
Corra: Correlation-Aware Column Compression

Hanwen Liu
hanwen.liu@tum.de

TUM

Mihail Stoian
mihail.stoian@utn.de

UTN

Alexander van Renen
alexander.van.renen@utn.de

UTN

Andreas Kipf
andreas.kipf@utn.de

UTN

ABSTRACT

Column encoding schemes have witnessed a spark of interest with

the rise of open storage formats (like Parquet) in data lakes in

modern cloud deployments. This is not surprising – as data volume

increases, it becomes more and more important to reduce storage

cost on block storage (such as S3) as well as reducememory pressure

in multi-tenant in-memory bu�ers of cloud databases. However,

single-column encoding schemes have reached a plateau in terms

of the compression size they can achieve.

We argue that this is due to the neglect of cross-column corre-

lations. For instance, consider the column pair (city, zip_code).

Typically, cities have only a few dozen unique zip codes. If this

information is properly exploited, it can signi�cantly reduce the

space consumption of the latter column.

In this work, we depart from the established path of compress-

ing data using only single-column encoding schemes and intro-

duce several what we call horizontal, correlation-aware encoding

schemes. We demonstrate their advantages over single-column en-

coding schemes on the well-known TPC-H’s lineitem, LDBC’s

message, DMV, and Taxi datasets. Our correlation-aware encoding

schemes save up to 58.3% of the compressed size over single-column

schemes for lineitem’s receiptdate, 53.7% for DMV’s zip_code,

and 85.16% for Taxi’s total_amount.

CCS CONCEPTS

• Information systems→ Data compression.

KEYWORDS

column correlation, column encoding schemes, data compression

VLDBWorkshop Reference Format:

Hanwen Liu, Mihail Stoian, Alexander van Renen, and Andreas Kipf. Corra:

Correlation-Aware Column Compression. VLDB 2024 Workshop: 2nd

Workshop on Cloud Databases.

1 INTRODUCTION

Column encoding schemes lie at the heart of the storage layer of

any database system. There are several single-column encoding

schemes that are by now already ad-hoc: Frame-of-Reference (FOR),

Frequency, Dictionary, Delta, Run-Length Encoding (RLE), FSST [5],

among many others (see, e.g., Lemire and Boytsov [12]). However,

data in the wild is highly correlated and the current encoding

schemes do not exploit this fact. Only recently Lyu et al. [15] made

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

shipdate commitdate

1992-01-02 1992-03-10

1998-12-01 +2369

2024-06-08 +9417

(a) Vertical encodings (prior)

shipdate commitdate

1992-01-02 +68

1998-12-01 -88

2024-06-08 +8

(b) Horizontal encodings (ours)

Figure 1: Vertical (prior work) vs. horizontal encodings (ours):

Exploiting the correlation between date columns in TPC-H’s

lineitem table for the column pair (shipdate, commitdate).1

Instead of encoding commitdate w.r.t. to its own values (verti-

cally), it is better to encode it w.r.t. shipdate (horizontally).

The dashed arrows show the corresponding dependency.

the case for correlation-aware bitmaps, showing that one can indeed

lower the space requirement while maintaining a decent runtime

overhead during decompression.

In this work, we propose Corra, a uni�ed collection of novel

horizontal, correlation-aware column encoding schemes that re-

duce the compressed size beyond what is possible with current

single-column encoding schemes, while maintaining negligible

query runtime overhead. This is in contrast to previous work that

relies on vertical column encoding schemes, i.e., limited to the en-

coded column alone, as we argue next.

Related Work. There is an extensive line of research focusing on

single-column encoding schemes, with a recent spark of attention

with works such as BtrBlocks [9] and FastLanes [3]. With BtrBlocks,

Kuschewski et al. [9] argue that open formats such as Apache’s

Parquet tend to be rather ine�cient in terms of decompression time,

resulting in scans begin CPU-bound, thus increasing query time.

To address this, they employ several encoding schemes for di�erent

data types, which can also be applied recursively. FastLanes [3]

enables e�cient vectorized execution by cleverly reordering tuples

to maximize the e�ect of SIMD operations. BitWeaving [13] takes

a di�erent approach by interleaving the bits of the column values.

