
LLM-assisted Labeling Function Generation for Semantic Type
Detection

Chenjie Li
Illinois Institute of Technology

United States
cli112@hawk.iit.edu

Dan Zhang
Megagon Labs
United States

dan_z@megagon.ai

Jin Wang
Megagon Labs
United States

jin@megagon.ai

ABSTRACT
Detecting semantic types of columns in data lake tables is an impor-
tant application. A key bottleneck in semantic type detection is the
availability of human annotation due to the inherent complexity of
data lakes. In this paper, we propose using programmatic weak su-
pervision to assist in annotating the training data for semantic type
detection by leveraging labeling functions. One challenge in this
process is the difficulty of manually writing labeling functions due
to the large volume and low quality of the data lake table datasets.
To address this issue, we explore employing Large Language Mod-
els (LLMs) for labeling function generation and introduce several
prompt engineering strategies for this purpose. We conduct experi-
ments on real-world web table datasets. Based on the initial results,
we perform extensive analysis and provide empirical insights and
future directions for researchers in this field.

VLDBWorkshop Reference Format:
Chenjie Li, Dan Zhang, and Jin Wang. LLM-assisted Labeling Function
Generation for Semantic Type Detection. VLDB 2024 Workshop: The 1st
International Workshop on Data-driven AI (DATAI).

1 INTRODUCTION
Semantic type detection is an important task in many data prepara-
tion applications, such as data cleaning, schema matching, entity
resolution and data discovery [11, 14–16]. Given a table and a set
of semantic labels, semantic type detection aims at identifying a
type label for each column in the table so that each cell in the
column has the same semantic types. This task has attracted signif-
icant attention from the database community, and many solutions
based on deep learning techniques, especially pre-trained Language
Models (PLMs) [7, 11, 16], have been developed to improve overall
performance.

Although such PLM-based solutions are effective, they have a
high requirement of labeled training instances to perform fine-
tuning. Due to the large scale and complex structure of data lake
tables, it is rather challenging to acquire high-quality human an-
notation for semantic type detection [3]. We argue that a weak
supervision approach, such as data programming [10], is a good
solution to reduce the burdens of training data annotation. In the
data programming paradigm, users are asked to design label func-
tions (LF) that provide labels to a subset of data at a much lower

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

cost rather than manually label instances one by one. Then a label
model is learned to denoise and aggregate the weak labels from
each LF. Finally, the label model could predict labels over unlabeled
corpus to provide annotated training data.

Over the past decade, significant efforts have been made in the
field of data programming. Snorkel [9] proposed a probabilistic
model to aggregate the user-written LFs. Snuba [13] aimed at
proposing explainable LF while Nemo [5] and WITAN [2] focused
on the problem of interactive data programming. The recent ad-
vances in the era of Large Language Model (LLM), such as GPT-4 [8]
and LLaMA [12], have shown powerful capability in various tasks
in different fields. Some recent efforts [4, 19] have been made to
harness LLMs for automate the generation of LFs for NLP tasks.
However, it is non-trivial to extend them to support the task of
semantic type detection. Compared with the tasks supported in the
previous studies, semantic type detection usually has a much larger
labeling space and cardinality of datasets. For example, the number
of semantic labels in the Gittable [6] and TURL [1] corpus is 835 and
255, respectively. Meanwhile, the task with the largest number of
labels in the WRENCH benchmarking [18] only has 18 class labels.
The large number of class labels brings two extra challenges: on the
one hand, it is rather difficult for users to manually write enough
LF for each class; on the other hand, it brings new challenges for
the scalability of label model such as Snorkel to handle such large
number of LFs and seeding instances for weak supervision.

