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ABSTRACT

Dealing with missing values in tabular training data is a challenging
preparation phase before proceeding to model training. Directly
removing missing data results in a loss of information. Thus, these
missing values are often estimated using extensively studied impu-
tation techniques. Recently, pre-trained language models (PLMs)
have shown exceptional performance in various language process-
ing tasks, leading to several approaches that employ PLMs to predict
missing values in tabular data. However, these methods usually con-
catenate all attribute names and their values in a tuple as the input
to PLMs and rely solely on current tabular data for missing value
imputation, which cannot realize the full potential of PLMs that are
pre-trained with corpus in natural language. This paper introduces
PRPMLI, a novel PLM-based missing value imputation framework. It
combines a trainable tuple representation technique that converts
each tuple into a format that can be easily understood by PLMs.
Moreover, a knowledge retrieval module is designed to search for
additional joinable tabular data or relevant documents from the
data lake or the Internet, which are beneficial for missing value
imputation tasks. Preliminary experiments on multiple datasets
demonstrate the superiority of PRPMI compared to existing state-
of-the-art imputation techniques and verify the effectiveness of
these two techniques.
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1 INTRODUCTION

Missing data is common in real-world scenarios due to equipment
malfunctions or mismatches during the integration of heteroge-
neous data, which can produce biased estimates, leading to invalid
conclusions. Thus, it is imperative to fix the missing data before
commencing data mining and analysis.
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Existing Methods and Their Limitations. The most common
strategy for dealing with missing values is reconstructing the en-
tire dataset through data imputation techniques, which includes
statistics-based [2], heuristic [3], machine learning (ML) based [9,
16], and deep learning (DL) based methods [8, 18]. Most of these
techniques primarily rely on the statistical characteristics, data dis-
tribution, co-occurrence of attribute values, or symbolic similarity
between tuples, which often fail to capture semantic information.

Recently, with the success of PLMs in natural language process-
ing (NLP), new data imputation approaches based on PLMs, such
as TURL [5], IPM [14] and RPT [17], have emerged. TURL utilizes
PLMs to generate the representation for missing data, which is
then linked with additional knowledge base entries to retrieve the
actual value. IPM leverages PLMs to learn the semantic features of
a tuple and treats missing value imputation as a classification task.
RPT uses a transformer-based neural translation architecture to
learn how to reconstruct the original tuples to support the missing
value imputation. (L1) These methods take the tuple as a sentence
for input, which concatenates all attribute names and their values.
This “unnatural” approach to building sentences makes it difficult
to fully utilize PLMs that are pre-trained with corpus in natural
language. (L2) Furthermore, most of these approaches rely solely
on current tabular data for missing value imputation. When there is
insufficient information in the other attributes to infer the missing
value, these methods will fail.

Our Proposal. We propose a novel PLM-based data imputation
framework named PRPMI to address the aforementioned limita-
tions. PRPMI models the imputation task as the multiclass classifi-
cation problem, which takes the tuple with missing values as input
and predicts their original values, where the candidates are from
the domain of corresponding attributes. Moreover, to tackle the
first limitation (L1), we concatenate trainable continuous prompt
embeddings with discrete tokens in a tuple based on P-tuning [12],
feeding them together as the input to the PLMs and refining through
model training to optimize the task objective. This way, the lan-
guage model can better capture semantic information within the
tuple. To address the second limitation (L2), we borrow the idea
from the retrieval-augmented generation (RAG) [10] that searches
for additional joinable tabular data or relevant documents from the
data lake or the Internet to provide extra knowledge for missing
value imputation. Note that these techniques can also apply to other
data preprocessing tasks, such as PLM-based error detection and
data repair.

It has to be mentioned that there is also some work on fine-tuning
large language models (LLMs) such as GPT and LLaMa through
prompt engineering, applying LLMs to several table tasks, including
missing value imputation [11, 19]. This branch of studies typically
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Figure 1: Framework Overview

requires a lot of money and computational resources. Therefore, we
do not adopt the LLMs in this paper and find from the preliminary
experimental results that our method has comparable performance
in the missing value imputation task.