Orthogonal to these, FSST [5] and Fast & Strong [11] specialize in

improved string compression, while other works focus on �oating-

point compression [4, 14]; in particular, these are orthogonal to

our work since we do not constrain the encoding scheme of the

reference column (see the upcoming section for a de�nition).

Trummer [19] investigates whether LLMs can infer correlations

from the schema itself. Correlations have been considered for in-

dexes to improve query processing, namely Kimura et al. [8] intro-

duce the Correlation Map as a secondary index, concept later gener-

alized in Cortex [16]. Instead, we exploit correlations for data com-

pression. We thus depart from the established, well-trodden path

of compressing data using only single-column encoding schemes

and introduce correlation-aware encoding schemes that push the

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

boundaries of what is possible with single-column coding schemes

in terms of compression size.

2 HORIZONTAL ENCODING SCHEMES

The key idea behind horizontal column compression is to express

the values of one column, which we call the di�-encoded column, in

terms of the other, which we call the reference column. The intuition

is that this reduces the range of values the di�-encoded values can

take, so the bit-width required to compress the column decreases

accordingly. In the following, we propose two correlation-aware

encoding schemes that follow this paradigm, and present real-world

datasets which these schemes are applicable to. In addition, we show

that correlation-aware compression is not bound to using a single

reference column and extend the di�-encoding paradigm tomultiple

reference columns.

2.1 Non-hierarchical Encoding

Let us take a closer look at the table lineitem of the well-known

decision support benchmark TPC-H [18]: The table, which stores

detailed information about each line item in a customer order, has

three date-valued columns, corresponding to the three relevant

dates in a supply chain: shipdate, commitdate, and receiptdate.

In particular, it is a known fact that the di�erences between these

dates are bounded, namely at most several months apart from each

other. Such a correlation can be indeed exploited: Indeed, instead

of storing the column commitdate as is, one can instead store the

di�erence to shipdate, hence reducing the bit-width required to

store it; similarly for receiptdate. To see why this is the case,

consider Fig. 1, where we illustrate this case. We �x shipdate

and commitdate as the reference and di�-encoded columns, re-

spectively. Hence, we compute the di�erence of commitdate to

shipdate. This results in smaller numbers in the commitdate col-

umn, thus reducing the necessary bit-width to store it.

Optimal Di�-Encoding. The careful reader may be interested in

how we can actually con�gure which columns to di�-encode and

which to compress using standard single-column compression. We

use a strategy similar to the one used in CorBit [15]. To this end,

consider Fig. 2, which visualizes our method.2 The vertices repre-

sent the column, so for each directed edge 0 → 1, we measure what

the compressed size would be if we di�-encoded 0 w.r.t. 1. Using a

cost-based greedy strategy, we can then decide which columns will

be reference columns andwhich will not. In our case, l_shipdate is

the reference column for both l_commitdate and l_receiptdate,

saving 82.5 MB over just bit-packing the individual columns (TPC-

H, SF 10); the exact numbers can be found in Tab. 2. Naturally,

considering cases where a di�-encoded column becomes itself a

reference column is an interesting future work (we did not focus

on this type of di�-encoding con�guration).

Outlier Detection. Note that our scheme is bene�cial when there

is a bounded di�erence in the di�-encoded column. In the case

where the di�erences are not always bounded, we also design and

implement an outlier storage architecture. This will be particularly

useful when extending to the case of multiple reference columns

1We add a custom row to our TPC-H sample.
2To avoid clutter, we round up the exact numbers in this �gure.

ship

90 MB

commit

90 MB

receipt

90 MB

60 MB

60 MB

37.5 MB

60 MB

60 MB

45 MB

ship

90 MB

commit

60 MB

receipt

37.5 MB

Figure 2: Detecting the optimal di�-encoding con�guration

in TPC-H (SF 10) for its three date-valued columns. The

weight of an 0 → 1 edge is the size of column 0 when di�-

encoded w.r.t. reference column 1.

city zip-code

Cortland 13045

Naples 34102

Naples 34112

Naples 34102

NYC 10016

NYC 10001

(a) Without di�-encoding

city zip-code

0 0

1 0

1 1

1 0

2 0

2 1

(b) With di�-encoding

Metadata for hierarchical encoding:

city_dict: {0 : "Cortland", 1 : "Naples", 2 : "NYC"}

zip_codes: [13045, 34102, 34112, 10016, 10001]

o�sets: [0, 1, 3]

Figure 3: Hierarchical encoding: Exploiting the correlation

of the column-pair (city, zip-code) in the DMV dataset. The

metadata contains an array of zip-codes along with an array

of o�sets for each individual city starting from. The city

dictionary is used to reconstruct the city column.