In this paper, we propose an end-to-end framework to conduct
weakly supervision to generate LFs for semantic type detection
with the help of LLM. We systematically explore the strategies to
construct LLM prompt for generating LFs given the seed instances
of each label class. Specifically, we find that it is essential to include
both the contents and the ground truth label of the seed instance in
the prompt so as to provide sufficient context for LLM to produce
effective LFs. To improve the scalability of Snorkel for semantic
type detection, we develop a stacked label model to split the label
space and allow the sub-models to run in parallel. We conduct
experiments on widely-used tabular datasets and evaluate both
the quality of the generated LFs and the effect of training end
models with the datasets annotated by such LFs. Finally, we make
an in-depth analysis of the preliminary results and provide some
directions for the future work.

2 METHODOLOGY
2.1 Overview
The overall architecture of our proposed pipeline is shown in Fig-
ure 1. Similar to previous weak supervision works, it starts with
some seed instances that help provide signals to generate LFs. Then
we ask LLM to generate LFs based on the provided seed instances.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

Figure 1: Overall Workflow of Labeling Pipeline with LLM

To this end, we conduct few-shot learning by providing some exam-
ples of the pairs of instances and LFs generated from them. After
obtaining the set of LFs, we use them along with the seed instances
to train the label model and obtain the aggregated results. In the
current pipeline, we choose the well-known Snorkel [9] framework
as the label model. Then given an unlabeled instance, i.e. column
from a table, we will feed it to the label model and obtain the labels.
Here we could evaluate the quality of the label model by consider-
ing the accuracy of labeling a set of unlabeled instances. Finally, we
regard the instances obtained from the label model as the training
set for an end model.

2.2 Labeling Function Generation with LLM
Next we introduce how to generate LFs by leveraging the LLMs.
We follow previous studies [5, 9] to select the LFs based on the
following aspects:

• Keyword: This kind of LF assumes that for each given se-
mantic type 𝐿, there is a list of common keywords. Once the
overlap between the unlabeled column and the list reaches
a certain threshold, the column should be given the label 𝐿.

• Statistical: This kind of LF decides the label of a column
based on the pattern of value distributions. The label is
assigned if the value distribution of a column satisfies some
pre-defined statistical patterns.

• Regular Expression: The LF could also be expressed with
regular expressions. The label will be assigned if the column
values match a provided regular expression.

The prompt template for generating is shown in Figure 2. It con-
sists of two components: the system prompt and the user prompt.
The system prompt is the general description of the background
as well as some necessary instructions for the LLM. For example,
our task of semantic type detection needs to specify the input as
the given column values and the output as the semantic type of the
column. The user prompt aims to provide the necessary contextual

information to generate the labeling functions. In our prompt tem-
plate, we employ the few-shot learning approach and provide some
selected examples as demonstrations with the following informa-
tion: (i) the examples with pairs of column values and ground truth
semantic type; (ii) the LF template where the three kinds of LFs
introduced above will have different templates; (iii) The question to
ask for labeling functions. We randomly selected 5 semantic types
and manually wrote a few labeling functions with the 3 kinds of LFs
mentioned before. Specifically, within each group, we randomly
selected 5 cell values delimited by a special character from that
column to be used in the demonstration.

Compared with previous studies that try to use LLM to generate
LFs [4, 19], we improve in the process of prompt construction.
Specifically, we include the ground truth of the semantic type label
of the given column in the prompt in the above item (i). The reason
is that since the task is to generate the labeling function instead of
predicting the label, it does not result in the risk of ground truth
leakage. Meanwhile, providing the ground truth label could help
LLM obtain more information to produce the labeling function as
it does not need an additional step to predict the label.

2.3 Stacked Labeling Model
With the LFs generated by LLMs, the next step is to filter out the LFs
with low quality. We use the idea of accuracy and redundancy filter
introduced in the previous study [4]. After that, we fit the remaining
LFs into the Snorkel label model and aggregate the labeling results.
To reach this goal, there is still another challenge to overcome:
the space complexity of Snorkel is O(𝑁 ∗𝑀 ∗ 𝑑), where 𝑁 is the
number of seed instances,𝑀 is the number of semantic types, 𝑑 is
the number of remaining LFs. Compared with those in previous
studies of data programming [18], the target label set of semantic
type detection is up to an order of magnitude larger. As a result,
there will also be a much larger number of LFs which will bring
significant overhead to the label model.

