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ABSTRACT
Progressive visual analytics enable data scientists to efficiently

explore large datasets and examine progressive results with low la-

tency. Most progressive visualization frameworks use a progressive

query processing module that controls the quality of the results

and then feeds these results into a visualization module. The goal is

to avoid poor-quality progressive results which could mislead data

scientists. This method misses some optimization opportunities as

it improves the quality of the intermediate result while ignoring

how this result affects the final visualization. This work presents

a work-in-progress quality-aware progressive visualization input

control component, named QPV . The key idea of the proposed

framework is to integrate the visualization module into the pro-

gressive query results so that the quality control takes into account

the final visualization. With limited computational resources, QPV
solves an optimization problem to allocate resources and alleviate

the misleading effects in the progressive plots.
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1 INTRODUCTION
Progressive data processing is a popular tool for data scientists to

explore large datasets [2, 4, 9, 17, 18]. It splits large datasets into

multiple small batches and progressively processes each data batch.

Each progressive round finishes quickly to keep users engaged

and active. Users often examine the progressive results by visualiz-

ing them. Without further processing, the progressive results can

be visualized into scatterplot [1] and line chart [16]. Choropleth

map [14, 15], bar chart [11], pie chart [8, 17], trendline [13] and

heatmap [3, 6, 13]. Users observe the progressive results to start fur-

ther processing or make decisions on the currently running query.

Poor-quality progressive results might negatively impact further

analyses and mislead data scientists, leading to cognitive biases [12].
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Therefore, producing progressive results with good quality is the

most important task in progressive processing frameworks.

Most frameworks define result quality as the similarity between

the progressive results and the complete results [1–4, 13, 17]. We

divide existing frameworks into three categories based on qual-

ity control strategies. Frameworks in the first category [2–4, 9]

optimize the progressive input before query processing based on

pre-defined input computation goals, such as the data distribution

of the progressive inputs or preference score function. Frameworks

in the second category [1, 13, 18] optimize the progressive results

during query processing until the results satisfy the desired qual-

ity bound, such as error bound or specific sampling condition. A

recently proposed progressive join framework, named QPJ [17],

considers both progressive input and output and belongs to the third

category. It batches and partitions the progressive input following

the same strategies as the first categorized frameworks. The output

control of QPJ temporarily hides some results in memory from

the current round to keep the output progressive results having a

similar result distribution to the estimated complete result.

In progressive visualization, result quality always links to the

values used to produce the plot. Existing frameworks aim to com-

pute good estimated aggregated values to the complete results and

evaluate the accuracy of estimations [3, 5, 6, 11, 13]. The progressive

results are considered as samples of the complete results. Statistical

methods, such as confidence intervals, are commonly used metrics

to evaluate the accuracy of progressive results. However, when the

aggregation query includes a GroupBy clause and the user is look-

ing for rankings among the groups, the user might still be confused.

Because the confidence intervals of different groups might overlap,

the user cannot determine the exact rankings.

Consider a sociologist who wants to analyze the usage of social

media in the United States. The sociologist applies a progressive

spatial join query on the Tweets dataset and US-States dataset and

visualizes the results in the choropleth map shown in Figure 1. The

Tweets dataset contains a set of tweet objects and each object has a

spatial point attribute as the posted location. The US-States dataset

consists of polygons and each polygon represents the geographical

boundaries of a state. The progressive results are choropleth maps

with five classes based on the number of tweets in each state. After

10 seconds, the system produces 10% of the results. The confidence

intervals of several states in adjacent classes overlap with each

other so that the system cannot assign them to a single class. There-

fore, the system visualizes them with unsure colors. In this example,

we apply two different input control strategies. The downside re-

sults are computed based on a regular progressive input builder

and the upside results are computed based on our proposed QPV .
QPV analyzes the misleading information in the visualizations and
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Figure 1: Progressively joining Tweets dataset with US-State dataset. The downside progressive results are computed from the
regular progressive input control method. The upper progressive results are computed from our proposed method QPV . Note:

The joined US-State dataset contains Washington, D.C. and 48 states.
computes a better progressive resource allocation plan. Intuitively,

QPV controls the system to process more data in the unsure classes

area. As we can see in Figure 1, the area of polygons with unsure

classes is reduced sooner in the QPV ’s progressive results than the

baseline method’s progressive results.