(discussed in Sec. 2.3). Notably, in the datasets we evaluated on, the

simple case of single reference columns did not require any special

outlier handling.

2.2 Hierarchical Encoding

The next correlation-aware encoding scheme we introduce is hier-

archical encoding, targeting column pairs that are endowed with a

natural hierarchical-like structure. Consider the column pair (city,

zip-code) of the DMV dataset: While the zip-code column has

many distinct values, a speci�c city only has a few. Intuitively,

this reduces the bit-width necessary to store these zip-codes.

Example. In Fig. 3, we illustrate our compression scheme for the

column pair (city, zip-code) of the DMV dataset [1]. The key in-

sight is that a speci�c pair can occur many times in the dataset – we

exemplify this using two records (Naples, 34102). Our compression

scheme works as follows: We collect the di�erent zip-codes of each

city in a metadata array “zip_codes”. This array is indexed by each

distinct city with an auxiliary “o�sets” array, i.e., the zip-codes of

2

Cortland start at position 0, those of Naples at position 1, while

those of NYC start at position 3 (highlighted in color).

Compression. To obtain the metadata for this encoding scheme,

we maintain a hashtable of cities on the �y and their corresponding

zip-codes. The “zip_code” array and the “o�sets” array can then be

computed once the compression has been �nalized, in a single pass

as well.

Decompression. Naturally, as for the other compression scheme

we discussed, to access a certain value within the zip-code column,

we need to also access the corresponding city, as shown in Alg. 1:

To decompress the zip-code value of tuple “tid”, we fetch both

the city (which has been dict-encoded in advance) and access the

array zip-codes at the o�set shifted by the di�-encoded value of the

zip-code column.

Algorithm 1 HierarchicalAccess(tid)

1: ref← Fetch(city)[tid]

2: diff← Fetch(zip-code)[tid]

3: return zip_codes[o�set[ref] + diff]

2.3 Supporting Multiple Reference Columns

Wehave shown that correlation-aware encoding schemes are able to

improve upon correlation-agnostic ones. In this section, we explore

how multiple reference columns can be used to unlock further

compression opportunities. Particularly, we show that the non-

hierarchical encoding scheme (Sec. 2.1) is not limited to using a

single reference column. We show evidence that we can have as

well multiple reference columns.

Example. Typically, the total amount in a dataset should directly

equal the sum of its parts. However, in real-world data, this rela-

tionship is often more fuzzy. Therefore, we need smarter encoding

schemes to handle data points that do not follow simple logic. For-

tunately, most data adhere to identi�able arithmetic logic. We can

encode these logics rather than the data itself, enabling compression

of the di�-encoded column.We observed this correlation among the

monetary columns in the Taxi dataset [2], which contains taxi rides

in NYC over the course of a year. We categorized these columns

into three distinct groups:

• Group A: mta_tax, fare_amount, extra, tolls_amount,

tip_amount, improvement_surcharge,

• Group B: congestion_surcharge,

• Group C: airport_fee.

These three groups serve as reference columns, along with one

di�-encoded (target) column (total_amount). Unfortunately, the

target column does not always follow directly from the sum of

all three reference groups. Instead, it can be calculated using the

following arithmetic logic in Tab. 1.

In this case, we can use 2-bit encoding (00, 01, 10, 11) to represent

their correlation, indicating how to reconstruct from the reference

columns. Additionally, we store a limited number of outliers (0.32%).

Compression. To e�ciently store the encoding values and the

outliers, we introduced an outlier storage design in Corra, shown

in Fig. 4. The values {+1,+2,+3} represent the original values, which

Group Representation Probability Binary Encoding

A 31.19% 00

A + B 62.44% 01

A + C 2.69% 10

A + B + C 3.33% 11

None 0.32% outlier

Table 1: Di�-encoding column “total_amount” in the Taxi

dataset [2] w.r.t. to multiple reference columns (see §2.3).

