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ABSTRACT
In this paper, we study the problem of discovering approximate

functional dependencies (AFDs) from a noisy data set. A vast body

of work have been proposed to recover the true AFDs in the dataset

including constrained-based and probabilistic-based approaches.

However, constrained-based approaches suffered from low accu-

racy due to overfitting to spurious AFDs, while probabilistic-based

approaches are limited in recall since they cannot discover all of

the determinants of an attribute. Motivate by this, we propose a

hybrid approach MAFD that combines probabilistic-based struc-

ture learning techniques with constrained-based candidate search

strategy to discover all determinants that are both syntactically

valid and statistically significant. In particular, MAFD first use the

probabilistic graphical model to learn the dependency structure

of the probability distribution governing the intput dataset. Then

MAFD leverages the independent property of the Markov blanket

to generate the search space for each attribute. Finally, MAFD tra-

verses the search space to discover all determinants whose error

is smaller than a given threshold. Extensive experiments on syn-

thetic datasets demonstrate that MAFD can effectively address the

overfitting problem without sacrificing too much efficiency, and

outperform existing approaches significantly in terms of 𝐹1 score.
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1 INTRODUCTION
Functional Dependencies (FDs) are the most common constraints

in relational databases, describing the relationships between at-

tributes in a database relation. In few words, a FD 𝑋 → 𝐴 states

that the value of the right-hand side (RHS) attribute 𝐴 is uniquely

determined by the value(s) of the left-hand side (LHS) attribute set𝑋 .

For example, in a table with address data, the zip code is determined

by the city and the street address. FD has wide applications in areas
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such as data integration [1], schema normalization [2, 3], query

optimization [4] and data cleaning [5].

Despite their importance, FDs of a specific dataset are usually

unknown and almost impossible to discover manually. Therefore,

various algorithms have been proposed to automatically discover

exact dependencies, which are completely satisfied by the data,

without even a single violation [6–11]. However, real-world depen-

dencies are all too often not exact due to data error, exception and

ambiguities. To cope with this problem, approximate functional
dependencies (AFDs), which relax the definition of FDs to allow for

a certain degree of violation, have been proposed [12].

Recent years have witnessed a surge of interest in AFDs discov-

ery, which can be broadly classified into two categories according

to their interpretation of AFDs: constrained-based and probabilistic-
based. The former takes a closed-world assumption and aims to find

all minimal non-trival AFDs with error less than a threshold [12].

However, the constrained-based approaches tend to discover over-
fitting AFDs with large number of attributes in the determinant

(i.e., LHS attribute set); these AFDs are syntactically valid but se-

mantically incorrect. For example, consider a finite dataset 𝐼 over a

relation schema 𝑅 and a candidate dependency 𝑋 → 𝐴 with 𝑋 ⊆ 𝑅

and 𝐴 ∈ 𝑅. Intuitively, as the number of attributes in 𝑋 increases, it

is more likely that 𝑋 → 𝐴 approximately holds in 𝐼 (i.e., the error

is less than a given threshold) since most 𝑋 values are distinct and

thus cannot introduce any inconsistencies. Moreover, constrained-

based approaches suffer from the huge search space that grows

exponentially with the number of attributes in the dataset [13].

While the probabilistic interpretation of AFDs [14] assumes that

the instance of a relation schema is generated randomly according

to a probability distribution and an AFD 𝑋 → 𝐴 indicates that 𝑋

and𝐴 are strongly correlated in that distribution. Various statistical

learning methods have been proposed from both the database and

data mining areas to recover AFDs according to the correlations

between the LHS and RHS. However, they all suffer from a common

fundamental limitation: they cannot recover all of the determinants

of a RHS attribute. As a consequence, the recall of these methods is

far from satisfactory. For example, FDX [14], the state-of-the-art

approach in database, can only recover one determinant for each

RHS attribute, and RFI[15], the state-of-the-art approach in data

mining, detects only top 𝑘 determinants for each RHS attribute.

Motivated by this, we propose to take the best of both approaches

to recover as many true AFDs as possible. In particular, a hybrid

AFDs discovery approach MAFD is proposed, which combines

probabilistic-based structure learning techniques with constrained-

based candidate search strategy in two phases. In the first phase,
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MAFD employs a probabilistic graphical model, e.g., Bayesian net-

work, to learn the dependency structure of the underlying distribu-

tion. ThenMAFD leverages the independent property of theMarkov

blanket to generate the search space for each RHS attribute. The

key idea of this step is that, for each RHS attribute 𝐴, the Markov

blanket of 𝐴 should contain at least one determinant of 𝐴, which

has been proved in lemma 1. In the second phase, MAFD traverses

the search space to discover all determinants whose error is smaller

than a given threshold.

While the independent property of the Markov blanket simplifies

the search of determinants, involving Markov blanket for AFDs dis-

covery is not straightforward as it raises the following challenges:

the quality of the learned structure of the probabilistic graphical

model is heavily influenced by the nature of the data from which

it is learned, including data size, distribution, noise level and so

on. For example, if the data is biased or does not cover the entire

range of possible values, the learned structure might miss important

dependencies or introduce false ones, leading to inaccurate mod-

els. Therefore, how to effectively preprocess the training data to

improve the quality of the learned structure is a critical challenge.