To alleviate the misleading effects, we can try to shrink the

confidence intervals that overlap with others in the next round. A

sampling algorithm [7], RapidSampling, also considers a similar

approach to shrink the confidence intervals and make the trends of

the aggregation values clearer. However, this algorithm is designed

for aggregation in a single dataset and cannot be applied to input

control for multiple datasets and progressive processing control.

In this work, we propose a quality-aware progressive visualization

input control component named QPV , which allocates computation

resources for the next progressive computation round based on

visualization results of the current round. QPV can be integrated

into the existing framework to replace its input control component.

We consider the groups with uncertainty visualization in the plots

as the target groups. For example, bars with overlapping heights in

the bar chart and the classes with unsure colors in the choropleth

map. After each progressive join computation, QPV collects the sta-

tistics of the inputs and outputs and estimates the input data sizes

for the target groups. With bounded computation resources, QPV
solves an optimization problem to allocate the resources wisely so

that the misleading effects can be reduced in the next round.

2 PROGRESSIVE JOIN VISUALIZATION
FRAMEWORK OVERVIEW

Considering big data scenarios, most progressive frameworks [2,

4, 17] are designed for distributed settings. Figure 2 shows two

types of distributed progressive join visualization frameworks. The

first adopts the quality-aware progressive visualization QPV as the

progressive input builder (Figure 2 (a)). The second uses the regular

progressive input builder (Figure 2 (b)). In this section, we introduce

how these two types of progressive input builders work.

Framework overview. We summarize four common compo-

nents from the existing frameworks, which are progressive input

builder in orange and black, partitioners in blue, processors in

green, and progressive output builder represented as a visualization
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Figure 2: Different progressive join visualization
frameworks which adopt the QPV as progressive input
builder (a) and the regular progressive input builder (b).

box. Given the input datasets, join query, and parameters such as

the number of progressive rounds and partitions, partitioners load

input datasets and send partitioned inputs to processors. The pro-

cessors process the join query and send progressive results to the

progressive output result builder. In visualization frameworks, the

results are plots drawn from progressive join results. The progres-

sive output result builder constructs progressive plots and returns

them to the user.

The regular input control component. Regular progressive
input builders decide the size of progressive input before the query

processing based on batching strategies such as equal-size batching.

Frameworks partition the input data based on the join key and

make sure the progressive inputs have a similar data distribution

to the whole dataset. In Figure 2 (b), the size ratio of the input

batch size for each partition is the same. When processors finish

the computation and the plot is returned to the user, the framework

starts the next progressive round. To evaluate the quality of the

progressive results, we can compute the confidence intervals based

on different statistical methods [3, 5, 6, 11, 13].

The quality-aware progressive visualizationQPV . Based on
plot type and join query, we extract the target groups with overlap-

ping confidence intervals and contain the misleading information

in the progressive plots. We summarize two types of misleading

information. The first type relates to the ranking in the plot, such as

assigning the colors in choropleth maps and heatmaps. The second

type relates to the ranking in the input join query, such as plotting

top-k. QPV takes the input and output statistics of the target groups
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to compute input batch sizes for all partitions in the next round.

Different from the regular input control component, QPV combines

the information from the plot of the current round to allocate the

computation resources for the next progressive round.

3 PROGRESSIVE INPUT BUILDER
QPV solves an optimization problem to allocate the computation

resources for the next progressive round. The resources refer to

the number of input items in each partition. The goal is to allocate

more resources to compute more results from the uncertainty areas.

3.1 Confidence Interval Computation
Each progressive round produces part of the complete results and

the progressive results can be viewed as samples of the complete

results. In each round, we compute the confidence intervals of

the aggregated values as the quality measurement and also draw

the confidence intervals in the plots returned to users. We apply

Hoeffding’s Inequality to compute the confidence intervals.