In this work, we use a stacking-based solution to solve this
problem. The basic idea is to split the set of semantic type labels
into several disjoint groups and train a Snorkel label model for
each group. Then the overall computation cost will be significantly
reduced. We will also have a routing model stacked on top of the
set of label models: when a new unlabeled instance arrives, it sends
it to all the label models and decides the label based on the results
of all label models. In the current implementation, we choose the
label with the highest probability as the result. The next issue to
be resolved is how to split the set of labels. Some datasets, such as
TURLWikiTables [1], provide the hierarchical structure of the label
set which can be directly utilized to create groups. For other general
cases, we propose to first get the word embedding of each label
and then perform a K-means clustering over the word embeddings,
where 𝐾 target group count.

3 EXPERIMENTS
3.1 Experiment Setup
We evaluate the proposed framework on widely-used benchmark
for semantic type detection. The Viznet dataset 1 is processed in

1https://github.com/megagonlabs/sato/tree/master/table_data

System Prompt
As an assistant, you will help user create labeling functions for table
columns. The user will provide a sample of column values and a class
label.
Remember:

1. The sample may not represent all data.
2. Check patterns before applying them broadly.
3. Aim for functions that work on similar columns with the same

label.
4. Explain your functions with '#'.
5. Account for possible NULL values when creating the functions.

Use the following templates in your responses:
[keyword template]
[statistical template]
[regular expression template]
INTERACTION FORMAT:
 Follow this format for interactions. Replace the bracketed text with
your own responses when replying to user queries.
 User:
 [Label specified by user]
 [Input column content]
 Response:
 [A set of labeling functions]

Keyword Template
Find relevant keywords from the column values and label provided. Exclude one-letter keywords.
Feel free to suggest additional related keywords.Return the function with the following format:
def keyword_[label_name][label_number](x):
 ABSTAIN = -1
 keywords = [list of identified keywords]
 return [label_number] if any(keyword in x for keyword in keywords)
else ABSTAIN

Regular Expression Template
When examining the column values, construct a labeling function with regular expressions.
Remember to consider incorporating available flags from the re module, such as re.I, to enhance
flexibility. Return the function with the following format:
def regex_[label_name][label_number](x):
 ABSTAIN = -1
 return [label_number] if [regular expression related condition]
else ABSTAIN

Statistical Template
Create a labeling function using statistics on the column values. Consider frequency, value range,
average, or length of the values.return the function with the following format:
def stats_[label_name][label_number](x):
 ABSTAIN = -1
 return [label_number] if [statistical condition] else ABSTAIN

Figure 2: The Prompt Template for LF Generation

the previous study [16] on the basis of the Viznet corpus. There are
78 column types and 119,360 columns from 78,733 tables in total.
We also explore a more challenging WikiTable dataset 2 proposed
in [1], consisting of 570,171 tables with 255 semantic types.

To construct prompt for labeling function generation, for each
semantic type in each dataset, we randomly select 10 columns that
share the same semantic type and randomly select 5 column values
from each column as the seed instance. We use GPT-4 as the LLM
for labeling function generation. With the set of labeling functions,
we stack 5 smaller snorkel models to generate the augmented train-
ing set. Finally, we fine-tune DoSolo, the single task version of
Doduo [11] as the end model. For the 𝐹1 score, we report results of
both Micro and Macro 𝐹1 scores.

3.2 Results

Table 1: Step by step evaluation results for the Viznet dataset.

Evaluation Step Metric Value(%)

Labeling Function Avg. F1 18

Label Model Micro 𝐹1 22
Macro 𝐹1 28

End Model Micro 𝐹1 43
Macro 𝐹1 31

The step-by-step evaluation results for the Viznet data obtained
for the proposed pipeline are shown in Table 1. We directly evaluate
the quality of the LLM-generated labeling functions, the output
of snorkel inference and final prediction of the end model fine-
tuned on the noisy labels obtained from our augmentation process.
Although there is a gap in performance between the end model

2https://github.com/sunlab-osu/TURL#data

and ones from previous studies that performs fine-tuning over pre-
trained language models [1, 7, 11], it is worth noting that we only
use a very limited set of labeled instances, which is up to 1.3% of the
full training set as demonstration for the LLMs. We also evaluated
the pipeline on a more challenging Wikitables dataset with 255
candidate classes and the fine-tuned end model has micro-F1 of
0.065 and macro-F1 of 0.094.