To address this challenge, MAFD first creates a set of random

sample over the input instance and transforms the sample data

before training. The reason for transformation is that for correlated

attributes with large domains, the co-occurrences on a limited

sample may not be frequent enough for the learning methods to

capture the correlation. Therefore, MAFD decomposes each large

domain into a relatively small number of disjoint categories and

then bucketize the sample data accordingly. It’s worth mentioning

that such transformation will not effect the accuracy of MAFD, as

will be discussed in Section 4.1.

The remainder of this paper is structured as follows. In Section

2, we survey related work. In Section 3, we formalize the problem

of AFDs discovery and present the overall framework of MAFD.

Then we describe each stage of MAFD in detail in Section 4 and

Section 5, respectively. Finally we conclude in Section 6.

2 RELATEDWORK
constrained-based approaches.This line of work can be classified
as follows. (i) Row-efficient approaches, which model the search

space of AFDs as a power lattice and employ different pruning

and lattice traversal strategies, e.g., TANE [6], Fun [7], FDmine [8],

DFD [9] and Pyro [12]. They have been shown to perform well

on datasets with many tuples, but scale poorly with the number

of columns in the input dataset. (ii) Column-efficient approaches,
which first find non-FDs rules by comparing all pairs of tuples

and then deduce candidate FDs rules from these non-FDs rules.

Representative methods include Fdep [10], Dep-Miner [11] and

FastFDs [16]. Compared with the lattice traversal strategy, this type

of algorithm exhibits good scalability with respect to the number

of attributes, but its complexity is quadratic with respect to the

number of tuples, making it performing poorly on datasets with a

large number of tuples. (iii) Hybrid approaches, which manage to

scale equally well with growing numbers of tuples and attributes

by combining column-efficient FD induction techniques with row-

efficient FD search techniques. For example, HyFD [17] calculates

non-FDs by tuple comparisons and validate them by position list

indices (PLI) intersections.

Note that constrained-based approaches aim to find AFDs that

satisfy the syntactical requirements, without considering the sta-

tistical characteristics of the dependencies. As a result, hundreds

of spurious AFDs will be discovered by the constrained-based ap-

proaches for datasets with only tens of attributes [12]. Moreover,

constrained-based approaches suffer from the huge search space

that grows exponentially with the number of attributes, since they

need to verify all candidate dependencies that might be syntactically

valid. Although various pruning strategies have been employed in

constrained-based approaches to reduce the size of the search space,

it is still very hard for them to scale up to datasets with real-world

size as show in [13].

Probabilistic-based approaches. There are three representa-
tive approaches in this line and all of them are limited in recall. (1)

FDX [14] is the first to use structure learning for AFDs discovery.

It models the distribution that AFDs impose over pairs of tuples

and leverages linear dependencies to recover AFDs. However, as

discussed before, FDX is limited in terms of recall since it can only

recover one determinant for each RHS attribute. In addition, FDX

cannot discover cyclic dependencies since it assumes a global or-

dering over the attributes and only allows all attributes in the LHS

precede the RHS attribute in that ordering. (2) RFI[15], the state-of-

the-art AFDs discovery approach in data mining, detects only top

𝑘 determinants for each RHS attribute according to an information

theoretic score. As a result, the performance of RFI heavily depends

on the choice of 𝑘 . Unfortunately, there usually does not exist a

global optimal 𝑘 which can be appropriate for all RHS attributes

since the number of determinants for each RHS attribute varies a

lot. (3) CORDS [18], leverages correlation-related statistics to obtain

AFDs. However, it can only discover unary AFDs whose determi-

nant contains only one attribute and therefore it fails to identify

binary and ternary AFDs, which are quite common in real-word

datasets.

3 PROBLEM STATEMENT
In this section, we first review some background material and then

give the formal definition of the AFDs discovery problem.

3.1 Approximate Functional Dependency
Given a relation schema R withA denoting its set of attributes and

𝐷 be an instance over R. An approximate functional dependency

𝑋 → 𝐴 is a statement over a set of attributes𝑋 ⊆ A and an attribute

𝐴 ∈ A, denoting that the value(s) of 𝑋 approximately determines

the value of𝐴. Under the constrained-based interpretation of AFDs,

there are many possible ways of defining the approximateness of an

AFD. In this paper, we use a slight adaptation of the well-established

𝑔1 error as in [12], which has a natural interpretation as the fraction

of tuple pairs that violate the dependency; the dependency error is

defined as:

𝑒 (𝑋 → 𝐴, 𝐷) = |{(𝑡1, 𝑡2) ∈ 𝐷
2 | 𝑡1 [𝑋 ] = 𝑡2 [𝑋 ] ∧ 𝑡1 [𝐴] ≠ 𝑡2 [𝐴]}|

|𝐷 |2 − |𝐷 |
(1)
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Note that 𝑒 (𝑋 → 𝐴, 𝐷) ranges over [0, 1], having the value

close to 0 when 𝑋 → 𝐴 almost holds in 𝐷 . The constrained-based

interpretation of AFDs is defined based on the dependency error.