Estimated Aggregation Results. In the following, we intro-

duce the estimation analysis for joining two datasets. Assume we

join dataset 𝑆 with dataset 𝑅, group the results based on GroupBy

keys, and return the estimated aggregation value of each group in

the complete join results. We also assume the GroupBy keys are

only in dataset 𝑆 and the number of GroupBy keys is 𝑞. Then, there

will be 𝑞 aggregation results {𝑐1, ..., 𝑐𝑞} in each round. Based on the

ratio of the total input size to the processed input size, we estimate

the aggregation values of the complete results {𝐶1, ...,𝐶𝑞}:
𝐶 𝑗 = 𝑐 𝑗 ·

(
|𝑆 𝑗 | · |𝑅 |

)
/
(
|𝑆𝑛 𝑗

| · |𝑅𝑛 |
)
, (1)

The |𝑅𝑛 | is the processed input size up to the current round in

dataset 𝑅, |𝑆𝑛 𝑗
| is the processed input size of group 𝑗 to the current

round in dataset 𝑆 , |𝑅 | is the total input size in dataset 𝑅, and

|𝑆 𝑗 | is the total input size of group 𝑗 in dataset 𝑆 . Since dataset 𝑆

contains the GroupBy key and dataset 𝑅 does not have, therefore,

the estimation statistics of the two datasets are slightly different.

The estimation method in Equation 1 is extended from the ripple

joins [5] to include the GroupBy clause.

Confidence interval computation. We apply Hoeffding’s

bound, which is a distribution-free bound, to compute the confi-

dence interval of the estimations. The Hoeffding’s theorem states

that with probability at least 1 − 𝜀,��𝐶 𝑗 − 𝐸 [𝐶 𝑗 ]
�� ≤ (𝑏 𝑗 − 𝑎 𝑗 )

√︁
(log(2/𝜀))/2𝑛 = 𝑡, (2)

where 𝜀 is the error bound of estimations, 𝐶 𝑗 is the estimated av-

erage value computed based on Equation 1, 𝐸 [𝐶 𝑗 ] is the expected
value of the average value which is the average value of the com-

plete results, 𝑎 𝑗 and𝑏 𝑗 is the lower and upper bound of the GroupBy

key 𝑗 ’s value, and 𝑛 is the sample size which is the join result size

in group 𝑗 . For COUNT aggregation, 𝑏 − 𝑎 is 1. For SUM and AVG

aggregation, the values of 𝑎 and 𝑏 should consider the value bound

of the GroupBy key 𝑗 . Let 𝑡 represent the right side of Equation 2,

the confidence interval (𝐶𝐼 ) of the estimated aggregation value is

[𝐶 𝑗 − 𝑡,𝐶 𝑗 + 𝑡] and the length of 𝐶𝐼 is 2𝑡 .

3.2 Progressive Input Size Computation
In this subsection, we introduce definitions to define the computa-

tion resources allocation problem.

Assume there are ℎ join keys K={𝑘1, ..., 𝑘ℎ} in the two joined

datasets 𝑆 and 𝑅 and 𝑛 processors P={𝑃1, ..., 𝑃𝑛} in the system, we

divide the join keys K into 𝑛 disjoint sets and let each processor

handle one partitioned subset from each dataset.

Given an integer 𝑑 as the size of the processing unit, we split

each 𝑆𝑖 into |𝑆𝑖 |/𝑑 equal-size processing units. We further divide the

|𝑆𝑖 |/𝑑 processing units into 𝑦 input batches, where 𝑦 is the number

of progressive rounds. For example, a partition contains 100 items,

the size of the processing unit is 5, and the number of progressive

rounds is 10. Each partition contains 100/5=20 processing units and
each input batch contains 20/10=2 processing units. We consider

the computation resources as the number of processing units 𝐵

in each progressive round. The computation resources allocation

problem is to decide how many input batches from each partition

to process in the next round.

