. In this paper, we propose
interactive visual techniques designed to support diverse analysis
tasks of sea drone developers.

The tasks include:

• Investigate movement characteristics and sensor measure-
ment recordings from a single boat in space and time. This
includes detection of anomalies and unwanted behaviours,
such as boat malfunctions or weather-related disruptions
of its movement.

• Assess the degree of stability in performing repeated move-
ments and/or operations.
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• Detect and examine potential collision situations, in partic-
ular, during simultaneous movement of several vessels.

Respectively, we consider major data exploration and analysis
tasks, namely exploration of single trajectories, analysis of repeated
parts of movement, and analysis of collective movement. For each
of the tasks, we propose visual analytics approaches and identify
relevant data quality issues.

The following sections are organized as follows. First, we provide
an overview of related works regarding drone data and spatio-
temporal data visualisations. Then, we describe the available data
set and demonstrate how such data can be analysed. In the end, we
conclude with a summary of techniques necessary for supporting
data analysis, identifying gaps in coverage by the existing publicly
available tools.

2 RELATEDWORK
The work in [5] highlights a critical gap in the domain of drone
technology and robotics, emphasising the absence of visual analyt-
ics tools for effective analysis of multidimensional spatio-temporal
data. In essence, this deficiency poses significant challenges to
users seeking to monitor, comprehend, and control the behaviours
of individual drones and drone fleets. Analysis tools should facili-
tate exploration and analysis of drone telemetry, trajectory data,
environmental variables, and other kinds of information, thereby
enabling users to gain actionable insights into drone functioning.

Drones are produced by various companies, each employing
proprietary tools and data formats that lack compatibility, mak-
ing data sharing challenging. Consequently, competitions such as
autonomous boat race [12, 14] serve as valuable platforms for gath-
ering real-world datasets due to the limited availability of such data
from proprietary sources.

Drone data consist of sequences of time-stamped geographic
positions in 2D or 3D, annotated with measured attributes such as
speed and direction, as well as characteristics of the moving object
(e.g. weight or fuel consumption) and characteristics of the envi-
ronment (e.g. wind speed and direction, water current attributes
etc.) Such data are typical for mobility data science [10] and visual
analytics of movement [1], with variety of analysis methods pro-
posed in the literature. A framework for assessment of movement
data quality was proposed in [2] and implemented as a protocol
in a form of a Python library [6]. The protocol addresses missing
data, precision, consistency, and accuracy problems in respect to
spatial, temporal, and attributive data components on the level of
elementary data records, intermediate segments of trajectories, and
overall trajectories and sets of them.

3 THE AEGEAN RACE DATA
The 1st Aegean RoBoat Race (Autonomous Robotic Vessels Compe-
tition) took place in the island of Syros (Greece) in July 2022 [12].
The university-level competition was organised by the Intelligent
Transportation Systems laboratory of the University of the Aegean
and aimed to promote innovative ideas for smart shipping tech-
nologies. The student teams designed and developed autonomous
robotic vessels on their own [13]. They competed, under real sea
conditions, in speed, endurance and obstacle avoidance challenges,

where their vessels had to operate completely autonomously with-
out any interference by the users. Similar to a sailing regatta, the
first challenge had vessels to perform a single round trip, bounded
by three buoys, thus testing their speed capabilities on short, prede-
fined trips. The second, collision avoidance, aimed to demonstrate
the ability of the vehicles to detect, and effectively avoid, obstacles
on their path, including other moving vessels or static objects (scat-
tered buoys). Finally, the third challenge focused on the endurance
of the vessel and its systems for voyages of longer duration. For this
purpose, a round trip between two buoys was followed, with vessels
performing as many laps as possible in the extended time frame,
without stopping. The resulting data set consists of positional and
mobility data of 3 vessels during all 3 challenges (Table 1).

Table 1: The features of the extracted race data set and the
number of positions for each challenge.

Feature Description Units

Identifier
Including the vessel’s team name, the chal-
lenge in question and a unique increasing
number

Timestamp Reported time of each
positional message

UNIX epoch
format in sec-
onds

CoordinatesReported longitude and
latitude of each mes-
sage

EPSG: 4326

Speed Reported speed of the
vehicle at each point

kilometers per
hour (kph)

Heading Reported heading of the
vessel’s bow

degrees (0-360)

Challenge Positions (#)

Speed 987
Avoidance 1871
Endurance 4071
Total 6929

The data set has high temporal precision, with positions recorded
almost every second (Figure 1 shows an example trajectory), result-
ing in over 6900 positional reports (Table 1). However, using GPS
coordinates with only 7 decimal points lacks the precision needed
to accurately track movement in small areas when recording data
at a temporal resolution of about 1 second. This limitation can
lead to distortions on maps, such as checkerboard-like patterns,
and sudden fluctuations in derived movement metrics like speed,
acceleration, direction, and turns.