In this case, the reference columns are partitioned in three

groups, symbolically represented with A, B, and C.

can be calculated using arithmetic methods, {�1, �2, �3} represent

the corresponding 2-bit codes (see Tab. 1), and {$1,$2} represent the

original values that cannot be calculated using the aforementioned

methods, i.e., the outliers. In our example, their row-indices {1, 2}

and original values {$1, $2} are stored in the outlier region after

encoding. This allows us to encode each element of the target

column with fewer bits, thereby saving space. Furthermore, we

store the store the positions (indexes) and actual values of the

outliers in an additional outlier storage area.

+1

$1

$2

+2

+3

�1

�2

�3

Encode

1

2

$1

$2

Outliers

Index Value

Figure 4: Non-hierarchical compression with multiple ref-

erence columns: Encoding the original target column with

outliers (in this case, {$1,$2}). The regular values, {+1,+2,+3},

are encoded as described in Tab. 1.

Decompression. During the decompression process, we �rst ex-

tract these two arrays from the outlier section to establish a map-

ping from outlier indexes to the outlier values. Subsequently, we

reconstruct the encoded column element by element. We �rst use

the established mapping for each position to check whether the

element is an outlier. If it is an outlier, we directly assign the corre-

sponding value. If it is not an outlier, we identify the corresponding

encoding � to determine the computation method for reconstruct-

ing the target column from the reference columns. We then read

the values from the reference columns to recover the original value.

We can also use a sentinel value to indicate the outlier values.

However, this approach may introduce an additional value to our

existing four encoding schemes, which would require using three

bits to represent the encoding and cover all conditions. With our

decompression design, the pre-stored outlier indexes determine if a

speci�c decompression position is an outlier. There is no need to set

a speci�c outlier encoding value at that position for distinction. The

3

Dataset Column Size w/o di�-enc Encoding Ref. column Size w/ di�-enc Saving rate

lineitem (SF 10) l_receiptdate 89.99 MB Non-hierarchical l_shipdate 37.49 MB 58.3%

lineitem (SF 10) l_commitdate 89.99 MB Non-hierarchical l_shipdate 59.99 MB 33.3%

Taxi dropff 136.64 MB Non-hierarchical pickup 94.7 MB 30.6%

DMV zip-code 25.88 MB Hierarchical city 11.96 MB 53.7%

DMV city 21.45 MB Hierarchical state 21.05 MB 1.8%

message (SF 30) ip 195.14 MB Hierarchical countryid 161.76 MB 17.1%

Taxi total_amount 66.32 MB Non-hierarchical multiple (see §2.3) 9.84 MB 85.16%

Table 2: Space saving over single-column encoding schemes.

value can be any value from existing encoding values. Therefore,

we can still use only two bits to indicate four types of arithmetic

operations and outlier values.

3 EVALUATION

Datasets. In our evaluation, we utilize four datasets, two of which

are synthetic:

• TPC-H’s lineitem [18]: We use scale factor 10, i.e., the

table has 59,986,052 rows. We use its date-valued columns

for the commit, ship, and receipt dates.

• LDBC’s message [6, 17]:We use SF 30, i.e., 76,388,857 rows.3

The table models a social network consisting of metadata

related to messages that users post in discussion threads.

We will use the highly correlated pair (countryid, ip) in

our experiments.

• DMV [1]: The table of 12,176,621 rows consists of vehicle,

snowmobile, and boat registrations in NYS.

• Taxi [2]: Taxi trips over one year (37,891,377 rows).We clean

the dataset beforehand, i.e., remove rows where the drop-

o� happens before pickup, and remove the tuples where the

money column is negative or out-of-range (> 100$).

Experimental Setup. For ease of reproducibility, all experiments

were performed on EC2. We used a c5d.4xlarge instance which

has an Intel Xeon Platinum 8275CL processor with 16 vCPUs and

32 GB of memory.

We split all datasets into data blocks of 1M tuples. Each data

block is completely self-contained: all information required to de-

compress it is contained within the block itself. When measuring

query latency, we generate 10 uniform random selection vectors

for each individual selectivity (as done, e.g., in Lang et al. [10]). In

the experiment, we decompress and materialize the values at the

speci�ed positions, which we refer to as the query output.