Definition 3.1. (AFD under constrained interpretation). Given a

relation 𝐷 and an error threshold 𝜖 , 0 ≤ 𝜖 ≤ 1, we say 𝑋 → 𝐴 is

an approximate functional dependency (AFD) if and only if 𝑒 (𝑋 →
𝐴, 𝐷) is at most 𝜖 .

An AFD is minimal if the errors of all its generalizations are

greater than 𝜖 . Accordingly, the determinant of a minimal AFD is

called a minimal determinant. Now we introduce the probabilistic

interpretation of AFDs. Let each attribute 𝐴 ∈ A has a domain

𝑑𝑜𝑚(𝐴) and the domain of a set of attributes𝑋 = {𝐴1, 𝐴2, . . . , 𝐴𝑘 } ⊆
A is defined as 𝑑𝑜𝑚(𝑋 ) = 𝑑𝑜𝑚(𝐴1) × 𝑑𝑜𝑚(𝐴2) × · · · × 𝑑𝑜𝑚(𝐴𝑘 ).
Then we assume that the instance of R is generated randomly

according to a probability distribution 𝑃𝑅 and the probabilistic

interpretation of AFD is defined as below.

Definition 3.2. (AFD under probabilistic interpretation). Given the

distribution 𝑃𝑅 , we say that 𝑋 → 𝐴 is an AFD if there is a function

𝑓 : 𝑑𝑜𝑚(𝑋 ) → 𝑑𝑜𝑚(𝐴) such that :

∀𝑥 ∈ 𝑑𝑜𝑚(𝑋 ) : 𝑃𝑅 (𝐴 = 𝑎 |𝑋 = 𝑥) =
{
1 − 𝜖,when 𝑎 = 𝑓 (𝑥)
𝜖, otherwise

(2)

with 𝜖 being a small constant, allowing some violations to the

functional relation.

3.2 Problem Definition
As analysed before, in order to discover all AFDs that are both

syntactically valid and statistically significant, we combine the

advantages of the constrained-bases interpretation and the proba-

bilistic interpretation of AFDs. The AFDs discovery problem under

this setting is defined as below.

Definition 3.3. (AFDs discovery problem). Given a relation 𝐷 and

an error threshold 𝜖 , we want to identify all AFDs that characterize

the distribution behind 𝐷 and the dependency errors are at most 𝜖 .

Note that the AFDs discovered in this way can solve the over-

fitting problem of the constrained-bases approaches since the un-

correlated attributes cannot appear in the determinant of a RHS

attribute. Besides, the low recall problem of the probabilistic-based

approaches can be alleviated to a large extent by verifying all pos-

sible determinants (i.e., comparing the dependency error with the

threshold) among the correlated attributes of a RHS attribute.

3.3 Solution Overview
An overview of our approach MAFD is shown in Figure1. The input

is a noisy dataset𝐷 with an error threshold 𝜖 , and the output is a set

of discovered AFDs. MAFD mainly contain two stages: dependency

structure learning and powever lattice traversal.

Dependency Structure Learning. In this stage, MAFD first

creates a random sample over the input instance and transform the

sample data according to our bucket strategy in order to enhance

the correlations among attributes. Then a Bayesian network is

trained to learn the dependency structure of the transformed sample.

Finally, MAFD computes the Markov blankets of each attribute in

the Bayesian network.

Power Lattice Traversal. In this stage, MAFD first generates

one search space per RHS attribute with the Markov blanket of

that attribute to be the peak in the power lattice. Then a depth first

search strategy is employed to discover all minimal determinants

with dependency errors less than 𝜖 . The dependency errors are

computed efficiently based on position list index, a widely used

structure in constrained-based approaches.

4 DEPENDENCY STRUCTURE LEARNING
In this section, we describe the workflow in the first stage of MAFD

including data transformation, Bayesian network learning and

Markov blanket computation.

4.1 Data Transformation
First, we create a random sample over the input instance and then

employ the hash bucketization to distribute attribute values across a

set of buckets using a hash function. As discussed before, in order to

capture all dependencies among attributes, especially those strong

dependencies introduced by AFDs, we need to compress the large

domain space to a small space. In this way, the co-occurrences

among correlated attributes will be increased in the sample and

it will be much more easier for the Bayesian network learning

approach to discover such correlation.

Specifically, for each attribute 𝐴 with large domain, a hash func-

tion ℎ is applied to the attribute value 𝑥 to compute its hash value

ℎ(𝑥). Then we determine the bucket in which 𝑥 will be placed by

using a modulo operation: 𝑏𝑢𝑐𝑘𝑒𝑡 = ℎ(𝑎) 𝑚𝑜𝑑 𝑚, where𝑚 is the

total number of buckets. For example, consider an attribute value

apple, a hash function 𝑑 𝑗𝑏2 (a simple yet effective hash function)

and a bucket number 10, then we can determine the bucket is 5

since 𝑑 𝑗𝑏2(apple) 𝑚𝑜𝑑 10 = 5.

Note that this transformation strategy will not effect the effec-

tiveness of MAFD since the true dependencies among correlated

attributes are enhanced. However, the efficiency of MAFD might

downgrade to some extend since false correlations among inde-

pendent attributes could be introduced. For example, the Markov

blanket of a RHS attribute could possibly contain some attributes

that are independent with that attribute after data transformation.