Assume there are 𝑞 GroupBy keys G={𝑔1, ..., 𝑔𝑞}. The progres-
sive plots are constructed based on the estimated aggregation values

{𝐶1, ...,𝐶𝑞} computed by Equation 1. GroupBy keys are visualiza-

tion units, such as the bars in bar charts, the polygons in choropleth

maps, and the pixels in heatmaps. Although the join keys in one

partition are disjoint with the join keys in other partitions, the

GroupBy keys of different partitions are not disjoint.

For each estimated aggregation value 𝐶 𝑗 , we compute its confi-

dence interval by Equation 2. The choropleth maps and heatmaps

rely on the ranking of the aggregation values to assign the color.

However, if the groups have overlapping confidence intervals, we

do not know how to rank them. We refer to them as target groups

and their visualizations as uncertainty areas in the plots.

Assume there are𝑚 target groups T ⊆ G, where T={𝑔1, ..., 𝑔𝑚}.
We first define the uncertainty of each group and compute the load-

ing factor, which represents the necessity of a group to return more

results in the next batch. The uncertainty of a group 𝑗 comes from

two aspects: the length of the confidence interval of the estimated

aggregated value (computed by Equation 2) and the size of visual-

ization unit 𝑉𝑖𝑠 𝑗 in the plot. The area of polygons and pixels is the

visualization unit for choropleth maps and heatmaps. The height

of bar is the size of the visualization unit for bar charts.

Definition 1 (Uncertainty𝑢𝑛 𝑗 and Loading Factor 𝑙 𝑓𝑗 ). We
define the uncertainty 𝑢𝑛 𝑗 and loading factor 𝑙 𝑓𝑖 as follows:

𝑢𝑛 𝑗 = 𝑡 𝑗 ·𝑉𝑖𝑠 𝑗 , and 𝑙 𝑓𝑗 =
𝑢𝑛 𝑗∑𝑡
𝑗=1 𝑢𝑛 𝑗

(3)

Definition 2 (Result Rate 𝑅𝑅𝑖, 𝑗 ). For partition 𝑖 , given aggrega-
tion values of the target groups {𝐶𝑖,1, ...,𝐶𝑖,𝑚} and {|𝑆𝑛𝑖,1 |, ..., |𝑆𝑛𝑖,𝑚 |}
and |𝑅𝑛,𝑖 | as the amount of data has been processed, the result rate of
group 𝑗 in partition 𝑖 is 𝑅𝑅𝑖, 𝑗 = 𝐶𝑖, 𝑗/

(
|𝑆𝑛𝑖,𝑗 | · |𝑅𝑛,𝑖 |

)
.

Definition 3 (Loading Score𝐿𝑆𝑖 ). Given loading factors {𝑙 𝑓1, ..., 𝑙 𝑓𝑚}
and result rates {𝑅𝑅𝑖,1, ..., 𝑅𝑅𝑖,𝑚}, the loading score of partition 𝑖 is
𝐿𝑆𝑖 =

∑𝑚
𝑗=1

(
𝑙 𝑓𝑗 · 𝑅𝑅𝑖, 𝑗

)
.

Given a set of result tuples with the same join key 𝑘 , GroupBy

keys of different result tuples might be different. If a result tuple

has join key 𝑘 and GroupBy key 𝑔, we say 𝑘 is linked to 𝑔.

Definition 4 (Diversity Score 𝐷𝑖𝑣𝑖 ). The diversity score of the
join keys in partition 𝑖 for group 𝑗 is:

𝐷𝑖𝑣𝑖, 𝑗 =
the number of join keys linked to group j

the total number of join keys
. (4)
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Given loading factors {𝑙 𝑓1, ..., 𝑙 𝑓𝑚} and diversity score {𝐷𝑖𝑣𝑖,1, ..., 𝐷𝑖𝑣𝑖,𝑚},
the diversity score of partition 𝑖 is 𝐷𝑖𝑣𝑖 =

∑𝑚
𝑗=1

(
𝑙 𝑓𝑗 · 𝐷𝑖𝑣𝑖, 𝑗

)
.