Baseline.We compare Corra to a baseline that employs the best

single-column encoding scheme for each column. We use FOR- or

Dict-encoding schemes, followed by a bit-packing. We chose these

because they allow for fast random access into the compressed

column; both RLE and Delta require checkpoints. To store column

strings, we use Dict encoding and pack the distinct strings into a

3Download link: https://db.in.tum.de/~birler/data/ldbcbi-sf30.zip

�attened array. When it comes to query latency, we also consider

the uncompressed case, i.e., no encoding schemes are used, so as to

show the (minimal) overhead incurred by decoding.

Compression Size. We show that our correlation-aware encod-

ing schemes are indeed superior to correlation-agnostic encoding

schemes, which is the current status quo. In Tab. 2, we outline

multiple columns within the four datasets for which our proposed

correlation-aware column encoding schemes improve over the best

con�guration of single-column encoding schemes. In the case of

hierarchical encoding, the compression size also includes the size

of the metadata previously shown in Fig. 3.

Non-hierarchical Encoding. As already stated in Sec. 2.1, TPC-H’s

lineitem table is a fertile ground for our non-hierarchical encod-

ing scheme. Namely, we can di�-encode the date-valued columns

l_receiptdate and l_commitdate w.r.t. l_shipdate, achieving

saving rates of 58.3% and 33.3%, respectively. The di�erence be-

tween these rates arises because the time di�erence between the

receiptdate and shipdate is smaller, allowingCorra to apply shorter

encodings, which results in a higher saving rate. Another example

is the column-pair (dropff, pickup) in the Taxi dataset. This is

a natural situation, since Taxi rides are short enough so that the

di�erence between the two timestamps is not too large. For this,

we obtain a saving rate of 30.6%.

Hierarchical Encoding. For our initial example in the DMV dataset,

the column-pair (city, zip-code), we indeed observe a saving rate

of 53.7%. A similar correlation can also be observed between state

and city, yet with a lower saving rate, because even if we save

a lot by reducing the bit-width in the element encoding, we still

need to store all distinct strings. Such hierarchical correlations

are also present in LDBC’s message table: The number of IPs can

be restricted to a speci�c country, thus reducing the necessary

bit-width for storing the unique IPs via a dict-encoding. Using

hierarchical encoding, we obtain a saving rate of 17.1% for this case.

Multiple Reference Columns. Using multiple reference columns

also seems to be worth the e�ort. The size of total_amount column

in the Taxi dataset is greatly reduced by our encoding, as its saving

rate of 85.16% also re�ects.

4

https://db.in.tum.de/~birler/data/ldbcbi-sf30.zip

0 4 9 13 18 22 270.0

0.5

1.0

1.5

2.0
Non-hierarchical encoding

0 4 9 13 18 22 27

Non-hierarchical encoding

0.001 0.005 0.01 0.05 0.1 0.5 1.0

Selectivity

0.0

0.5

1.0

1.5

2.0
Hierarchical encoding

0.001 0.005 0.01 0.05 0.1 0.5 1.0

Selectivity

Hierarchical encoding

Query on diff-encoded column Query on both columns

R
a
ti
o
ov
er

si
n
g
le
-c
o
lu
m
n
co
m
p
re
ss
io
n

Figure 5: Query latency for selectivities in {0.001, 0.002, . . . , 0.9, 1.0} with materialization of the query output. We run non-

hierarchical encoding (§2.1) on TPC-H’s lineitem (SF 10) for l_shipdate (reference) and l_receiptdate (di�-encoded), and

hierarchical encoding (§2.2) on LDBC’s message (SF 30) for countryid (reference) and ip (di�-encoded).

Diff-enc. column Both columns
0
10
20
30
40
50
60
70

T
im

e
[m

s]

Selectivity = 0.005

Uncompressed

Single-column compression

Non-hierarchical encoding (ours)

Diff-enc. column Both columns

Selectivity = 0.01

Diff-enc. column Both columns

Selectivity = 0.05

Diff-enc. column Both columns

Selectivity = 0.1

Figure 6: Non-hierarchical encoding (§2.1) Zooming in for di�erent selectivities, including the “uncompressed” case.

Diff-enc. column Both columns
0
10
20
30
40
50
60
70
80

T
im

e
[m

s]

Selectivity = 0.005

Uncompressed

Single-column compression

Hierarchical encoding (ours)

Diff-enc. column Both columns

Selectivity = 0.01

Diff-enc. column Both columns

Selectivity = 0.05

Diff-enc. column Both columns

Selectivity = 0.1

Figure 7: Hierarchical encoding (§2.2): Zooming in for di�erent selectivities, including the “uncompressed” case.