4 EXPLORATION OF A SINGLE TRAJECTORY
Possible objectives of a detailed exploration of a single trajectory
include inspection of the characteristics of the movement, position
recording, and measurements. The most common visualisation of
trajectories is by lines on a map, as in Fig. 2, left. An animated
map can show the progress of the movement over time but not
the overall shape of the trajectory. A space-time cube [8], as in
Fig. 2, right, shows the relative times of different segments of the
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Figure 1: Analysis of the regularity of the position recording.
The lengths of the time intervals between the recorded posi-
tions are represented by proportional sizes of circle symbols.
The largest circle correspond to a time gap of 23 seconds,
whereas the regular interval length is 1 second.

Figure 2: A single trajectory represented on a map (left) and
in a space-time cube (right). The time axis in the space-time
cube is oriented upwards.

trajectory, as well as the movement directions and speeds. The
speed in a trajectory segment is indicated by the inclination of
the corresponding line: the smaller the inclination, the higher the
speed.

Figure 3: Exploration of movement characteristics. Left:
speed measurements are represented by point colouring.
Right: deviations of themovement direction (computed from
consecutive positions) from the vessel heading (recorded dur-
ing the movement) are represented by proportional sizes and
colours of circle symbols. Orange symbolises deviations to
the right and blue to the left.

Figure 4: Selection of a relevant part of the trajectory by
means of temporal filtering,
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To explore the details of the position recording and sensor mea-
surements, it is useful to combine the representation of the tra-
jectory by a line with representing the recorded points by sym-
bols, such as dots. Sizes and/or colours of the symbols can encode
recorded measurements, as, for example, the speed in Fig. 3, left, or
computed variables, such as the time to the next point in Fig. 1. The
positions of the point symbols on a trajectory line indicate gaps in
measurements and reveal line segments resulting from interpola-
tion between known positions. Such estimations may significantly
differ from the unknown actual path.

Visualisation of speed and course data along a trajectory can
also give a hint about the impacts of wind and waves on the vessel
movement. Thus, we see on the map on the left of Fig. 3 that the
speed of the southward movement was notably higher than in
the movement to the north, which shows the impact of the wind
blowing from the north and northeast. The impact of the wind on
the vessel course can be explored by calculating and visualising the
differences between the recorded vessel heading and the movement
course computed from consecutive vessel positions. On the right
of Fig. 3, the deviations are represented by dot symbols with the
colour (blue or orange) encoding the direction of the deviation (left
or right of the heading) and size proportional to the amount of the
deviation, in degrees.

A necessary tool for interactive exploration of trajectory data
is time filter allowing selection of time intervals for viewing only
data generated in these intervals while the remaining data are
hidden. The work of a time filter is illustrated in Fig. 4, where it
was used to hide irrelevant parts of the trajectory that reflect the
vessel movements before and after the race. The filter was applied
to the data presented in Fig. 3. We see that the speed during the race
was mostly quite high and the deviations of the course from the
heading were low compared to the hidden parts of the trajectory
that were visible in Fig. 3. Still, the orange and blue colours of the
dot symbols signify the impact of the northern and northeastern
wind: the course slightly deviated to the right of the heading during
the southward movement and to the left during the northward and
westward movements.

In a similar way, one can explore any sensor measurements taken
by the vessel along the route. To summarise, basic techniques for
visual exploration of individual trajectories and associated point-
based measurements include representation of the trajectories by
lines on a map and in a space-time cube, using point symbols for
showing the locations of the recorded trajectory points and any
attributes associated with the points, and time filter for selection of
time intervals and corresponding trajectory parts to focus on.

5 EXPLORATION OF REPEATED MOVEMENT
During development and testing, drones often need to perform re-
peated tasks, following the same pre-defined route. Some variations
of the route may occur due to changes in context such as weather
conditions, activities of the drone itself, other events that happened
nearby (e.g. proximity to stationary obstacles or other moving ob-
jects) etc. Examples of such data have been collected during the
so-called endurance race, see Figure 5. Similarly to Figure 2, the
space-time cube in the middle shows dynamics of the 3 trajectories.

Figure 5: Endurance race: trajectories of the 3 drones on the
map (top) and map space-time cube (middle and bottom).

In the bottom, trajectories are divided into repeated fragments and
their starting times are aligned.

Analysis of repeated movement is not limited to purely spatial
and spatio-temporal shape matching. In addition, it is necessary
to study the dynamics of attributes for the whole trajectories and
their dynamics within the trajectories. Thus, by computing average
speeds over multiple fragments we observed gradual speed decrease
over the sequence of loops for each drone, indicating their degrad-
ing performance. More detailed analysis can be done using time
series displays, as shown in Figure 6. Such displays are suitable for
understanding the overall dynamics of movement in the repeated
fragments and for identifying times and locations of speed changes,
as well as sporadic fluctuations. In further analysis, these patterns
can be matched to context data (e.g. weather attributes) or events
of proximity to stationary obstacles or other vessels.
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Figure 6: Endurance race: dynamics of speeds over multi-
ple loops. The display on top shows dynamics over time;
segmented time bars in the middle align starts of all loops;
trajectory wall display [3] in the bottom shows speeds in
their spatial context.