Compared to popular tasks (e.g., binary classification, NLI) in
previous data programming works [18], semantic type detection
tasks have much more complicated label spaces. Therefore, the
task of finding explicit labeling functions (in the format of three
kinds introduced before) for semantic type detection itself is rather
challenging. One takeaway from our initial results would be that
while explicit labeling functions works well for simple tasks such
as text classification introduced in previous studies of data pro-
gramming [9, 10, 18], for more complicated tasks like semantic type
detection, we might either need to collect a much larger number
of labeling functions and developing more scalable and efficient
methods to train the label model; or develop new kinds of labeling
functions that can trade the transparency for effectiveness.

3.3 Case Study
Finally, we conduct a case study to show some specific labeling
functions generated by our proposed pipeline in Figure 3. Generally,
we observe that the LFs generated by LLM could express reasonable
semantics and are comparable with those written by humans. For
example, Figure 3a illustrates a keyword-based LF for semantic type
ISBN from Viznet dataset. As this column has a simple format (most
of the column values are ISBN followed by the product identifica-
tion number), it provides a very accurate rule to identify columns
that belong to the ISBN type. Figure 3b is a statistic-based LF for se-
mantic type year. As shown in the function, LLM could incorporate
its internal knowledge with the given semantic type. Specifically,
in the return statement it added the frequently mentioned year

range (1700-2023) as the way to decide if a string is a year or not.
Meanwhile, there are also some examples that LF has good coverage
but is not so accurate. The LF in Figure 3c is a function created
for the semantic type “name”. The function looks for words that
start with a capital letter followed by lowercase letters, optionally
followed by another similar word. This function can cover most of
the names, but at the same time, it can also cover a lot of values
that are from the other semantic types such as location or address.
Thus it provides limited insights in labeling the instances.

(a) Keyword LF for semantic type ISBN

(b) Statistics LF for semantic type year

(c) Regular Expression LF for semantic type name

Figure 3: Examples of Generated Labeling Functions

4 CONCLUSION AND FUTUREWORK
In this paper, we studied the problem of generating labeling func-
tions for the task of semantic type detection. We proposed an end-
to-end pipeline that adopted LLM to automatically generate labeling
functions for semantic type detection via prompt engineering and
train a label model based on Snorkel. We make an extensive set of
explorations on the design space and conduct initial experiments
on two popular benchmark datasets.

Based on our initial efforts, we recognize several essential di-
rections for further exploration of this topic. As illustrated by our
experimental results, the current explicit labeling functions com-
monly used in previous data programming studies may not be
sufficient for handling more complex tasks like semantic type de-
tection. For this task, as well as related table understanding tasks
such as relationship extraction and column population, we need
to develop new types of labeling functions that are more powerful
yet still explainable. A promising starting point could be building
labeling functions based on simple machine learning models, such
as logistic regression and decision trees. It is also crucial to im-
prove the scalability of the label models concerning the number of
class labels and labeling functions. Our idea of splitting the label
space provides a reasonable solution to this problem. It is necessary
to explore this approach further by generalizing the problem and
developing an efficient algorithm that can identify high-quality
splits.

Moreover, it is beneficial to consider advanced label models
developed in recent efforts from the machine learning community
as introduced in [17]. Last but not least, although the effectiveness
of labeling functions generated in this work is limited, the labeling
functions could still provide some useful insights for the semantic
labels of columns. So it is also worth investigating how to use
the generated labeling function to explain the results of existing
solutions for semantic type detection, such as those based on pre-
trained language models.