Query Latency. When fetching the target column, Corra must

�rst fetch the reference column, which results in additional over-

head. In Fig. 5, we show the query latency for di�erent selectivi-

ties in the set {0.001, 0.002, . . . , 0.9, 1.0} when querying (i) the di�-

encoded column, and (ii) both columns.

Non-hierarchical Encoding. We show the query latency for the

column pair (l_shipdate, l_commitdate) – as before, l_shipdate

is the reference column, while l_commitdate is the di�-encoded

column. We show the slow-down / speed-up compared to single-

column encoding schemes. Querying the di�-encoded column re-

sults in a maximum slow-down of 1.66x, while querying both

columns gives us an advantage since we have to access the ref-

erence column anyway.

Hierarchical Encoding. We evaluate the column pair (countryid,

ip). The ip is subordinate to the countryid. This is a typical hi-

erarchical encoding scenario. Considering the high repetition rate

in the ip column, baseline compression uses dictionary encoding

for the ip column. The query latency graph shows that when we

only query the target, di�-encoded column, the slowdown trend is

similar to that in non-hierarchical encoding. The slowdown ranges

from 1.39x to 1.56x. When querying both columns simultaneously,

there is almost no slowdown over vertical encoding schemes.

Let us compare the two encoding schemes based on the query la-

tency of fetching both columns. Hierarchical encoding slows down

more than non-hierarchical encoding. This is because hierarchical

encoding requires a complex reconstruction procedure, including

more memory access. Non-hierarchical encoding reconstructs the

second column by direct addition. This di�erence results in a dif-

ferent speedup/slowdown e�ect in these two encoding schemes.

Multiple Reference Columns. In Fig. 8, we show the query latency

for non-hierarchical compression with multiple reference columns

on the Taxi dataset. As discussed in Sec. 2.3, the target column,

total_amount, is based on eight reference columns. Reconstruct-

ing the target column requires fetching and computing based on all

reference columns. Fetched data is typically scattered at low selec-

tivities, resulting in lower cache hit rates, and thus, the slowdown

ratio remains high. As the volume of queried data increases, data

locality improves, leading to a gradual decrease in the slowdown

ratio, stabilizing around the 2x range. During full-range queries, the

slowdown ratio exhibits a slight increase due to the handling of all

5

0.001 0.005 0.01 0.05 0.1 0.5 1.0

Selectivity

0

1

2

3

4

5

6

Non-hierarchical encoding with multiple reference columns

Query on diff-encoded column

R
a
ti
o
ov
er

si
n
g
le
-c
o
lu
m
n
co
m
p
re
ss
io
n

Figure 8: Query latency for non-hierarchical compression

with multiple reference columns, speci�cally eight (cf. §2.3).

The queries are run on Taxi dataset with eight reference

columns and the di�-encoded “total_amount”.

outliers. The additional processing required for outliers contributes

to the increase in average latency.

Zoom-In. In Fig. 6, we provide a zoom-in for the query latency in

the case of non-hierarchical encoding, namely, we plot the query

latency for four di�erent selectivities {0.005, 0.01, 0.05, 0.1}. Addi-

tionally, we also consider the “uncompressed” case in which the

query is directly executed over the uncompressed column(s). The

overhead of our approach can be seen when considering the query

latencies for the di�-encoded column. However, this overhead is

mitigated when querying both columns, since in this case we need

to read both columns anyway.

Similarly, for hierarchical encoding, in Fig. 7, we zoom in on

the latency plot for the same four selectivities. The query su�ers

a small overhead in that we need the (un-prefetchable) lookup

into the “locationips”-array (compared to the “zip_codes”-array

in Fig. 3). In this case, this incurred overhead is not completely

mitigated when querying both columns, as was the case for non-

hierarchical encoding (in non-hierarchical encoding, there is no

additional metadata).