6 EXPLORATION OF INTERACTIONS
Here we focus on the task of detecting and exploring events of
close approach of vessels to other static or moving objects; we
shall call such events interactions [11]. Interactions can be detected
by computing the minimal distance from each point of a vessel
trajectory to the boundary or location of another object at the time
of attaining this point.

In computing the distance to a moving object, it is necessary
to take into account the possible differences between the time
moments when the locations of the given vessel and the other object
were sampled. Thus, for a vessel position measured and recorded
at time moment 𝑡 there may be no position in the trajectory of
another moving object having exactly the same time reference.
Therefore, in computing the distances, it is necessary to take a
temporal buffer [𝑡 − 𝜖, 𝑡 + 𝜖] around each position of the vessel
trajectory, find the points from the other trajectory where times fit
in this time interval, and compute the distances to all these points.
The temporal threshold 𝜖 is chosen based on the coarsest temporal
resolution of the position recording among all trajectories involved
in the calculation.

To detect close approaches, it is also necessary to define what
distance between objects can be treated as a close approach, i.e., to
set a distance threshold 𝛿 . It is chosen depending on the sizes of
the vessel and the objects that can be approached during the vessel
movement.

As an example, we show results of detecting interactions between
two autonomous vessels during a race using the threshold settings
𝜖 = 5 seconds and 𝛿 = 1 m.

Exploration of detected interactions requires them to be repre-
sented visually on a map, as, for example, in the middle of Fig.7. The
points of close approach are marked by dot symbols and connected
to the corresponding points from the other trajectory by lines. An-
other visual representation is a space-time cube, as in the lower
part of Fig.7. It shows the approximate relative times of different
interactions.

However, occlusions and line intersections in both the map and
the cube complicate the examination of the details of the interac-
tions. This problem can be solved using time filtering, as illustrated
in Fig. 8. For convenience, a time interval containing one interaction
can be selected using a mouse operation within the map display.

7 DISCUSSION
By considering the example data set of the Aegean boat race, we
formulated analysis tasks that are necessary to address during
the development and testing of autonomous vessels. To support
these tasks, the following computational and visual techniques are
necessary.

• General infrastructure:
– Basic tools for composing trajectories from sequences

of time-stamped positions, calculation of derived at-
tributes such as point-wise distances, speeds, time lags
etc.

– Tools for assessing data properties, including identifi-
cation of omissions (e.g. long intervals between suc-
cessive points), errors in positions and measurements,
and outliers, as proposed in [2, 6].
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Figure 7: Interactions between two autonomous vessels dur-
ing a race. Top: a table describing the detected interactions.
Middle: points of close approach are marked on a map. An
enlarged map fragment is shown on the right. Bottom: the
trajectories and points of close approach are displayed in a
space-time cube.

– Control of consistency of sampling rates and spatial
resolution through histograms.

– Temporal filtering tools enabling focused exploration
of data subsets from selected time intervals.

• Analysing single trajectories:
– Tools supporting analysis of trajectory attributes e.g.

on time graphs.
– Visual representation of trajectories and point-related

attributes on maps and in a space-time cube.
• Analysing repeated fragments of trajectories:

– Tools for dividing trajectories into repeated fragments,
including interactive (e.g. selection of division points
or areas) and computational (e.g. calculation of dis-
tance to the selected points) techniques.

– Calculation of aggregated characteristics of fragments
(duration, speed, etc.; average values and indicators of

Figure 8: One interaction has been selected for inspection by
means of time filtering,

variation) and visual tools for their analysis (e.g. bar
charts, tabular representations).

• Analysing interactions:
– Computational detection of interactions within given

spatial and temporal thresholds.
– Visual representation of interactions in space (map),

time (time line) and space-time (space-time cube), with
a possibility to get an overview and then access details
on demand.

Some of the listed techniques are available in open-source im-
plementations such as the protocol for identifying problems in
continuous movement data [6], while others exist only in propri-
etary research prototypes (e.g. in V-Analytics [1]) and are difficult to
access. Extension of open-source libraries is a challenge that needs
to be addressed for supporting development of autonomous vessels.
There are several complications that may prevent easy integration
of required methods:

• While some of the techniques can be effectively used in
static or low-interaction modes, others such as space-time
cube require interactivity which is hardly accessible in
Python implementations.

• In addition to analysis of earlier collected data, streaming
settings pose further challenges to implementations.

8 CONCLUSION AND FUTUREWORK
This work described some of the preliminary steps into the ex-
ploratory analysis techniques aimed at supporting sea drone oper-
ators and developers in evaluating and understanding the perfor-
mance of their systems. As the focus moves towards the operator
side and the design of decision support tools that can support real
time decision making and awareness, the big data challenges are
several orders of magnitude more complex. Future work will be
focused on analysis such data in large to support the decision maker
(operator) in critical situations.
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