REFERENCES
[1] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Table

Understanding through Representation Learning. Proc. VLDB Endow. 14, 3 (2020),
307–319.

[2] Benjamin Denham, Edmund M.-K. Lai, Roopak Sinha, and M. Asif Naeem. 2022.
Witan: Unsupervised Labelling Function Generation for Assisted Data Program-
ming. Proc. VLDB Endow. 15, 11 (2022), 2334–2347.

[3] Grace Fan, Jin Wang, Yuliang Li, and Renée J. Miller. 2023. Table Discovery in
Data Lakes: State-of-the-art and Future Directions. In Companion of SIGMOD.
69–75.

[4] Naiqing Guan, Kaiwen Chen, and Nick Koudas. 2023. Can Large Language
Models Design Accurate Label Functions? CoRR abs/2311.00739 (2023).

[5] Cheng-Yu Hsieh, Jieyu Zhang, and Alexander J. Ratner. 2022. Nemo: Guiding
and Contextualizing Weak Supervision for Interactive Data Programming. Proc.
VLDB Endow. 15, 13 (2022), 4093–4105.

[6] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. 2023. GitTables: A Large-
Scale Corpus of Relational Tables. Proc. ACMManag. Data 1, 1 (2023), 30:1–30:17.

[7] Zhengjie Miao and Jin Wang. 2023. Watchog: A Light-weight Contrastive Learn-
ing based Framework for Column Annotation. Proc. ACM Manag. Data 1, 4
(2023), 272:1–272:24.

[8] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023).
[9] Alexander Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason Alan Fries, Sen

Wu, and Christopher Ré. 2017. Snorkel: Rapid Training Data Creation with Weak
Supervision. Proc. VLDB Endow. 11, 3 (2017), 269–282.

[10] Alexander J. Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, and Christopher
Ré. 2016. Data Programming: Creating Large Training Sets, Quickly. In NeurIPS.
3567–3575.

[11] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çagatay Demiralp, Chen
Chen, and Wang-Chiew Tan. 2022. Annotating Columns with Pre-trained Lan-
guage Models. In SIGMOD. 1493–1503.

[12] Hugo Touvron and et al. 2023. LLaMA: Open and Efficient Foundation Language
Models. CoRR abs/2302.13971 (2023).

[13] Paroma Varma and Christopher Ré. 2018. Snuba: Automating Weak Supervision
to Label Training Data. Proc. VLDB Endow. 12, 3 (2018), 223–236.

[14] Jin Wang and Yuliang Li. 2022. Minun: evaluating counterfactual explanations
for entity matching. In DEEM ’22: Proceedings of the Sixth Workshop on Data
Management for End-To-End Machine Learning. 7:1–7:11.

[15] Jin Wang, Yuliang Li, Wataru Hirota, and Eser Kandogan. 2022. Machop: an
end-to-end generalized entity matching framework. In aiDM ’22: Proceedings of
the Fifth International Workshop on Exploiting Artificial Intelligence Techniques
for Data Management. 2:1–2:10.

[16] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Çagatay Demiralp,
and Wang-Chiew Tan. 2020. Sato: Contextual Semantic Type Detection in Tables.
Proc. VLDB Endow. 13, 11 (2020), 1835–1848.

[17] Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, and Alexander Ratner. 2022.
A Survey on Programmatic Weak Supervision. CoRR abs/2202.05433 (2022).

[18] Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang, Mao Yang, and
Alexander Ratner. 2021. WRENCH: A Comprehensive Benchmark for Weak
Supervision. In NeurIPS.

[19] Rongzhi Zhang, Yue Yu, Pranav Shetty, Le Song, and Chao Zhang. 2022. Prompt-
Based Rule Discovery and Boosting for Interactive Weakly-Supervised Learning.
In ACL. 745–758.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Overview
	2.2 Labeling Function Generation with LLM
	2.3 Stacked Labeling Model

	3 Experiments
	3.1 Experiment Setup
	3.2 Results
	3.3 Case Study

	4 Conclusion and Future Work
	References