Contributions. We introduce a novel PLM-based missing value
imputation method named PRPMI. To the best of our knowledge,
we are the first to learn trainable representation for tabular data. We
also retrieve additional tables or documents for the PLMs to accom-
plish the missing value imputation task. We conduct preliminary
experiments to demonstrate the effectiveness of our method.

2 PROPOSED METHOD

2.1 The Overview of PRPMI

The framework of PRPMI is given in Figure 1. PRPMI treats the
missing value imputation as a multiclass classification task, select-
ing a value from the attribute domain to impute the missing cell.
Specifically, PRPMI first serializes the attribute names and values
in a tuple into a sequence of tokens to conform to the input format
of the PLM. Then, we concatenate a series of trainable continuous
embeddings from an additional Prompt Encoder with the embed-
dings of attribute names and values given by the embedding layer
of the PLM, and feed them as the input to the transformer layer of
the PLM. Note that the continuous embeddings will be updated by
back-propagation to optimize the task objective, and the details will
be given in Section 2.2. We also retrieve extra knowledge for the
imputation task from the data lake or the Internet through either
coarse-grained or fine-grained retrieval methods. The details can
be found in Section 2.3. These embeddings of knowledge are also
appended to the tuple representation in a trainable manner and co-
input to the transformer layer. Here, we also adopt some strategies
to select the extra data that are most beneficial for missing value
imputation.

In the end, we take the embedding of token [CLS] from the last
layer of the PLM as the summarization of the tuple to be imputed.
Then, a multiclass classifier, consisting of a multilayer perceptron

(MLP) and a softmax layer, is appended and outputs the probability
of each value being correctly imputation result (PRPMI can deal
with more than one attribute at the same time, i.e., append multiple
multiclass classifiers behind the PLM). Therefore, two steps are
conducted for PRPMI:

Fine-tuning. We use the complete tuple as the training data. We
mask an attribute, retrieve extra knowledge for the masked attribute
value, and train the model to predict the original value. In the back-
propagation phase, we update the parameters of the PLM and the
prompt encoder.

Imputing. After fine-tuning, PRPMI will select the value with the
maximum probability as the imputation results.

2.2 Trainable Tuple Representation

Extensive studies [12] have demonstrated the critical importance
of prompt design in PLMs. Meanwhile, we find that simply concate-
nating attribute names and values cannot fully realize the power of
PLMs. Consequently, we propose to learn trainable representation
for each tuple.

Token Embedding. Formally, let T denote a relational table with n
tuples {t1,...,tn} and m attributes {A1, ..., A }. A; is the name of
the ith attribute, and we use t[A;] to denote the value of A; in tuple
t € T when there is no need to specify which tuple in particular.
Assuming t[Ag] is missing, tuple ¢ can be initially represented as:
t = {[CLS], Py, A1, Py, t[A1], ..., Pog_1, Ak, Poy, [M], ..., P,
t[Am], [SEP]}

Here, P; is the ith trainable continuous prompt and initializes as
the positional embedding, i.e., indicating the position of the follow-
ing attribute name or value in the sequence. The mask token [M]
denotes the missing attribute value. [CLS] and [SEP] are the start
and the end of a tuple.

Subsequently, the attribute name A; and its value t[A;] are em-
bedded into e(A;) and e(¢[A;]) through the pre-trained embedding
layer of the PLM. Meanwhile, we leverage an additional prompt
encoder to map trainable embedding P; into h;, which has the




same dimension as the embedding of a token from the PLM. Here,
a lightweight neural network, such as long short-term memory
(LSTM) or MLP, can be adopted as the prompt encoder. Thus, the
tuple can be finally represented as:
E(t) = {e([CLS]), h1, e(A1), ha, e(t[A1]), ..., hog—1. e(Ag), hy,
e([M]), ..., hom, e(t[Am]), e([SEP])}

If additional attributes or documents are obtained via knowledge
retrieval introduced in Section 2.3, denoted by K, we concatenate
them with the tuple representation also in a trainable way:

E(t) = {e([CLS]), h1, e(A1), ha, e(t[A1]), .. .. hog—1. e(Ag), hy,
e([M]), ..., hom, e(t[Am]), hami1, E(K), e([SEP])}
Here, E(K) denotes the representation of extra knowledge, which
is also encoded by the PLM. Note that if K is tabular data, we also
adopt the trainable representation for it.