Given the progressive results computed from partition 𝑖 and

the target groups T , we compute the score 𝑠𝑖 as its “contribution”

to return more results in T . 𝑠𝑖 consists of loading score 𝐿𝑆𝑖 and

diversity score𝐷𝑖𝑣𝑖 , where 𝑠𝑖=𝜆 ·𝐿𝑆𝑖+(1−𝜆) ·𝐷𝑖𝑣𝑖 . The 𝜆 (0 ≤ 𝜆 ≤ 1)

is a weight factor to tune importance between 𝐿𝑆𝑖 and 𝐷𝑖𝑣𝑖 . Next,

we formally define the computation resource allocation problem.

Definition 5 (Computation Resources Allocation Problem).

Given 𝑛 partitions P={𝑃1, ..., 𝑃𝑛}, progressive visualization results,
𝑚 target groups T={𝑔1, ..., 𝑔𝑚}, importance factor 𝜆, the number of
available input batches 𝑦, and the computation resources 𝐵, the goal
of QPV is to find the optimal solution to allocate 𝐵 processing units
to P which maximizes the overall score of all the partitions:

max

𝑛∑︁
𝑖=1

𝑠𝑖𝑥𝑖

s.t.

𝑛∑︁
𝑖=1

𝑥𝑖 ≤ 𝐵 and 𝑥𝑖 ∈ {0, 1..., 𝑦},

𝑠𝑖 = 𝜆 · 𝐿𝑆𝑖 + (1 − 𝜆) · 𝐷𝑖𝑣𝑖
The output of the computation resources allocation problem is 𝑛

integer numbers {𝑥1, ..., 𝑥𝑛}, where each 𝑥𝑖 represents the number

of processing units of partition 𝑖 in the next progressive round.

3.3 Preliminary Experimental Results
We designed two algorithms for QPV . The first algorithm detects

the target groups. It ranks the estimation objects in descending

order, where each estimation object consists of an estimation and

confidence intervals. For each object in the class boundary, the

algorithm finds the objects whose confidence interval overlaps with

the confidence interval of the boundary object. The overlapping

objects are in the target groups.

The second algorithm solves the resource allocation problem.

The algorithm sorts the partitions in descending order based on the

partition score and greedily selects the partitions with the largest

score until reaching the budget 𝐵. To avoid loading inputs only from

a few partitions, we also set an empirical limit on the maximum

number of batches to process in each progressive round.

Figure 3 shows a set of preliminary experiment results. In this

experiment, we use QPV and the regular input control component

to process a progressive equi-join query on the samples of eBird

dataset [10] and the USCities dataset. The eBird dataset contains 5

million records and the USCities dataset contains information about

cities and states from 51 U.S. states. The number of progressive

rounds is 20. The progressive results are choropleth maps. We plot

the ratio of the uncertainty area in each progressive map (similar

to the example in Figure 1). The x-axis shows the progressive rate

and the y-axis shows the ratio of uncertainty area. In Figure 3, we

demonstrate that the ratio of the uncertainty area in the map is

smaller by applying QPV .

3.4 Future Works
QPV is work-in-progress. We will expend it in the following aspects:

1. Input Parameters: We will support other types of plots that

rely on aggregation queries, such as bar charts. The current visu-

alization groups are decided based on GroupBy keys. In addition
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Figure 3: Compare the total uncertainty area ratio (%) in
choropleth maps computed by QPV and baseline method.
to one group key, we will also consider multi-attribute clustering

and algorithm-based clustering. 2. Problem Settings: The current
resource allocation problem assumes the join partitions and aggre-

gation groups are fixed. We will also consider dynamic updates to

the partitions so that the workloads of all partitions are balanced. 3.
Solutions to the Problem: The solution to the current problem is a

simple greedy algorithm based on the partition score. We will refine

the solution to incorporate the new problem settings. We will also

consider other statistical methods to compute the confidence inter-

vals of the estimated aggregation values. The Hoeffding’s bound

is quite wide when the data range is wide. A wide confidence in-

terval might overlap with multiple groups so that multiple groups

will be added to the target groups. 4. Evaluations:We will verify

QPV with real-world datasets and join queries. In addition, we are

looking for other input control methods to compare with QPV .
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