Therefore, the search space based on the Markov blanket will grow

and the search cost will increase accordingly. Nevertheless, these

false correlations will not be discovered as AFDs since MAFD will

valid them on the original dataset, i.e., compute their dependency

errors.

4.2 Bayesian Network Learning
Learning the structure of a Bayesian network involves discover-

ing the dependencies among variables and determining the best

graphical representation of these dependencies. There are three

main categories of methods used for learning Bayesian network

structures: constrained-based methods, score-based methods, and

hybrid methods. In this paper, we adopt a score-based method,

BANJO [19], to learn the dependency structure of the transformed

sample. BANJO adopts a heuristic search strategy simulating an-

nealing algorithm to avoid falling into local optimal solutions. Note

that the other Bayesian network learning approaches can also be

adopted in this step.
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Figure 1: An overview of MAFD framework

4.3 Markov Blanket Computation
After obtaining the Bayesian network, we now compute the Markov

blanket for each node in the network. The Markov blanket of a node

𝑋 in a Bayesian network is defined as the minimal set of nodes in

the network such that 𝑋 is conditionally independent of all other

nodes given this set. In particular, the Markov blanket of𝑋 includes

the parents of 𝑋 , children of 𝑋 and parents of the children of 𝑋 in

the Bayesian network.

Definition 4.1. (Markov blanket). In a Bayesian network, let 𝐺

be a directed acyclic graph representing the network structure,

and let 𝑃𝑎(𝑋 ),𝐶ℎ(𝑋 ), and 𝑃𝑎(𝐶ℎ(𝑋 )) denote the parents of 𝑋 , the

children of 𝑋 , and the parents of the children of 𝑋 (excluding 𝑋 ),

respectively. Then, the Markov blanket𝑀𝐵(𝑋 ) of node𝑋 is defined

as:

𝑀𝐵(𝑋 ) = 𝑃𝑎(𝑋 ) ∪𝐶ℎ(𝑋 ) ∪ 𝑃𝑎(𝐶ℎ(𝑋 ))\𝑋 (3)

Example 4.2. Figure 2 is an example of a Bayesian network. In

this Bayesian network, the Markov blanket of node 𝑇 includes

𝑃𝑎(𝑋 ) = {𝑋1, 𝑋2}, 𝐶ℎ(𝑇 ) = {𝑋6, 𝑋7} and 𝑃𝑎(𝐶ℎ(𝑇 )) = {𝑋8}, i.e.,
𝑀𝐵(𝑇 ) = {𝑋1, 𝑋2, 𝑋6, 𝑋7, 𝑋8}.

Let 𝐴 be an attribute in the Bayesian network learned from

the sample. According to the independent property of the Markov

blanket, the attributes affecting the distribution of 𝐴 are all in the

Markov blanket of 𝐴. Suppose there exists an AFD 𝑋 → 𝐴, i.e.,𝐴 is

approximately determined by𝑋 . Hopefully,𝑋 should to be involved

T

X1

X7 X6

X4

X3

X8

X2

X5

Figure 2: Example of Bayesian Network

in the Markov blanket of 𝐴. In fact, according to the following

lemma, we know that the Markov blankets of 𝐴 contains at least

one determinant of 𝐴 as long as the learned Bayesian network can

accurately reflect the underlying dependencies among attributes.

Lemma 1. Given a relation schema 𝑅 and an accurate Bayesian
network 𝐺 describing the dependencies in 𝑅. Let 𝐷 (𝐴) denote the set
of 𝐴′𝑠 determinants. Then the Markov blanket of 𝐴 contains at least
one determinant in 𝐷 (𝐴).

Proof. Note that ∀𝑋 ∈ 𝐷 (𝐴), we have 𝑋 → 𝐴. If 𝑋 ⊆ 𝑀𝐵(𝐴),
then the lemma is proved. Suppose 𝑋 ⊈ 𝑀𝐵(𝐴). According to

𝑋 → 𝐴, we know that the value of 𝐴 is approximately determined

by the value(s) of 𝑋 . Suppose when 𝑋 = 𝑥 , the corresponding

𝐴 = 𝑎. Then we have 𝑃𝑅 (𝐴 = 𝑎 |𝑀𝐵(𝐴), 𝑋 = 𝑥) = 1 − 𝜖 , for a

small 𝜖 . According to the conditional independence of the Markov

blanket, we have 𝑃𝑅 (𝐴 = 𝑎 |𝑀𝐵(𝐴), 𝑋 = 𝑥) = 𝑃𝑅 (𝐴 = 𝑎 |𝑀𝐵(𝐴)).
In other words, 𝑃𝑅 (𝐴 = 𝑎 |𝑀𝐵(𝐴)) = 1 − 𝜖 must be true, which

requires at least one determinant of𝐴 in𝑀𝐵(𝐴). Hence, the lemma

is proven. □

The above lemma demonstrates that we can recover at least one

determinant of a RHS attribute based on the Markov blanket. In

fact, the experiments on various datasets demonstrate that MAFD

can discover almost all of the determinants.

5 POWER LATTICE TRAVERSAL
In this section, we introduce how to traverse the search space and

validate the candidate determinants efficiently.