Independent Work. Independently of our work, Glas et al. [7]

also proposed correlation-aware column encoding schemes: They

introduce C3, which further improves the compression sizes of

BtrBlocks [9]. Their encoding schemes bear similarity to ours: They

further generalize the implementation of the non-hierarchical en-

coding scheme as an a�ne function and explore more implemen-

tations of hierarchical encoding schemes, e.g., using FOR for the

di�-encoded column. C3 also focuses on the optimal di�-encoding

scheme, similar to our proposed selection scheme (see Fig. 2).

However, Glas et al. [7] do not consider di�-encoding with mul-

tiple reference columns, as we discuss in Sec. 2.3. In addition, they

do not benchmark the query latency on their compressed columns,

as we extensively did for our encoding schemes; see Fig. 5 and

Fig. 8. In the following, we compare Corra to C3, where we let

C3 choose the (correlation-aware) encoding scheme for a given

pair of columns. In Tab. 3, we summarize the achieved saving rates.

The main observation is that Corra and C3 are on par in terms

of compression size. The only exception is the (pickup, dropff)

pair in the Taxi dataset, where C3’s numerical encoding scheme

manages to further exploit the (a�ne-like) correlation between the

two timestamps.

Column-Pair Corra (ours) C3 [7]

(shipdate, commitdate) 33.3% (§2.1) 31.5% (DFOR)

(shipdate, receiptdate) 58.3% (§2.1) 56.1% (DFOR)

(pickup, dropff) 30.6% (§2.1) 52.9% (Numerical)

(city, zip-code) 53.7% (§2.2) 59.1% (1-to-1)

Table 3: Saving rates on our datasets compared to the inde-

pendent work by Glas [7], C3. Their DFOR is a hierarchical

encoding where the di�-encoded column is compressed via

FOR, the numerical encoding scheme generalizes the non-

hierarchical encoding scheme as an a�ne function, and their

1-to-1 is specialized for the case where one could directly

infer the di�-encoded column from the reference column.

Also, C3 does not support multiple reference columns (§2.3).

4 CONCLUSION

Vertical, single-column encoding schemes have reached a plateau in

terms of compression size. We deviate from this path and propose

horizontal, correlation-aware encoding schemes. These achieve

compression sizes beyond what is currently possible with stan-

dard, single-column schemes. Our non-hierarchical and hierarchical

encoding schemes emulate natural column correlations that can

be found in established datasets. The key idea behind them is to

di�-encode a column with respect to one or more reference columns.

Consequently, we have shown that Corra achieves signi�cant

reductions in the compressed size of several columns of TPC-H’s

lineitem, LDBC’s message, DMV, and Taxi. Additionally, we pro-

vided a strategy to �nd an optimal di�-encoding con�guration, i.e.,

which columns to di�-encode and which to compress via standard

single-column encoding schemes. We envision Corra to support

more �ne-grained column-aware correlation types and, particularly,

automatic correlation detection, especially for our non-hierarchical

encoding scheme with multiple reference columns.

REFERENCES
[1] 2020. Vehicle, snowmobile, and boat registrations. https://catalog.data.gov/dataset/

vehicle-snowmobile-and-boat-registrations
[2] 2024. Yellow Taxi trip records. https://www.nyc.gov/site/tlc/about/tlc-trip-record-

data.page
[3] Azim Afroozeh and Peter A. Boncz. 2023. The FastLanes Compression Layout:

Decoding >100 Billion Integers per Second with Scalar Code. Proc. VLDB Endow.
16, 9 (2023), 2132–2144. https://doi.org/10.14778/3598581.3598587

[4] Azim Afroozeh, Leonardo X. Ku�o, and Peter A. Boncz. 2023. ALP: Adaptive
Lossless �oating-Point Compression. Proc. ACM Manag. Data 1, 4 (2023), 230:1–
230:26. https://doi.org/10.1145/3626717

[5] Peter A. Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: Fast Random
Access String Compression. Proc. VLDB Endow. 13, 11 (2020), 2649–2661. http:
//www.vldb.org/pvldb/vol13/p2649-boncz.pdf

[6] Orri Erling, Alex Averbuch, Josep Lluís Larriba-Pey, Hassan Cha�, Andrey Gu-
bichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The LDBC
Social Network Benchmark: Interactive Workload. In SIGMOD Conference. ACM,
619–630.

[7] Thomas Glass. 2023. Exploiting Column Correlations for Compression. https:
//homepages.cwi.nl/~boncz/.