Training of Prompt Encoder. The prompt encoder is a separate
model, independent of the PLM, but they work together to minimize
the difference between the multiclass classifier’s prediction of the
missing value and its truth value. Thus, in the back-propagation
phase, we optimize the parameters of the PLM and the prompt
encoder successively to minimize the cross-entropy loss,

L==)"log(p(y) (1)
i=1

where n. is the number of complete tuples in T and p(y;) is the
probability of belonging to the class y; (the true label of tuple t;)
given by the multiclass classifier.

2.3 Knowledge Retrieval for Data Imputation

It has been proven by the NLP field that leveraging additional
knowledge can significantly enhance the capabilities of PLMs which
is also known as retrieval-augmented generation (RAG) [10]. Here,
we design two ways to perform “RAG” for tabular data. The first
one is to search for a joinable table and expand attributes for all
tuples simultaneously, which can be referred to for predicting the
missing value (Coarse-grained Retrieval Augmentation). The second
is to individually search for the reference documents for each tuple
containing the missing value (Fine-grained Retrieval Augmentation).

Coarse-grained Retrieval Augmentation. We take the whole
table as a query and discover joinable tables from the data lake
employing existing techniques [7]. Joining them to the query ta-
ble provides more attributes that can be referred to for missing
value imputation. Due to the possibility of the retrieved joinable
tables containing numerous irrelevant attributes, we can adopt
inter-attribute correlations (such as Cramér’s V coefficient [4]) or
powerful Al tools like GPT-4 to filter them out. The coarse-grained
retrieval augmentation only needs to be executed once before the
imputation task.

Fine-grained Retrieval Augmentation. Here, we transform each
tuple with the missing value as a query and invoke search engines
such as Google API to obtain relevant documents. These searches
can come up with a lot of documents, which are not necessarily
helpful for imputing the missing value. To address this issue, we
train a PLM-based scoring model to evaluate the relevance of each
document. Specifically, this model takes the query and each re-
trieved document as input and outputs their relevance score (which

Table 1: Imputation accuracy of PRPMI and existing methods

Methods | Movie ‘ Buy ‘ Restaurant
HoloClean | 15.0 16.2 33.1
EGG-GAE 24.4 28.8 38.7
RPT 35.6 48.9 43.3
IPM 591 | 965 77.2
GPT-4 85.5 100 62.3
PRPMI 91.1 100 86.9

is set between 1 and 5, with higher indicating more relevance). To
obtain training data for this model, we leverage GPT-4 to generate
the labels, which have been proven effective in providing such feed-
back [13]. After obtaining the relevance score for each document,
only the one with the highest score will be appended to the tuple as
the extra knowledge. And if all documents are irrelevant (score be-
low 2), we will not add the additional document for the imputation.
It is worth noting that although we need to perform retrieval for
each tuple, the overall cost is not particularly high. Calling Google
APl is free, and relevant documents can be returned for a tuple in
about 1 second. We also find from the experiments that when there
is almost 80% of the training data remaining, the scoring model
can completely replace the GPT-4 (i.e., documents with the highest
score given by the model do contribute to the imputation task).
Thus, there is no need to utilize the GPT-4 to label the training data
in large quantities.

3 PRELIMINARY RESULTS
3.1 Experimental Setting

Datasets. We employ the Movie dataset ! to evaluate our method
with coarse-grained retrieval augmentation. Additionally, we choose
two challenging benchmark datasets, namely Restaurants and Buy,
from the previous study [14] to evaluate our method with fine-
grained retrieval augmentation. We remove values from several
categorical attributes completely at random, and the missing rate
is set to 10% by default.