5.1 Trickle Dowm From Markov Blanket
According to our previous analysis, one can search the determinants

of a RHS attribute within its Markov blanket. Therefore, MAFD

creates one search space per RHS attribute with the Markov blanket

of that attribute to be the peak in the power lattice. Then MAFD

employs a depth first search strategy similar to [12] to find all

minimal determinants of the RHS attribute. Algorithm 1 outlines

the traversal process.

First, we calculate the dependency error of the peak and if it is

less than 𝜖 (Line 3), then the peak is a determinant, but potentially

not minimal. Therefore, we perform a downward process to validate

its generations (i.e., its subsets). Specifically, we first initialize the

4



Algorithm 1: Discover minimal determinants

1 Input: dataset 𝐷 , peak 𝑃 , maximum error 𝜖 ;

2 Output: a set of minimal determinantsM;

3 if 𝑒 (𝑃, 𝐷) ≤ 𝜖 then
4 M ← 𝜙 ;

5 P ← immediate generalizations of 𝑃 ;

6 while P is not empty do
7 𝑃 ′ ← a candidate peek from P;
8 M′ ← look up subsets of 𝑃 ′ inM;

9 ifM′ ≠ ∅ then
10 remove 𝑃 ′ from P;
11 for each subset 𝑝 of 𝑃 ′ but not superset of any

element inM′ do
12 if 𝑝 is not a non-FD then
13 add 𝑝 to P;
14 else
15 M ← trickle-down-from(𝑃 ′, 𝜖);
16 if 𝑀 ≠ ⊥ then
17 add𝑀 toM ;

18 else
19 remove 𝑃 ′ from P;
20 Function trickle-down-from(𝑃 ′, 𝜖):
21 if |𝑃 ′ | > 1 then
22 G ← immediate generalizations of 𝑃 ′ ;
23 while G is not empty do
24 𝐺 ← a candidate determinant from G ;

25 if 𝑒 (𝐺, 𝐷) > 𝜖 then break ;

26 𝐶 ← trickle-down-from(𝐺, 𝜖);
27 if 𝐶 ≠ ⊥ then return C;

28 if 𝑒 (𝑃 ′, 𝐷) ≤ 𝜖 then return 𝑃 ′;
29 return ⊥

minimal determinantsM to be an empty set and set the candidate

peak set P to contain the immediate generalizations of 𝑃 (i.e., re-

moving one attribute from 𝑃 ) (Line 5). Then MAFD randomly picks

one candidate peak 𝑃
′
from P at one time (line 6-7) and checks

whether it is pruned by a minimal determinant inM (Line 8). If

there exists a set of minimal determinantsM′ such that 𝑃
′
is their

superset (line 9), then we can prune 𝑃
′
from the candidate peak

set P (line 10) and add all subsets of 𝑃
′
but not supersets ofM′

in

P (line 12); otherwise, we perform a recursive downward search

until we find a minimal determinant in 𝑃
′
or no determinant can

be found (line 14-28).

Example 5.1. Consider a RHS attriubte 𝐹 . Suppose the Markov

Blanket of 𝐹 is𝐴𝐵𝐶𝐷 and the dependency error of𝐴𝐵𝐶𝐷 is less than

𝜖 , then the search space of 𝐹 is shown in Figure 3 with peak 𝐴𝐵𝐶𝐷 .

In the first loop, the peak candidate set includes the immediate

generalizations of 𝐴𝐵𝐶𝐷 , i.e., P = {𝐴𝐵𝐶,𝐴𝐵𝐷,𝐴𝐶𝐷, 𝐵𝐶𝐷}, and
the minimal determinants setM = 𝜙 . Then we randomly select

a candidate peak from P, say 𝐴𝐵𝐶 , and check whether 𝐴𝐵𝐶 is a

superset of any determinant in M. If so, 𝐴𝐵𝐶 is not a minimal

determinant and we can remove it from the candidate set. Since

M = 𝜙 at this time, we continue to trickle down from𝐴𝐵𝐶 . Suppose

the dependency error of 𝐴𝐵𝐶 is greater than 𝜖 , then the trickle-
down-from function will return ⊥ and we remove 𝐴𝐵𝐶 from P, i.e.,
P = {𝐴𝐵𝐷,𝐴𝐶𝐷, 𝐵𝐶𝐷}. We call 𝐴𝐵𝐶 → 𝐹 a non-AFD and we can

prune all generalizations of 𝐴𝐵𝐶 from the search space (the pruned

nodes are marked in red in Figure 3).

In the second loop, we randomly select a peak from P, say 𝐵𝐶𝐷 .

Suppose its error is less than 𝜖 , then we recursively trickle down

from 𝐵𝐶𝐷 in a depth-first manner until we find a minimal deter-

minant. Assume the error of 𝐶𝐷 is less than 𝜖 but the errors of

all its generations, i.e., 𝐶 and 𝐷 , are larger than 𝜖 . Then 𝐶𝐷 will

be discovered as a minimal determinant and we put 𝐶𝐷 inM, i.e.,

M = {𝐶𝐷}.
In the third loop, suppose we also select 𝐵𝐶𝐷 from P. Since 𝐵𝐶𝐷

is a super set of 𝐶𝐷 , which is a minimal determinant, we need to

search the other minimal determinants in 𝐵𝐶𝐷 . To achieve this goal,

we first remove 𝐵𝐶𝐷 from the peak candidate set to avoid infinitely

traverse the 𝐶𝐷 path and add all unpruned subsets of 𝐵𝐶𝐷 but not

superset of𝐶𝐷 in the peak candidate set, i.e., P = {𝐴𝐵𝐷,𝐴𝐶𝐷, 𝐵𝐷}.
In this way, we are guaranteed to traverse all paths in 𝐵𝐶𝐷 except

the one including 𝐶𝐷 .