[8] Hideaki Kimura, George Huo, Alexander Rasin, Samuel Madden, and Stanley B.
Zdonik. 2009. Correlation Maps: A Compressed Access Method for Exploiting
Soft Functional Dependencies. Proc. VLDB Endow. 2, 1 (2009), 1222–1233. https:
//doi.org/10.14778/1687627.1687765

6

https://catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations
https://catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://doi.org/10.14778/3598581.3598587
https://doi.org/10.1145/3626717
http://www.vldb.org/pvldb/vol13/p2649-boncz.pdf
http://www.vldb.org/pvldb/vol13/p2649-boncz.pdf
https://homepages.cwi.nl/~boncz/
https://homepages.cwi.nl/~boncz/
https://doi.org/10.14778/1687627.1687765
https://doi.org/10.14778/1687627.1687765

[9] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: E�cient Columnar Compression for Data Lakes. Proc. ACM
Manag. Data 1, 2 (2023), 118:1–118:26. https://doi.org/10.1145/3589263

[10] Harald Lang, Alexander Beischl, Viktor Leis, Peter A. Boncz, Thomas Neumann,
and Alfons Kemper. 2020. Tree-Encoded Bitmaps. In SIGMOD Conference. ACM,
937–967.

[11] Robert Lasch, Ismail Oukid, Roman Dementiev, Norman May, Süleyman Sirri
Demirsoy, and Kai-Uwe Sattler. 2019. Fast & Strong: The Case of Compressed
String Dictionaries on Modern CPUs. In DaMoN. ACM, 4:1–4:10.

[12] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per
second through vectorization. Softw. Pract. Exp. 45, 1 (2015), 1–29. https:
//doi.org/10.1002/SPE.2203

[13] Yinan Li and Jignesh M. Patel. 2013. BitWeaving: fast scans for main memory
data processing. In SIGMOD Conference. ACM, 289–300.

[14] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022.
Chimp: E�cient Lossless Floating Point Compression for Time Series Databases.
Proc. VLDB Endow. 15, 11 (2022), 3058–3070.

[15] Xi Lyu, Andreas Kipf, Pascal Pfeil, Dominik Horn, Jana Giceva, and Tim Kraska.
2023. CorBit: Leveraging Correlations for Compressing Bitmap Indexes. In VLDB
Workshops (CEUR Workshop Proceedings), Vol. 3462. CEUR-WS.org.

[16] Vikram Nathan, Jialin Ding, Tim Kraska, and Mohammad Alizadeh. 2020. Cortex:
Harnessing Correlations to Boost Query Performance. CoRR abs/2012.06683
(2020). arXiv:2012.06683 https://arxiv.org/abs/2012.06683

[17] Gábor Szárnyas, Jack Waudby, Benjamin A. Steer, Dávid Szakállas, Altan Birler,
Mingxi Wu, Yuchen Zhang, and Peter A. Boncz. 2022. The LDBC Social Network
Benchmark: Business Intelligence Workload. Proc. VLDB Endow. 16, 4 (2022),
877–890. https://doi.org/10.14778/3574245.3574270

[18] Transaction Processing Performance Council (TPC). 2022. TPC BENCHMARK™
H Standard Speci�cation Revision 3.0.1. https://www.tpc.org/TPC_Documents_
Current_Versions/pdf/TPC-H_v3.0.1.pdf. [Accessed 28-11-2023].

[19] Immanuel Trummer. 2023. Can Large LanguageModels Predict Data Correlations
from Column Names? Proc. VLDB Endow. 16, 13 (2023), 4310–4323. https:
//www.vldb.org/pvldb/vol16/p4310-trummer.pdf

7

https://doi.org/10.1145/3589263
https://doi.org/10.1002/SPE.2203
https://doi.org/10.1002/SPE.2203
https://arxiv.org/abs/2012.06683
https://doi.org/10.14778/3574245.3574270
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.vldb.org/pvldb/vol16/p4310-trummer.pdf
https://www.vldb.org/pvldb/vol16/p4310-trummer.pdf

	Abstract
	1 Introduction
	2 Horizontal Encoding Schemes
	2.1 Non-hierarchical Encoding
	2.2 Hierarchical Encoding
	2.3 Supporting Multiple Reference Columns

	3 Evaluation
	4 Conclusion
	References