Baselines. To validate the effectiveness of our method, we com-
pare it against the state-of-the-art methods from various categories,
including the statistics-based method HoloClean [15], the DL-based
method EGG-GAE [18], the PLM-based methods RPT [17] and
IPM [14], the powerful large language model GPT-4 [1].

Evaluation Metrics. Following the previous work [14], we mea-
sure the accuracy of whether the imputation results are equal to
the ground truth, i.e., the proportion of missing values accurately
imputed.

Implementation Details. We utilize BERT [6] as the PLM for
our experiments to better show the improvements offered by our
method. The multiclass classifier incorporates two linear layers
with ReLU as the activation function. Additionally, a three-layer
MLP serves as the prompt encoder. All experiments are conducted
on an Intel(R) Xeon(R) Silver 4210R 2.40GHz server with an NVIDIA
GeForce RTX 4090 GPU.

!https://alchemy.cs.washington.edu/data/



Table 2: Ablation study

Methods ‘ Movie ‘ Buy ‘ Restaurant
PRPMI 91.1 100 86.9
PRPMI w/o Trainable 88.9 98.5 85.5
PRPMI w/o RAG 55.6 96.5 77.2
PRPMI w/o Trainable&RAG 51.1 94.2 75.8

3.2 Experimental Results

Comparison with Existing Methods. We first evaluate the per-
formance of PRPMI and other baselines on three datasets, and the
results are shown in Table 1. The best scores are highlighted in
bold, and the second-best scores are underlined. The results of
our method are on a gray background. From Table 1, we can see
that PRPMI performs better than other baselines across all datasets.
Particularly, it achieves a 100% imputation accuracy on the Buy
dataset, comparable to the performance of the state-of-the-art LLM
model, GPT-4. This may be largely attributed to the knowledge
retrieval module in PRPMI, which allows the model to refer to addi-
tional data beyond the table at hand for missing value imputation.
Moreover, the trainable tuple representation helps the model better
understand the semantics of structured data. These methods such
as Holoclean and EGG-GAE, which are not based on pre-trained
language models, perform poorly since they fail to utilize the se-
mantic information in the tabular data. RPT and IPM suffer from
unsatisfactory performance due to improper tuple representation
and a lack of additional knowledge. Stimulating the potential of
large language models such as GPT-4 requires carefully designed
prompts and a costly fine-tuning process.

Ablation Study. We conduct an ablation study to evaluate the
effectiveness of the knowledge retrieval and trainable tuple rep-
resentation modules, with the results presented in Table 2. These
two modules are denoted by “RAG” and “Trainable”, respectively,
and it can be seen from Table 2 that both of them enhance the
performance of PRPMLI. It is worth noting that removing the knowl-
edge retrieval module decreases accuracy from 91.1% to 55.6% in
the Movie dataset. This validates the effectiveness of our coarse-
grained retrieval augmentation, where the appended tabular data
is highly correlated with the attributes to be imputed. Additionally,
the decrease in accuracy from 100% to 96.5% in the Buy dataset
and from 86.9% to 77.2% in the Restaurant dataset demonstrates the
efficacy of our fine-grained retrieval augmentation, which provides
extra documents as the evidence for missing value imputation. Al-
though the effect of trainable tuple representation on the model
performance is not as significant as that of knowledge retrieval,
it does have an impact on model performance, e.g., its removal
results in a 2.2% decrease in model accuracy in the Movie dataset.
And the retrieved data also requires trainable prompts to be better
integrated with the original tuple.

4 CONCLUSION

In this paper, we have proposed PRPMI, a missing value imputation
framework based on pre-trained language models. We have utilized
trainable tuple representation in PRPMI, which bridges the repre-
sentation gap between tabular data and natural language text. We

have designed two ways to retrieve extra knowledge from the data
lake or the Internet for the missing value imputation task. Extensive
experimental results have demonstrated the approach outperforms
the state-of-the-art methods.
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