In the fourth loop, suppose we select 𝐵𝐷 from P and its er-

ror is less than 𝜖 while its generations errors are larger than 𝜖 .

Then 𝐵𝐷 is another minimal determinant and we add it inM, i.e.,

M = {𝐶𝐷, 𝐵𝐷}. The above process will continue until there is no
candidate peak in P.

It is not difficult to verify that our search strategy can identify

all minimal determinants that are subsets of the Markov blanket.

In addition, note that the Markov blanket of a RHS attribute 𝐴 is

usually very small since it only involves attributes correlated with

𝐴. Therefore MAFD is not sensitive to the number of attributes in

the dataset. Experimental results show that MAFD scales equally

well with growing numbers of tuples and attributes. Besides, MAFD

effectively addresses the issue of overfitting since it only consider

determinants within the Markov blanket rather than the entire

attribute set.

A B C D

AB AC AD BC BD CD

ABC ABD BCD

P

ABCD

ACD

PAFD non-AFD State unknown Peak

Pruned(non)-AFD traversal step pruning

(1) (2)

(2)

(2)

(3)

Figure 3: Example of a search space
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6 EXPERIMENTS
In this section, we compare our algorithm with other approximate

functional dependency discovery algorithms. We attempt to vali-

date: (1) whether the use of Markov blankets to determine the left

decision set can accurately discover AFDs, (2) the impact of datasets

with different features on various FD discovery methods, (3) does

the MAFD exhibit robustness to different parameters in the dataset.

6.1 Experimental Setup
We employ the BANJO framework for Bayesian network training

on data, which focuses on score-based structural inference. It adopts

a heuristic search strategy simulating annealing algorithm to avoid

falling into local optimal solutions.

Datasets and Evaluation Goals. For a more comprehensive

assessment of FD detection methods with consideration for FD

type integrity, we conduct experiments on synthetic datasets. In

real-world datasets, the true FDs are often unknown or inaccurate,

which may lead to imprecise results when evaluating FD discovery

methods. In the synthetic datasets, we can accurately identify the

true FDs and control the quantity of FDs, thus enabling evaluate

various FD discovery methods more precisely.

In our experiments, we adopte a data generation method similar

to FDX. Given a relational schema with r attributes. we design two

common functional dependency patterns: Categorical and numer-

icalx type. The Categorical type include FDs with one attribute

on the RHS, FDs with two attributes on the RHS, FDs with three

attributes on the RHS, and FDs that are set with cycles. For categor-

ical FDs, our generator initially determines the number of FD to be

generated for each type, and allocates a corresponding number of

attributes for each FD. Let (X, Y) be a set of attributes distributed
in the aforementioned manner. Our generator initially assigns a

domain dom(X) for each attribute in X with the setting for Domain

Cardinality, while simultaneously assigning a domain dom(Y) for Y.

For each attribute x in X, we randomly select a value from dom(x)

to assign to x. For each determined x, a value y from dom(y) is

randomly selected as its corresponding RHS. If there are multiple

attributes in the LHS, they are considered as a whole and the same

process as above is followed. The number of samples generated is

determined by the value of the parameter assigned to the number

of tuples. For numeric FDs, first assign a domain to each of the

LHS attributes 𝑑𝑜𝑚(𝑋1) and 𝑑𝑜𝑚(𝑋2), respectively select random

values from 𝑑𝑜𝑚(𝑋1) and 𝑑𝑜𝑚(𝑋2) to be assigned to 𝑥1 and 𝑥2.

Then, based on the function: 𝑥1 + 𝑥2 = y, we determine the value of

the corresponding RHS.

Next, in order to test the robustness of the AFD discovering

algorithm to noise, we randomly flip the cells corresponding to the

attributes involved in the real functional dependency to different

Table 1: The different settings for synthetic data sets.

Factors Settings

Noise Rate 1% - 30%

Tuples 10
3
- 10

5

Attributes 5 - 30

Domain Cardinality [25,100] - [625,900]

values in their domain, thereby changing the noise environment of

the data. The percentage of flipped cells is adjusted by controlling

the settings of the noise ratio.

We evaluate the above methods as we vary four key factors

in the data: (1) Noise Rate, in order to test the robustness of FD

discovery methods; (2) Number of Tuples, in order to the scalability

of the FD discovery methods with respect to data sample size; (3)

Number of Attributes, in order to test the scalability of the FD

discovery methods with respect to the number of data attributes.

(4) Domain Cardinality, in order to evaluate the sample complexity

of FD methods. The values of each factor are summarized in the

table 1.

Methods.We considered seven comparative methods: (1) TANE,

which is a classical algorithm to discovery of functional and ap-

proximate dependencies from relations. The algorithm derives ef-

fective dependencies from the partition of relations and adopts a

breadth-first search strategy. The code is released by the authors.
1

(2) Reliable Fraction of Information (RFI), which relies on an in-

formation theoretic score to find FDs and uses an approximation

scheme to optimize performance. The approximation ratio of RFI is

controlled by the hyperparameter 𝛼 to balance the accuracy and

efficiency of the algorithm [15]. The code is also released by the

authors.
2
(3) PYRO, as an advanced AFD mining method in the field

of databases, its main goal is to identify all syntactically valid AFDs

in the dataset. This method adopts a separate-and-conquer strat-

egy, quickly determines the minimal dependencies through agree

set samples, achieves efficient verification, and effectively uses the

discovered dependencies to prune the search space. The code is

released by the authors.
3
(4) FDX, adopts a statistical perspective to

transforms AFD mining into a structural learning problem on lin-

ear structural equation models. It constructs samples by sampling

value differences of tuple pairs from the original data and performs

structural learning on the samples. The code is released by the

authors.
4
(5) FEDP, addresses the problem of discovering functional

dependencies from a machine learning perspective. It constructs

negative coverage and negative coverage inversion by pairwise

comparison of all tuples in a given relation, and uses top-down and

bottom-up algorithms to hypothesize and test dependencies. (6)

DFD, which Models the search space into multiple lattices. It dis-

covers all functional dependencies following a depth first traversal

strategy of the attribute lattice that combines aggressive pruning

and efficient result verification. (7)CORDS, by considering corre-

lations to discover correlations between columns and soft FDs. It

proposes an example-based method that uses system cataloging

to retrieve the number of different values in columns. However, it

only studies FDs with a single attribute on the LHS [18].

Evaluation Methodology. We measure the effectiveness of the

competing methods by using precision (P), recall (R), and 𝐹1-score.

𝐹1-score is defined as :

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(4)

1
https://www.cs.helsinki.fi/research/fdk/datamining/tane/

2
http://eda.mmci.uni-saarland.de/prj/dora/

3
https://github.com/HPI-Information-Systems/pyro/releases

4
https://github.com/sis-ethz/Profiler-Public
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Figure 4: Experimental comparison of varying the rate of noise on synthetic datasets

Figure 5: Experimental comparison of varying the size of domain on synthetic datasets

where precision refers to the fraction of correctly discovered edges

that participate in true FDs by the total number of edges in discov-

ered FDs, recall refers to the fraction of correctly discovered edges

that participate in the true FDs by the total number of true edges

in the FDs of a data set.

Implementation Details. All experiments were executed on a

machine with Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz pro-

cessor,8GB RAM, Windows 10 operating system.

6.2 Validity Evaluation
6.2.1 Robustness of noise.

We evaluate the performance of our approach and other methods

on synthetic datasets by altering various key factors of the data.

In our first experiment, we compared the performance of various

methods in different noise levels. The experiment uses the synthetic

dataset with 19 columns and 5000 rows, its domain size is set to 216.

We measured the performance under varying noise rates ranging

from 1% to 30%. The results are shown in Figure 4.

The results indicate that with the increase in noise ratio, the

performance of all methods shows a decreasing trend. It is worth

noting that MAFD demonstrates better precision, recall and 𝐹1 score

overall compared to other methods, and maintains relative stability.

This suggests that MAFD has excellent robustness to noisy data.

We turn our attention to constrain-based approaches, Pyro, Tane,

Fedp and Dfd, although their recall rates are considerable, their

precision and 𝐹1-scores are both vary low. This is because their

goal is to discover grammatically valid AFD, thereby identifying a

large number of spurious AFDs.

For probabilistic-based approaches, RFI identifies AFDs by opti-

mizing information theory scores, but this score also tends to overfit

the input samples, resulting in low precision. Therefore, its 𝐹1-score

is also lower than that of MAFD. Cords is extremely sensitive to

noise, and due to inherent limitations of the method, it can only dis-

cover AFDs whose determinant contains only one attribute. When

the dataset has few or no unary AFDs, it struggles to discover other

types of AFDs, resulting in a low 𝐹1-score. FDX exhibits relative

stability in response to changes in the noise enviroment, but its

accuracy is low. FDX employs structural learning to globally rank

attributes and requires that the priority of left-hand attributes be

higher than right-hand attributes. Consequently, attribute prioriti-

zation affects performance, and it is unable to recognize AFDs with

cyclic dependencies, resulting in lower accuracy and recall.

6.2.2 Complexity evaluation.
The domain cardinality is one of the important indicators to
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Table 2: Experimental comparison of varying the number of tuples on synthetic dataset.

Tuple Sizes MAFD TANE PYRO RFI CORDS FDEP DFD FDX

1000 10.832 19.485 9.694 10.676 0.106 16.814 2.797 0.321

2000 12.444 20.68 7.69 10.546 0.127 15.766 3.09 0.305

5000 12.339 49.691 10.405 13.769 0.156 15.399 3.261 0.721

10000 13.167 124.308 9.174 8.958 0.195 25.031 4.817 0.351

20000 13.871 295.258 8.779 19.169 0.267 69.019 6.1 0.339

50000 15.875 - 12.183 - 0.35 385.501 11.847 0.73

100000 18.242 - 17.407 - 0.495 1489.647 14.202 1.41

’-’ method exceeds runtime limit (8 hours).

Table 3: Experimental comparison of varying the number of attributes on synthetic dataset.

Attributes MAFD TANE PYRO RFI CORDS FDEP DFD FDX

5 5.285 0.137 1.11 0.265 0.1 1.751 0.113 0.162

10 10.755 4.748 5.787 1.09 0.111 8.741 0.442 0.198

15 21.113 570.468 118.49 8.205 0.131 113.824 2.156 0.365

20 41.216 - 227.16 17.96 0.142 297.536 11.643 0.552

25 64.595 - 1268.542 30.75 0.175 1421.856 53.246 0.791

30 66.041 - 2455.25 41.1 0.225 - - 1.195

’-’ method exceeds runtime limit (2 hours).

measure the sample complexity of AFD methods, reflecting the

number of different types of attribute values in the dataset. To

comprehensively evaluate the performance of different AFD discov-

ering methods under different sample complexities, we generated

a series of datasets with 17 columns, 5000 tuples, and a noise rate

of 5%. The domain cardinality is set from 25 to 900. By adjusting

the domain cardinality of the dataset, we can compare the perfor-

mance of various methods under different complexity conditions.

The experimental results are shown in Figure 5.

From the experimental results, it can be observed that as the

domain cardinality increases, the performance of all methods shows

a downward trend. Notably, we preprocess the data used for training

our Bayesian network to mitigate the impact of domain cardinality

on network training. The Markov blanket of a determined attribute

can still be guaranteed, therefore, the 𝐹1-score is higher than other

methods. For constrain-based approaches, Pyro, Tane, Fdep and Dfd

still perform poorly due to overfitting. At the same time, we found

that the performance of FDX has been consistently poor because

the synthetic dataset includes cyclic FDs, and FDX can only find

one determinant on the left for each attribute on the right, which

leads to a low recall rate.

6.3 Scalability of Attributes and Tuples
6.3.1 Varying the number of tuples.

We compare the scalability of various AFD discovery methods by

changing the number of tuples. To comprehensively study the im-

pact of different sample sizes on algorithm performance, we set up

a series of synthetic datasets with 17 columns, a domain cardinality

of 216, and a noise rate of 5% and the number of tuples ranges from

1,000 to 100,000. To ensure the efficiency and controllability of the

experiment, it automatically stops when the memory consumption

exceeds 8GB or the running time exceeds 8 hours. The results are

shown in table 2.

Firstly, MAFD maintains good efficiency across datasets of dif-

ferent scales. The runtime of MAFD can be divided into data pre-

processing time, data training time, and FD mining time. Based on

the Bayesian network framework we have chosen, through experi-

ments, we have found that setting the training time to 10 seconds

results in a stable network structure while maintaining a high 𝐹1-

score. New we turn our attention to constrain-based approaches,

Pyro and Dfd all column-efficient approach. Therefore, they can

still perform quickly on datasets with a large number of tuples.

However, Tane cannot terminate on larger datasets due to severe

overfitting. In our dataset with 17 columns, it can even find over

ten thousand AFDs. It is worth noting that Fdep is a row-inefficient

algorithm. Its complexity is O(𝑛2) (n is the number of tuples), as

the number of tuples increases, its runtime increases dramatically.

For probabilistic-based approaches, the runtime of FDX and

Cords is consistently low, as they only mine a single left-hand

determinant for each AFD, resulting in a correspondingly low recall

rate. RFI also cannot terminate on larger datasets, we attribute this

performance to RFI’s score that tend to overfit the input sample.

6.3.2 Varying the number of attributes.
This experiment analyzes the algorithms’ scalability of columns,

we set up a series of synthetic datasets with 5000 tuples, domain

cardinality of 216, noise rate of 5% and the number of attributes

ranges from 5 to 30. To ensure the efficiency and controllability of

the experiment, it automatically stops when the memory consump-

tion exceeds 8GB or the running time exceeds 2 hours. The results

are shown in table 3.

In our attribute scalability experiments, MAFD can maintain

efficient discovery efficiency as the number of attributes increases.

This is attributed to our utilization of the Markov blanket pruning
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rule, which significantly reduces the search space. It is worth noting

that the majority of the runtime of MAFD is dedicated to learning

the network structure. As the number of attributes increases, we

will augment the time spent on learning the network structure to

ensure the acquisition of higher-scoring network architectures. We

observe that traditional power lattice-based methods, TANE and

PYRO show exponential increases in runtime as the number of

attributes grows, with TANE even failing to terminate when there

are many attributes. FDX requires the transformation of the dataset

into a set of observations for a linear model, hence the runtime of

FDX significantly increases on datasets with a larger number of

attributes.

7 CONCLUSIONS
In this paper, We introduced MAFD, an approximate functional de-

pendency discovering algorithm based onMarkov blankets. The key

of the algorithm is to propose the use of Bayesian networks to learn

the relationships between attributes, determine the Markov blanket

of the right-hand side attributes, and thereby pinpoint the peak of

the maximum search space for the left-hand side determinant. This

greatly reduces the search space while avoiding overfitting. Our

experimental results indicate that we can improve the precision of

discovering while ensuring a high recall rate, thereby achieving a

better 𝐹1-score.
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